Merge tag 'linux-kselftest-5.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / drivers / crypto / bcm / cipher.c
CommitLineData
9d12ba86
RR
1/*
2 * Copyright 2016 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation (the "GPL").
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License version 2 (GPLv2) for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * version 2 (GPLv2) along with this source code.
15 */
16
17#include <linux/err.h>
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/errno.h>
21#include <linux/kernel.h>
22#include <linux/interrupt.h>
23#include <linux/platform_device.h>
24#include <linux/scatterlist.h>
25#include <linux/crypto.h>
26#include <linux/kthread.h>
27#include <linux/rtnetlink.h>
28#include <linux/sched.h>
29#include <linux/of_address.h>
30#include <linux/of_device.h>
31#include <linux/io.h>
32#include <linux/bitops.h>
33
34#include <crypto/algapi.h>
35#include <crypto/aead.h>
36#include <crypto/internal/aead.h>
37#include <crypto/aes.h>
38#include <crypto/des.h>
1126d47d 39#include <crypto/hmac.h>
9d12ba86
RR
40#include <crypto/sha.h>
41#include <crypto/md5.h>
42#include <crypto/authenc.h>
43#include <crypto/skcipher.h>
44#include <crypto/hash.h>
9d12ba86
RR
45#include <crypto/sha3.h>
46
47#include "util.h"
48#include "cipher.h"
49#include "spu.h"
50#include "spum.h"
51#include "spu2.h"
52
53/* ================= Device Structure ================== */
54
55struct device_private iproc_priv;
56
57/* ==================== Parameters ===================== */
58
59int flow_debug_logging;
60module_param(flow_debug_logging, int, 0644);
61MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
62
63int packet_debug_logging;
64module_param(packet_debug_logging, int, 0644);
65MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
66
67int debug_logging_sleep;
68module_param(debug_logging_sleep, int, 0644);
69MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
70
71/*
72 * The value of these module parameters is used to set the priority for each
73 * algo type when this driver registers algos with the kernel crypto API.
74 * To use a priority other than the default, set the priority in the insmod or
75 * modprobe. Changing the module priority after init time has no effect.
76 *
77 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
78 * algos, but more preferred than generic software algos.
79 */
80static int cipher_pri = 150;
81module_param(cipher_pri, int, 0644);
82MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
83
84static int hash_pri = 100;
85module_param(hash_pri, int, 0644);
86MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
87
88static int aead_pri = 150;
89module_param(aead_pri, int, 0644);
90MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
91
9d12ba86
RR
92/* A type 3 BCM header, expected to precede the SPU header for SPU-M.
93 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
94 * 0x60 - ring 0
95 * 0x68 - ring 1
96 * 0x70 - ring 2
97 * 0x78 - ring 3
98 */
99char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
100/*
101 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
102 * is set dynamically after reading SPU type from device tree.
103 */
104#define BCM_HDR_LEN iproc_priv.bcm_hdr_len
105
106/* min and max time to sleep before retrying when mbox queue is full. usec */
107#define MBOX_SLEEP_MIN 800
108#define MBOX_SLEEP_MAX 1000
109
110/**
111 * select_channel() - Select a SPU channel to handle a crypto request. Selects
112 * channel in round robin order.
113 *
114 * Return: channel index
115 */
116static u8 select_channel(void)
117{
118 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
119
9166c443 120 return chan_idx % iproc_priv.spu.num_chan;
9d12ba86
RR
121}
122
123/**
124 * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to
125 * receive a SPU response message for an ablkcipher request. Includes buffers to
126 * catch SPU message headers and the response data.
127 * @mssg: mailbox message containing the receive sg
128 * @rctx: crypto request context
129 * @rx_frag_num: number of scatterlist elements required to hold the
130 * SPU response message
131 * @chunksize: Number of bytes of response data expected
132 * @stat_pad_len: Number of bytes required to pad the STAT field to
133 * a 4-byte boundary
134 *
135 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
136 * when the request completes, whether the request is handled successfully or
137 * there is an error.
138 *
139 * Returns:
140 * 0 if successful
141 * < 0 if an error
142 */
143static int
144spu_ablkcipher_rx_sg_create(struct brcm_message *mssg,
145 struct iproc_reqctx_s *rctx,
146 u8 rx_frag_num,
147 unsigned int chunksize, u32 stat_pad_len)
148{
149 struct spu_hw *spu = &iproc_priv.spu;
150 struct scatterlist *sg; /* used to build sgs in mbox message */
151 struct iproc_ctx_s *ctx = rctx->ctx;
152 u32 datalen; /* Number of bytes of response data expected */
153
154 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
155 rctx->gfp);
156 if (!mssg->spu.dst)
157 return -ENOMEM;
158
159 sg = mssg->spu.dst;
160 sg_init_table(sg, rx_frag_num);
161 /* Space for SPU message header */
162 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
163
164 /* If XTS tweak in payload, add buffer to receive encrypted tweak */
165 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
166 spu->spu_xts_tweak_in_payload())
167 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
168 SPU_XTS_TWEAK_SIZE);
169
170 /* Copy in each dst sg entry from request, up to chunksize */
171 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
172 rctx->dst_nents, chunksize);
173 if (datalen < chunksize) {
174 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
175 __func__, chunksize, datalen);
176 return -EFAULT;
177 }
178
179 if (ctx->cipher.alg == CIPHER_ALG_RC4)
180 /* Add buffer to catch 260-byte SUPDT field for RC4 */
181 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
182
183 if (stat_pad_len)
184 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
185
186 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
187 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
188
189 return 0;
190}
191
192/**
193 * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to
194 * send a SPU request message for an ablkcipher request. Includes SPU message
195 * headers and the request data.
196 * @mssg: mailbox message containing the transmit sg
197 * @rctx: crypto request context
198 * @tx_frag_num: number of scatterlist elements required to construct the
199 * SPU request message
200 * @chunksize: Number of bytes of request data
201 * @pad_len: Number of pad bytes
202 *
203 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
204 * when the request completes, whether the request is handled successfully or
205 * there is an error.
206 *
207 * Returns:
208 * 0 if successful
209 * < 0 if an error
210 */
211static int
212spu_ablkcipher_tx_sg_create(struct brcm_message *mssg,
213 struct iproc_reqctx_s *rctx,
214 u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
215{
216 struct spu_hw *spu = &iproc_priv.spu;
217 struct scatterlist *sg; /* used to build sgs in mbox message */
218 struct iproc_ctx_s *ctx = rctx->ctx;
219 u32 datalen; /* Number of bytes of response data expected */
220 u32 stat_len;
221
222 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
223 rctx->gfp);
224 if (unlikely(!mssg->spu.src))
225 return -ENOMEM;
226
227 sg = mssg->spu.src;
228 sg_init_table(sg, tx_frag_num);
229
230 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
231 BCM_HDR_LEN + ctx->spu_req_hdr_len);
232
233 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
234 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
235 spu->spu_xts_tweak_in_payload())
236 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
237
238 /* Copy in each src sg entry from request, up to chunksize */
239 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
240 rctx->src_nents, chunksize);
241 if (unlikely(datalen < chunksize)) {
242 pr_err("%s(): failed to copy src sg to mbox msg",
243 __func__);
244 return -EFAULT;
245 }
246
247 if (pad_len)
248 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
249
250 stat_len = spu->spu_tx_status_len();
251 if (stat_len) {
252 memset(rctx->msg_buf.tx_stat, 0, stat_len);
253 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
254 }
255 return 0;
256}
257
f0e2ce58 258static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
259 u8 chan_idx)
260{
261 int err;
262 int retry_cnt = 0;
263 struct device *dev = &(iproc_priv.pdev->dev);
264
265 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
266 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
267 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
268 /*
269 * Mailbox queue is full. Since MAY_SLEEP is set, assume
270 * not in atomic context and we can wait and try again.
271 */
272 retry_cnt++;
273 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
274 err = mbox_send_message(iproc_priv.mbox[chan_idx],
275 mssg);
276 atomic_inc(&iproc_priv.mb_no_spc);
277 }
278 }
279 if (err < 0) {
280 atomic_inc(&iproc_priv.mb_send_fail);
281 return err;
282 }
283
284 /* Check error returned by mailbox controller */
285 err = mssg->error;
286 if (unlikely(err < 0)) {
287 dev_err(dev, "message error %d", err);
288 /* Signal txdone for mailbox channel */
289 }
290
291 /* Signal txdone for mailbox channel */
292 mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
293 return err;
294}
295
9d12ba86
RR
296/**
297 * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in
298 * a single SPU request message, starting at the current position in the request
299 * data.
300 * @rctx: Crypto request context
301 *
302 * This may be called on the crypto API thread, or, when a request is so large
303 * it must be broken into multiple SPU messages, on the thread used to invoke
304 * the response callback. When requests are broken into multiple SPU
305 * messages, we assume subsequent messages depend on previous results, and
306 * thus always wait for previous results before submitting the next message.
307 * Because requests are submitted in lock step like this, there is no need
308 * to synchronize access to request data structures.
309 *
310 * Return: -EINPROGRESS: request has been accepted and result will be returned
311 * asynchronously
312 * Any other value indicates an error
313 */
314static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx)
315{
316 struct spu_hw *spu = &iproc_priv.spu;
317 struct crypto_async_request *areq = rctx->parent;
318 struct ablkcipher_request *req =
319 container_of(areq, struct ablkcipher_request, base);
320 struct iproc_ctx_s *ctx = rctx->ctx;
321 struct spu_cipher_parms cipher_parms;
322 int err = 0;
323 unsigned int chunksize = 0; /* Num bytes of request to submit */
324 int remaining = 0; /* Bytes of request still to process */
325 int chunk_start; /* Beginning of data for current SPU msg */
326
327 /* IV or ctr value to use in this SPU msg */
328 u8 local_iv_ctr[MAX_IV_SIZE];
329 u32 stat_pad_len; /* num bytes to align status field */
330 u32 pad_len; /* total length of all padding */
331 bool update_key = false;
332 struct brcm_message *mssg; /* mailbox message */
9d12ba86
RR
333
334 /* number of entries in src and dst sg in mailbox message. */
335 u8 rx_frag_num = 2; /* response header and STATUS */
336 u8 tx_frag_num = 1; /* request header */
337
338 flow_log("%s\n", __func__);
339
340 cipher_parms.alg = ctx->cipher.alg;
341 cipher_parms.mode = ctx->cipher.mode;
342 cipher_parms.type = ctx->cipher_type;
343 cipher_parms.key_len = ctx->enckeylen;
344 cipher_parms.key_buf = ctx->enckey;
345 cipher_parms.iv_buf = local_iv_ctr;
346 cipher_parms.iv_len = rctx->iv_ctr_len;
347
348 mssg = &rctx->mb_mssg;
349 chunk_start = rctx->src_sent;
350 remaining = rctx->total_todo - chunk_start;
351
352 /* determine the chunk we are breaking off and update the indexes */
353 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
354 (remaining > ctx->max_payload))
355 chunksize = ctx->max_payload;
356 else
357 chunksize = remaining;
358
359 rctx->src_sent += chunksize;
360 rctx->total_sent = rctx->src_sent;
361
362 /* Count number of sg entries to be included in this request */
363 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
364 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
365
366 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
367 rctx->is_encrypt && chunk_start)
368 /*
369 * Encrypting non-first first chunk. Copy last block of
370 * previous result to IV for this chunk.
371 */
372 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
373 rctx->iv_ctr_len,
374 chunk_start - rctx->iv_ctr_len);
375
376 if (rctx->iv_ctr_len) {
377 /* get our local copy of the iv */
378 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
379 rctx->iv_ctr_len);
380
381 /* generate the next IV if possible */
382 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
383 !rctx->is_encrypt) {
384 /*
385 * CBC Decrypt: next IV is the last ciphertext block in
386 * this chunk
387 */
388 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
389 rctx->iv_ctr_len,
390 rctx->src_sent - rctx->iv_ctr_len);
391 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
392 /*
393 * The SPU hardware increments the counter once for
394 * each AES block of 16 bytes. So update the counter
395 * for the next chunk, if there is one. Note that for
396 * this chunk, the counter has already been copied to
397 * local_iv_ctr. We can assume a block size of 16,
398 * because we only support CTR mode for AES, not for
399 * any other cipher alg.
400 */
401 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
402 }
403 }
404
405 if (ctx->cipher.alg == CIPHER_ALG_RC4) {
406 rx_frag_num++;
407 if (chunk_start) {
408 /*
409 * for non-first RC4 chunks, use SUPDT from previous
410 * response as key for this chunk.
411 */
412 cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
413 update_key = true;
414 cipher_parms.type = CIPHER_TYPE_UPDT;
415 } else if (!rctx->is_encrypt) {
416 /*
417 * First RC4 chunk. For decrypt, key in pre-built msg
418 * header may have been changed if encrypt required
419 * multiple chunks. So revert the key to the
420 * ctx->enckey value.
421 */
422 update_key = true;
423 cipher_parms.type = CIPHER_TYPE_INIT;
424 }
425 }
426
427 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
428 flow_log("max_payload infinite\n");
429 else
430 flow_log("max_payload %u\n", ctx->max_payload);
431
432 flow_log("sent:%u start:%u remains:%u size:%u\n",
433 rctx->src_sent, chunk_start, remaining, chunksize);
434
435 /* Copy SPU header template created at setkey time */
436 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
437 sizeof(rctx->msg_buf.bcm_spu_req_hdr));
438
439 /*
440 * Pass SUPDT field as key. Key field in finish() call is only used
441 * when update_key has been set above for RC4. Will be ignored in
442 * all other cases.
443 */
444 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
445 ctx->spu_req_hdr_len, !(rctx->is_encrypt),
446 &cipher_parms, update_key, chunksize);
447
448 atomic64_add(chunksize, &iproc_priv.bytes_out);
449
450 stat_pad_len = spu->spu_wordalign_padlen(chunksize);
451 if (stat_pad_len)
452 rx_frag_num++;
453 pad_len = stat_pad_len;
454 if (pad_len) {
455 tx_frag_num++;
456 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
457 0, ctx->auth.alg, ctx->auth.mode,
458 rctx->total_sent, stat_pad_len);
459 }
460
461 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
462 ctx->spu_req_hdr_len);
463 packet_log("payload:\n");
464 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
465 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
466
467 /*
468 * Build mailbox message containing SPU request msg and rx buffers
469 * to catch response message
470 */
471 memset(mssg, 0, sizeof(*mssg));
472 mssg->type = BRCM_MESSAGE_SPU;
473 mssg->ctx = rctx; /* Will be returned in response */
474
475 /* Create rx scatterlist to catch result */
476 rx_frag_num += rctx->dst_nents;
477
478 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
479 spu->spu_xts_tweak_in_payload())
480 rx_frag_num++; /* extra sg to insert tweak */
481
482 err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
483 stat_pad_len);
484 if (err)
485 return err;
486
487 /* Create tx scatterlist containing SPU request message */
488 tx_frag_num += rctx->src_nents;
489 if (spu->spu_tx_status_len())
490 tx_frag_num++;
491
492 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
493 spu->spu_xts_tweak_in_payload())
494 tx_frag_num++; /* extra sg to insert tweak */
495
496 err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
497 pad_len);
498 if (err)
499 return err;
500
f0e2ce58 501 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
502 if (unlikely(err < 0))
9d12ba86 503 return err;
9d12ba86
RR
504
505 return -EINPROGRESS;
506}
507
508/**
509 * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the
510 * total received count for the request and updates global stats.
511 * @rctx: Crypto request context
512 */
513static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx)
514{
515 struct spu_hw *spu = &iproc_priv.spu;
516#ifdef DEBUG
517 struct crypto_async_request *areq = rctx->parent;
518 struct ablkcipher_request *req = ablkcipher_request_cast(areq);
519#endif
520 struct iproc_ctx_s *ctx = rctx->ctx;
521 u32 payload_len;
522
523 /* See how much data was returned */
524 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
525
526 /*
527 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
528 * encrypted tweak ("i") value; we don't count those.
529 */
530 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
531 spu->spu_xts_tweak_in_payload() &&
532 (payload_len >= SPU_XTS_TWEAK_SIZE))
533 payload_len -= SPU_XTS_TWEAK_SIZE;
534
535 atomic64_add(payload_len, &iproc_priv.bytes_in);
536
537 flow_log("%s() offset: %u, bd_len: %u BD:\n",
538 __func__, rctx->total_received, payload_len);
539
540 dump_sg(req->dst, rctx->total_received, payload_len);
541 if (ctx->cipher.alg == CIPHER_ALG_RC4)
542 packet_dump(" supdt ", rctx->msg_buf.c.supdt_tweak,
543 SPU_SUPDT_LEN);
544
545 rctx->total_received += payload_len;
546 if (rctx->total_received == rctx->total_todo) {
547 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
548 atomic_inc(
549 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
550 }
551}
552
553/**
554 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
555 * receive a SPU response message for an ahash request.
556 * @mssg: mailbox message containing the receive sg
557 * @rctx: crypto request context
558 * @rx_frag_num: number of scatterlist elements required to hold the
559 * SPU response message
560 * @digestsize: length of hash digest, in bytes
561 * @stat_pad_len: Number of bytes required to pad the STAT field to
562 * a 4-byte boundary
563 *
564 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
565 * when the request completes, whether the request is handled successfully or
566 * there is an error.
567 *
568 * Return:
569 * 0 if successful
570 * < 0 if an error
571 */
572static int
573spu_ahash_rx_sg_create(struct brcm_message *mssg,
574 struct iproc_reqctx_s *rctx,
575 u8 rx_frag_num, unsigned int digestsize,
576 u32 stat_pad_len)
577{
578 struct spu_hw *spu = &iproc_priv.spu;
579 struct scatterlist *sg; /* used to build sgs in mbox message */
580 struct iproc_ctx_s *ctx = rctx->ctx;
581
582 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
583 rctx->gfp);
584 if (!mssg->spu.dst)
585 return -ENOMEM;
586
587 sg = mssg->spu.dst;
588 sg_init_table(sg, rx_frag_num);
589 /* Space for SPU message header */
590 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
591
592 /* Space for digest */
593 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
594
595 if (stat_pad_len)
596 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
597
598 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
599 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
600 return 0;
601}
602
603/**
604 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send
605 * a SPU request message for an ahash request. Includes SPU message headers and
606 * the request data.
607 * @mssg: mailbox message containing the transmit sg
608 * @rctx: crypto request context
609 * @tx_frag_num: number of scatterlist elements required to construct the
610 * SPU request message
611 * @spu_hdr_len: length in bytes of SPU message header
612 * @hash_carry_len: Number of bytes of data carried over from previous req
613 * @new_data_len: Number of bytes of new request data
614 * @pad_len: Number of pad bytes
615 *
616 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
617 * when the request completes, whether the request is handled successfully or
618 * there is an error.
619 *
620 * Return:
621 * 0 if successful
622 * < 0 if an error
623 */
624static int
625spu_ahash_tx_sg_create(struct brcm_message *mssg,
626 struct iproc_reqctx_s *rctx,
627 u8 tx_frag_num,
628 u32 spu_hdr_len,
629 unsigned int hash_carry_len,
630 unsigned int new_data_len, u32 pad_len)
631{
632 struct spu_hw *spu = &iproc_priv.spu;
633 struct scatterlist *sg; /* used to build sgs in mbox message */
634 u32 datalen; /* Number of bytes of response data expected */
635 u32 stat_len;
636
637 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
638 rctx->gfp);
639 if (!mssg->spu.src)
640 return -ENOMEM;
641
642 sg = mssg->spu.src;
643 sg_init_table(sg, tx_frag_num);
644
645 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
646 BCM_HDR_LEN + spu_hdr_len);
647
648 if (hash_carry_len)
649 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
650
651 if (new_data_len) {
652 /* Copy in each src sg entry from request, up to chunksize */
653 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
654 rctx->src_nents, new_data_len);
655 if (datalen < new_data_len) {
656 pr_err("%s(): failed to copy src sg to mbox msg",
657 __func__);
658 return -EFAULT;
659 }
660 }
661
662 if (pad_len)
663 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
664
665 stat_len = spu->spu_tx_status_len();
666 if (stat_len) {
667 memset(rctx->msg_buf.tx_stat, 0, stat_len);
668 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
669 }
670
671 return 0;
672}
673
674/**
675 * handle_ahash_req() - Process an asynchronous hash request from the crypto
676 * API.
