Merge branch 'for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
[linux-2.6-block.git] / drivers / crypto / bcm / cipher.c
CommitLineData
9d12ba86
RR
1/*
2 * Copyright 2016 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation (the "GPL").
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License version 2 (GPLv2) for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * version 2 (GPLv2) along with this source code.
15 */
16
17#include <linux/err.h>
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/errno.h>
21#include <linux/kernel.h>
22#include <linux/interrupt.h>
23#include <linux/platform_device.h>
24#include <linux/scatterlist.h>
25#include <linux/crypto.h>
26#include <linux/kthread.h>
27#include <linux/rtnetlink.h>
28#include <linux/sched.h>
29#include <linux/of_address.h>
30#include <linux/of_device.h>
31#include <linux/io.h>
32#include <linux/bitops.h>
33
34#include <crypto/algapi.h>
35#include <crypto/aead.h>
36#include <crypto/internal/aead.h>
37#include <crypto/aes.h>
38#include <crypto/des.h>
1126d47d 39#include <crypto/hmac.h>
9d12ba86
RR
40#include <crypto/sha.h>
41#include <crypto/md5.h>
42#include <crypto/authenc.h>
43#include <crypto/skcipher.h>
44#include <crypto/hash.h>
9d12ba86
RR
45#include <crypto/sha3.h>
46
47#include "util.h"
48#include "cipher.h"
49#include "spu.h"
50#include "spum.h"
51#include "spu2.h"
52
53/* ================= Device Structure ================== */
54
55struct device_private iproc_priv;
56
57/* ==================== Parameters ===================== */
58
59int flow_debug_logging;
60module_param(flow_debug_logging, int, 0644);
61MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
62
63int packet_debug_logging;
64module_param(packet_debug_logging, int, 0644);
65MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
66
67int debug_logging_sleep;
68module_param(debug_logging_sleep, int, 0644);
69MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
70
71/*
72 * The value of these module parameters is used to set the priority for each
73 * algo type when this driver registers algos with the kernel crypto API.
74 * To use a priority other than the default, set the priority in the insmod or
75 * modprobe. Changing the module priority after init time has no effect.
76 *
77 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
78 * algos, but more preferred than generic software algos.
79 */
80static int cipher_pri = 150;
81module_param(cipher_pri, int, 0644);
82MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
83
84static int hash_pri = 100;
85module_param(hash_pri, int, 0644);
86MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
87
88static int aead_pri = 150;
89module_param(aead_pri, int, 0644);
90MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
91
9d12ba86
RR
92/* A type 3 BCM header, expected to precede the SPU header for SPU-M.
93 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
94 * 0x60 - ring 0
95 * 0x68 - ring 1
96 * 0x70 - ring 2
97 * 0x78 - ring 3
98 */
99char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
100/*
101 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
102 * is set dynamically after reading SPU type from device tree.
103 */
104#define BCM_HDR_LEN iproc_priv.bcm_hdr_len
105
106/* min and max time to sleep before retrying when mbox queue is full. usec */
107#define MBOX_SLEEP_MIN 800
108#define MBOX_SLEEP_MAX 1000
109
110/**
111 * select_channel() - Select a SPU channel to handle a crypto request. Selects
112 * channel in round robin order.
113 *
114 * Return: channel index
115 */
116static u8 select_channel(void)
117{
118 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
119
9166c443 120 return chan_idx % iproc_priv.spu.num_chan;
9d12ba86
RR
121}
122
123/**
124 * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to
125 * receive a SPU response message for an ablkcipher request. Includes buffers to
126 * catch SPU message headers and the response data.
127 * @mssg: mailbox message containing the receive sg
128 * @rctx: crypto request context
129 * @rx_frag_num: number of scatterlist elements required to hold the
130 * SPU response message
131 * @chunksize: Number of bytes of response data expected
132 * @stat_pad_len: Number of bytes required to pad the STAT field to
133 * a 4-byte boundary
134 *
135 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
136 * when the request completes, whether the request is handled successfully or
137 * there is an error.
138 *
139 * Returns:
140 * 0 if successful
141 * < 0 if an error
142 */
143static int
144spu_ablkcipher_rx_sg_create(struct brcm_message *mssg,
145 struct iproc_reqctx_s *rctx,
146 u8 rx_frag_num,
147 unsigned int chunksize, u32 stat_pad_len)
148{
149 struct spu_hw *spu = &iproc_priv.spu;
150 struct scatterlist *sg; /* used to build sgs in mbox message */
151 struct iproc_ctx_s *ctx = rctx->ctx;
152 u32 datalen; /* Number of bytes of response data expected */
153
154 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
155 rctx->gfp);
156 if (!mssg->spu.dst)
157 return -ENOMEM;
158
159 sg = mssg->spu.dst;
160 sg_init_table(sg, rx_frag_num);
161 /* Space for SPU message header */
162 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
163
164 /* If XTS tweak in payload, add buffer to receive encrypted tweak */
165 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
166 spu->spu_xts_tweak_in_payload())
167 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
168 SPU_XTS_TWEAK_SIZE);
169
170 /* Copy in each dst sg entry from request, up to chunksize */
171 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
172 rctx->dst_nents, chunksize);
173 if (datalen < chunksize) {
174 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
175 __func__, chunksize, datalen);
176 return -EFAULT;
177 }
178
179 if (ctx->cipher.alg == CIPHER_ALG_RC4)
180 /* Add buffer to catch 260-byte SUPDT field for RC4 */
181 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
182
183 if (stat_pad_len)
184 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
185
186 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
187 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
188
189 return 0;
190}
191
192/**
193 * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to
194 * send a SPU request message for an ablkcipher request. Includes SPU message
195 * headers and the request data.
196 * @mssg: mailbox message containing the transmit sg
197 * @rctx: crypto request context
198 * @tx_frag_num: number of scatterlist elements required to construct the
199 * SPU request message
200 * @chunksize: Number of bytes of request data
201 * @pad_len: Number of pad bytes
202 *
203 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
204 * when the request completes, whether the request is handled successfully or
205 * there is an error.
206 *
207 * Returns:
208 * 0 if successful
209 * < 0 if an error
210 */
211static int
212spu_ablkcipher_tx_sg_create(struct brcm_message *mssg,
213 struct iproc_reqctx_s *rctx,
214 u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
215{
216 struct spu_hw *spu = &iproc_priv.spu;
217 struct scatterlist *sg; /* used to build sgs in mbox message */
218 struct iproc_ctx_s *ctx = rctx->ctx;
219 u32 datalen; /* Number of bytes of response data expected */
220 u32 stat_len;
221
222 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
223 rctx->gfp);
224 if (unlikely(!mssg->spu.src))
225 return -ENOMEM;
226
227 sg = mssg->spu.src;
228 sg_init_table(sg, tx_frag_num);
229
230 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
231 BCM_HDR_LEN + ctx->spu_req_hdr_len);
232
233 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
234 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
235 spu->spu_xts_tweak_in_payload())
236 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
237
238 /* Copy in each src sg entry from request, up to chunksize */
239 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
240 rctx->src_nents, chunksize);
241 if (unlikely(datalen < chunksize)) {
242 pr_err("%s(): failed to copy src sg to mbox msg",
243 __func__);
244 return -EFAULT;
245 }
246
247 if (pad_len)
248 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
249
250 stat_len = spu->spu_tx_status_len();
251 if (stat_len) {
252 memset(rctx->msg_buf.tx_stat, 0, stat_len);
253 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
254 }
255 return 0;
256}
257
f0e2ce58 258static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
259 u8 chan_idx)
260{
261 int err;
262 int retry_cnt = 0;
263 struct device *dev = &(iproc_priv.pdev->dev);
264
265 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
266 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
267 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
268 /*
269 * Mailbox queue is full. Since MAY_SLEEP is set, assume
270 * not in atomic context and we can wait and try again.