677 * @rctx: Crypto request context
678 *
679 * Builds a SPU request message embedded in a mailbox message and submits the
680 * mailbox message on a selected mailbox channel. The SPU request message is
681 * constructed as a scatterlist, including entries from the crypto API's
682 * src scatterlist to avoid copying the data to be hashed. This function is
683 * called either on the thread from the crypto API, or, in the case that the
684 * crypto API request is too large to fit in a single SPU request message,
685 * on the thread that invokes the receive callback with a response message.
686 * Because some operations require the response from one chunk before the next
687 * chunk can be submitted, we always wait for the response for the previous
688 * chunk before submitting the next chunk. Because requests are submitted in
689 * lock step like this, there is no need to synchronize access to request data
690 * structures.
691 *
692 * Return:
693 * -EINPROGRESS: request has been submitted to SPU and response will be
694 * returned asynchronously
695 * -EAGAIN: non-final request included a small amount of data, which for
696 * efficiency we did not submit to the SPU, but instead stored
697 * to be submitted to the SPU with the next part of the request
698 * other: an error code
699 */
700static int handle_ahash_req(struct iproc_reqctx_s *rctx)
701{
702 struct spu_hw *spu = &iproc_priv.spu;
703 struct crypto_async_request *areq = rctx->parent;
704 struct ahash_request *req = ahash_request_cast(areq);
705 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
706 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
707 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
708 struct iproc_ctx_s *ctx = rctx->ctx;
709
710 /* number of bytes still to be hashed in this req */
711 unsigned int nbytes_to_hash = 0;
712 int err = 0;
713 unsigned int chunksize = 0; /* length of hash carry + new data */
714 /*
715 * length of new data, not from hash carry, to be submitted in
716 * this hw request
717 */
718 unsigned int new_data_len;
719
720 unsigned int chunk_start = 0;
721 u32 db_size; /* Length of data field, incl gcm and hash padding */
722 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
723 u32 data_pad_len = 0; /* length of GCM/CCM padding */
724 u32 stat_pad_len = 0; /* length of padding to align STATUS word */
725 struct brcm_message *mssg; /* mailbox message */
726 struct spu_request_opts req_opts;
727 struct spu_cipher_parms cipher_parms;
728 struct spu_hash_parms hash_parms;
729 struct spu_aead_parms aead_parms;
730 unsigned int local_nbuf;
731 u32 spu_hdr_len;
732 unsigned int digestsize;
733 u16 rem = 0;
9d12ba86
RR
734
735 /*
736 * number of entries in src and dst sg. Always includes SPU msg header.
737 * rx always includes a buffer to catch digest and STATUS.
738 */
739 u8 rx_frag_num = 3;
740 u8 tx_frag_num = 1;
741
742 flow_log("total_todo %u, total_sent %u\n",
743 rctx->total_todo, rctx->total_sent);
744
745 memset(&req_opts, 0, sizeof(req_opts));
746 memset(&cipher_parms, 0, sizeof(cipher_parms));
747 memset(&hash_parms, 0, sizeof(hash_parms));
748 memset(&aead_parms, 0, sizeof(aead_parms));
749
750 req_opts.bd_suppress = true;
751 hash_parms.alg = ctx->auth.alg;
752 hash_parms.mode = ctx->auth.mode;
753 hash_parms.type = HASH_TYPE_NONE;
754 hash_parms.key_buf = (u8 *)ctx->authkey;
755 hash_parms.key_len = ctx->authkeylen;
756
757 /*
758 * For hash algorithms below assignment looks bit odd but
759 * it's needed for AES-XCBC and AES-CMAC hash algorithms
760 * to differentiate between 128, 192, 256 bit key values.
761 * Based on the key values, hash algorithm is selected.
762 * For example for 128 bit key, hash algorithm is AES-128.
763 */
764 cipher_parms.type = ctx->cipher_type;
765
766 mssg = &rctx->mb_mssg;
767 chunk_start = rctx->src_sent;
768
769 /*
770 * Compute the amount remaining to hash. This may include data
771 * carried over from previous requests.
772 */
773 nbytes_to_hash = rctx->total_todo - rctx->total_sent;
774 chunksize = nbytes_to_hash;
775 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
776 (chunksize > ctx->max_payload))
777 chunksize = ctx->max_payload;
778
779 /*
780 * If this is not a final request and the request data is not a multiple
781 * of a full block, then simply park the extra data and prefix it to the
782 * data for the next request.
783 */
784 if (!rctx->is_final) {
785 u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
786 u16 new_len; /* len of data to add to hash carry */
787
788 rem = chunksize % blocksize; /* remainder */
789 if (rem) {
790 /* chunksize not a multiple of blocksize */
791 chunksize -= rem;
792 if (chunksize == 0) {
793 /* Don't have a full block to submit to hw */
794 new_len = rem - rctx->hash_carry_len;
795 sg_copy_part_to_buf(req->src, dest, new_len,
796 rctx->src_sent);
797 rctx->hash_carry_len = rem;
798 flow_log("Exiting with hash carry len: %u\n",
799 rctx->hash_carry_len);
800 packet_dump(" buf: ",
801 rctx->hash_carry,
802 rctx->hash_carry_len);
803 return -EAGAIN;
804 }
805 }
806 }
807
808 /* if we have hash carry, then prefix it to the data in this request */
809 local_nbuf = rctx->hash_carry_len;
810 rctx->hash_carry_len = 0;
811 if (local_nbuf)
812 tx_frag_num++;
813 new_data_len = chunksize - local_nbuf;
814
815 /* Count number of sg entries to be used in this request */
816 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
817 new_data_len);
818
819 /* AES hashing keeps key size in type field, so need to copy it here */
820 if (hash_parms.alg == HASH_ALG_AES)
a2e5d408 821 hash_parms.type = (enum hash_type)cipher_parms.type;
9d12ba86
RR
822 else
823 hash_parms.type = spu->spu_hash_type(rctx->total_sent);
824
825 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
826 hash_parms.type);
827 hash_parms.digestsize = digestsize;
828
829 /* update the indexes */
830 rctx->total_sent += chunksize;
831 /* if you sent a prebuf then that wasn't from this req->src */
832 rctx->src_sent += new_data_len;
833
834 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
835 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
836 hash_parms.mode,
837 chunksize,
838 blocksize);
839
840 /*
841 * If a non-first chunk, then include the digest returned from the
842 * previous chunk so that hw can add to it (except for AES types).
843 */
844 if ((hash_parms.type == HASH_TYPE_UPDT) &&
845 (hash_parms.alg != HASH_ALG_AES)) {
846 hash_parms.key_buf = rctx->incr_hash;
847 hash_parms.key_len = digestsize;
848 }
849
850 atomic64_add(chunksize, &iproc_priv.bytes_out);
851
852 flow_log("%s() final: %u nbuf: %u ",
853 __func__, rctx->is_final, local_nbuf);
854
855 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
856 flow_log("max_payload infinite\n");
857 else
858 flow_log("max_payload %u\n", ctx->max_payload);
859
860 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
861
862 /* Prepend SPU header with type 3 BCM header */
863 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
864
865 hash_parms.prebuf_len = local_nbuf;
866 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
867 BCM_HDR_LEN,
868 &req_opts, &cipher_parms,
869 &hash_parms, &aead_parms,
870 new_data_len);
871
872 if (spu_hdr_len == 0) {
873 pr_err("Failed to create SPU request header\n");
874 return -EFAULT;
875 }
876
877 /*
878 * Determine total length of padding required. Put all padding in one
879 * buffer.
880 */
881 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
882 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
883 0, 0, hash_parms.pad_len);
884 if (spu->spu_tx_status_len())
885 stat_pad_len = spu->spu_wordalign_padlen(db_size);
886 if (stat_pad_len)
887 rx_frag_num++;
888 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
889 if (pad_len) {
890 tx_frag_num++;
891 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
892 hash_parms.pad_len, ctx->auth.alg,
893 ctx->auth.mode, rctx->total_sent,
894 stat_pad_len);
895 }
896
897 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
898 spu_hdr_len);
899 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf);
900 flow_log("Data:\n");
901 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
902 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
903
904 /*
905 * Build mailbox message containing SPU request msg and rx buffers
906 * to catch response message
907 */
908 memset(mssg, 0, sizeof(*mssg));
909 mssg->type = BRCM_MESSAGE_SPU;
910 mssg->ctx = rctx; /* Will be returned in response */
911
912 /* Create rx scatterlist to catch result */
913 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
914 stat_pad_len);
915 if (err)
916 return err;
917
918 /* Create tx scatterlist containing SPU request message */
919 tx_frag_num += rctx->src_nents;
920 if (spu->spu_tx_status_len())
921 tx_frag_num++;
922 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
923 local_nbuf, new_data_len, pad_len);
924 if (err)
925 return err;
926
f0e2ce58 927 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
928 if (unlikely(err < 0))
9d12ba86 929 return err;
f0e2ce58 930
9d12ba86
RR
931 return -EINPROGRESS;
932}
933
934/**
935 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
936 * for an HMAC request.
937 * @req: The HMAC request from the crypto API
938 * @ctx: The session context
939 *
940 * Return: 0 if synchronous hash operation successful
941 * -EINVAL if the hash algo is unrecognized
942 * any other value indicates an error
943 */
944static int spu_hmac_outer_hash(struct ahash_request *req,
945 struct iproc_ctx_s *ctx)
946{
947 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
948 unsigned int blocksize =
949 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
950 int rc;
951
952 switch (ctx->auth.alg) {
953 case HASH_ALG_MD5:
954 rc = do_shash("md5", req->result, ctx->opad, blocksize,
955 req->result, ctx->digestsize, NULL, 0);
956 break;
957 case HASH_ALG_SHA1:
958 rc = do_shash("sha1", req->result, ctx->opad, blocksize,
959 req->result, ctx->digestsize, NULL, 0);
960 break;
961 case HASH_ALG_SHA224:
962 rc = do_shash("sha224", req->result, ctx->opad, blocksize,
963 req->result, ctx->digestsize, NULL, 0);
964 break;
965 case HASH_ALG_SHA256:
966 rc = do_shash("sha256", req->result, ctx->opad, blocksize,
967 req->result, ctx->digestsize, NULL, 0);
968 break;
969 case HASH_ALG_SHA384:
970 rc = do_shash("sha384", req->result, ctx->opad, blocksize,
971 req->result, ctx->digestsize, NULL, 0);
972 break;
973 case HASH_ALG_SHA512:
974 rc = do_shash("sha512", req->result, ctx->opad, blocksize,
975 req->result, ctx->digestsize, NULL, 0);
976 break;
977 default:
978 pr_err("%s() Error : unknown hmac type\n", __func__);
979 rc = -EINVAL;
980 }
981 return rc;
982}
983
984/**
985 * ahash_req_done() - Process a hash result from the SPU hardware.
986 * @rctx: Crypto request context
987 *
988 * Return: 0 if successful
989 * < 0 if an error
990 */
991static int ahash_req_done(struct iproc_reqctx_s *rctx)
992{
993 struct spu_hw *spu = &iproc_priv.spu;
994 struct crypto_async_request *areq = rctx->parent;
995 struct ahash_request *req = ahash_request_cast(areq);
996 struct iproc_ctx_s *ctx = rctx->ctx;
997 int err;
998
999 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
1000
1001 if (spu->spu_type == SPU_TYPE_SPUM) {
1002 /* byte swap the output from the UPDT function to network byte
1003 * order
1004 */
1005 if (ctx->auth.alg == HASH_ALG_MD5) {
1006 __swab32s((u32 *)req->result);
1007 __swab32s(((u32 *)req->result) + 1);
1008 __swab32s(((u32 *)req->result) + 2);
1009 __swab32s(((u32 *)req->result) + 3);
1010 __swab32s(((u32 *)req->result) + 4);
1011 }
1012 }
1013
1014 flow_dump(" digest ", req->result, ctx->digestsize);
1015
1016 /* if this an HMAC then do the outer hash */
1017 if (rctx->is_sw_hmac) {
1018 err = spu_hmac_outer_hash(req, ctx);
1019 if (err < 0)
1020 return err;
1021 flow_dump(" hmac: ", req->result, ctx->digestsize);
1022 }
1023
1024 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1025 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1026 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1027 } else {
1028 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1029 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1030 }
1031
1032 return 0;
1033}
1034
1035/**
1036 * handle_ahash_resp() - Process a SPU response message for a hash request.
1037 * Checks if the entire crypto API request has been processed, and if so,
1038 * invokes post processing on the result.
1039 * @rctx: Crypto request context
1040 */
1041static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1042{
1043 struct iproc_ctx_s *ctx = rctx->ctx;
1044#ifdef DEBUG
1045 struct crypto_async_request *areq = rctx->parent;
1046 struct ahash_request *req = ahash_request_cast(areq);
1047 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1048 unsigned int blocksize =
1049 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1050#endif
1051 /*
1052 * Save hash to use as input to next op if incremental. Might be copying
1053 * too much, but that's easier than figuring out actual digest size here
1054 */
1055 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1056
1057 flow_log("%s() blocksize:%u digestsize:%u\n",
1058 __func__, blocksize, ctx->digestsize);
1059
1060 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1061
1062 if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1063 ahash_req_done(rctx);
1064}
1065
1066/**
1067 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1068 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1069 * message headers and the response data.
1070 * @mssg: mailbox message containing the receive sg
1071 * @rctx: crypto request context
1072 * @rx_frag_num: number of scatterlist elements required to hold the
1073 * SPU response message
1074 * @assoc_len: Length of associated data included in the crypto request
1075 * @ret_iv_len: Length of IV returned in response
1076 * @resp_len: Number of bytes of response data expected to be written to
1077 * dst buffer from crypto API
1078 * @digestsize: Length of hash digest, in bytes
1079 * @stat_pad_len: Number of bytes required to pad the STAT field to
1080 * a 4-byte boundary
1081 *
1082 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1083 * when the request completes, whether the request is handled successfully or
1084 * there is an error.
1085 *
1086 * Returns:
1087 * 0 if successful
1088 * < 0 if an error
1089 */
1090static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1091 struct aead_request *req,
1092 struct iproc_reqctx_s *rctx,
1093 u8 rx_frag_num,
1094 unsigned int assoc_len,
1095 u32 ret_iv_len, unsigned int resp_len,
1096 unsigned int digestsize, u32 stat_pad_len)
1097{
1098 struct spu_hw *spu = &iproc_priv.spu;
1099 struct scatterlist *sg; /* used to build sgs in mbox message */
1100 struct iproc_ctx_s *ctx = rctx->ctx;
1101 u32 datalen; /* Number of bytes of response data expected */
1102 u32 assoc_buf_len;
1103 u8 data_padlen = 0;
1104
1105 if (ctx->is_rfc4543) {
1106 /* RFC4543: only pad after data, not after AAD */
1107 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1108 assoc_len + resp_len);
1109 assoc_buf_len = assoc_len;
1110 } else {
1111 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1112 resp_len);
1113 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1114 assoc_len, ret_iv_len,
1115 rctx->is_encrypt);
1116 }
1117
1118 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1119 /* ICV (after data) must be in the next 32-bit word for CCM */
1120 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1121 resp_len +
1122 data_padlen);
1123
1124 if (data_padlen)
1125 /* have to catch gcm pad in separate buffer */
1126 rx_frag_num++;
1127
1128 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1129 rctx->gfp);
1130 if (!mssg->spu.dst)
1131 return -ENOMEM;
1132
1133 sg = mssg->spu.dst;
1134 sg_init_table(sg, rx_frag_num);
1135
1136 /* Space for SPU message header */
1137 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1138
1139 if (assoc_buf_len) {
1140 /*
1141 * Don't write directly to req->dst, because SPU may pad the
1142 * assoc data in the response
1143 */
1144 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1145 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1146 }
1147
1148 if (resp_len) {
1149 /*
1150 * Copy in each dst sg entry from request, up to chunksize.
1151 * dst sg catches just the data. digest caught in separate buf.
1152 */
1153 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1154 rctx->dst_nents, resp_len);
1155 if (datalen < (resp_len)) {
1156 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1157 __func__, resp_len, datalen);
1158 return -EFAULT;
1159 }
1160 }
1161
1162 /* If GCM/CCM data is padded, catch padding in separate buffer */
1163 if (data_padlen) {
1164 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1165 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1166 }
1167
1168 /* Always catch ICV in separate buffer */
1169 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1170
1171 flow_log("stat_pad_len %u\n", stat_pad_len);
1172 if (stat_pad_len) {
1173 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1174 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1175 }
1176
1177 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1178 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1179
1180 return 0;
1181}
1182
1183/**
1184 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1185 * SPU request message for an AEAD request. Includes SPU message headers and the
1186 * request data.
1187 * @mssg: mailbox message containing the transmit sg
1188 * @rctx: crypto request context
1189 * @tx_frag_num: number of scatterlist elements required to construct the
1190 * SPU request message
1191 * @spu_hdr_len: length of SPU message header in bytes
1192 * @assoc: crypto API associated data scatterlist
1193 * @assoc_len: length of associated data
1194 * @assoc_nents: number of scatterlist entries containing assoc data
1195 * @aead_iv_len: length of AEAD IV, if included
1196 * @chunksize: Number of bytes of request data
1197 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1198 * @pad_len: Number of pad bytes
1199 * @incl_icv: If true, write separate ICV buffer after data and
1200 * any padding
1201 *
1202 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1203 * when the request completes, whether the request is handled successfully or
1204 * there is an error.
1205 *
1206 * Return:
1207 * 0 if successful
1208 * < 0 if an error
1209 */
1210static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1211 struct iproc_reqctx_s *rctx,
1212 u8 tx_frag_num,
1213 u32 spu_hdr_len,
1214 struct scatterlist *assoc,
1215 unsigned int assoc_len,
1216 int assoc_nents,
1217 unsigned int aead_iv_len,
1218 unsigned int chunksize,
1219 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1220{
1221 struct spu_hw *spu = &iproc_priv.spu;
1222 struct scatterlist *sg; /* used to build sgs in mbox message */
1223 struct scatterlist *assoc_sg = assoc;
1224 struct iproc_ctx_s *ctx = rctx->ctx;
1225 u32 datalen; /* Number of bytes of data to write */
1226 u32 written; /* Number of bytes of data written */
1227 u32 assoc_offset = 0;
1228 u32 stat_len;
1229
1230 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1231 rctx->gfp);
1232 if (!mssg->spu.src)
1233 return -ENOMEM;
1234
1235 sg = mssg->spu.src;
1236 sg_init_table(sg, tx_frag_num);
1237
1238 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1239 BCM_HDR_LEN + spu_hdr_len);
1240
1241 if (assoc_len) {
1242 /* Copy in each associated data sg entry from request */
1243 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1244 assoc_nents, assoc_len);
1245 if (written < assoc_len) {
1246 pr_err("%s(): failed to copy assoc sg to mbox msg",
1247 __func__);
1248 return -EFAULT;
1249 }
1250 }
1251
1252 if (aead_iv_len)
1253 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1254
1255 if (aad_pad_len) {
1256 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1257 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1258 }
1259
1260 datalen = chunksize;
1261 if ((chunksize > ctx->digestsize) && incl_icv)
1262 datalen -= ctx->digestsize;
1263 if (datalen) {
1264 /* For aead, a single msg should consume the entire src sg */
1265 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1266 rctx->src_nents, datalen);
1267 if (written < datalen) {
1268 pr_err("%s(): failed to copy src sg to mbox msg",
1269 __func__);
1270 return -EFAULT;
1271 }
1272 }
1273
1274 if (pad_len) {
1275 memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1276 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1277 }
1278
1279 if (incl_icv)
1280 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1281
1282 stat_len = spu->spu_tx_status_len();
1283 if (stat_len) {
1284 memset(rctx->msg_buf.tx_stat, 0, stat_len);
1285 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1286 }
1287 return 0;
1288}
1289
1290/**
1291 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1292 * current AEAD request.
1293 * @rctx: Crypto request context
1294 *
1295 * Unlike other operation types, we assume the length of the request fits in
1296 * a single SPU request message. aead_enqueue() makes sure this is true.
1297 * Comments for other op types regarding threads applies here as well.
1298 *
1299 * Unlike incremental hash ops, where the spu returns the entire hash for
1300 * truncated algs like sha-224, the SPU returns just the truncated hash in
1301 * response to aead requests. So digestsize is always ctx->digestsize here.
1302 *
1303 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1304 * returned asynchronously
1305 * Any other value indicates an error
1306 */
1307static int handle_aead_req(struct iproc_reqctx_s *rctx)
1308{
1309 struct spu_hw *spu = &iproc_priv.spu;
1310 struct crypto_async_request *areq = rctx->parent;
1311 struct aead_request *req = container_of(areq,
1312 struct aead_request, base);
1313 struct iproc_ctx_s *ctx = rctx->ctx;
1314 int err;
1315 unsigned int chunksize;
1316 unsigned int resp_len;
1317 u32 spu_hdr_len;
1318 u32 db_size;
1319 u32 stat_pad_len;
1320 u32 pad_len;
1321 struct brcm_message *mssg; /* mailbox message */
1322 struct spu_request_opts req_opts;
1323 struct spu_cipher_parms cipher_parms;
1324 struct spu_hash_parms hash_parms;
1325 struct spu_aead_parms aead_parms;
1326 int assoc_nents = 0;
1327 bool incl_icv = false;
1328 unsigned int digestsize = ctx->digestsize;
9d12ba86
RR
1329
1330 /* number of entries in src and dst sg. Always includes SPU msg header.
1331 */
1332 u8 rx_frag_num = 2; /* and STATUS */
1333 u8 tx_frag_num = 1;
1334
1335 /* doing the whole thing at once */
1336 chunksize = rctx->total_todo;
1337
1338 flow_log("%s: chunksize %u\n", __func__, chunksize);
1339
1340 memset(&req_opts, 0, sizeof(req_opts));
1341 memset(&hash_parms, 0, sizeof(hash_parms));
1342 memset(&aead_parms, 0, sizeof(aead_parms));
1343
1344 req_opts.is_inbound = !(rctx->is_encrypt);
1345 req_opts.auth_first = ctx->auth_first;
1346 req_opts.is_aead = true;
1347 req_opts.is_esp = ctx->is_esp;
1348
1349 cipher_parms.alg = ctx->cipher.alg;
1350 cipher_parms.mode = ctx->cipher.mode;
1351 cipher_parms.type = ctx->cipher_type;
1352 cipher_parms.key_buf = ctx->enckey;
1353 cipher_parms.key_len = ctx->enckeylen;
1354 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1355 cipher_parms.iv_len = rctx->iv_ctr_len;
1356
1357 hash_parms.alg = ctx->auth.alg;
1358 hash_parms.mode = ctx->auth.mode;
1359 hash_parms.type = HASH_TYPE_NONE;
1360 hash_parms.key_buf = (u8 *)ctx->authkey;
1361 hash_parms.key_len = ctx->authkeylen;
1362 hash_parms.digestsize = digestsize;
1363
1364 if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1365 (ctx->authkeylen < SHA224_DIGEST_SIZE))
1366 hash_parms.key_len = SHA224_DIGEST_SIZE;
1367
1368 aead_parms.assoc_size = req->assoclen;
1369 if (ctx->is_esp && !ctx->is_rfc4543) {
1370 /*
1371 * 8-byte IV is included assoc data in request. SPU2
1372 * expects AAD to include just SPI and seqno. So
1373 * subtract off the IV len.
1374 */
a59851d2 1375 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
9d12ba86
RR
1376
1377 if (rctx->is_encrypt) {
1378 aead_parms.return_iv = true;
a59851d2 1379 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
9d12ba86
RR
1380 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1381 }
1382 } else {
1383 aead_parms.ret_iv_len = 0;
1384 }
1385
1386 /*
1387 * Count number of sg entries from the crypto API request that are to
1388 * be included in this mailbox message. For dst sg, don't count space
1389 * for digest. Digest gets caught in a separate buffer and copied back
1390 * to dst sg when processing response.
1391 */
1392 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1393 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1394 if (aead_parms.assoc_size)
1395 assoc_nents = spu_sg_count(rctx->assoc, 0,
1396 aead_parms.assoc_size);
1397
1398 mssg = &rctx->mb_mssg;
1399
1400 rctx->total_sent = chunksize;
1401 rctx->src_sent = chunksize;
1402 if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1403 aead_parms.assoc_size,
1404 aead_parms.ret_iv_len,
1405 rctx->is_encrypt))
1406 rx_frag_num++;
1407
1408 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1409 rctx->iv_ctr_len);
1410
1411 if (ctx->auth.alg == HASH_ALG_AES)
a2e5d408 1412 hash_parms.type = (enum hash_type)ctx->cipher_type;
9d12ba86
RR
1413
1414 /* General case AAD padding (CCM and RFC4543 special cases below) */
1415 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1416 aead_parms.assoc_size);
1417
1418 /* General case data padding (CCM decrypt special case below) */
1419 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1420 chunksize);
1421
1422 if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1423 /*
1424 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1425 * 128-bit aligned
1426 */
1427 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1428 ctx->cipher.mode,
1429 aead_parms.assoc_size + 2);
1430
1431 /*
1432 * And when decrypting CCM, need to pad without including
1433 * size of ICV which is tacked on to end of chunk
1434 */
1435 if (!rctx->is_encrypt)
1436 aead_parms.data_pad_len =
1437 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1438 chunksize - digestsize);
1439
1440 /* CCM also requires software to rewrite portions of IV: */
1441 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1442 chunksize, rctx->is_encrypt,
1443 ctx->is_esp);
1444 }
1445
1446 if (ctx->is_rfc4543) {
1447 /*
1448 * RFC4543: data is included in AAD, so don't pad after AAD
1449 * and pad data based on both AAD + data size
1450 */
1451 aead_parms.aad_pad_len = 0;
1452 if (!rctx->is_encrypt)
1453 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1454 ctx->cipher.mode,
1455 aead_parms.assoc_size + chunksize -
1456 digestsize);
1457 else
1458 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1459 ctx->cipher.mode,
1460 aead_parms.assoc_size + chunksize);
1461
1462 req_opts.is_rfc4543 = true;
1463 }
1464
1465 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1466 incl_icv = true;
1467 tx_frag_num++;
1468 /* Copy ICV from end of src scatterlist to digest buf */
1469 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1470 req->assoclen + rctx->total_sent -
1471 digestsize);
1472 }
1473
1474 atomic64_add(chunksize, &iproc_priv.bytes_out);
1475
1476 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1477
1478 /* Prepend SPU header with type 3 BCM header */
1479 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1480
1481 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1482 BCM_HDR_LEN, &req_opts,
1483 &cipher_parms, &hash_parms,
1484 &aead_parms, chunksize);
1485
1486 /* Determine total length of padding. Put all padding in one buffer. */
1487 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1488 chunksize, aead_parms.aad_pad_len,
1489 aead_parms.data_pad_len, 0);
1490
1491 stat_pad_len = spu->spu_wordalign_padlen(db_size);
1492
1493 if (stat_pad_len)
1494 rx_frag_num++;
1495 pad_len = aead_parms.data_pad_len + stat_pad_len;
1496 if (pad_len) {
1497 tx_frag_num++;
1498 spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1499 aead_parms.data_pad_len, 0,
1500 ctx->auth.alg, ctx->auth.mode,
1501 rctx->total_sent, stat_pad_len);
1502 }
1503
1504 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1505 spu_hdr_len);
1506 dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1507 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1508 packet_log("BD:\n");
1509 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1510 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1511
1512 /*
1513 * Build mailbox message containing SPU request msg and rx buffers
1514 * to catch response message
1515 */
1516 memset(mssg, 0, sizeof(*mssg));
1517 mssg->type = BRCM_MESSAGE_SPU;
1518 mssg->ctx = rctx; /* Will be returned in response */
1519
1520 /* Create rx scatterlist to catch result */
1521 rx_frag_num += rctx->dst_nents;
1522 resp_len = chunksize;
1523
1524 /*
1525 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1526 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1527 * sends entire digest back.
1528 */
1529 rx_frag_num++;
1530
1531 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1532 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1533 /*
1534 * Input is ciphertxt plus ICV, but ICV not incl
1535 * in output.
1536 */
1537 resp_len -= ctx->digestsize;
1538 if (resp_len == 0)
1539 /* no rx frags to catch output data */
1540 rx_frag_num -= rctx->dst_nents;
1541 }
1542
1543 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1544 aead_parms.assoc_size,
1545 aead_parms.ret_iv_len, resp_len, digestsize,
1546 stat_pad_len);
1547 if (err)
1548 return err;
1549
1550 /* Create tx scatterlist containing SPU request message */
1551 tx_frag_num += rctx->src_nents;
1552 tx_frag_num += assoc_nents;
1553 if (aead_parms.aad_pad_len)
1554 tx_frag_num++;
1555 if (aead_parms.iv_len)
1556 tx_frag_num++;
1557 if (spu->spu_tx_status_len())
1558 tx_frag_num++;
1559 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1560 rctx->assoc, aead_parms.assoc_size,
1561 assoc_nents, aead_parms.iv_len, chunksize,
1562 aead_parms.aad_pad_len, pad_len, incl_icv);
1563 if (err)
1564 return err;
1565
f0e2ce58 1566 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1567 if (unlikely(err < 0))
9d12ba86 1568 return err;
9d12ba86
RR
1569
1570 return -EINPROGRESS;
1571}
1572
1573/**
1574 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1575 * @rctx: Crypto request context
1576 */
1577static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1578{
1579 struct spu_hw *spu = &iproc_priv.spu;
1580 struct crypto_async_request *areq = rctx->parent;
1581 struct aead_request *req = container_of(areq,
1582 struct aead_request, base);
1583 struct iproc_ctx_s *ctx = rctx->ctx;
1584 u32 payload_len;
1585 unsigned int icv_offset;
1586 u32 result_len;
1587
1588 /* See how much data was returned */
1589 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1590 flow_log("payload_len %u\n", payload_len);
1591
1592 /* only count payload */
1593 atomic64_add(payload_len, &iproc_priv.bytes_in);
1594
1595 if (req->assoclen)
1596 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad,
1597 req->assoclen);
1598
1599 /*
1600 * Copy the ICV back to the destination
1601 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1602 * API doesn't expect ICV in dst buffer.
1603 */
1604 result_len = req->cryptlen;
1605 if (rctx->is_encrypt) {
1606 icv_offset = req->assoclen + rctx->total_sent;
1607 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1608 flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1609 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1610 ctx->digestsize, icv_offset);
1611 result_len += ctx->digestsize;
1612 }
1613
1614 packet_log("response data: ");
1615 dump_sg(req->dst, req->assoclen, result_len);
1616
1617 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1618 if (ctx->cipher.alg == CIPHER_ALG_AES) {
1619 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1620 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1621 else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1622 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1623 else
1624 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1625 } else {
1626 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1627 }
1628}
1629
1630/**
1631 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1632 * @rctx: request context
1633 *
1634 * Mailbox scatterlists are allocated for each chunk. So free them after
1635 * processing each chunk.
1636 */
1637static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1638{
1639 /* mailbox message used to tx request */
1640 struct brcm_message *mssg = &rctx->mb_mssg;
1641
1642 kfree(mssg->spu.src);
1643 kfree(mssg->spu.dst);
1644 memset(mssg, 0, sizeof(struct brcm_message));
1645}
1646
1647/**
1648 * finish_req() - Used to invoke the complete callback from the requester when
1649 * a request has been handled asynchronously.
1650 * @rctx: Request context
1651 * @err: Indicates whether the request was successful or not
1652 *
1653 * Ensures that cleanup has been done for request
1654 */
1655static void finish_req(struct iproc_reqctx_s *rctx, int err)
1656{
1657 struct crypto_async_request *areq = rctx->parent;
1658
1659 flow_log("%s() err:%d\n\n", __func__, err);
1660
1661 /* No harm done if already called */
1662 spu_chunk_cleanup(rctx);
1663
1664 if (areq)
1665 areq->complete(areq, err);
1666}
1667
1668/**
1669 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1670 * @cl: mailbox client structure for SPU driver
1671 * @msg: mailbox message containing SPU response
1672 */
1673static void spu_rx_callback(struct mbox_client *cl, void *msg)
1674{
1675 struct spu_hw *spu = &iproc_priv.spu;
1676 struct brcm_message *mssg = msg;
1677 struct iproc_reqctx_s *rctx;
1678 struct iproc_ctx_s *ctx;
1679 struct crypto_async_request *areq;
1680 int err = 0;
1681
1682 rctx = mssg->ctx;
1683 if (unlikely(!rctx)) {
1684 /* This is fatal */
1685 pr_err("%s(): no request context", __func__);
1686 err = -EFAULT;
1687 goto cb_finish;
1688 }
1689 areq = rctx->parent;
1690 ctx = rctx->ctx;
1691
1692 /* process the SPU status */
1693 err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1694 if (err != 0) {
1695 if (err == SPU_INVALID_ICV)
1696 atomic_inc(&iproc_priv.bad_icv);
1697 err = -EBADMSG;
1698 goto cb_finish;
1699 }
1700
1701 /* Process the SPU response message */
1702 switch (rctx->ctx->alg->type) {
1703 case CRYPTO_ALG_TYPE_ABLKCIPHER:
1704 handle_ablkcipher_resp(rctx);
1705 break;
1706 case CRYPTO_ALG_TYPE_AHASH:
1707 handle_ahash_resp(rctx);
1708 break;
1709 case CRYPTO_ALG_TYPE_AEAD:
1710 handle_aead_resp(rctx);
1711 break;
1712 default:
1713 err = -EINVAL;
1714 goto cb_finish;
1715 }
1716
1717 /*
1718 * If this response does not complete the request, then send the next
1719 * request chunk.
1720 */
1721 if (rctx->total_sent < rctx->total_todo) {
1722 /* Deallocate anything specific to previous chunk */
1723 spu_chunk_cleanup(rctx);
1724
1725 switch (rctx->ctx->alg->type) {
1726 case CRYPTO_ALG_TYPE_ABLKCIPHER:
1727 err = handle_ablkcipher_req(rctx);
1728 break;
1729 case CRYPTO_ALG_TYPE_AHASH:
1730 err = handle_ahash_req(rctx);
1731 if (err == -EAGAIN)
1732 /*
1733 * we saved data in hash carry, but tell crypto
1734 * API we successfully completed request.
1735 */
1736 err = 0;
1737 break;
1738 case CRYPTO_ALG_TYPE_AEAD:
1739 err = handle_aead_req(rctx);
1740 break;
1741 default:
1742 err = -EINVAL;
1743 }
1744
1745 if (err == -EINPROGRESS)
1746 /* Successfully submitted request for next chunk */
1747 return;
1748 }
1749
1750cb_finish:
1751 finish_req(rctx, err);
1752}
1753
1754/* ==================== Kernel Cryptographic API ==================== */
1755
1756/**
1757 * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request.