271 */
272 retry_cnt++;
273 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
274 err = mbox_send_message(iproc_priv.mbox[chan_idx],
275 mssg);
276 atomic_inc(&iproc_priv.mb_no_spc);
277 }
278 }
279 if (err < 0) {
280 atomic_inc(&iproc_priv.mb_send_fail);
281 return err;
282 }
283
284 /* Check error returned by mailbox controller */
285 err = mssg->error;
286 if (unlikely(err < 0)) {
287 dev_err(dev, "message error %d", err);
288 /* Signal txdone for mailbox channel */
289 }
290
291 /* Signal txdone for mailbox channel */
292 mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
293 return err;
294}
295
9d12ba86
RR
296/**
297 * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in
298 * a single SPU request message, starting at the current position in the request
299 * data.
300 * @rctx: Crypto request context
301 *
302 * This may be called on the crypto API thread, or, when a request is so large
303 * it must be broken into multiple SPU messages, on the thread used to invoke
304 * the response callback. When requests are broken into multiple SPU
305 * messages, we assume subsequent messages depend on previous results, and
306 * thus always wait for previous results before submitting the next message.
307 * Because requests are submitted in lock step like this, there is no need
308 * to synchronize access to request data structures.
309 *
310 * Return: -EINPROGRESS: request has been accepted and result will be returned
311 * asynchronously
312 * Any other value indicates an error
313 */
314static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx)
315{
316 struct spu_hw *spu = &iproc_priv.spu;
317 struct crypto_async_request *areq = rctx->parent;
318 struct ablkcipher_request *req =
319 container_of(areq, struct ablkcipher_request, base);
320 struct iproc_ctx_s *ctx = rctx->ctx;
321 struct spu_cipher_parms cipher_parms;
322 int err = 0;
323 unsigned int chunksize = 0; /* Num bytes of request to submit */
324 int remaining = 0; /* Bytes of request still to process */
325 int chunk_start; /* Beginning of data for current SPU msg */
326
327 /* IV or ctr value to use in this SPU msg */
328 u8 local_iv_ctr[MAX_IV_SIZE];
329 u32 stat_pad_len; /* num bytes to align status field */
330 u32 pad_len; /* total length of all padding */
331 bool update_key = false;
332 struct brcm_message *mssg; /* mailbox message */
9d12ba86
RR
333
334 /* number of entries in src and dst sg in mailbox message. */
335 u8 rx_frag_num = 2; /* response header and STATUS */
336 u8 tx_frag_num = 1; /* request header */
337
338 flow_log("%s\n", __func__);
339
340 cipher_parms.alg = ctx->cipher.alg;
341 cipher_parms.mode = ctx->cipher.mode;
342 cipher_parms.type = ctx->cipher_type;
343 cipher_parms.key_len = ctx->enckeylen;
344 cipher_parms.key_buf = ctx->enckey;
345 cipher_parms.iv_buf = local_iv_ctr;
346 cipher_parms.iv_len = rctx->iv_ctr_len;
347
348 mssg = &rctx->mb_mssg;
349 chunk_start = rctx->src_sent;
350 remaining = rctx->total_todo - chunk_start;
351
352 /* determine the chunk we are breaking off and update the indexes */
353 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
354 (remaining > ctx->max_payload))
355 chunksize = ctx->max_payload;
356 else
357 chunksize = remaining;
358
359 rctx->src_sent += chunksize;
360 rctx->total_sent = rctx->src_sent;
361
362 /* Count number of sg entries to be included in this request */
363 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
364 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
365
366 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
367 rctx->is_encrypt && chunk_start)
368 /*
369 * Encrypting non-first first chunk. Copy last block of
370 * previous result to IV for this chunk.
371 */
372 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
373 rctx->iv_ctr_len,
374 chunk_start - rctx->iv_ctr_len);
375
376 if (rctx->iv_ctr_len) {
377 /* get our local copy of the iv */
378 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
379 rctx->iv_ctr_len);
380
381 /* generate the next IV if possible */
382 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
383 !rctx->is_encrypt) {
384 /*
385 * CBC Decrypt: next IV is the last ciphertext block in
386 * this chunk
387 */
388 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
389 rctx->iv_ctr_len,
390 rctx->src_sent - rctx->iv_ctr_len);
391 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
392 /*
393 * The SPU hardware increments the counter once for
394 * each AES block of 16 bytes. So update the counter
395 * for the next chunk, if there is one. Note that for
396 * this chunk, the counter has already been copied to
397 * local_iv_ctr. We can assume a block size of 16,
398 * because we only support CTR mode for AES, not for
399 * any other cipher alg.
400 */
401 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
402 }
403 }
404
405 if (ctx->cipher.alg == CIPHER_ALG_RC4) {
406 rx_frag_num++;
407 if (chunk_start) {
408 /*
409 * for non-first RC4 chunks, use SUPDT from previous
410 * response as key for this chunk.
411 */
412 cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
413 update_key = true;
414 cipher_parms.type = CIPHER_TYPE_UPDT;
415 } else if (!rctx->is_encrypt) {
416 /*
417 * First RC4 chunk. For decrypt, key in pre-built msg
418 * header may have been changed if encrypt required
419 * multiple chunks. So revert the key to the
420 * ctx->enckey value.
421 */
422 update_key = true;
423 cipher_parms.type = CIPHER_TYPE_INIT;
424 }
425 }
426
427 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
428 flow_log("max_payload infinite\n");
429 else
430 flow_log("max_payload %u\n", ctx->max_payload);
431
432 flow_log("sent:%u start:%u remains:%u size:%u\n",
433 rctx->src_sent, chunk_start, remaining, chunksize);
434
435 /* Copy SPU header template created at setkey time */
436 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
437 sizeof(rctx->msg_buf.bcm_spu_req_hdr));
438
439 /*
440 * Pass SUPDT field as key. Key field in finish() call is only used
441 * when update_key has been set above for RC4. Will be ignored in
442 * all other cases.
443 */
444 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
445 ctx->spu_req_hdr_len, !(rctx->is_encrypt),
446 &cipher_parms, update_key, chunksize);
447
448 atomic64_add(chunksize, &iproc_priv.bytes_out);
449
450 stat_pad_len = spu->spu_wordalign_padlen(chunksize);
451 if (stat_pad_len)
452 rx_frag_num++;
453 pad_len = stat_pad_len;
454 if (pad_len) {
455 tx_frag_num++;
456 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
457 0, ctx->auth.alg, ctx->auth.mode,
458 rctx->total_sent, stat_pad_len);
459 }
460
461 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
462 ctx->spu_req_hdr_len);
463 packet_log("payload:\n");
464 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
465 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
466
467 /*
468 * Build mailbox message containing SPU request msg and rx buffers
469 * to catch response message
470 */
471 memset(mssg, 0, sizeof(*mssg));
472 mssg->type = BRCM_MESSAGE_SPU;
473 mssg->ctx = rctx; /* Will be returned in response */
474
475 /* Create rx scatterlist to catch result */
476 rx_frag_num += rctx->dst_nents;
477
478 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
479 spu->spu_xts_tweak_in_payload())
480 rx_frag_num++; /* extra sg to insert tweak */
481
482 err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
483 stat_pad_len);
484 if (err)
485 return err;
486
487 /* Create tx scatterlist containing SPU request message */
488 tx_frag_num += rctx->src_nents;
489 if (spu->spu_tx_status_len())
490 tx_frag_num++;
491
492 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
493 spu->spu_xts_tweak_in_payload())
494 tx_frag_num++; /* extra sg to insert tweak */
495
496 err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
497 pad_len);
498 if (err)
499 return err;
500
f0e2ce58 501 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
502 if (unlikely(err < 0))
9d12ba86 503 return err;
9d12ba86
RR
504
505 return -EINPROGRESS;
506}
507
508/**
509 * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the
510 * total received count for the request and updates global stats.
511 * @rctx: Crypto request context
512 */
513static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx)
514{
515 struct spu_hw *spu = &iproc_priv.spu;
516#ifdef DEBUG
517 struct crypto_async_request *areq = rctx->parent;
518 struct ablkcipher_request *req = ablkcipher_request_cast(areq);
519#endif
520 struct iproc_ctx_s *ctx = rctx->ctx;
521 u32 payload_len;
522
523 /* See how much data was returned */
524 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
525
526 /*
527 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
528 * encrypted tweak ("i") value; we don't count those.
529 */
530 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
531 spu->spu_xts_tweak_in_payload() &&
532 (payload_len >= SPU_XTS_TWEAK_SIZE))
533 payload_len -= SPU_XTS_TWEAK_SIZE;
534
535 atomic64_add(payload_len, &iproc_priv.bytes_in);
536
537 flow_log("%s() offset: %u, bd_len: %u BD:\n",
538 __func__, rctx->total_received, payload_len);
539
540 dump_sg(req->dst, rctx->total_received, payload_len);
541 if (ctx->cipher.alg == CIPHER_ALG_RC4)
542 packet_dump(" supdt ", rctx->msg_buf.c.supdt_tweak,
543 SPU_SUPDT_LEN);
544
545 rctx->total_received += payload_len;
546 if (rctx->total_received == rctx->total_todo) {
547 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
548 atomic_inc(
549 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
550 }
551}
552
553/**
554 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
555 * receive a SPU response message for an ahash request.
556 * @mssg: mailbox message containing the receive sg
557 * @rctx: crypto request context
558 * @rx_frag_num: number of scatterlist elements required to hold the
559 * SPU response message
560 * @digestsize: length of hash digest, in bytes
561 * @stat_pad_len: Number of bytes required to pad the STAT field to
562 * a 4-byte boundary
563 *
564 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
565 * when the request completes, whether the request is handled successfully or
566 * there is an error.
567 *
568 * Return:
569 * 0 if successful
570 * < 0 if an error
571 */
572static int
573spu_ahash_rx_sg_create(struct brcm_message *mssg,
574 struct iproc_reqctx_s *rctx,
575 u8 rx_frag_num, unsigned int digestsize,
576 u32 stat_pad_len)
577{
578 struct spu_hw *spu = &iproc_priv.spu;
579 struct scatterlist *sg; /* used to build sgs in mbox message */
580 struct iproc_ctx_s *ctx = rctx->ctx;
581
582 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
583 rctx->gfp);
584 if (!mssg->spu.dst)
585 return -ENOMEM;
586
587 sg = mssg->spu.dst;
588 sg_init_table(sg, rx_frag_num);
589 /* Space for SPU message header */
590 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
591
592 /* Space for digest */
593 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
594
595 if (stat_pad_len)
596 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
597
598 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
599 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
600 return 0;
601}
602
603/**
604 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send
605 * a SPU request message for an ahash request. Includes SPU message headers and
606 * the request data.
607 * @mssg: mailbox message containing the transmit sg
608 * @rctx: crypto request context
609 * @tx_frag_num: number of scatterlist elements required to construct the
610 * SPU request message
611 * @spu_hdr_len: length in bytes of SPU message header
612 * @hash_carry_len: Number of bytes of data carried over from previous req
613 * @new_data_len: Number of bytes of new request data
614 * @pad_len: Number of pad bytes
615 *
616 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
617 * when the request completes, whether the request is handled successfully or
618 * there is an error.
619 *
620 * Return:
621 * 0 if successful
622 * < 0 if an error
623 */
624static int
625spu_ahash_tx_sg_create(struct brcm_message *mssg,
626 struct iproc_reqctx_s *rctx,
627 u8 tx_frag_num,
628 u32 spu_hdr_len,
629 unsigned int hash_carry_len,
630 unsigned int new_data_len, u32 pad_len)
631{
632 struct spu_hw *spu = &iproc_priv.spu;
633 struct scatterlist *sg; /* used to build sgs in mbox message */
634 u32 datalen; /* Number of bytes of response data expected */
635 u32 stat_len;
636
637 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
638 rctx->gfp);
639 if (!mssg->spu.src)
640 return -ENOMEM;
641
642 sg = mssg->spu.src;
643 sg_init_table(sg, tx_frag_num);
644
645 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
646 BCM_HDR_LEN + spu_hdr_len);
647
648 if (hash_carry_len)
649 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
650
651 if (new_data_len) {
652 /* Copy in each src sg entry from request, up to chunksize */
653 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
654 rctx->src_nents, new_data_len);
655 if (datalen < new_data_len) {
656 pr_err("%s(): failed to copy src sg to mbox msg",
657 __func__);
658 return -EFAULT;
659 }
660 }
661
662 if (pad_len)
663 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
664
665 stat_len = spu->spu_tx_status_len();
666 if (stat_len) {
667 memset(rctx->msg_buf.tx_stat, 0, stat_len);
668 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
669 }
670
671 return 0;
672}
673
674/**
675 * handle_ahash_req() - Process an asynchronous hash request from the crypto
676 * API.
677 * @rctx: Crypto request context
678 *
679 * Builds a SPU request message embedded in a mailbox message and submits the
680 * mailbox message on a selected mailbox channel. The SPU request message is
681 * constructed as a scatterlist, including entries from the crypto API's
682 * src scatterlist to avoid copying the data to be hashed. This function is
683 * called either on the thread from the crypto API, or, in the case that the
684 * crypto API request is too large to fit in a single SPU request message,
685 * on the thread that invokes the receive callback with a response message.