1758 * @req: Crypto API request
1759 * @encrypt: true if encrypting; false if decrypting
1760 *
1761 * Return: -EINPROGRESS if request accepted and result will be returned
1762 * asynchronously
1763 * < 0 if an error
1764 */
1765static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt)
1766{
1767 struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req);
1768 struct iproc_ctx_s *ctx =
1769 crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1770 int err;
1771
1772 flow_log("%s() enc:%u\n", __func__, encrypt);
1773
1774 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1775 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1776 rctx->parent = &req->base;
1777 rctx->is_encrypt = encrypt;
1778 rctx->bd_suppress = false;
1779 rctx->total_todo = req->nbytes;
1780 rctx->src_sent = 0;
1781 rctx->total_sent = 0;
1782 rctx->total_received = 0;
1783 rctx->ctx = ctx;
1784
1785 /* Initialize current position in src and dst scatterlists */
1786 rctx->src_sg = req->src;
1787 rctx->src_nents = 0;
1788 rctx->src_skip = 0;
1789 rctx->dst_sg = req->dst;
1790 rctx->dst_nents = 0;
1791 rctx->dst_skip = 0;
1792
1793 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1794 ctx->cipher.mode == CIPHER_MODE_CTR ||
1795 ctx->cipher.mode == CIPHER_MODE_OFB ||
1796 ctx->cipher.mode == CIPHER_MODE_XTS ||
1797 ctx->cipher.mode == CIPHER_MODE_GCM ||
1798 ctx->cipher.mode == CIPHER_MODE_CCM) {
1799 rctx->iv_ctr_len =
1800 crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
1801 memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len);
1802 } else {
1803 rctx->iv_ctr_len = 0;
1804 }
1805
1806 /* Choose a SPU to process this request */
1807 rctx->chan_idx = select_channel();
1808 err = handle_ablkcipher_req(rctx);
1809 if (err != -EINPROGRESS)
1810 /* synchronous result */
1811 spu_chunk_cleanup(rctx);
1812
1813 return err;
1814}
1815
1816static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1817 unsigned int keylen)
1818{
1819 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1820 u32 tmp[DES_EXPKEY_WORDS];
1821
1822 if (keylen == DES_KEY_SIZE) {
1823 if (des_ekey(tmp, key) == 0) {
1824 if (crypto_ablkcipher_get_flags(cipher) &
1825 CRYPTO_TFM_REQ_WEAK_KEY) {
1826 u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
1827
1828 crypto_ablkcipher_set_flags(cipher, flags);
1829 return -EINVAL;
1830 }
1831 }
1832
1833 ctx->cipher_type = CIPHER_TYPE_DES;
1834 } else {
1835 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1836 return -EINVAL;
1837 }
1838 return 0;
1839}
1840
1841static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1842 unsigned int keylen)
1843{
1844 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1845
1846 if (keylen == (DES_KEY_SIZE * 3)) {
1847 const u32 *K = (const u32 *)key;
1848 u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
1849
1850 if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1851 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
1852 crypto_ablkcipher_set_flags(cipher, flags);
1853 return -EINVAL;
1854 }
1855
1856 ctx->cipher_type = CIPHER_TYPE_3DES;
1857 } else {
1858 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1859 return -EINVAL;
1860 }
1861 return 0;
1862}
1863
1864static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1865 unsigned int keylen)
1866{
1867 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1868
1869 if (ctx->cipher.mode == CIPHER_MODE_XTS)
1870 /* XTS includes two keys of equal length */
1871 keylen = keylen / 2;
1872
1873 switch (keylen) {
1874 case AES_KEYSIZE_128:
1875 ctx->cipher_type = CIPHER_TYPE_AES128;
1876 break;
1877 case AES_KEYSIZE_192:
1878 ctx->cipher_type = CIPHER_TYPE_AES192;
1879 break;
1880 case AES_KEYSIZE_256:
1881 ctx->cipher_type = CIPHER_TYPE_AES256;
1882 break;
1883 default:
1884 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1885 return -EINVAL;
1886 }
1887 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1888 ((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1889 return 0;
1890}
1891
1892static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1893 unsigned int keylen)
1894{
1895 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1896 int i;
1897
1898 ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1899
1900 ctx->enckey[0] = 0x00; /* 0x00 */
1901 ctx->enckey[1] = 0x00; /* i */
1902 ctx->enckey[2] = 0x00; /* 0x00 */
1903 ctx->enckey[3] = 0x00; /* j */
1904 for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1905 ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1906
1907 ctx->cipher_type = CIPHER_TYPE_INIT;
1908
1909 return 0;
1910}
1911
1912static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1913 unsigned int keylen)
1914{
1915 struct spu_hw *spu = &iproc_priv.spu;
1916 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1917 struct spu_cipher_parms cipher_parms;
1918 u32 alloc_len = 0;
1919 int err;
1920
1921 flow_log("ablkcipher_setkey() keylen: %d\n", keylen);
1922 flow_dump(" key: ", key, keylen);
1923
1924 switch (ctx->cipher.alg) {
1925 case CIPHER_ALG_DES:
1926 err = des_setkey(cipher, key, keylen);
1927 break;
1928 case CIPHER_ALG_3DES:
1929 err = threedes_setkey(cipher, key, keylen);
1930 break;
1931 case CIPHER_ALG_AES:
1932 err = aes_setkey(cipher, key, keylen);
1933 break;
1934 case CIPHER_ALG_RC4:
1935 err = rc4_setkey(cipher, key, keylen);
1936 break;
1937 default:
1938 pr_err("%s() Error: unknown cipher alg\n", __func__);
1939 err = -EINVAL;
1940 }
1941 if (err)
1942 return err;
1943
1944 /* RC4 already populated ctx->enkey */
1945 if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1946 memcpy(ctx->enckey, key, keylen);
1947 ctx->enckeylen = keylen;
1948 }
1949 /* SPU needs XTS keys in the reverse order the crypto API presents */
1950 if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1951 (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1952 unsigned int xts_keylen = keylen / 2;
1953
1954 memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1955 memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1956 }
1957
1958 if (spu->spu_type == SPU_TYPE_SPUM)
1959 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1960 else if (spu->spu_type == SPU_TYPE_SPU2)
1961 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1962 memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1963 cipher_parms.iv_buf = NULL;
1964 cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher);
1965 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1966
1967 cipher_parms.alg = ctx->cipher.alg;
1968 cipher_parms.mode = ctx->cipher.mode;
1969 cipher_parms.type = ctx->cipher_type;
1970 cipher_parms.key_buf = ctx->enckey;
1971 cipher_parms.key_len = ctx->enckeylen;
1972
1973 /* Prepend SPU request message with BCM header */
1974 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1975 ctx->spu_req_hdr_len =
1976 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1977 &cipher_parms);
1978
1979 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1980 ctx->enckeylen,
1981 false);
1982
1983 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1984
1985 return 0;
1986}
1987
1988static int ablkcipher_encrypt(struct ablkcipher_request *req)
1989{
1990 flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes);
1991
1992 return ablkcipher_enqueue(req, true);
1993}
1994
1995static int ablkcipher_decrypt(struct ablkcipher_request *req)
1996{
1997 flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes);
1998 return ablkcipher_enqueue(req, false);
1999}
2000
2001static int ahash_enqueue(struct ahash_request *req)
2002{
2003 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2004 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2005 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2006 int err = 0;
2007 const char *alg_name;
2008
2009 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
2010
2011 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2012 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2013 rctx->parent = &req->base;
2014 rctx->ctx = ctx;
2015 rctx->bd_suppress = true;
2016 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2017
2018 /* Initialize position in src scatterlist */
2019 rctx->src_sg = req->src;
2020 rctx->src_skip = 0;
2021 rctx->src_nents = 0;
2022 rctx->dst_sg = NULL;
2023 rctx->dst_skip = 0;
2024 rctx->dst_nents = 0;
2025
2026 /* SPU2 hardware does not compute hash of zero length data */
2027 if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
2028 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
2029 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2030 flow_log("Doing %sfinal %s zero-len hash request in software\n",
2031 rctx->is_final ? "" : "non-", alg_name);
2032 err = do_shash((unsigned char *)alg_name, req->result,
2033 NULL, 0, NULL, 0, ctx->authkey,
2034 ctx->authkeylen);
2035 if (err < 0)
2036 flow_log("Hash request failed with error %d\n", err);
2037 return err;
2038 }
2039 /* Choose a SPU to process this request */
2040 rctx->chan_idx = select_channel();
2041
2042 err = handle_ahash_req(rctx);
2043 if (err != -EINPROGRESS)
2044 /* synchronous result */
2045 spu_chunk_cleanup(rctx);
2046
2047 if (err == -EAGAIN)
2048 /*
2049 * we saved data in hash carry, but tell crypto API
2050 * we successfully completed request.
2051 */
2052 err = 0;
2053
2054 return err;
2055}
2056
2057static int __ahash_init(struct ahash_request *req)
2058{
2059 struct spu_hw *spu = &iproc_priv.spu;
2060 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2061 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2062 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2063
2064 flow_log("%s()\n", __func__);
2065
2066 /* Initialize the context */
2067 rctx->hash_carry_len = 0;
2068 rctx->is_final = 0;
2069
2070 rctx->total_todo = 0;
2071 rctx->src_sent = 0;
2072 rctx->total_sent = 0;
2073 rctx->total_received = 0;
2074
2075 ctx->digestsize = crypto_ahash_digestsize(tfm);
2076 /* If we add a hash whose digest is larger, catch it here. */
2077 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2078
2079 rctx->is_sw_hmac = false;
2080
2081 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2082 true);
2083
2084 return 0;
2085}
2086
2087/**
2088 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2089 * @ctx: Crypto session context
2090 *
2091 * SPU-2 does not support incremental hashing (we'll have to revisit and
2092 * condition based on chip revision or device tree entry if future versions do
2093 * support incremental hash)
2094 *
2095 * SPU-M also doesn't support incremental hashing of AES-XCBC
2096 *
2097 * Return: true if incremental hashing is not supported
2098 * false otherwise
2099 */
2100bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2101{
2102 struct spu_hw *spu = &iproc_priv.spu;
2103
2104 if (spu->spu_type == SPU_TYPE_SPU2)
2105 return true;
2106
2107 if ((ctx->auth.alg == HASH_ALG_AES) &&
2108 (ctx->auth.mode == HASH_MODE_XCBC))
2109 return true;
2110
2111 /* Otherwise, incremental hashing is supported */
2112 return false;
2113}
2114
2115static int ahash_init(struct ahash_request *req)
2116{
2117 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2118 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2119 const char *alg_name;
2120 struct crypto_shash *hash;
2121 int ret;
2122 gfp_t gfp;
2123
2124 if (spu_no_incr_hash(ctx)) {
2125 /*
2126 * If we get an incremental hashing request and it's not
2127 * supported by the hardware, we need to handle it in software
2128 * by calling synchronous hash functions.
2129 */
2130 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2131 hash = crypto_alloc_shash(alg_name, 0, 0);
2132 if (IS_ERR(hash)) {
2133 ret = PTR_ERR(hash);
2134 goto err;
2135 }
2136
2137 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2138 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2139 ctx->shash = kmalloc(sizeof(*ctx->shash) +
2140 crypto_shash_descsize(hash), gfp);
2141 if (!ctx->shash) {
2142 ret = -ENOMEM;
2143 goto err_hash;
2144 }
2145 ctx->shash->tfm = hash;
2146 ctx->shash->flags = 0;
2147
2148 /* Set the key using data we already have from setkey */
2149 if (ctx->authkeylen > 0) {
2150 ret = crypto_shash_setkey(hash, ctx->authkey,
2151 ctx->authkeylen);
2152 if (ret)
2153 goto err_shash;
2154 }
2155
2156 /* Initialize hash w/ this key and other params */
2157 ret = crypto_shash_init(ctx->shash);
2158 if (ret)
2159 goto err_shash;
2160 } else {
2161 /* Otherwise call the internal function which uses SPU hw */
2162 ret = __ahash_init(req);
2163 }
2164
2165 return ret;
2166
2167err_shash:
2168 kfree(ctx->shash);
2169err_hash:
2170 crypto_free_shash(hash);
2171err:
2172 return ret;
2173}
2174
2175static int __ahash_update(struct ahash_request *req)
2176{
2177 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2178
2179 flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2180
2181 if (!req->nbytes)
2182 return 0;
2183 rctx->total_todo += req->nbytes;
2184 rctx->src_sent = 0;
2185
2186 return ahash_enqueue(req);
2187}
2188
2189static int ahash_update(struct ahash_request *req)
2190{
2191 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2192 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2193 u8 *tmpbuf;
2194 int ret;
2195 int nents;
2196 gfp_t gfp;
2197
2198 if (spu_no_incr_hash(ctx)) {
2199 /*
2200 * If we get an incremental hashing request and it's not
2201 * supported by the hardware, we need to handle it in software
2202 * by calling synchronous hash functions.
2203 */
2204 if (req->src)
2205 nents = sg_nents(req->src);
2206 else
2207 return -EINVAL;
2208
2209 /* Copy data from req scatterlist to tmp buffer */
2210 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2211 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2212 tmpbuf = kmalloc(req->nbytes, gfp);
2213 if (!tmpbuf)
2214 return -ENOMEM;
2215
2216 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2217 req->nbytes) {
2218 kfree(tmpbuf);
2219 return -EINVAL;
2220 }
2221
2222 /* Call synchronous update */
2223 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2224 kfree(tmpbuf);
2225 } else {
2226 /* Otherwise call the internal function which uses SPU hw */
2227 ret = __ahash_update(req);
2228 }
2229
2230 return ret;
2231}
2232
2233static int __ahash_final(struct ahash_request *req)
2234{
2235 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2236
2237 flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2238
2239 rctx->is_final = 1;
2240
2241 return ahash_enqueue(req);
2242}
2243
2244static int ahash_final(struct ahash_request *req)
2245{
2246 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2247 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2248 int ret;
2249
2250 if (spu_no_incr_hash(ctx)) {
2251 /*
2252 * If we get an incremental hashing request and it's not
2253 * supported by the hardware, we need to handle it in software
2254 * by calling synchronous hash functions.
2255 */
2256 ret = crypto_shash_final(ctx->shash, req->result);
2257
2258 /* Done with hash, can deallocate it now */
2259 crypto_free_shash(ctx->shash->tfm);
2260 kfree(ctx->shash);
2261
2262 } else {
2263 /* Otherwise call the internal function which uses SPU hw */
2264 ret = __ahash_final(req);
2265 }
2266
2267 return ret;
2268}
2269
2270static int __ahash_finup(struct ahash_request *req)
2271{
2272 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2273
2274 flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2275
2276 rctx->total_todo += req->nbytes;
2277 rctx->src_sent = 0;
2278 rctx->is_final = 1;
2279
2280 return ahash_enqueue(req);
2281}
2282
2283static int ahash_finup(struct ahash_request *req)
2284{
2285 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2286 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2287 u8 *tmpbuf;
2288 int ret;
2289 int nents;
2290 gfp_t gfp;
2291
2292 if (spu_no_incr_hash(ctx)) {
2293 /*
2294 * If we get an incremental hashing request and it's not
2295 * supported by the hardware, we need to handle it in software
2296 * by calling synchronous hash functions.
2297 */
2298 if (req->src) {
2299 nents = sg_nents(req->src);
2300 } else {
2301 ret = -EINVAL;
2302 goto ahash_finup_exit;
2303 }
2304
2305 /* Copy data from req scatterlist to tmp buffer */
2306 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2307 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2308 tmpbuf = kmalloc(req->nbytes, gfp);
2309 if (!tmpbuf) {
2310 ret = -ENOMEM;
2311 goto ahash_finup_exit;
2312 }
2313
2314 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2315 req->nbytes) {
2316 ret = -EINVAL;
2317 goto ahash_finup_free;
2318 }
2319
2320 /* Call synchronous update */
2321 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2322 req->result);
9d12ba86
RR
2323 } else {
2324 /* Otherwise call the internal function which uses SPU hw */
2325 return __ahash_finup(req);
2326 }
2327ahash_finup_free:
2328 kfree(tmpbuf);
2329
2330ahash_finup_exit:
2331 /* Done with hash, can deallocate it now */
2332 crypto_free_shash(ctx->shash->tfm);
2333 kfree(ctx->shash);
2334 return ret;
2335}
2336
2337static int ahash_digest(struct ahash_request *req)
2338{
2339 int err = 0;
2340
2341 flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2342
2343 /* whole thing at once */
2344 err = __ahash_init(req);
2345 if (!err)
2346 err = __ahash_finup(req);
2347
2348 return err;
2349}
2350
2351static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2352 unsigned int keylen)
2353{
2354 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2355
2356 flow_log("%s() ahash:%p key:%p keylen:%u\n",
2357 __func__, ahash, key, keylen);
2358 flow_dump(" key: ", key, keylen);
2359
2360 if (ctx->auth.alg == HASH_ALG_AES) {
2361 switch (keylen) {
2362 case AES_KEYSIZE_128:
2363 ctx->cipher_type = CIPHER_TYPE_AES128;
2364 break;
2365 case AES_KEYSIZE_192:
2366 ctx->cipher_type = CIPHER_TYPE_AES192;
2367 break;
2368 case AES_KEYSIZE_256:
2369 ctx->cipher_type = CIPHER_TYPE_AES256;
2370 break;
2371 default:
2372 pr_err("%s() Error: Invalid key length\n", __func__);
2373 return -EINVAL;
2374 }
2375 } else {
2376 pr_err("%s() Error: unknown hash alg\n", __func__);
2377 return -EINVAL;
2378 }
2379 memcpy(ctx->authkey, key, keylen);
2380 ctx->authkeylen = keylen;
2381
2382 return 0;
2383}
2384
2385static int ahash_export(struct ahash_request *req, void *out)
2386{
2387 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2388 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2389
2390 spu_exp->total_todo = rctx->total_todo;
2391 spu_exp->total_sent = rctx->total_sent;
2392 spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2393 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2394 spu_exp->hash_carry_len = rctx->hash_carry_len;
2395 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2396
2397 return 0;
2398}
2399
2400static int ahash_import(struct ahash_request *req, const void *in)
2401{
2402 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2403 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2404
2405 rctx->total_todo = spu_exp->total_todo;
2406 rctx->total_sent = spu_exp->total_sent;
2407 rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2408 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2409 rctx->hash_carry_len = spu_exp->hash_carry_len;
2410 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2411
2412 return 0;
2413}
2414
2415static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2416 unsigned int keylen)
2417{
2418 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2419 unsigned int blocksize =
2420 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2421 unsigned int digestsize = crypto_ahash_digestsize(ahash);
2422 unsigned int index;
2423 int rc;
2424
2425 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2426 __func__, ahash, key, keylen, blocksize, digestsize);
2427 flow_dump(" key: ", key, keylen);
2428
2429 if (keylen > blocksize) {
2430 switch (ctx->auth.alg) {
2431 case HASH_ALG_MD5:
2432 rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2433 0, NULL, 0);
2434 break;
2435 case HASH_ALG_SHA1:
2436 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2437 0, NULL, 0);
2438 break;
2439 case HASH_ALG_SHA224:
2440 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2441 0, NULL, 0);
2442 break;
2443 case HASH_ALG_SHA256:
2444 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2445 0, NULL, 0);
2446 break;
2447 case HASH_ALG_SHA384:
2448 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2449 0, NULL, 0);
2450 break;
2451 case HASH_ALG_SHA512:
2452 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2453 0, NULL, 0);
2454 break;
2455 case HASH_ALG_SHA3_224:
2456 rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2457 NULL, 0, NULL, 0);
2458 break;
2459 case HASH_ALG_SHA3_256:
2460 rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2461 NULL, 0, NULL, 0);
2462 break;
2463 case HASH_ALG_SHA3_384:
2464 rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2465 NULL, 0, NULL, 0);
2466 break;
2467 case HASH_ALG_SHA3_512:
2468 rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2469 NULL, 0, NULL, 0);
2470 break;
2471 default:
2472 pr_err("%s() Error: unknown hash alg\n", __func__);
2473 return -EINVAL;
2474 }
2475 if (rc < 0) {
2476 pr_err("%s() Error %d computing shash for %s\n",
2477 __func__, rc, hash_alg_name[ctx->auth.alg]);
2478 return rc;
2479 }
2480 ctx->authkeylen = digestsize;
2481
2482 flow_log(" keylen > digestsize... hashed\n");
2483 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen);
2484 } else {
2485 memcpy(ctx->authkey, key, keylen);
2486 ctx->authkeylen = keylen;
2487 }
2488
2489 /*
2490 * Full HMAC operation in SPUM is not verified,
2491 * So keeping the generation of IPAD, OPAD and
2492 * outer hashing in software.
2493 */
2494 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2495 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2496 memset(ctx->ipad + ctx->authkeylen, 0,
2497 blocksize - ctx->authkeylen);
2498 ctx->authkeylen = 0;
2499 memcpy(ctx->opad, ctx->ipad, blocksize);
2500
2501 for (index = 0; index < blocksize; index++) {
1126d47d
CL
2502 ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2503 ctx->opad[index] ^= HMAC_OPAD_VALUE;
9d12ba86
RR
2504 }
2505
2506 flow_dump(" ipad: ", ctx->ipad, blocksize);
2507 flow_dump(" opad: ", ctx->opad, blocksize);
2508 }
2509 ctx->digestsize = digestsize;
2510 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2511
2512 return 0;
2513}
2514
2515static int ahash_hmac_init(struct ahash_request *req)
2516{
2517 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2518 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2519 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2520 unsigned int blocksize =
2521 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2522
2523 flow_log("ahash_hmac_init()\n");
2524
2525 /* init the context as a hash */
2526 ahash_init(req);
2527
2528 if (!spu_no_incr_hash(ctx)) {
2529 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2530 rctx->is_sw_hmac = true;
2531 ctx->auth.mode = HASH_MODE_HASH;
2532 /* start with a prepended ipad */
2533 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2534 rctx->hash_carry_len = blocksize;
2535 rctx->total_todo += blocksize;
2536 }
2537
2538 return 0;
2539}
2540
2541static int ahash_hmac_update(struct ahash_request *req)
2542{
2543 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2544
2545 if (!req->nbytes)
2546 return 0;
2547
2548 return ahash_update(req);
2549}
2550
2551static int ahash_hmac_final(struct ahash_request *req)
2552{
2553 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2554
2555 return ahash_final(req);
2556}
2557
2558static int ahash_hmac_finup(struct ahash_request *req)
2559{
2560 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2561
2562 return ahash_finup(req);
2563}
2564
2565static int ahash_hmac_digest(struct ahash_request *req)
2566{
2567 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2568 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2569 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2570 unsigned int blocksize =
2571 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2572
2573 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2574
2575 /* Perform initialization and then call finup */
2576 __ahash_init(req);
2577
2578 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2579 /*
2580 * SPU2 supports full HMAC implementation in the
2581 * hardware, need not to generate IPAD, OPAD and
2582 * outer hash in software.
2583 * Only for hash key len > hash block size, SPU2
2584 * expects to perform hashing on the key, shorten
2585 * it to digest size and feed it as hash key.
2586 */
2587 rctx->is_sw_hmac = false;
2588 ctx->auth.mode = HASH_MODE_HMAC;
2589 } else {
2590 rctx->is_sw_hmac = true;
2591 ctx->auth.mode = HASH_MODE_HASH;
2592 /* start with a prepended ipad */
2593 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2594 rctx->hash_carry_len = blocksize;
2595 rctx->total_todo += blocksize;
2596 }
2597
2598 return __ahash_finup(req);
2599}
2600
2601/* aead helpers */
2602
2603static int aead_need_fallback(struct aead_request *req)
2604{
2605 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2606 struct spu_hw *spu = &iproc_priv.spu;
2607 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2608 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2609 u32 payload_len;
2610
2611 /*
2612 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2613 * and AAD are both 0 bytes long. So use fallback in this case.
2614 */
2615 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2616 (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2617 (req->assoclen == 0)) {
2618 if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2619 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2620 flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2621 return 1;
2622 }
2623 }
2624
2625 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2626 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2627 (spu->spu_type == SPU_TYPE_SPUM) &&
2628 (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2629 (ctx->digestsize != 16)) {
b1a4b182 2630 flow_log("%s() AES CCM needs fallback for digest size %d\n",
9d12ba86
RR
2631 __func__, ctx->digestsize);
2632 return 1;
2633 }
2634
2635 /*
2636 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2637 * when AAD size is 0
2638 */
2639 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2640 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2641 (req->assoclen == 0)) {
2642 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2643 __func__);
2644 return 1;
2645 }
2646
2647 payload_len = req->cryptlen;
2648 if (spu->spu_type == SPU_TYPE_SPUM)
2649 payload_len += req->assoclen;
2650
2651 flow_log("%s() payload len: %u\n", __func__, payload_len);
2652
2653 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2654 return 0;
2655 else
2656 return payload_len > ctx->max_payload;
2657}
2658
2659static void aead_complete(struct crypto_async_request *areq, int err)
2660{
2661 struct aead_request *req =
2662 container_of(areq, struct aead_request, base);
2663 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2664 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2665
2666 flow_log("%s() err:%d\n", __func__, err);
2667
2668 areq->tfm = crypto_aead_tfm(aead);
2669
2670 areq->complete = rctx->old_complete;
2671 areq->data = rctx->old_data;
2672
2673 areq->complete(areq, err);
2674}
2675
2676static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2677{
2678 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2679 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2680 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2681 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2682 int err;
2683 u32 req_flags;
2684
2685 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2686
2687 if (ctx->fallback_cipher) {
2688 /* Store the cipher tfm and then use the fallback tfm */
2689 rctx->old_tfm = tfm;
2690 aead_request_set_tfm(req, ctx->fallback_cipher);
2691 /*
2692 * Save the callback and chain ourselves in, so we can restore
2693 * the tfm
2694 */
2695 rctx->old_complete = req->base.complete;
2696 rctx->old_data = req->base.data;
2697 req_flags = aead_request_flags(req);
2698 aead_request_set_callback(req, req_flags, aead_complete, req);
2699 err = is_encrypt ? crypto_aead_encrypt(req) :
2700 crypto_aead_decrypt(req);
2701
2702 if (err == 0) {
2703 /*
2704 * fallback was synchronous (did not return
2705 * -EINPROGRESS). So restore request state here.
2706 */
2707 aead_request_set_callback(req, req_flags,
2708 rctx->old_complete, req);
2709 req->base.data = rctx->old_data;
2710 aead_request_set_tfm(req, aead);
2711 flow_log("%s() fallback completed successfully\n\n",
2712 __func__);
2713 }
2714 } else {
2715 err = -EINVAL;
2716 }
2717
2718 return err;
2719}
2720
2721static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2722{
2723 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2724 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2725 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2726 int err;
2727
2728 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2729
2730 if (req->assoclen > MAX_ASSOC_SIZE) {
2731 pr_err
2732 ("%s() Error: associated data too long. (%u > %u bytes)\n",
2733 __func__, req->assoclen, MAX_ASSOC_SIZE);
2734 return -EINVAL;
2735 }
2736
2737 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2738 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2739 rctx->parent = &req->base;
2740 rctx->is_encrypt = is_encrypt;
2741 rctx->bd_suppress = false;
2742 rctx->total_todo = req->cryptlen;
2743 rctx->src_sent = 0;
2744 rctx->total_sent = 0;
2745 rctx->total_received = 0;
2746 rctx->is_sw_hmac = false;
2747 rctx->ctx = ctx;
2748 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2749
2750 /* assoc data is at start of src sg */
2751 rctx->assoc = req->src;
2752
2753 /*
2754 * Init current position in src scatterlist to be after assoc data.
2755 * src_skip set to buffer offset where data begins. (Assoc data could
2756 * end in the middle of a buffer.)
2757 */
2758 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2759 &rctx->src_skip) < 0) {
2760 pr_err("%s() Error: Unable to find start of src data\n",
2761 __func__);
2762 return -EINVAL;
2763 }
2764
2765 rctx->src_nents = 0;
2766 rctx->dst_nents = 0;
2767 if (req->dst == req->src) {
2768 rctx->dst_sg = rctx->src_sg;
2769 rctx->dst_skip = rctx->src_skip;
2770 } else {
2771 /*
2772 * Expect req->dst to have room for assoc data followed by
2773 * output data and ICV, if encrypt. So initialize dst_sg
2774 * to point beyond assoc len offset.
2775 */
2776 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2777 &rctx->dst_skip) < 0) {
2778 pr_err("%s() Error: Unable to find start of dst data\n",
2779 __func__);
2780 return -EINVAL;
2781 }
2782 }
2783
2784 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2785 ctx->cipher.mode == CIPHER_MODE_CTR ||
2786 ctx->cipher.mode == CIPHER_MODE_OFB ||
2787 ctx->cipher.mode == CIPHER_MODE_XTS ||
2788 ctx->cipher.mode == CIPHER_MODE_GCM) {
2789 rctx->iv_ctr_len =
2790 ctx->salt_len +
2791 crypto_aead_ivsize(crypto_aead_reqtfm(req));
2792 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2793 rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2794 } else {
2795 rctx->iv_ctr_len = 0;
2796 }
2797
2798 rctx->hash_carry_len = 0;
2799
2800 flow_log(" src sg: %p\n", req->src);
2801 flow_log(" rctx->src_sg: %p, src_skip %u\n",
2802 rctx->src_sg, rctx->src_skip);
2803 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen);
2804 flow_log(" dst sg: %p\n", req->dst);
2805 flow_log(" rctx->dst_sg: %p, dst_skip %u\n",
2806 rctx->dst_sg, rctx->dst_skip);
2807 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len);
2808 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len);
2809 flow_log(" authkeylen:%u\n", ctx->authkeylen);
2810 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2811
2812 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2813 flow_log(" max_payload infinite");
2814 else
2815 flow_log(" max_payload: %u\n", ctx->max_payload);
2816
2817 if (unlikely(aead_need_fallback(req)))
2818 return aead_do_fallback(req, is_encrypt);
2819
2820 /*
2821 * Do memory allocations for request after fallback check, because if we
2822 * do fallback, we won't call finish_req() to dealloc.
2823 */
2824 if (rctx->iv_ctr_len) {
2825 if (ctx->salt_len)
2826 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2827 ctx->salt, ctx->salt_len);
2828 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2829 req->iv,
2830 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2831 }
2832
2833 rctx->chan_idx = select_channel();
2834 err = handle_aead_req(rctx);
2835 if (err != -EINPROGRESS)
2836 /* synchronous result */
2837 spu_chunk_cleanup(rctx);
2838
2839 return err;
2840}
2841
2842static int aead_authenc_setkey(struct crypto_aead *cipher,
2843 const u8 *key, unsigned int keylen)
2844{
2845 struct spu_hw *spu = &iproc_priv.spu;
2846 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2847 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
ab57b335
EB
2848 struct crypto_authenc_keys keys;
2849 int ret;
9d12ba86
RR
2850
2851 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2852 keylen);
2853 flow_dump(" key: ", key, keylen);
2854
ab57b335
EB
2855 ret = crypto_authenc_extractkeys(&keys, key, keylen);
2856 if (ret)
9d12ba86 2857 goto badkey;
9d12ba86 2858
ab57b335
EB
2859 if (keys.enckeylen > MAX_KEY_SIZE ||
2860 keys.authkeylen > MAX_KEY_SIZE)
9d12ba86
RR
2861 goto badkey;
2862
ab57b335
EB
2863 ctx->enckeylen = keys.enckeylen;
2864 ctx->authkeylen = keys.authkeylen;
9d12ba86 2865
ab57b335 2866 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
9d12ba86
RR
2867 /* May end up padding auth key. So make sure it's zeroed. */
2868 memset(ctx->authkey, 0, sizeof(ctx->authkey));
ab57b335 2869 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
9d12ba86
RR
2870
2871 switch (ctx->alg->cipher_info.alg) {
2872 case CIPHER_ALG_DES:
2873 if (ctx->enckeylen == DES_KEY_SIZE) {
2874 u32 tmp[DES_EXPKEY_WORDS];
2875 u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
2876
ab57b335 2877 if (des_ekey(tmp, keys.enckey) == 0) {
9d12ba86
RR
2878 if (crypto_aead_get_flags(cipher) &
2879 CRYPTO_TFM_REQ_WEAK_KEY) {
2880 crypto_aead_set_flags(cipher, flags);
2881 return -EINVAL;
2882 }
2883 }
2884
2885 ctx->cipher_type = CIPHER_TYPE_DES;
2886 } else {
2887 goto badkey;
2888 }
2889 break;
2890 case CIPHER_ALG_3DES:
2891 if (ctx->enckeylen == (DES_KEY_SIZE * 3)) {
ab57b335 2892 const u32 *K = (const u32 *)keys.enckey;
9d12ba86
RR
2893 u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
2894
2895 if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
2896 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
2897 crypto_aead_set_flags(cipher, flags);
2898 return -EINVAL;
2899 }
2900
2901 ctx->cipher_type = CIPHER_TYPE_3DES;
2902 } else {
2903 crypto_aead_set_flags(cipher,
2904 CRYPTO_TFM_RES_BAD_KEY_LEN);
2905 return -EINVAL;
2906 }
2907 break;
2908 case CIPHER_ALG_AES:
2909 switch (ctx->enckeylen) {
2910 case AES_KEYSIZE_128:
2911 ctx->cipher_type = CIPHER_TYPE_AES128;
2912 break;
2913 case AES_KEYSIZE_192:
2914 ctx->cipher_type = CIPHER_TYPE_AES192;
2915 break;
2916 case AES_KEYSIZE_256:
2917 ctx->cipher_type = CIPHER_TYPE_AES256;
2918 break;
2919 default:
2920 goto badkey;
2921 }
2922 break;
2923 case CIPHER_ALG_RC4:
2924 ctx->cipher_type = CIPHER_TYPE_INIT;
2925 break;
2926 default:
2927 pr_err("%s() Error: Unknown cipher alg\n", __func__);
2928 return -EINVAL;
2929 }
2930
2931 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2932 ctx->authkeylen);
2933 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
2934 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
2935
2936 /* setkey the fallback just in case we needto use it */
2937 if (ctx->fallback_cipher) {
2938 flow_log(" running fallback setkey()\n");
2939
2940 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2941 ctx->fallback_cipher->base.crt_flags |=
2942 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
ab57b335 2943 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
9d12ba86
RR
2944 if (ret) {
2945 flow_log(" fallback setkey() returned:%d\n", ret);
2946 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2947 tfm->crt_flags |=
2948 (ctx->fallback_cipher->base.crt_flags &
2949 CRYPTO_TFM_RES_MASK);
2950 }
2951 }
2952
2953 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2954 ctx->enckeylen,
2955 false);
2956
2957 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2958
2959 return ret;
2960
2961badkey:
2962 ctx->enckeylen = 0;
2963 ctx->authkeylen = 0;
2964 ctx->digestsize = 0;
2965
2966 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2967 return -EINVAL;
2968}
2969
2970static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2971 const u8 *key, unsigned int keylen)
2972{
2973 struct spu_hw *spu = &iproc_priv.spu;
2974 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2975 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2976
2977 int ret = 0;
2978
2979 flow_log("%s() keylen:%u\n", __func__, keylen);
2980 flow_dump(" key: ", key, keylen);
2981
2982 if (!ctx->is_esp)
2983 ctx->digestsize = keylen;
2984
2985 ctx->enckeylen = keylen;
2986 ctx->authkeylen = 0;
2987 memcpy(ctx->enckey, key, ctx->enckeylen);
2988
2989 switch (ctx->enckeylen) {
2990 case AES_KEYSIZE_128:
2991 ctx->cipher_type = CIPHER_TYPE_AES128;
2992 break;
2993 case AES_KEYSIZE_192:
2994 ctx->cipher_type = CIPHER_TYPE_AES192;
2995 break;
2996 case AES_KEYSIZE_256:
2997 ctx->cipher_type = CIPHER_TYPE_AES256;
2998 break;
2999 default:
3000 goto badkey;
3001 }
3002
3003 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3004 ctx->authkeylen);
3005 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
3006 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
3007
3008 /* setkey the fallback just in case we need to use it */
3009 if (ctx->fallback_cipher) {
3010 flow_log(" running fallback setkey()\n");
3011
3012 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
3013 ctx->fallback_cipher->base.crt_flags |=
3014 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
3015 ret = crypto_aead_setkey(ctx->fallback_cipher, key,
3016 keylen + ctx->salt_len);
3017 if (ret) {
3018 flow_log(" fallback setkey() returned:%d\n", ret);
3019 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
3020 tfm->crt_flags |=
3021 (ctx->fallback_cipher->base.crt_flags &
3022 CRYPTO_TFM_RES_MASK);
3023 }
3024 }
3025
3026 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
3027 ctx->enckeylen,
3028 false);
3029
3030 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
3031
3032 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3033 ctx->authkeylen);
3034
3035 return ret;
3036
3037badkey:
3038 ctx->enckeylen = 0;
3039 ctx->authkeylen = 0;
3040 ctx->digestsize = 0;
3041
3042 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
3043 return -EINVAL;
3044}
3045
3046/**
3047 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
3048 * @cipher: AEAD structure
3049 * @key: Key followed by 4 bytes of salt
3050 * @keylen: Length of key plus salt, in bytes
3051 *
3052 * Extracts salt from key and stores it to be prepended to IV on each request.
3053 * Digest is always 16 bytes
3054 *
3055 * Return: Value from generic gcm setkey.
3056 */
3057static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
3058 const u8 *key, unsigned int keylen)
3059{
3060 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3061
3062 flow_log("%s\n", __func__);
3063 ctx->salt_len = GCM_ESP_SALT_SIZE;
3064 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3065 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3066 keylen -= GCM_ESP_SALT_SIZE;
3067 ctx->digestsize = GCM_ESP_DIGESTSIZE;
3068 ctx->is_esp = true;
3069 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3070
3071 return aead_gcm_ccm_setkey(cipher, key, keylen);
3072}
3073
3074/**
3075 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3076 * cipher: AEAD structure
3077 * key: Key followed by 4 bytes of salt
3078 * keylen: Length of key plus salt, in bytes
3079 *
3080 * Extracts salt from key and stores it to be prepended to IV on each request.
3081 * Digest is always 16 bytes
3082 *
3083 * Return: Value from generic gcm setkey.
3084 */
3085static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3086 const u8 *key, unsigned int keylen)
3087{
3088 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3089
3090 flow_log("%s\n", __func__);
3091 ctx->salt_len = GCM_ESP_SALT_SIZE;
3092 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3093 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3094 keylen -= GCM_ESP_SALT_SIZE;
3095 ctx->digestsize = GCM_ESP_DIGESTSIZE;
3096 ctx->is_esp = true;
3097 ctx->is_rfc4543 = true;
3098 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3099
3100 return aead_gcm_ccm_setkey(cipher, key, keylen);
3101}
3102
3103/**
3104 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3105 * @cipher: AEAD structure
3106 * @key: Key followed by 4 bytes of salt
3107 * @keylen: Length of key plus salt, in bytes
3108 *
3109 * Extracts salt from key and stores it to be prepended to IV on each request.
3110 * Digest is always 16 bytes
3111 *
3112 * Return: Value from generic ccm setkey.