686 * Because some operations require the response from one chunk before the next
687 * chunk can be submitted, we always wait for the response for the previous
688 * chunk before submitting the next chunk. Because requests are submitted in
689 * lock step like this, there is no need to synchronize access to request data
690 * structures.
691 *
692 * Return:
693 * -EINPROGRESS: request has been submitted to SPU and response will be
694 * returned asynchronously
695 * -EAGAIN: non-final request included a small amount of data, which for
696 * efficiency we did not submit to the SPU, but instead stored
697 * to be submitted to the SPU with the next part of the request
698 * other: an error code
699 */
700static int handle_ahash_req(struct iproc_reqctx_s *rctx)
701{
702 struct spu_hw *spu = &iproc_priv.spu;
703 struct crypto_async_request *areq = rctx->parent;
704 struct ahash_request *req = ahash_request_cast(areq);
705 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
706 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
707 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
708 struct iproc_ctx_s *ctx = rctx->ctx;
709
710 /* number of bytes still to be hashed in this req */
711 unsigned int nbytes_to_hash = 0;
712 int err = 0;
713 unsigned int chunksize = 0; /* length of hash carry + new data */
714 /*
715 * length of new data, not from hash carry, to be submitted in
716 * this hw request
717 */
718 unsigned int new_data_len;
719
707d0cf8 720 unsigned int __maybe_unused chunk_start = 0;
9d12ba86
RR
721 u32 db_size; /* Length of data field, incl gcm and hash padding */
722 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
723 u32 data_pad_len = 0; /* length of GCM/CCM padding */
724 u32 stat_pad_len = 0; /* length of padding to align STATUS word */
725 struct brcm_message *mssg; /* mailbox message */
726 struct spu_request_opts req_opts;
727 struct spu_cipher_parms cipher_parms;
728 struct spu_hash_parms hash_parms;
729 struct spu_aead_parms aead_parms;
730 unsigned int local_nbuf;
731 u32 spu_hdr_len;
732 unsigned int digestsize;
733 u16 rem = 0;
9d12ba86
RR
734
735 /*
736 * number of entries in src and dst sg. Always includes SPU msg header.
737 * rx always includes a buffer to catch digest and STATUS.
738 */
739 u8 rx_frag_num = 3;
740 u8 tx_frag_num = 1;
741
742 flow_log("total_todo %u, total_sent %u\n",
743 rctx->total_todo, rctx->total_sent);
744
745 memset(&req_opts, 0, sizeof(req_opts));
746 memset(&cipher_parms, 0, sizeof(cipher_parms));
747 memset(&hash_parms, 0, sizeof(hash_parms));
748 memset(&aead_parms, 0, sizeof(aead_parms));
749
750 req_opts.bd_suppress = true;
751 hash_parms.alg = ctx->auth.alg;
752 hash_parms.mode = ctx->auth.mode;
753 hash_parms.type = HASH_TYPE_NONE;
754 hash_parms.key_buf = (u8 *)ctx->authkey;
755 hash_parms.key_len = ctx->authkeylen;
756
757 /*
758 * For hash algorithms below assignment looks bit odd but
759 * it's needed for AES-XCBC and AES-CMAC hash algorithms
760 * to differentiate between 128, 192, 256 bit key values.
761 * Based on the key values, hash algorithm is selected.
762 * For example for 128 bit key, hash algorithm is AES-128.
763 */
764 cipher_parms.type = ctx->cipher_type;
765
766 mssg = &rctx->mb_mssg;
767 chunk_start = rctx->src_sent;
768
769 /*
770 * Compute the amount remaining to hash. This may include data
771 * carried over from previous requests.
772 */
773 nbytes_to_hash = rctx->total_todo - rctx->total_sent;
774 chunksize = nbytes_to_hash;
775 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
776 (chunksize > ctx->max_payload))
777 chunksize = ctx->max_payload;
778
779 /*
780 * If this is not a final request and the request data is not a multiple
781 * of a full block, then simply park the extra data and prefix it to the
782 * data for the next request.
783 */
784 if (!rctx->is_final) {
785 u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
786 u16 new_len; /* len of data to add to hash carry */
787
788 rem = chunksize % blocksize; /* remainder */
789 if (rem) {
790 /* chunksize not a multiple of blocksize */
791 chunksize -= rem;
792 if (chunksize == 0) {
793 /* Don't have a full block to submit to hw */
794 new_len = rem - rctx->hash_carry_len;
795 sg_copy_part_to_buf(req->src, dest, new_len,
796 rctx->src_sent);
797 rctx->hash_carry_len = rem;
798 flow_log("Exiting with hash carry len: %u\n",
799 rctx->hash_carry_len);
800 packet_dump(" buf: ",
801 rctx->hash_carry,
802 rctx->hash_carry_len);
803 return -EAGAIN;
804 }
805 }
806 }
807
808 /* if we have hash carry, then prefix it to the data in this request */
809 local_nbuf = rctx->hash_carry_len;
810 rctx->hash_carry_len = 0;
811 if (local_nbuf)
812 tx_frag_num++;
813 new_data_len = chunksize - local_nbuf;
814
815 /* Count number of sg entries to be used in this request */
816 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
817 new_data_len);
818
819 /* AES hashing keeps key size in type field, so need to copy it here */
820 if (hash_parms.alg == HASH_ALG_AES)
a2e5d408 821 hash_parms.type = (enum hash_type)cipher_parms.type;
9d12ba86
RR
822 else
823 hash_parms.type = spu->spu_hash_type(rctx->total_sent);
824
825 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
826 hash_parms.type);
827 hash_parms.digestsize = digestsize;
828
829 /* update the indexes */
830 rctx->total_sent += chunksize;
831 /* if you sent a prebuf then that wasn't from this req->src */
832 rctx->src_sent += new_data_len;
833
834 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
835 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
836 hash_parms.mode,
837 chunksize,
838 blocksize);
839
840 /*
841 * If a non-first chunk, then include the digest returned from the
842 * previous chunk so that hw can add to it (except for AES types).
843 */
844 if ((hash_parms.type == HASH_TYPE_UPDT) &&
845 (hash_parms.alg != HASH_ALG_AES)) {
846 hash_parms.key_buf = rctx->incr_hash;
847 hash_parms.key_len = digestsize;
848 }
849
850 atomic64_add(chunksize, &iproc_priv.bytes_out);
851
852 flow_log("%s() final: %u nbuf: %u ",
853 __func__, rctx->is_final, local_nbuf);
854
855 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
856 flow_log("max_payload infinite\n");
857 else
858 flow_log("max_payload %u\n", ctx->max_payload);
859
860 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
861
862 /* Prepend SPU header with type 3 BCM header */
863 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
864
865 hash_parms.prebuf_len = local_nbuf;
866 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
867 BCM_HDR_LEN,
868 &req_opts, &cipher_parms,
869 &hash_parms, &aead_parms,
870 new_data_len);
871
872 if (spu_hdr_len == 0) {
873 pr_err("Failed to create SPU request header\n");
874 return -EFAULT;
875 }
876
877 /*
878 * Determine total length of padding required. Put all padding in one
879 * buffer.