3113 */
3114static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3115 const u8 *key, unsigned int keylen)
3116{
3117 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3118
3119 flow_log("%s\n", __func__);
3120 ctx->salt_len = CCM_ESP_SALT_SIZE;
3121 ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3122 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3123 keylen -= CCM_ESP_SALT_SIZE;
3124 ctx->is_esp = true;
3125 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3126
3127 return aead_gcm_ccm_setkey(cipher, key, keylen);
3128}
3129
3130static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3131{
3132 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3133 int ret = 0;
3134
3135 flow_log("%s() authkeylen:%u authsize:%u\n",
3136 __func__, ctx->authkeylen, authsize);
3137
3138 ctx->digestsize = authsize;
3139
3140 /* setkey the fallback just in case we needto use it */
3141 if (ctx->fallback_cipher) {
3142 flow_log(" running fallback setauth()\n");
3143
3144 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3145 if (ret)
3146 flow_log(" fallback setauth() returned:%d\n", ret);
3147 }
3148
3149 return ret;
3150}
3151
3152static int aead_encrypt(struct aead_request *req)
3153{
3154 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3155 req->cryptlen);
3156 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3157 flow_log(" assoc_len:%u\n", req->assoclen);
3158
3159 return aead_enqueue(req, true);
3160}
3161
3162static int aead_decrypt(struct aead_request *req)
3163{
3164 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3165 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3166 flow_log(" assoc_len:%u\n", req->assoclen);
3167
3168 return aead_enqueue(req, false);
3169}
3170
3171/* ==================== Supported Cipher Algorithms ==================== */
3172
3173static struct iproc_alg_s driver_algs[] = {
3174 {
3175 .type = CRYPTO_ALG_TYPE_AEAD,
3176 .alg.aead = {
3177 .base = {
3178 .cra_name = "gcm(aes)",
3179 .cra_driver_name = "gcm-aes-iproc",
3180 .cra_blocksize = AES_BLOCK_SIZE,
3181 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3182 },
3183 .setkey = aead_gcm_ccm_setkey,
3184 .ivsize = GCM_AES_IV_SIZE,
3185 .maxauthsize = AES_BLOCK_SIZE,
3186 },
3187 .cipher_info = {
3188 .alg = CIPHER_ALG_AES,
3189 .mode = CIPHER_MODE_GCM,
3190 },
3191 .auth_info = {
3192 .alg = HASH_ALG_AES,
3193 .mode = HASH_MODE_GCM,
3194 },
3195 .auth_first = 0,
3196 },
3197 {
3198 .type = CRYPTO_ALG_TYPE_AEAD,
3199 .alg.aead = {
3200 .base = {
3201 .cra_name = "ccm(aes)",
3202 .cra_driver_name = "ccm-aes-iproc",
3203 .cra_blocksize = AES_BLOCK_SIZE,
3204 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3205 },
3206 .setkey = aead_gcm_ccm_setkey,
3207 .ivsize = CCM_AES_IV_SIZE,
3208 .maxauthsize = AES_BLOCK_SIZE,
3209 },
3210 .cipher_info = {
3211 .alg = CIPHER_ALG_AES,
3212 .mode = CIPHER_MODE_CCM,
3213 },
3214 .auth_info = {
3215 .alg = HASH_ALG_AES,
3216 .mode = HASH_MODE_CCM,
3217 },
3218 .auth_first = 0,
3219 },
3220 {
3221 .type = CRYPTO_ALG_TYPE_AEAD,
3222 .alg.aead = {
3223 .base = {
3224 .cra_name = "rfc4106(gcm(aes))",
3225 .cra_driver_name = "gcm-aes-esp-iproc",
3226 .cra_blocksize = AES_BLOCK_SIZE,
3227 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3228 },
3229 .setkey = aead_gcm_esp_setkey,
a59851d2 3230 .ivsize = GCM_RFC4106_IV_SIZE,
9d12ba86
RR
3231 .maxauthsize = AES_BLOCK_SIZE,
3232 },
3233 .cipher_info = {
3234 .alg = CIPHER_ALG_AES,
3235 .mode = CIPHER_MODE_GCM,
3236 },
3237 .auth_info = {
3238 .alg = HASH_ALG_AES,
3239 .mode = HASH_MODE_GCM,
3240 },
3241 .auth_first = 0,
3242 },
3243 {
3244 .type = CRYPTO_ALG_TYPE_AEAD,
3245 .alg.aead = {
3246 .base = {
3247 .cra_name = "rfc4309(ccm(aes))",
3248 .cra_driver_name = "ccm-aes-esp-iproc",
3249 .cra_blocksize = AES_BLOCK_SIZE,
3250 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3251 },
3252 .setkey = aead_ccm_esp_setkey,
3253 .ivsize = CCM_AES_IV_SIZE,
3254 .maxauthsize = AES_BLOCK_SIZE,
3255 },
3256 .cipher_info = {
3257 .alg = CIPHER_ALG_AES,
3258 .mode = CIPHER_MODE_CCM,
3259 },
3260 .auth_info = {
3261 .alg = HASH_ALG_AES,
3262 .mode = HASH_MODE_CCM,
3263 },
3264 .auth_first = 0,
3265 },
3266 {
3267 .type = CRYPTO_ALG_TYPE_AEAD,
3268 .alg.aead = {
3269 .base = {
3270 .cra_name = "rfc4543(gcm(aes))",
3271 .cra_driver_name = "gmac-aes-esp-iproc",
3272 .cra_blocksize = AES_BLOCK_SIZE,
3273 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3274 },
3275 .setkey = rfc4543_gcm_esp_setkey,
a59851d2 3276 .ivsize = GCM_RFC4106_IV_SIZE,
9d12ba86
RR
3277 .maxauthsize = AES_BLOCK_SIZE,
3278 },
3279 .cipher_info = {
3280 .alg = CIPHER_ALG_AES,
3281 .mode = CIPHER_MODE_GCM,
3282 },
3283 .auth_info = {
3284 .alg = HASH_ALG_AES,
3285 .mode = HASH_MODE_GCM,
3286 },
3287 .auth_first = 0,
3288 },
3289 {
3290 .type = CRYPTO_ALG_TYPE_AEAD,
3291 .alg.aead = {
3292 .base = {
3293 .cra_name = "authenc(hmac(md5),cbc(aes))",
3294 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3295 .cra_blocksize = AES_BLOCK_SIZE,
3296 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3297 },
3298 .setkey = aead_authenc_setkey,
3299 .ivsize = AES_BLOCK_SIZE,
3300 .maxauthsize = MD5_DIGEST_SIZE,
3301 },
3302 .cipher_info = {
3303 .alg = CIPHER_ALG_AES,
3304 .mode = CIPHER_MODE_CBC,
3305 },
3306 .auth_info = {
3307 .alg = HASH_ALG_MD5,
3308 .mode = HASH_MODE_HMAC,
3309 },
3310 .auth_first = 0,
3311 },
3312 {
3313 .type = CRYPTO_ALG_TYPE_AEAD,
3314 .alg.aead = {
3315 .base = {
3316 .cra_name = "authenc(hmac(sha1),cbc(aes))",
3317 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3318 .cra_blocksize = AES_BLOCK_SIZE,
3319 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3320 },
3321 .setkey = aead_authenc_setkey,
3322 .ivsize = AES_BLOCK_SIZE,
3323 .maxauthsize = SHA1_DIGEST_SIZE,
3324 },
3325 .cipher_info = {
3326 .alg = CIPHER_ALG_AES,
3327 .mode = CIPHER_MODE_CBC,
3328 },
3329 .auth_info = {
3330 .alg = HASH_ALG_SHA1,
3331 .mode = HASH_MODE_HMAC,
3332 },
3333 .auth_first = 0,
3334 },
3335 {
3336 .type = CRYPTO_ALG_TYPE_AEAD,
3337 .alg.aead = {
3338 .base = {
3339 .cra_name = "authenc(hmac(sha256),cbc(aes))",
3340 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3341 .cra_blocksize = AES_BLOCK_SIZE,
3342 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3343 },
3344 .setkey = aead_authenc_setkey,
3345 .ivsize = AES_BLOCK_SIZE,
3346 .maxauthsize = SHA256_DIGEST_SIZE,
3347 },
3348 .cipher_info = {
3349 .alg = CIPHER_ALG_AES,
3350 .mode = CIPHER_MODE_CBC,
3351 },
3352 .auth_info = {
3353 .alg = HASH_ALG_SHA256,
3354 .mode = HASH_MODE_HMAC,
3355 },
3356 .auth_first = 0,
3357 },
3358 {
3359 .type = CRYPTO_ALG_TYPE_AEAD,
3360 .alg.aead = {
3361 .base = {
3362 .cra_name = "authenc(hmac(md5),cbc(des))",
3363 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3364 .cra_blocksize = DES_BLOCK_SIZE,
3365 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3366 },
3367 .setkey = aead_authenc_setkey,
3368 .ivsize = DES_BLOCK_SIZE,
3369 .maxauthsize = MD5_DIGEST_SIZE,
3370 },
3371 .cipher_info = {
3372 .alg = CIPHER_ALG_DES,
3373 .mode = CIPHER_MODE_CBC,
3374 },
3375 .auth_info = {
3376 .alg = HASH_ALG_MD5,
3377 .mode = HASH_MODE_HMAC,
3378 },
3379 .auth_first = 0,
3380 },
3381 {
3382 .type = CRYPTO_ALG_TYPE_AEAD,
3383 .alg.aead = {
3384 .base = {
3385 .cra_name = "authenc(hmac(sha1),cbc(des))",
3386 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3387 .cra_blocksize = DES_BLOCK_SIZE,
3388 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3389 },
3390 .setkey = aead_authenc_setkey,
3391 .ivsize = DES_BLOCK_SIZE,
3392 .maxauthsize = SHA1_DIGEST_SIZE,
3393 },
3394 .cipher_info = {
3395 .alg = CIPHER_ALG_DES,
3396 .mode = CIPHER_MODE_CBC,
3397 },
3398 .auth_info = {
3399 .alg = HASH_ALG_SHA1,
3400 .mode = HASH_MODE_HMAC,
3401 },
3402 .auth_first = 0,
3403 },
3404 {
3405 .type = CRYPTO_ALG_TYPE_AEAD,
3406 .alg.aead = {
3407 .base = {
3408 .cra_name = "authenc(hmac(sha224),cbc(des))",
3409 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3410 .cra_blocksize = DES_BLOCK_SIZE,
3411 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3412 },
3413 .setkey = aead_authenc_setkey,
3414 .ivsize = DES_BLOCK_SIZE,
3415 .maxauthsize = SHA224_DIGEST_SIZE,
3416 },
3417 .cipher_info = {
3418 .alg = CIPHER_ALG_DES,
3419 .mode = CIPHER_MODE_CBC,
3420 },
3421 .auth_info = {
3422 .alg = HASH_ALG_SHA224,
3423 .mode = HASH_MODE_HMAC,
3424 },
3425 .auth_first = 0,
3426 },
3427 {
3428 .type = CRYPTO_ALG_TYPE_AEAD,
3429 .alg.aead = {
3430 .base = {
3431 .cra_name = "authenc(hmac(sha256),cbc(des))",
3432 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3433 .cra_blocksize = DES_BLOCK_SIZE,
3434 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3435 },
3436 .setkey = aead_authenc_setkey,
3437 .ivsize = DES_BLOCK_SIZE,
3438 .maxauthsize = SHA256_DIGEST_SIZE,
3439 },
3440 .cipher_info = {
3441 .alg = CIPHER_ALG_DES,
3442 .mode = CIPHER_MODE_CBC,
3443 },
3444 .auth_info = {
3445 .alg = HASH_ALG_SHA256,
3446 .mode = HASH_MODE_HMAC,
3447 },
3448 .auth_first = 0,
3449 },
3450 {
3451 .type = CRYPTO_ALG_TYPE_AEAD,
3452 .alg.aead = {
3453 .base = {
3454 .cra_name = "authenc(hmac(sha384),cbc(des))",
3455 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3456 .cra_blocksize = DES_BLOCK_SIZE,
3457 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3458 },
3459 .setkey = aead_authenc_setkey,
3460 .ivsize = DES_BLOCK_SIZE,
3461 .maxauthsize = SHA384_DIGEST_SIZE,
3462 },
3463 .cipher_info = {
3464 .alg = CIPHER_ALG_DES,
3465 .mode = CIPHER_MODE_CBC,
3466 },
3467 .auth_info = {
3468 .alg = HASH_ALG_SHA384,
3469 .mode = HASH_MODE_HMAC,
3470 },
3471 .auth_first = 0,
3472 },
3473 {
3474 .type = CRYPTO_ALG_TYPE_AEAD,
3475 .alg.aead = {
3476 .base = {
3477 .cra_name = "authenc(hmac(sha512),cbc(des))",
3478 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3479 .cra_blocksize = DES_BLOCK_SIZE,
3480 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3481 },
3482 .setkey = aead_authenc_setkey,
3483 .ivsize = DES_BLOCK_SIZE,
3484 .maxauthsize = SHA512_DIGEST_SIZE,
3485 },
3486 .cipher_info = {
3487 .alg = CIPHER_ALG_DES,
3488 .mode = CIPHER_MODE_CBC,
3489 },
3490 .auth_info = {
3491 .alg = HASH_ALG_SHA512,
3492 .mode = HASH_MODE_HMAC,
3493 },
3494 .auth_first = 0,
3495 },
3496 {
3497 .type = CRYPTO_ALG_TYPE_AEAD,
3498 .alg.aead = {
3499 .base = {
3500 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3501 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3502 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3503 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3504 },
3505 .setkey = aead_authenc_setkey,
3506 .ivsize = DES3_EDE_BLOCK_SIZE,
3507 .maxauthsize = MD5_DIGEST_SIZE,
3508 },
3509 .cipher_info = {
3510 .alg = CIPHER_ALG_3DES,
3511 .mode = CIPHER_MODE_CBC,
3512 },
3513 .auth_info = {
3514 .alg = HASH_ALG_MD5,
3515 .mode = HASH_MODE_HMAC,
3516 },
3517 .auth_first = 0,
3518 },
3519 {
3520 .type = CRYPTO_ALG_TYPE_AEAD,
3521 .alg.aead = {
3522 .base = {
3523 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3524 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3525 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3526 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3527 },
3528 .setkey = aead_authenc_setkey,
3529 .ivsize = DES3_EDE_BLOCK_SIZE,
3530 .maxauthsize = SHA1_DIGEST_SIZE,
3531 },
3532 .cipher_info = {
3533 .alg = CIPHER_ALG_3DES,
3534 .mode = CIPHER_MODE_CBC,
3535 },
3536 .auth_info = {
3537 .alg = HASH_ALG_SHA1,
3538 .mode = HASH_MODE_HMAC,
3539 },
3540 .auth_first = 0,
3541 },
3542 {
3543 .type = CRYPTO_ALG_TYPE_AEAD,
3544 .alg.aead = {
3545 .base = {
3546 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3547 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3548 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3549 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3550 },
3551 .setkey = aead_authenc_setkey,
3552 .ivsize = DES3_EDE_BLOCK_SIZE,
3553 .maxauthsize = SHA224_DIGEST_SIZE,
3554 },
3555 .cipher_info = {
3556 .alg = CIPHER_ALG_3DES,
3557 .mode = CIPHER_MODE_CBC,
3558 },
3559 .auth_info = {
3560 .alg = HASH_ALG_SHA224,
3561 .mode = HASH_MODE_HMAC,
3562 },
3563 .auth_first = 0,
3564 },
3565 {
3566 .type = CRYPTO_ALG_TYPE_AEAD,
3567 .alg.aead = {
3568 .base = {
3569 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3570 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3571 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3572 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3573 },
3574 .setkey = aead_authenc_setkey,
3575 .ivsize = DES3_EDE_BLOCK_SIZE,
3576 .maxauthsize = SHA256_DIGEST_SIZE,
3577 },
3578 .cipher_info = {
3579 .alg = CIPHER_ALG_3DES,
3580 .mode = CIPHER_MODE_CBC,
3581 },
3582 .auth_info = {
3583 .alg = HASH_ALG_SHA256,
3584 .mode = HASH_MODE_HMAC,
3585 },
3586 .auth_first = 0,
3587 },
3588 {
3589 .type = CRYPTO_ALG_TYPE_AEAD,
3590 .alg.aead = {
3591 .base = {
3592 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3593 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3594 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3595 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3596 },
3597 .setkey = aead_authenc_setkey,
3598 .ivsize = DES3_EDE_BLOCK_SIZE,
3599 .maxauthsize = SHA384_DIGEST_SIZE,
3600 },
3601 .cipher_info = {
3602 .alg = CIPHER_ALG_3DES,
3603 .mode = CIPHER_MODE_CBC,
3604 },
3605 .auth_info = {
3606 .alg = HASH_ALG_SHA384,
3607 .mode = HASH_MODE_HMAC,
3608 },
3609 .auth_first = 0,
3610 },
3611 {
3612 .type = CRYPTO_ALG_TYPE_AEAD,
3613 .alg.aead = {
3614 .base = {
3615 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3616 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3617 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3618 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3619 },
3620 .setkey = aead_authenc_setkey,
3621 .ivsize = DES3_EDE_BLOCK_SIZE,
3622 .maxauthsize = SHA512_DIGEST_SIZE,
3623 },
3624 .cipher_info = {
3625 .alg = CIPHER_ALG_3DES,
3626 .mode = CIPHER_MODE_CBC,
3627 },
3628 .auth_info = {
3629 .alg = HASH_ALG_SHA512,
3630 .mode = HASH_MODE_HMAC,
3631 },
3632 .auth_first = 0,
3633 },
3634
3635/* ABLKCIPHER algorithms. */
3636 {
3637 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3638 .alg.crypto = {
3639 .cra_name = "ecb(arc4)",
3640 .cra_driver_name = "ecb-arc4-iproc",
3641 .cra_blocksize = ARC4_BLOCK_SIZE,
3642 .cra_ablkcipher = {
3643 .min_keysize = ARC4_MIN_KEY_SIZE,
3644 .max_keysize = ARC4_MAX_KEY_SIZE,
3645 .ivsize = 0,
3646 }
3647 },
3648 .cipher_info = {
3649 .alg = CIPHER_ALG_RC4,
3650 .mode = CIPHER_MODE_NONE,
3651 },
3652 .auth_info = {
3653 .alg = HASH_ALG_NONE,
3654 .mode = HASH_MODE_NONE,
3655 },
3656 },
3657 {
3658 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3659 .alg.crypto = {
3660 .cra_name = "ofb(des)",
3661 .cra_driver_name = "ofb-des-iproc",
3662 .cra_blocksize = DES_BLOCK_SIZE,
3663 .cra_ablkcipher = {
3664 .min_keysize = DES_KEY_SIZE,
3665 .max_keysize = DES_KEY_SIZE,
3666 .ivsize = DES_BLOCK_SIZE,
3667 }
3668 },
3669 .cipher_info = {
3670 .alg = CIPHER_ALG_DES,
3671 .mode = CIPHER_MODE_OFB,
3672 },
3673 .auth_info = {
3674 .alg = HASH_ALG_NONE,
3675 .mode = HASH_MODE_NONE,
3676 },
3677 },
3678 {
3679 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3680 .alg.crypto = {
3681 .cra_name = "cbc(des)",
3682 .cra_driver_name = "cbc-des-iproc",
3683 .cra_blocksize = DES_BLOCK_SIZE,
3684 .cra_ablkcipher = {
3685 .min_keysize = DES_KEY_SIZE,
3686 .max_keysize = DES_KEY_SIZE,
3687 .ivsize = DES_BLOCK_SIZE,
3688 }
3689 },
3690 .cipher_info = {
3691 .alg = CIPHER_ALG_DES,
3692 .mode = CIPHER_MODE_CBC,
3693 },
3694 .auth_info = {
3695 .alg = HASH_ALG_NONE,
3696 .mode = HASH_MODE_NONE,
3697 },
3698 },
3699 {
3700 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3701 .alg.crypto = {
3702 .cra_name = "ecb(des)",
3703 .cra_driver_name = "ecb-des-iproc",
3704 .cra_blocksize = DES_BLOCK_SIZE,
3705 .cra_ablkcipher = {
3706 .min_keysize = DES_KEY_SIZE,
3707 .max_keysize = DES_KEY_SIZE,
3708 .ivsize = 0,
3709 }
3710 },
3711 .cipher_info = {
3712 .alg = CIPHER_ALG_DES,
3713 .mode = CIPHER_MODE_ECB,
3714 },
3715 .auth_info = {
3716 .alg = HASH_ALG_NONE,
3717 .mode = HASH_MODE_NONE,
3718 },
3719 },
3720 {
3721 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3722 .alg.crypto = {
3723 .cra_name = "ofb(des3_ede)",
3724 .cra_driver_name = "ofb-des3-iproc",
3725 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3726 .cra_ablkcipher = {
3727 .min_keysize = DES3_EDE_KEY_SIZE,
3728 .max_keysize = DES3_EDE_KEY_SIZE,
3729 .ivsize = DES3_EDE_BLOCK_SIZE,
3730 }
3731 },
3732 .cipher_info = {
3733 .alg = CIPHER_ALG_3DES,
3734 .mode = CIPHER_MODE_OFB,
3735 },
3736 .auth_info = {
3737 .alg = HASH_ALG_NONE,
3738 .mode = HASH_MODE_NONE,
3739 },
3740 },
3741 {
3742 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3743 .alg.crypto = {
3744 .cra_name = "cbc(des3_ede)",
3745 .cra_driver_name = "cbc-des3-iproc",
3746 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3747 .cra_ablkcipher = {
3748 .min_keysize = DES3_EDE_KEY_SIZE,
3749 .max_keysize = DES3_EDE_KEY_SIZE,
3750 .ivsize = DES3_EDE_BLOCK_SIZE,
3751 }
3752 },
3753 .cipher_info = {
3754 .alg = CIPHER_ALG_3DES,
3755 .mode = CIPHER_MODE_CBC,
3756 },
3757 .auth_info = {
3758 .alg = HASH_ALG_NONE,
3759 .mode = HASH_MODE_NONE,
3760 },
3761 },
3762 {
3763 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3764 .alg.crypto = {
3765 .cra_name = "ecb(des3_ede)",
3766 .cra_driver_name = "ecb-des3-iproc",
3767 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3768 .cra_ablkcipher = {
3769 .min_keysize = DES3_EDE_KEY_SIZE,
3770 .max_keysize = DES3_EDE_KEY_SIZE,
3771 .ivsize = 0,
3772 }
3773 },
3774 .cipher_info = {
3775 .alg = CIPHER_ALG_3DES,
3776 .mode = CIPHER_MODE_ECB,
3777 },
3778 .auth_info = {
3779 .alg = HASH_ALG_NONE,
3780 .mode = HASH_MODE_NONE,
3781 },
3782 },
3783 {
3784 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3785 .alg.crypto = {
3786 .cra_name = "ofb(aes)",
3787 .cra_driver_name = "ofb-aes-iproc",
3788 .cra_blocksize = AES_BLOCK_SIZE,
3789 .cra_ablkcipher = {
3790 .min_keysize = AES_MIN_KEY_SIZE,
3791 .max_keysize = AES_MAX_KEY_SIZE,
3792 .ivsize = AES_BLOCK_SIZE,
3793 }
3794 },
3795 .cipher_info = {
3796 .alg = CIPHER_ALG_AES,
3797 .mode = CIPHER_MODE_OFB,
3798 },
3799 .auth_info = {
3800 .alg = HASH_ALG_NONE,
3801 .mode = HASH_MODE_NONE,
3802 },
3803 },
3804 {
3805 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3806 .alg.crypto = {
3807 .cra_name = "cbc(aes)",
3808 .cra_driver_name = "cbc-aes-iproc",
3809 .cra_blocksize = AES_BLOCK_SIZE,
3810 .cra_ablkcipher = {
3811 .min_keysize = AES_MIN_KEY_SIZE,
3812 .max_keysize = AES_MAX_KEY_SIZE,
3813 .ivsize = AES_BLOCK_SIZE,
3814 }
3815 },
3816 .cipher_info = {
3817 .alg = CIPHER_ALG_AES,
3818 .mode = CIPHER_MODE_CBC,
3819 },
3820 .auth_info = {
3821 .alg = HASH_ALG_NONE,
3822 .mode = HASH_MODE_NONE,
3823 },
3824 },
3825 {
3826 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3827 .alg.crypto = {
3828 .cra_name = "ecb(aes)",
3829 .cra_driver_name = "ecb-aes-iproc",
3830 .cra_blocksize = AES_BLOCK_SIZE,
3831 .cra_ablkcipher = {
3832 .min_keysize = AES_MIN_KEY_SIZE,
3833 .max_keysize = AES_MAX_KEY_SIZE,
3834 .ivsize = 0,
3835 }
3836 },
3837 .cipher_info = {
3838 .alg = CIPHER_ALG_AES,
3839 .mode = CIPHER_MODE_ECB,
3840 },
3841 .auth_info = {
3842 .alg = HASH_ALG_NONE,
3843 .mode = HASH_MODE_NONE,
3844 },
3845 },
3846 {
3847 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3848 .alg.crypto = {
3849 .cra_name = "ctr(aes)",
3850 .cra_driver_name = "ctr-aes-iproc",
3851 .cra_blocksize = AES_BLOCK_SIZE,
3852 .cra_ablkcipher = {
9d12ba86
RR
3853 .min_keysize = AES_MIN_KEY_SIZE,
3854 .max_keysize = AES_MAX_KEY_SIZE,
3855 .ivsize = AES_BLOCK_SIZE,
3856 }
3857 },
3858 .cipher_info = {
3859 .alg = CIPHER_ALG_AES,
3860 .mode = CIPHER_MODE_CTR,
3861 },
3862 .auth_info = {
3863 .alg = HASH_ALG_NONE,
3864 .mode = HASH_MODE_NONE,
3865 },
3866 },
3867{
3868 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3869 .alg.crypto = {
3870 .cra_name = "xts(aes)",
3871 .cra_driver_name = "xts-aes-iproc",
3872 .cra_blocksize = AES_BLOCK_SIZE,
3873 .cra_ablkcipher = {
3874 .min_keysize = 2 * AES_MIN_KEY_SIZE,
3875 .max_keysize = 2 * AES_MAX_KEY_SIZE,
3876 .ivsize = AES_BLOCK_SIZE,
3877 }
3878 },
3879 .cipher_info = {
3880 .alg = CIPHER_ALG_AES,
3881 .mode = CIPHER_MODE_XTS,
3882 },
3883 .auth_info = {
3884 .alg = HASH_ALG_NONE,
3885 .mode = HASH_MODE_NONE,
3886 },
3887 },
3888
3889/* AHASH algorithms. */
3890 {
3891 .type = CRYPTO_ALG_TYPE_AHASH,
3892 .alg.hash = {
3893 .halg.digestsize = MD5_DIGEST_SIZE,
3894 .halg.base = {
3895 .cra_name = "md5",
3896 .cra_driver_name = "md5-iproc",
3897 .cra_blocksize = MD5_BLOCK_WORDS * 4,
6a38f622 3898 .cra_flags = CRYPTO_ALG_ASYNC,
9d12ba86
RR
3899 }
3900 },
3901 .cipher_info = {
3902 .alg = CIPHER_ALG_NONE,
3903 .mode = CIPHER_MODE_NONE,
3904 },
3905 .auth_info = {
3906 .alg = HASH_ALG_MD5,
3907 .mode = HASH_MODE_HASH,
3908 },
3909 },
3910 {
3911 .type = CRYPTO_ALG_TYPE_AHASH,
3912 .alg.hash = {
3913 .halg.digestsize = MD5_DIGEST_SIZE,
3914 .halg.base = {
3915 .cra_name = "hmac(md5)",
3916 .cra_driver_name = "hmac-md5-iproc",
3917 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3918 }
3919 },
3920 .cipher_info = {
3921 .alg = CIPHER_ALG_NONE,
3922 .mode = CIPHER_MODE_NONE,
3923 },
3924 .auth_info = {
3925 .alg = HASH_ALG_MD5,
3926 .mode = HASH_MODE_HMAC,
3927 },
3928 },
3929 {.type = CRYPTO_ALG_TYPE_AHASH,
3930 .alg.hash = {
3931 .halg.digestsize = SHA1_DIGEST_SIZE,
3932 .halg.base = {
3933 .cra_name = "sha1",
3934 .cra_driver_name = "sha1-iproc",
3935 .cra_blocksize = SHA1_BLOCK_SIZE,
3936 }
3937 },
3938 .cipher_info = {
3939 .alg = CIPHER_ALG_NONE,
3940 .mode = CIPHER_MODE_NONE,
3941 },
3942 .auth_info = {
3943 .alg = HASH_ALG_SHA1,
3944 .mode = HASH_MODE_HASH,
3945 },
3946 },
3947 {.type = CRYPTO_ALG_TYPE_AHASH,
3948 .alg.hash = {
3949 .halg.digestsize = SHA1_DIGEST_SIZE,
3950 .halg.base = {
3951 .cra_name = "hmac(sha1)",
3952 .cra_driver_name = "hmac-sha1-iproc",
3953 .cra_blocksize = SHA1_BLOCK_SIZE,
3954 }
3955 },
3956 .cipher_info = {
3957 .alg = CIPHER_ALG_NONE,
3958 .mode = CIPHER_MODE_NONE,
3959 },
3960 .auth_info = {
3961 .alg = HASH_ALG_SHA1,
3962 .mode = HASH_MODE_HMAC,
3963 },
3964 },
3965 {.type = CRYPTO_ALG_TYPE_AHASH,
3966 .alg.hash = {
3967 .halg.digestsize = SHA224_DIGEST_SIZE,
3968 .halg.base = {
3969 .cra_name = "sha224",
3970 .cra_driver_name = "sha224-iproc",
3971 .cra_blocksize = SHA224_BLOCK_SIZE,
3972 }
3973 },
3974 .cipher_info = {
3975 .alg = CIPHER_ALG_NONE,
3976 .mode = CIPHER_MODE_NONE,
3977 },
3978 .auth_info = {
3979 .alg = HASH_ALG_SHA224,
3980 .mode = HASH_MODE_HASH,
3981 },
3982 },
3983 {.type = CRYPTO_ALG_TYPE_AHASH,
3984 .alg.hash = {
3985 .halg.digestsize = SHA224_DIGEST_SIZE,
3986 .halg.base = {
3987 .cra_name = "hmac(sha224)",
3988 .cra_driver_name = "hmac-sha224-iproc",
3989 .cra_blocksize = SHA224_BLOCK_SIZE,
3990 }
3991 },
3992 .cipher_info = {
3993 .alg = CIPHER_ALG_NONE,
3994 .mode = CIPHER_MODE_NONE,
3995 },
3996 .auth_info = {
3997 .alg = HASH_ALG_SHA224,
3998 .mode = HASH_MODE_HMAC,
3999 },
4000 },
4001 {.type = CRYPTO_ALG_TYPE_AHASH,
4002 .alg.hash = {
4003 .halg.digestsize = SHA256_DIGEST_SIZE,
4004 .halg.base = {
4005 .cra_name = "sha256",
4006 .cra_driver_name = "sha256-iproc",
4007 .cra_blocksize = SHA256_BLOCK_SIZE,
4008 }
4009 },
4010 .cipher_info = {
4011 .alg = CIPHER_ALG_NONE,
4012 .mode = CIPHER_MODE_NONE,
4013 },
4014 .auth_info = {
4015 .alg = HASH_ALG_SHA256,
4016 .mode = HASH_MODE_HASH,
4017 },
4018 },
4019 {.type = CRYPTO_ALG_TYPE_AHASH,
4020 .alg.hash = {
4021 .halg.digestsize = SHA256_DIGEST_SIZE,
4022 .halg.base = {
4023 .cra_name = "hmac(sha256)",
4024 .cra_driver_name = "hmac-sha256-iproc",
4025 .cra_blocksize = SHA256_BLOCK_SIZE,
4026 }
4027 },
4028 .cipher_info = {
4029 .alg = CIPHER_ALG_NONE,
4030 .mode = CIPHER_MODE_NONE,
4031 },
4032 .auth_info = {
4033 .alg = HASH_ALG_SHA256,
4034 .mode = HASH_MODE_HMAC,
4035 },
4036 },
4037 {
4038 .type = CRYPTO_ALG_TYPE_AHASH,
4039 .alg.hash = {
4040 .halg.digestsize = SHA384_DIGEST_SIZE,
4041 .halg.base = {
4042 .cra_name = "sha384",
4043 .cra_driver_name = "sha384-iproc",
4044 .cra_blocksize = SHA384_BLOCK_SIZE,
4045 }
4046 },
4047 .cipher_info = {
4048 .alg = CIPHER_ALG_NONE,
4049 .mode = CIPHER_MODE_NONE,
4050 },
4051 .auth_info = {
4052 .alg = HASH_ALG_SHA384,
4053 .mode = HASH_MODE_HASH,
4054 },
4055 },
4056 {
4057 .type = CRYPTO_ALG_TYPE_AHASH,
4058 .alg.hash = {
4059 .halg.digestsize = SHA384_DIGEST_SIZE,
4060 .halg.base = {
4061 .cra_name = "hmac(sha384)",
4062 .cra_driver_name = "hmac-sha384-iproc",
4063 .cra_blocksize = SHA384_BLOCK_SIZE,
4064 }
4065 },
4066 .cipher_info = {
4067 .alg = CIPHER_ALG_NONE,
4068 .mode = CIPHER_MODE_NONE,
4069 },
4070 .auth_info = {
4071 .alg = HASH_ALG_SHA384,
4072 .mode = HASH_MODE_HMAC,
4073 },
4074 },
4075 {
4076 .type = CRYPTO_ALG_TYPE_AHASH,
4077 .alg.hash = {
4078 .halg.digestsize = SHA512_DIGEST_SIZE,
4079 .halg.base = {
4080 .cra_name = "sha512",
4081 .cra_driver_name = "sha512-iproc",
4082 .cra_blocksize = SHA512_BLOCK_SIZE,
4083 }
4084 },
4085 .cipher_info = {
4086 .alg = CIPHER_ALG_NONE,
4087 .mode = CIPHER_MODE_NONE,
4088 },
4089 .auth_info = {
4090 .alg = HASH_ALG_SHA512,
4091 .mode = HASH_MODE_HASH,
4092 },
4093 },
4094 {
4095 .type = CRYPTO_ALG_TYPE_AHASH,
4096 .alg.hash = {
4097 .halg.digestsize = SHA512_DIGEST_SIZE,
4098 .halg.base = {
4099 .cra_name = "hmac(sha512)",
4100 .cra_driver_name = "hmac-sha512-iproc",
4101 .cra_blocksize = SHA512_BLOCK_SIZE,
4102 }
4103 },
4104 .cipher_info = {
4105 .alg = CIPHER_ALG_NONE,
4106 .mode = CIPHER_MODE_NONE,
4107 },
4108 .auth_info = {
4109 .alg = HASH_ALG_SHA512,
4110 .mode = HASH_MODE_HMAC,
4111 },
4112 },
4113 {
4114 .type = CRYPTO_ALG_TYPE_AHASH,
4115 .alg.hash = {
4116 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4117 .halg.base = {
4118 .cra_name = "sha3-224",
4119 .cra_driver_name = "sha3-224-iproc",
4120 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4121 }
4122 },
4123 .cipher_info = {
4124 .alg = CIPHER_ALG_NONE,
4125 .mode = CIPHER_MODE_NONE,
4126 },
4127 .auth_info = {
4128 .alg = HASH_ALG_SHA3_224,
4129 .mode = HASH_MODE_HASH,
4130 },
4131 },
4132 {
4133 .type = CRYPTO_ALG_TYPE_AHASH,
4134 .alg.hash = {
4135 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4136 .halg.base = {
4137 .cra_name = "hmac(sha3-224)",
4138 .cra_driver_name = "hmac-sha3-224-iproc",
4139 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4140 }
4141 },
4142 .cipher_info = {
4143 .alg = CIPHER_ALG_NONE,
4144 .mode = CIPHER_MODE_NONE,
4145 },
4146 .auth_info = {
4147 .alg = HASH_ALG_SHA3_224,
4148 .mode = HASH_MODE_HMAC
4149 },
4150 },
4151 {
4152 .type = CRYPTO_ALG_TYPE_AHASH,
4153 .alg.hash = {
4154 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4155 .halg.base = {
4156 .cra_name = "sha3-256",
4157 .cra_driver_name = "sha3-256-iproc",
4158 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4159 }
4160 },
4161 .cipher_info = {
4162 .alg = CIPHER_ALG_NONE,
4163 .mode = CIPHER_MODE_NONE,
4164 },
4165 .auth_info = {
4166 .alg = HASH_ALG_SHA3_256,
4167 .mode = HASH_MODE_HASH,
4168 },
4169 },
4170 {
4171 .type = CRYPTO_ALG_TYPE_AHASH,
4172 .alg.hash = {
4173 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4174 .halg.base = {
4175 .cra_name = "hmac(sha3-256)",
4176 .cra_driver_name = "hmac-sha3-256-iproc",
4177 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4178 }
4179 },
4180 .cipher_info = {
4181 .alg = CIPHER_ALG_NONE,
4182 .mode = CIPHER_MODE_NONE,
4183 },
4184 .auth_info = {
4185 .alg = HASH_ALG_SHA3_256,
4186 .mode = HASH_MODE_HMAC,
4187 },
4188 },
4189 {
4190 .type = CRYPTO_ALG_TYPE_AHASH,
4191 .alg.hash = {
4192 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4193 .halg.base = {
4194 .cra_name = "sha3-384",
4195 .cra_driver_name = "sha3-384-iproc",
4196 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4197 }
4198 },
4199 .cipher_info = {
4200 .alg = CIPHER_ALG_NONE,
4201 .mode = CIPHER_MODE_NONE,
4202 },
4203 .auth_info = {
4204 .alg = HASH_ALG_SHA3_384,
4205 .mode = HASH_MODE_HASH,
4206 },
4207 },
4208 {
4209 .type = CRYPTO_ALG_TYPE_AHASH,
4210 .alg.hash = {
4211 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4212 .halg.base = {
4213 .cra_name = "hmac(sha3-384)",
4214 .cra_driver_name = "hmac-sha3-384-iproc",
4215 .cra_blocksize = SHA3_384_BLOCK_SIZE,
4216 }
4217 },
4218 .cipher_info = {
4219 .alg = CIPHER_ALG_NONE,
4220 .mode = CIPHER_MODE_NONE,
4221 },
4222 .auth_info = {
4223 .alg = HASH_ALG_SHA3_384,
4224 .mode = HASH_MODE_HMAC,
4225 },
4226 },
4227 {
4228 .type = CRYPTO_ALG_TYPE_AHASH,
4229 .alg.hash = {
4230 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4231 .halg.base = {
4232 .cra_name = "sha3-512",
4233 .cra_driver_name = "sha3-512-iproc",
4234 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4235 }
4236 },
4237 .cipher_info = {
4238 .alg = CIPHER_ALG_NONE,
4239 .mode = CIPHER_MODE_NONE,
4240 },
4241 .auth_info = {
4242 .alg = HASH_ALG_SHA3_512,
4243 .mode = HASH_MODE_HASH,
4244 },
4245 },
4246 {
4247 .type = CRYPTO_ALG_TYPE_AHASH,
4248 .alg.hash = {
4249 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4250 .halg.base = {
4251 .cra_name = "hmac(sha3-512)",
4252 .cra_driver_name = "hmac-sha3-512-iproc",
4253 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4254 }
4255 },
4256 .cipher_info = {
4257 .alg = CIPHER_ALG_NONE,
4258 .mode = CIPHER_MODE_NONE,
4259 },
4260 .auth_info = {
4261 .alg = HASH_ALG_SHA3_512,
4262 .mode = HASH_MODE_HMAC,
4263 },
4264 },
4265 {
4266 .type = CRYPTO_ALG_TYPE_AHASH,
4267 .alg.hash = {
4268 .halg.digestsize = AES_BLOCK_SIZE,
4269 .halg.base = {
4270 .cra_name = "xcbc(aes)",
4271 .cra_driver_name = "xcbc-aes-iproc",
4272 .cra_blocksize = AES_BLOCK_SIZE,
4273 }
4274 },
4275 .cipher_info = {
4276 .alg = CIPHER_ALG_NONE,
4277 .mode = CIPHER_MODE_NONE,
4278 },
4279 .auth_info = {
4280 .alg = HASH_ALG_AES,
4281 .mode = HASH_MODE_XCBC,
4282 },
4283 },
4284 {
4285 .type = CRYPTO_ALG_TYPE_AHASH,
4286 .alg.hash = {
4287 .halg.digestsize = AES_BLOCK_SIZE,
4288 .halg.base = {
4289 .cra_name = "cmac(aes)",
4290 .cra_driver_name = "cmac-aes-iproc",
4291 .cra_blocksize = AES_BLOCK_SIZE,
4292 }
4293 },
4294 .cipher_info = {
4295 .alg = CIPHER_ALG_NONE,
4296 .mode = CIPHER_MODE_NONE,
4297 },
4298 .auth_info = {
4299 .alg = HASH_ALG_AES,
4300 .mode = HASH_MODE_CMAC,
4301 },
4302 },
4303};
4304
4305static int generic_cra_init(struct crypto_tfm *tfm,
4306 struct iproc_alg_s *cipher_alg)
4307{
4308 struct spu_hw *spu = &iproc_priv.spu;
4309 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4310 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4311
4312 flow_log("%s()\n", __func__);
4313
4314 ctx->alg = cipher_alg;
4315 ctx->cipher = cipher_alg->cipher_info;
4316 ctx->auth = cipher_alg->auth_info;
4317 ctx->auth_first = cipher_alg->auth_first;
4318 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4319 ctx->cipher.mode,
4320 blocksize);
4321 ctx->fallback_cipher = NULL;
4322
4323 ctx->enckeylen = 0;
4324 ctx->authkeylen = 0;
4325
4326 atomic_inc(&iproc_priv.stream_count);
4327 atomic_inc(&iproc_priv.session_count);
4328
4329 return 0;
4330}
4331
4332static int ablkcipher_cra_init(struct crypto_tfm *tfm)
4333{
4334 struct crypto_alg *alg = tfm->__crt_alg;
4335 struct iproc_alg_s *cipher_alg;
4336
4337 flow_log("%s()\n", __func__);
4338
4339 tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s);
4340
4341 cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto);
4342 return generic_cra_init(tfm, cipher_alg);
4343}
4344
4345static int ahash_cra_init(struct crypto_tfm *tfm)
4346{
4347 int err;
4348 struct crypto_alg *alg = tfm->__crt_alg;
4349 struct iproc_alg_s *cipher_alg;
4350
4351 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4352 alg.hash);
4353
4354 err = generic_cra_init(tfm, cipher_alg);
4355 flow_log("%s()\n", __func__);
4356
4357 /*
4358 * export state size has to be < 512 bytes. So don't include msg bufs
4359 * in state size.