880 */
881 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
882 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
883 0, 0, hash_parms.pad_len);
884 if (spu->spu_tx_status_len())
885 stat_pad_len = spu->spu_wordalign_padlen(db_size);
886 if (stat_pad_len)
887 rx_frag_num++;
888 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
889 if (pad_len) {
890 tx_frag_num++;
891 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
892 hash_parms.pad_len, ctx->auth.alg,
893 ctx->auth.mode, rctx->total_sent,
894 stat_pad_len);
895 }
896
897 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
898 spu_hdr_len);
899 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf);
900 flow_log("Data:\n");
901 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
902 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
903
904 /*
905 * Build mailbox message containing SPU request msg and rx buffers
906 * to catch response message
907 */
908 memset(mssg, 0, sizeof(*mssg));
909 mssg->type = BRCM_MESSAGE_SPU;
910 mssg->ctx = rctx; /* Will be returned in response */
911
912 /* Create rx scatterlist to catch result */
913 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
914 stat_pad_len);
915 if (err)
916 return err;
917
918 /* Create tx scatterlist containing SPU request message */
919 tx_frag_num += rctx->src_nents;
920 if (spu->spu_tx_status_len())
921 tx_frag_num++;
922 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
923 local_nbuf, new_data_len, pad_len);
924 if (err)
925 return err;
926
f0e2ce58 927 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
928 if (unlikely(err < 0))
9d12ba86 929 return err;
f0e2ce58 930
9d12ba86
RR
931 return -EINPROGRESS;
932}
933
934/**
935 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
936 * for an HMAC request.
937 * @req: The HMAC request from the crypto API
938 * @ctx: The session context
939 *
940 * Return: 0 if synchronous hash operation successful
941 * -EINVAL if the hash algo is unrecognized
942 * any other value indicates an error
943 */
944static int spu_hmac_outer_hash(struct ahash_request *req,
945 struct iproc_ctx_s *ctx)
946{
947 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
948 unsigned int blocksize =
949 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
950 int rc;
951
952 switch (ctx->auth.alg) {
953 case HASH_ALG_MD5:
954 rc = do_shash("md5", req->result, ctx->opad, blocksize,
955 req->result, ctx->digestsize, NULL, 0);
956 break;
957 case HASH_ALG_SHA1:
958 rc = do_shash("sha1", req->result, ctx->opad, blocksize,
959 req->result, ctx->digestsize, NULL, 0);
960 break;
961 case HASH_ALG_SHA224:
962 rc = do_shash("sha224", req->result, ctx->opad, blocksize,
963 req->result, ctx->digestsize, NULL, 0);
964 break;
965 case HASH_ALG_SHA256:
966 rc = do_shash("sha256", req->result, ctx->opad, blocksize,
967 req->result, ctx->digestsize, NULL, 0);
968 break;
969 case HASH_ALG_SHA384:
970 rc = do_shash("sha384", req->result, ctx->opad, blocksize,
971 req->result, ctx->digestsize, NULL, 0);
972 break;
973 case HASH_ALG_SHA512:
974 rc = do_shash("sha512", req->result, ctx->opad, blocksize,
975 req->result, ctx->digestsize, NULL, 0);
976 break;
977 default:
978 pr_err("%s() Error : unknown hmac type\n", __func__);
979 rc = -EINVAL;
980 }
981 return rc;
982}
983
984/**
985 * ahash_req_done() - Process a hash result from the SPU hardware.
986 * @rctx: Crypto request context
987 *
988 * Return: 0 if successful
989 * < 0 if an error
990 */
991static int ahash_req_done(struct iproc_reqctx_s *rctx)
992{
993 struct spu_hw *spu = &iproc_priv.spu;
994 struct crypto_async_request *areq = rctx->parent;
995 struct ahash_request *req = ahash_request_cast(areq);
996 struct iproc_ctx_s *ctx = rctx->ctx;
997 int err;
998
999 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
1000
1001 if (spu->spu_type == SPU_TYPE_SPUM) {
1002 /* byte swap the output from the UPDT function to network byte
1003 * order
1004 */
1005 if (ctx->auth.alg == HASH_ALG_MD5) {
1006 __swab32s((u32 *)req->result);
1007 __swab32s(((u32 *)req->result) + 1);
1008 __swab32s(((u32 *)req->result) + 2);
1009 __swab32s(((u32 *)req->result) + 3);
1010 __swab32s(((u32 *)req->result) + 4);
1011 }
1012 }
1013
1014 flow_dump(" digest ", req->result, ctx->digestsize);
1015
1016 /* if this an HMAC then do the outer hash */
1017 if (rctx->is_sw_hmac) {
1018 err = spu_hmac_outer_hash(req, ctx);
1019 if (err < 0)
1020 return err;
1021 flow_dump(" hmac: ", req->result, ctx->digestsize);
1022 }
1023
1024 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1025 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1026 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1027 } else {
1028 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1029 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1030 }
1031
1032 return 0;
1033}
1034
1035/**
1036 * handle_ahash_resp() - Process a SPU response message for a hash request.
1037 * Checks if the entire crypto API request has been processed, and if so,
1038 * invokes post processing on the result.
1039 * @rctx: Crypto request context
1040 */
1041static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1042{
1043 struct iproc_ctx_s *ctx = rctx->ctx;
1044#ifdef DEBUG
1045 struct crypto_async_request *areq = rctx->parent;
1046 struct ahash_request *req = ahash_request_cast(areq);
1047 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1048 unsigned int blocksize =
1049 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1050#endif
1051 /*
1052 * Save hash to use as input to next op if incremental. Might be copying
1053 * too much, but that's easier than figuring out actual digest size here
1054 */
1055 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1056
1057 flow_log("%s() blocksize:%u digestsize:%u\n",
1058 __func__, blocksize, ctx->digestsize);
1059
1060 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1061
1062 if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1063 ahash_req_done(rctx);
1064}
1065
1066/**
1067 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1068 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1069 * message headers and the response data.
1070 * @mssg: mailbox message containing the receive sg
1071 * @rctx: crypto request context
1072 * @rx_frag_num: number of scatterlist elements required to hold the
1073 * SPU response message
1074 * @assoc_len: Length of associated data included in the crypto request
1075 * @ret_iv_len: Length of IV returned in response
1076 * @resp_len: Number of bytes of response data expected to be written to
1077 * dst buffer from crypto API
1078 * @digestsize: Length of hash digest, in bytes
1079 * @stat_pad_len: Number of bytes required to pad the STAT field to
1080 * a 4-byte boundary
1081 *
1082 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1083 * when the request completes, whether the request is handled successfully or
1084 * there is an error.