4360 */
4361 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4362 sizeof(struct iproc_reqctx_s));
4363
4364 return err;
4365}
4366
4367static int aead_cra_init(struct crypto_aead *aead)
4368{
4369 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4370 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4371 struct crypto_alg *alg = tfm->__crt_alg;
4372 struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4373 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4374 alg.aead);
4375
4376 int err = generic_cra_init(tfm, cipher_alg);
4377
4378 flow_log("%s()\n", __func__);
4379
4380 crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4381 ctx->is_esp = false;
4382 ctx->salt_len = 0;
4383 ctx->salt_offset = 0;
4384
4385 /* random first IV */
4386 get_random_bytes(ctx->iv, MAX_IV_SIZE);
4387 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE);
4388
4389 if (!err) {
4390 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4391 flow_log("%s() creating fallback cipher\n", __func__);
4392
4393 ctx->fallback_cipher =
4394 crypto_alloc_aead(alg->cra_name, 0,
4395 CRYPTO_ALG_ASYNC |
4396 CRYPTO_ALG_NEED_FALLBACK);
4397 if (IS_ERR(ctx->fallback_cipher)) {
4398 pr_err("%s() Error: failed to allocate fallback for %s\n",
4399 __func__, alg->cra_name);
4400 return PTR_ERR(ctx->fallback_cipher);
4401 }
4402 }
4403 }
4404
4405 return err;
4406}
4407
4408static void generic_cra_exit(struct crypto_tfm *tfm)
4409{
4410 atomic_dec(&iproc_priv.session_count);
4411}
4412
4413static void aead_cra_exit(struct crypto_aead *aead)
4414{
4415 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4416 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4417
4418 generic_cra_exit(tfm);
4419
4420 if (ctx->fallback_cipher) {
4421 crypto_free_aead(ctx->fallback_cipher);
4422 ctx->fallback_cipher = NULL;
4423 }
4424}
4425
4426/**
4427 * spu_functions_register() - Specify hardware-specific SPU functions based on
4428 * SPU type read from device tree.
4429 * @dev: device structure
4430 * @spu_type: SPU hardware generation
4431 * @spu_subtype: SPU hardware version
4432 */
4433static void spu_functions_register(struct device *dev,
4434 enum spu_spu_type spu_type,
4435 enum spu_spu_subtype spu_subtype)
4436{
4437 struct spu_hw *spu = &iproc_priv.spu;
4438
4439 if (spu_type == SPU_TYPE_SPUM) {
4440 dev_dbg(dev, "Registering SPUM functions");
4441 spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4442 spu->spu_payload_length = spum_payload_length;
4443 spu->spu_response_hdr_len = spum_response_hdr_len;
4444 spu->spu_hash_pad_len = spum_hash_pad_len;
4445 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4446 spu->spu_assoc_resp_len = spum_assoc_resp_len;
4447 spu->spu_aead_ivlen = spum_aead_ivlen;
4448 spu->spu_hash_type = spum_hash_type;
4449 spu->spu_digest_size = spum_digest_size;
4450 spu->spu_create_request = spum_create_request;
4451 spu->spu_cipher_req_init = spum_cipher_req_init;
4452 spu->spu_cipher_req_finish = spum_cipher_req_finish;
4453 spu->spu_request_pad = spum_request_pad;
4454 spu->spu_tx_status_len = spum_tx_status_len;
4455 spu->spu_rx_status_len = spum_rx_status_len;
4456 spu->spu_status_process = spum_status_process;
4457 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4458 spu->spu_ccm_update_iv = spum_ccm_update_iv;
4459 spu->spu_wordalign_padlen = spum_wordalign_padlen;
4460 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4461 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4462 else
4463 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4464 } else {
4465 dev_dbg(dev, "Registering SPU2 functions");
4466 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4467 spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4468 spu->spu_payload_length = spu2_payload_length;
4469 spu->spu_response_hdr_len = spu2_response_hdr_len;
4470 spu->spu_hash_pad_len = spu2_hash_pad_len;
4471 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4472 spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4473 spu->spu_aead_ivlen = spu2_aead_ivlen;
4474 spu->spu_hash_type = spu2_hash_type;
4475 spu->spu_digest_size = spu2_digest_size;
4476 spu->spu_create_request = spu2_create_request;
4477 spu->spu_cipher_req_init = spu2_cipher_req_init;
4478 spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4479 spu->spu_request_pad = spu2_request_pad;
4480 spu->spu_tx_status_len = spu2_tx_status_len;
4481 spu->spu_rx_status_len = spu2_rx_status_len;
4482 spu->spu_status_process = spu2_status_process;
4483 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4484 spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4485 spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4486 }
4487}
4488
4489/**
4490 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4491 * channel for the SPU being probed.
4492 * @dev: SPU driver device structure
4493 *
4494 * Return: 0 if successful
4495 * < 0 otherwise
4496 */
4497static int spu_mb_init(struct device *dev)
4498{
9166c443 4499 struct mbox_client *mcl = &iproc_priv.mcl;
4500 int err, i;
4501
4502 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4503 sizeof(struct mbox_chan *), GFP_KERNEL);
4504 if (!iproc_priv.mbox)
4505 return -ENOMEM;
9d12ba86
RR
4506
4507 mcl->dev = dev;
4508 mcl->tx_block = false;
4509 mcl->tx_tout = 0;
f0e2ce58 4510 mcl->knows_txdone = true;
9d12ba86
RR
4511 mcl->rx_callback = spu_rx_callback;
4512 mcl->tx_done = NULL;
4513
9166c443 4514 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4515 iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4516 if (IS_ERR(iproc_priv.mbox[i])) {
4517 err = (int)PTR_ERR(iproc_priv.mbox[i]);
4518 dev_err(dev,
4519 "Mbox channel %d request failed with err %d",
4520 i, err);
4521 iproc_priv.mbox[i] = NULL;
4522 goto free_channels;
4523 }
9d12ba86
RR
4524 }
4525
4526 return 0;
9166c443 4527free_channels:
4528 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4529 if (iproc_priv.mbox[i])
4530 mbox_free_channel(iproc_priv.mbox[i]);
4531 }
4532
4533 return err;
9d12ba86
RR
4534}
4535
4536static void spu_mb_release(struct platform_device *pdev)
4537{
4538 int i;
4539
9166c443 4540 for (i = 0; i < iproc_priv.spu.num_chan; i++)
9d12ba86
RR
4541 mbox_free_channel(iproc_priv.mbox[i]);
4542}
4543
4544static void spu_counters_init(void)
4545{
4546 int i;
4547 int j;
4548
4549 atomic_set(&iproc_priv.session_count, 0);
4550 atomic_set(&iproc_priv.stream_count, 0);
9166c443 4551 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
9d12ba86
RR
4552 atomic64_set(&iproc_priv.bytes_in, 0);
4553 atomic64_set(&iproc_priv.bytes_out, 0);
4554 for (i = 0; i < SPU_OP_NUM; i++) {
4555 atomic_set(&iproc_priv.op_counts[i], 0);
4556 atomic_set(&iproc_priv.setkey_cnt[i], 0);
4557 }
4558 for (i = 0; i < CIPHER_ALG_LAST; i++)
4559 for (j = 0; j < CIPHER_MODE_LAST; j++)
4560 atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4561
4562 for (i = 0; i < HASH_ALG_LAST; i++) {
4563 atomic_set(&iproc_priv.hash_cnt[i], 0);
4564 atomic_set(&iproc_priv.hmac_cnt[i], 0);
4565 }
4566 for (i = 0; i < AEAD_TYPE_LAST; i++)
4567 atomic_set(&iproc_priv.aead_cnt[i], 0);
4568
4569 atomic_set(&iproc_priv.mb_no_spc, 0);
4570 atomic_set(&iproc_priv.mb_send_fail, 0);
4571 atomic_set(&iproc_priv.bad_icv, 0);
4572}
4573
4574static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg)
4575{
4576 struct spu_hw *spu = &iproc_priv.spu;
4577 struct crypto_alg *crypto = &driver_alg->alg.crypto;
4578 int err;
4579
4580 /* SPU2 does not support RC4 */
4581 if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4582 (spu->spu_type == SPU_TYPE_SPU2))
4583 return 0;
4584
4585 crypto->cra_module = THIS_MODULE;
4586 crypto->cra_priority = cipher_pri;
4587 crypto->cra_alignmask = 0;
4588 crypto->cra_ctxsize = sizeof(struct iproc_ctx_s);
9d12ba86
RR
4589
4590 crypto->cra_init = ablkcipher_cra_init;
4591 crypto->cra_exit = generic_cra_exit;
4592 crypto->cra_type = &crypto_ablkcipher_type;
4593 crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
4594 CRYPTO_ALG_KERN_DRIVER_ONLY;
4595
4596 crypto->cra_ablkcipher.setkey = ablkcipher_setkey;
4597 crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt;
4598 crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt;
4599
4600 err = crypto_register_alg(crypto);
4601 /* Mark alg as having been registered, if successful */
4602 if (err == 0)
4603 driver_alg->registered = true;
4604 pr_debug(" registered ablkcipher %s\n", crypto->cra_driver_name);
4605 return err;
4606}
4607
4608static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4609{
4610 struct spu_hw *spu = &iproc_priv.spu;
4611 struct ahash_alg *hash = &driver_alg->alg.hash;
4612 int err;
4613
4614 /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4615 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4616 (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4617 (spu->spu_type == SPU_TYPE_SPUM))
4618 return 0;
4619
4620 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4621 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4622 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4623 return 0;
4624
4625 hash->halg.base.cra_module = THIS_MODULE;
4626 hash->halg.base.cra_priority = hash_pri;
4627 hash->halg.base.cra_alignmask = 0;
4628 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4629 hash->halg.base.cra_init = ahash_cra_init;
4630 hash->halg.base.cra_exit = generic_cra_exit;
6a38f622 4631 hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
9d12ba86
RR
4632 hash->halg.statesize = sizeof(struct spu_hash_export_s);
4633
4634 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
9d12ba86
RR
4635 hash->init = ahash_init;
4636 hash->update = ahash_update;
4637 hash->final = ahash_final;
4638 hash->finup = ahash_finup;
4639 hash->digest = ahash_digest;
4f0129d1
RP
4640 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4641 ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4642 (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4643 hash->setkey = ahash_setkey;
4644 }
9d12ba86
RR
4645 } else {
4646 hash->setkey = ahash_hmac_setkey;
4647 hash->init = ahash_hmac_init;
4648 hash->update = ahash_hmac_update;
4649 hash->final = ahash_hmac_final;
4650 hash->finup = ahash_hmac_finup;
4651 hash->digest = ahash_hmac_digest;
4652 }
4653 hash->export = ahash_export;
4654 hash->import = ahash_import;
4655
4656 err = crypto_register_ahash(hash);
4657 /* Mark alg as having been registered, if successful */
4658 if (err == 0)
4659 driver_alg->registered = true;
4660 pr_debug(" registered ahash %s\n",
4661 hash->halg.base.cra_driver_name);
4662 return err;
4663}
4664
4665static int spu_register_aead(struct iproc_alg_s *driver_alg)
4666{
4667 struct aead_alg *aead = &driver_alg->alg.aead;
4668 int err;
4669
4670 aead->base.cra_module = THIS_MODULE;
4671 aead->base.cra_priority = aead_pri;
4672 aead->base.cra_alignmask = 0;
4673 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
9d12ba86 4674
3f4a537a 4675 aead->base.cra_flags |= CRYPTO_ALG_ASYNC;
9d12ba86
RR
4676 /* setkey set in alg initialization */
4677 aead->setauthsize = aead_setauthsize;
4678 aead->encrypt = aead_encrypt;
4679 aead->decrypt = aead_decrypt;
4680 aead->init = aead_cra_init;
4681 aead->exit = aead_cra_exit;
4682
4683 err = crypto_register_aead(aead);
4684 /* Mark alg as having been registered, if successful */
4685 if (err == 0)
4686 driver_alg->registered = true;
4687 pr_debug(" registered aead %s\n", aead->base.cra_driver_name);
4688 return err;
4689}
4690
4691/* register crypto algorithms the device supports */
4692static int spu_algs_register(struct device *dev)
4693{
4694 int i, j;
4695 int err;
4696
4697 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4698 switch (driver_algs[i].type) {
4699 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4700 err = spu_register_ablkcipher(&driver_algs[i]);
4701 break;
4702 case CRYPTO_ALG_TYPE_AHASH:
4703 err = spu_register_ahash(&driver_algs[i]);
4704 break;
4705 case CRYPTO_ALG_TYPE_AEAD:
4706 err = spu_register_aead(&driver_algs[i]);
4707 break;
4708 default:
4709 dev_err(dev,
4710 "iproc-crypto: unknown alg type: %d",
4711 driver_algs[i].type);
4712 err = -EINVAL;
4713 }
4714
4715 if (err) {
4716 dev_err(dev, "alg registration failed with error %d\n",
4717 err);
4718 goto err_algs;
4719 }
4720 }
4721
4722 return 0;
4723
4724err_algs:
4725 for (j = 0; j < i; j++) {
4726 /* Skip any algorithm not registered */
4727 if (!driver_algs[j].registered)
4728 continue;
4729 switch (driver_algs[j].type) {
4730 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4731 crypto_unregister_alg(&driver_algs[j].alg.crypto);
4732 driver_algs[j].registered = false;
4733 break;
4734 case CRYPTO_ALG_TYPE_AHASH:
4735 crypto_unregister_ahash(&driver_algs[j].alg.hash);
4736 driver_algs[j].registered = false;
4737 break;
4738 case CRYPTO_ALG_TYPE_AEAD:
4739 crypto_unregister_aead(&driver_algs[j].alg.aead);
4740 driver_algs[j].registered = false;
4741 break;
4742 }
4743 }
4744 return err;
4745}
4746
4747/* ==================== Kernel Platform API ==================== */
4748
4749static struct spu_type_subtype spum_ns2_types = {
4750 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4751};
4752
4753static struct spu_type_subtype spum_nsp_types = {
4754 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4755};
4756
4757static struct spu_type_subtype spu2_types = {
4758 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4759};
4760
4761static struct spu_type_subtype spu2_v2_types = {
4762 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4763};
4764
4765static const struct of_device_id bcm_spu_dt_ids[] = {
4766 {
4767 .compatible = "brcm,spum-crypto",
4768 .data = &spum_ns2_types,
4769 },
4770 {
4771 .compatible = "brcm,spum-nsp-crypto",
4772 .data = &spum_nsp_types,
4773 },
4774 {
4775 .compatible = "brcm,spu2-crypto",
4776 .data = &spu2_types,
4777 },
4778 {
4779 .compatible = "brcm,spu2-v2-crypto",
4780 .data = &spu2_v2_types,
4781 },
4782 { /* sentinel */ }
4783};
4784
4785MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4786
4787static int spu_dt_read(struct platform_device *pdev)
4788{
4789 struct device *dev = &pdev->dev;
4790 struct spu_hw *spu = &iproc_priv.spu;
4791 struct resource *spu_ctrl_regs;
9d12ba86 4792 const struct spu_type_subtype *matched_spu_type;
9166c443 4793 struct device_node *dn = pdev->dev.of_node;
4794 int err, i;
4795
4796 /* Count number of mailbox channels */
4797 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
9d12ba86 4798
d9fa482e
CL
4799 matched_spu_type = of_device_get_match_data(dev);
4800 if (!matched_spu_type) {
c6090480
GS
4801 dev_err(&pdev->dev, "Failed to match device\n");
4802 return -ENODEV;
4803 }
4804
9166c443 4805 spu->spu_type = matched_spu_type->type;
4806 spu->spu_subtype = matched_spu_type->subtype;
9d12ba86 4807
9166c443 4808 i = 0;
4809 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4810 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
9d12ba86 4811
9166c443 4812 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4813 if (IS_ERR(spu->reg_vbase[i])) {
4814 err = PTR_ERR(spu->reg_vbase[i]);
4815 dev_err(&pdev->dev, "Failed to map registers: %d\n",
4816 err);
4817 spu->reg_vbase[i] = NULL;
4818 return err;
4819 }
9d12ba86 4820 }
9166c443 4821 spu->num_spu = i;
4822 dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
9d12ba86
RR
4823
4824 return 0;
4825}
4826
4827int bcm_spu_probe(struct platform_device *pdev)
4828{
4829 struct device *dev = &pdev->dev;
4830 struct spu_hw *spu = &iproc_priv.spu;
4831 int err = 0;
4832
9166c443 4833 iproc_priv.pdev = pdev;
4834 platform_set_drvdata(iproc_priv.pdev,
9d12ba86
RR
4835 &iproc_priv);
4836
4837 err = spu_dt_read(pdev);
4838 if (err < 0)
4839 goto failure;
4840
4841 err = spu_mb_init(&pdev->dev);
4842 if (err < 0)
4843 goto failure;
4844
9d12ba86
RR
4845 if (spu->spu_type == SPU_TYPE_SPUM)
4846 iproc_priv.bcm_hdr_len = 8;
4847 else if (spu->spu_type == SPU_TYPE_SPU2)
4848 iproc_priv.bcm_hdr_len = 0;
4849
4850 spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype);
4851
4852 spu_counters_init();
4853
4854 spu_setup_debugfs();
4855
4856 err = spu_algs_register(dev);
4857 if (err < 0)
4858 goto fail_reg;
4859
9d12ba86
RR
4860 return 0;
4861
4862fail_reg:
4863 spu_free_debugfs();
4864failure:
4865 spu_mb_release(pdev);
4866 dev_err(dev, "%s failed with error %d.\n", __func__, err);
4867
4868 return err;
4869}
4870
4871int bcm_spu_remove(struct platform_device *pdev)
4872{
4873 int i;
4874 struct device *dev = &pdev->dev;
4875 char *cdn;
4876
4877 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4878 /*
4879 * Not all algorithms were registered, depending on whether
4880 * hardware is SPU or SPU2. So here we make sure to skip
4881 * those algorithms that were not previously registered.
4882 */
4883 if (!driver_algs[i].registered)
4884 continue;
4885
4886 switch (driver_algs[i].type) {
4887 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4888 crypto_unregister_alg(&driver_algs[i].alg.crypto);
4889 dev_dbg(dev, " unregistered cipher %s\n",
4890 driver_algs[i].alg.crypto.cra_driver_name);
4891 driver_algs[i].registered = false;
4892 break;
4893 case CRYPTO_ALG_TYPE_AHASH:
4894 crypto_unregister_ahash(&driver_algs[i].alg.hash);
4895 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4896 dev_dbg(dev, " unregistered hash %s\n", cdn);
4897 driver_algs[i].registered = false;
4898 break;
4899 case CRYPTO_ALG_TYPE_AEAD:
4900 crypto_unregister_aead(&driver_algs[i].alg.aead);
4901 dev_dbg(dev, " unregistered aead %s\n",
4902 driver_algs[i].alg.aead.base.cra_driver_name);
4903 driver_algs[i].registered = false;
4904 break;
4905 }
4906 }
4907 spu_free_debugfs();
4908 spu_mb_release(pdev);
4909 return 0;
4910}
4911
4912/* ===== Kernel Module API ===== */
4913
4914static struct platform_driver bcm_spu_pdriver = {
4915 .driver = {
4916 .name = "brcm-spu-crypto",
4917 .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4918 },
4919 .probe = bcm_spu_probe,
4920 .remove = bcm_spu_remove,
4921};
4922module_platform_driver(bcm_spu_pdriver);
4923
4924MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4925MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4926MODULE_LICENSE("GPL v2");