1085 *
1086 * Returns:
1087 * 0 if successful
1088 * < 0 if an error
1089 */
1090static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1091 struct aead_request *req,
1092 struct iproc_reqctx_s *rctx,
1093 u8 rx_frag_num,
1094 unsigned int assoc_len,
1095 u32 ret_iv_len, unsigned int resp_len,
1096 unsigned int digestsize, u32 stat_pad_len)
1097{
1098 struct spu_hw *spu = &iproc_priv.spu;
1099 struct scatterlist *sg; /* used to build sgs in mbox message */
1100 struct iproc_ctx_s *ctx = rctx->ctx;
1101 u32 datalen; /* Number of bytes of response data expected */
1102 u32 assoc_buf_len;
1103 u8 data_padlen = 0;
1104
1105 if (ctx->is_rfc4543) {
1106 /* RFC4543: only pad after data, not after AAD */
1107 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1108 assoc_len + resp_len);
1109 assoc_buf_len = assoc_len;
1110 } else {
1111 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1112 resp_len);
1113 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1114 assoc_len, ret_iv_len,
1115 rctx->is_encrypt);
1116 }
1117
1118 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1119 /* ICV (after data) must be in the next 32-bit word for CCM */
1120 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1121 resp_len +
1122 data_padlen);
1123
1124 if (data_padlen)
1125 /* have to catch gcm pad in separate buffer */
1126 rx_frag_num++;
1127
1128 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1129 rctx->gfp);
1130 if (!mssg->spu.dst)
1131 return -ENOMEM;
1132
1133 sg = mssg->spu.dst;
1134 sg_init_table(sg, rx_frag_num);
1135
1136 /* Space for SPU message header */
1137 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1138
1139 if (assoc_buf_len) {
1140 /*
1141 * Don't write directly to req->dst, because SPU may pad the
1142 * assoc data in the response
1143 */
1144 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1145 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1146 }
1147
1148 if (resp_len) {
1149 /*
1150 * Copy in each dst sg entry from request, up to chunksize.
1151 * dst sg catches just the data. digest caught in separate buf.
1152 */
1153 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1154 rctx->dst_nents, resp_len);
1155 if (datalen < (resp_len)) {
1156 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1157 __func__, resp_len, datalen);
1158 return -EFAULT;
1159 }
1160 }
1161
1162 /* If GCM/CCM data is padded, catch padding in separate buffer */
1163 if (data_padlen) {
1164 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1165 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1166 }
1167
1168 /* Always catch ICV in separate buffer */
1169 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1170
1171 flow_log("stat_pad_len %u\n", stat_pad_len);
1172 if (stat_pad_len) {
1173 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1174 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1175 }
1176
1177 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1178 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1179
1180 return 0;
1181}
1182
1183/**
1184 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1185 * SPU request message for an AEAD request. Includes SPU message headers and the
1186 * request data.
1187 * @mssg: mailbox message containing the transmit sg
1188 * @rctx: crypto request context
1189 * @tx_frag_num: number of scatterlist elements required to construct the
1190 * SPU request message
1191 * @spu_hdr_len: length of SPU message header in bytes
1192 * @assoc: crypto API associated data scatterlist
1193 * @assoc_len: length of associated data
1194 * @assoc_nents: number of scatterlist entries containing assoc data
1195 * @aead_iv_len: length of AEAD IV, if included
1196 * @chunksize: Number of bytes of request data
1197 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1198 * @pad_len: Number of pad bytes
1199 * @incl_icv: If true, write separate ICV buffer after data and
1200 * any padding
1201 *
1202 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1203 * when the request completes, whether the request is handled successfully or
1204 * there is an error.
1205 *
1206 * Return:
1207 * 0 if successful
1208 * < 0 if an error
1209 */
1210static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1211 struct iproc_reqctx_s *rctx,
1212 u8 tx_frag_num,
1213 u32 spu_hdr_len,
1214 struct scatterlist *assoc,
1215 unsigned int assoc_len,
1216 int assoc_nents,
1217 unsigned int aead_iv_len,
1218 unsigned int chunksize,
1219 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1220{
1221 struct spu_hw *spu = &iproc_priv.spu;
1222 struct scatterlist *sg; /* used to build sgs in mbox message */
1223 struct scatterlist *assoc_sg = assoc;
1224 struct iproc_ctx_s *ctx = rctx->ctx;
1225 u32 datalen; /* Number of bytes of data to write */
1226 u32 written; /* Number of bytes of data written */
1227 u32 assoc_offset = 0;
1228 u32 stat_len;
1229
1230 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1231 rctx->gfp);
1232 if (!mssg->spu.src)
1233 return -ENOMEM;
1234
1235 sg = mssg->spu.src;
1236 sg_init_table(sg, tx_frag_num);
1237
1238 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1239 BCM_HDR_LEN + spu_hdr_len);
1240
1241 if (assoc_len) {
1242 /* Copy in each associated data sg entry from request */
1243 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1244 assoc_nents, assoc_len);
1245 if (written < assoc_len) {
1246 pr_err("%s(): failed to copy assoc sg to mbox msg",
1247 __func__);
1248 return -EFAULT;
1249 }
1250 }
1251
1252 if (aead_iv_len)
1253 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1254
1255 if (aad_pad_len) {
1256 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1257 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1258 }
1259
1260 datalen = chunksize;
1261 if ((chunksize > ctx->digestsize) && incl_icv)
1262 datalen -= ctx->digestsize;
1263 if (datalen) {
1264 /* For aead, a single msg should consume the entire src sg */
1265 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1266 rctx->src_nents, datalen);
1267 if (written < datalen) {
1268 pr_err("%s(): failed to copy src sg to mbox msg",
1269 __func__);
1270 return -EFAULT;
1271 }
1272 }
1273
1274 if (pad_len) {
1275 memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1276 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1277 }
1278
1279 if (incl_icv)
1280 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1281
1282 stat_len = spu->spu_tx_status_len();
1283 if (stat_len) {
1284 memset(rctx->msg_buf.tx_stat, 0, stat_len);
1285 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1286 }
1287 return 0;
1288}
1289
1290/**
1291 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1292 * current AEAD request.
1293 * @rctx: Crypto request context
1294 *
1295 * Unlike other operation types, we assume the length of the request fits in
1296 * a single SPU request message. aead_enqueue() makes sure this is true.
1297 * Comments for other op types regarding threads applies here as well.
1298 *
1299 * Unlike incremental hash ops, where the spu returns the entire hash for
1300 * truncated algs like sha-224, the SPU returns just the truncated hash in
1301 * response to aead requests. So digestsize is always ctx->digestsize here.
1302 *
1303 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1304 * returned asynchronously
1305 * Any other value indicates an error
1306 */
1307static int handle_aead_req(struct iproc_reqctx_s *rctx)
1308{
1309 struct spu_hw *spu = &iproc_priv.spu;
1310 struct crypto_async_request *areq = rctx->parent;
1311 struct aead_request *req = container_of(areq,
1312 struct aead_request, base);
1313 struct iproc_ctx_s *ctx = rctx->ctx;
1314 int err;
1315 unsigned int chunksize;
1316 unsigned int resp_len;
1317 u32 spu_hdr_len;
1318 u32 db_size;
1319 u32 stat_pad_len;
1320 u32 pad_len;
1321 struct brcm_message *mssg; /* mailbox message */
1322 struct spu_request_opts req_opts;
1323 struct spu_cipher_parms cipher_parms;
1324 struct spu_hash_parms hash_parms;
1325 struct spu_aead_parms aead_parms;
1326 int assoc_nents = 0;
1327 bool incl_icv = false;
1328 unsigned int digestsize = ctx->digestsize;
9d12ba86
RR
1329
1330 /* number of entries in src and dst sg. Always includes SPU msg header.
1331 */
1332 u8 rx_frag_num = 2; /* and STATUS */
1333 u8 tx_frag_num = 1;
1334
1335 /* doing the whole thing at once */
1336 chunksize = rctx->total_todo;
1337
1338 flow_log("%s: chunksize %u\n", __func__, chunksize);
1339
1340 memset(&req_opts, 0, sizeof(req_opts));
1341 memset(&hash_parms, 0, sizeof(hash_parms));
1342 memset(&aead_parms, 0, sizeof(aead_parms));
1343
1344 req_opts.is_inbound = !(rctx->is_encrypt);
1345 req_opts.auth_first = ctx->auth_first;
1346 req_opts.is_aead = true;
1347 req_opts.is_esp = ctx->is_esp;
1348
1349 cipher_parms.alg = ctx->cipher.alg;
1350 cipher_parms.mode = ctx->cipher.mode;
1351 cipher_parms.type = ctx->cipher_type;
1352 cipher_parms.key_buf = ctx->enckey;
1353 cipher_parms.key_len = ctx->enckeylen;
1354 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1355 cipher_parms.iv_len = rctx->iv_ctr_len;
1356
1357 hash_parms.alg = ctx->auth.alg;
1358 hash_parms.mode = ctx->auth.mode;
1359 hash_parms.type = HASH_TYPE_NONE;
1360 hash_parms.key_buf = (u8 *)ctx->authkey;
1361 hash_parms.key_len = ctx->authkeylen;
1362 hash_parms.digestsize = digestsize;
1363
1364 if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1365 (ctx->authkeylen < SHA224_DIGEST_SIZE))
1366 hash_parms.key_len = SHA224_DIGEST_SIZE;
1367
1368 aead_parms.assoc_size = req->assoclen;
1369 if (ctx->is_esp && !ctx->is_rfc4543) {
1370 /*
1371 * 8-byte IV is included assoc data in request. SPU2
1372 * expects AAD to include just SPI and seqno. So
1373 * subtract off the IV len.
1374 */
a59851d2 1375 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
9d12ba86
RR
1376
1377 if (rctx->is_encrypt) {
1378 aead_parms.return_iv = true;
a59851d2 1379 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
9d12ba86
RR
1380 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1381 }
1382 } else {
1383 aead_parms.ret_iv_len = 0;
1384 }
1385
1386 /*
1387 * Count number of sg entries from the crypto API request that are to
1388 * be included in this mailbox message. For dst sg, don't count space
1389 * for digest. Digest gets caught in a separate buffer and copied back
1390 * to dst sg when processing response.
1391 */
1392 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1393 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1394 if (aead_parms.assoc_size)
1395 assoc_nents = spu_sg_count(rctx->assoc, 0,
1396 aead_parms.assoc_size);
1397
1398 mssg = &rctx->mb_mssg;
1399
1400 rctx->total_sent = chunksize;
1401 rctx->src_sent = chunksize;
1402 if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1403 aead_parms.assoc_size,
1404 aead_parms.ret_iv_len,
1405 rctx->is_encrypt))
1406 rx_frag_num++;
1407
1408 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1409 rctx->iv_ctr_len);
1410
1411 if (ctx->auth.alg == HASH_ALG_AES)
a2e5d408 1412 hash_parms.type = (enum hash_type)ctx->cipher_type;
9d12ba86
RR
1413
1414 /* General case AAD padding (CCM and RFC4543 special cases below) */
1415 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1416 aead_parms.assoc_size);
1417
1418 /* General case data padding (CCM decrypt special case below) */
1419 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1420 chunksize);
1421
1422 if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1423 /*
1424 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1425 * 128-bit aligned
1426 */
1427 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1428 ctx->cipher.mode,
1429 aead_parms.assoc_size + 2);
1430
1431 /*
1432 * And when decrypting CCM, need to pad without including
1433 * size of ICV which is tacked on to end of chunk
1434 */
1435 if (!rctx->is_encrypt)
1436 aead_parms.data_pad_len =
1437 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1438 chunksize - digestsize);
1439
1440 /* CCM also requires software to rewrite portions of IV: */
1441 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1442 chunksize, rctx->is_encrypt,
1443 ctx->is_esp);
1444 }
1445
1446 if (ctx->is_rfc4543) {
1447 /*
1448 * RFC4543: data is included in AAD, so don't pad after AAD
1449 * and pad data based on both AAD + data size
1450 */
1451 aead_parms.aad_pad_len = 0;
1452 if (!rctx->is_encrypt)
1453 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1454 ctx->cipher.mode,
1455 aead_parms.assoc_size + chunksize -
1456 digestsize);
1457 else
1458 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1459 ctx->cipher.mode,
1460 aead_parms.assoc_size + chunksize);
1461
1462 req_opts.is_rfc4543 = true;
1463 }
1464
1465 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1466 incl_icv = true;
1467 tx_frag_num++;
1468 /* Copy ICV from end of src scatterlist to digest buf */
1469 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1470 req->assoclen + rctx->total_sent -
1471 digestsize);
1472 }
1473
1474 atomic64_add(chunksize, &iproc_priv.bytes_out);
1475
1476 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1477
1478 /* Prepend SPU header with type 3 BCM header */
1479 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1480
1481 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1482 BCM_HDR_LEN, &req_opts,
1483 &cipher_parms, &hash_parms,
1484 &aead_parms, chunksize);
1485
1486 /* Determine total length of padding. Put all padding in one buffer. */
1487 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1488 chunksize, aead_parms.aad_pad_len,
1489 aead_parms.data_pad_len, 0);
1490
1491 stat_pad_len = spu->spu_wordalign_padlen(db_size);
1492
1493 if (stat_pad_len)
1494 rx_frag_num++;
1495 pad_len = aead_parms.data_pad_len + stat_pad_len;
1496 if (pad_len) {
1497 tx_frag_num++;
1498 spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1499 aead_parms.data_pad_len, 0,
1500 ctx->auth.alg, ctx->auth.mode,
1501 rctx->total_sent, stat_pad_len);
1502 }
1503
1504 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1505 spu_hdr_len);
1506 dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1507 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1508 packet_log("BD:\n");
1509 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1510 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1511
1512 /*
1513 * Build mailbox message containing SPU request msg and rx buffers
1514 * to catch response message
1515 */
1516 memset(mssg, 0, sizeof(*mssg));
1517 mssg->type = BRCM_MESSAGE_SPU;
1518 mssg->ctx = rctx; /* Will be returned in response */
1519
1520 /* Create rx scatterlist to catch result */
1521 rx_frag_num += rctx->dst_nents;
1522 resp_len = chunksize;
1523
1524 /*
1525 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1526 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1527 * sends entire digest back.
1528 */
1529 rx_frag_num++;
1530
1531 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1532 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1533 /*
1534 * Input is ciphertxt plus ICV, but ICV not incl
1535 * in output.
1536 */
1537 resp_len -= ctx->digestsize;
1538 if (resp_len == 0)
1539 /* no rx frags to catch output data */
1540 rx_frag_num -= rctx->dst_nents;
1541 }
1542
1543 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1544 aead_parms.assoc_size,
1545 aead_parms.ret_iv_len, resp_len, digestsize,
1546 stat_pad_len);
1547 if (err)
1548 return err;
1549
1550 /* Create tx scatterlist containing SPU request message */
1551 tx_frag_num += rctx->src_nents;
1552 tx_frag_num += assoc_nents;
1553 if (aead_parms.aad_pad_len)
1554 tx_frag_num++;
1555 if (aead_parms.iv_len)
1556 tx_frag_num++;
1557 if (spu->spu_tx_status_len())
1558 tx_frag_num++;
1559 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1560 rctx->assoc, aead_parms.assoc_size,
1561 assoc_nents, aead_parms.iv_len, chunksize,
1562 aead_parms.aad_pad_len, pad_len, incl_icv);
1563 if (err)
1564 return err;
1565
f0e2ce58 1566 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1567 if (unlikely(err < 0))
9d12ba86 1568 return err;
9d12ba86
RR
1569
1570 return -EINPROGRESS;
1571}
1572
1573/**
1574 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1575 * @rctx: Crypto request context
1576 */
1577static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1578{
1579 struct spu_hw *spu = &iproc_priv.spu;
1580 struct crypto_async_request *areq = rctx->parent;
1581 struct aead_request *req = container_of(areq,
1582 struct aead_request, base);
1583 struct iproc_ctx_s *ctx = rctx->ctx;
1584 u32 payload_len;
1585 unsigned int icv_offset;
1586 u32 result_len;
1587
1588 /* See how much data was returned */
1589 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1590 flow_log("payload_len %u\n", payload_len);
1591
1592 /* only count payload */
1593 atomic64_add(payload_len, &iproc_priv.bytes_in);
1594
1595 if (req->assoclen)
1596 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad,
1597 req->assoclen);
1598
1599 /*
1600 * Copy the ICV back to the destination
1601 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1602 * API doesn't expect ICV in dst buffer.
1603 */
1604 result_len = req->cryptlen;
1605 if (rctx->is_encrypt) {
1606 icv_offset = req->assoclen + rctx->total_sent;
1607 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1608 flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1609 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1610 ctx->digestsize, icv_offset);
1611 result_len += ctx->digestsize;
1612 }
1613
1614 packet_log("response data: ");
1615 dump_sg(req->dst, req->assoclen, result_len);
1616
1617 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1618 if (ctx->cipher.alg == CIPHER_ALG_AES) {
1619 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1620 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1621 else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1622 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1623 else
1624 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1625 } else {
1626 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1627 }
1628}
1629
1630/**
1631 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1632 * @rctx: request context
1633 *
1634 * Mailbox scatterlists are allocated for each chunk. So free them after
1635 * processing each chunk.
1636 */
1637static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1638{
1639 /* mailbox message used to tx request */
1640 struct brcm_message *mssg = &rctx->mb_mssg;
1641
1642 kfree(mssg->spu.src);
1643 kfree(mssg->spu.dst);
1644 memset(mssg, 0, sizeof(struct brcm_message));
1645}
1646
1647/**
1648 * finish_req() - Used to invoke the complete callback from the requester when
1649 * a request has been handled asynchronously.
1650 * @rctx: Request context
1651 * @err: Indicates whether the request was successful or not
1652 *
1653 * Ensures that cleanup has been done for request
1654 */
1655static void finish_req(struct iproc_reqctx_s *rctx, int err)
1656{
1657 struct crypto_async_request *areq = rctx->parent;
1658
1659 flow_log("%s() err:%d\n\n", __func__, err);
1660
1661 /* No harm done if already called */
1662 spu_chunk_cleanup(rctx);
1663
1664 if (areq)
1665 areq->complete(areq, err);
1666}
1667
1668/**
1669 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1670 * @cl: mailbox client structure for SPU driver
1671 * @msg: mailbox message containing SPU response
1672 */
1673static void spu_rx_callback(struct mbox_client *cl, void *msg)
1674{
1675 struct spu_hw *spu = &iproc_priv.spu;
1676 struct brcm_message *mssg = msg;
1677 struct iproc_reqctx_s *rctx;
9d12ba86
RR
1678 int err = 0;
1679
1680 rctx = mssg->ctx;
1681 if (unlikely(!rctx)) {
1682 /* This is fatal */
1683 pr_err("%s(): no request context", __func__);
1684 err = -EFAULT;
1685 goto cb_finish;
1686 }
9d12ba86
RR
1687
1688 /* process the SPU status */
1689 err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1690 if (err != 0) {
1691 if (err == SPU_INVALID_ICV)
1692 atomic_inc(&iproc_priv.bad_icv);
1693 err = -EBADMSG;
1694 goto cb_finish;
1695 }
1696
1697 /* Process the SPU response message */
1698 switch (rctx->ctx->alg->type) {
1699 case CRYPTO_ALG_TYPE_ABLKCIPHER:
1700 handle_ablkcipher_resp(rctx);
1701 break;
1702 case CRYPTO_ALG_TYPE_AHASH:
1703 handle_ahash_resp(rctx);
1704 break;
1705 case CRYPTO_ALG_TYPE_AEAD:
1706 handle_aead_resp(rctx);
1707 break;
1708 default:
1709 err = -EINVAL;
1710 goto cb_finish;
1711 }
1712
1713 /*
1714 * If this response does not complete the request, then send the next
1715 * request chunk.
1716 */
1717 if (rctx->total_sent < rctx->total_todo) {
1718 /* Deallocate anything specific to previous chunk */
1719 spu_chunk_cleanup(rctx);
1720
1721 switch (rctx->ctx->alg->type) {
1722 case CRYPTO_ALG_TYPE_ABLKCIPHER:
1723 err = handle_ablkcipher_req(rctx);
1724 break;
1725 case CRYPTO_ALG_TYPE_AHASH:
1726 err = handle_ahash_req(rctx);
1727 if (err == -EAGAIN)
1728 /*
1729 * we saved data in hash carry, but tell crypto
1730 * API we successfully completed request.
1731 */
1732 err = 0;
1733 break;
1734 case CRYPTO_ALG_TYPE_AEAD:
1735 err = handle_aead_req(rctx);
1736 break;
1737 default:
1738 err = -EINVAL;
1739 }
1740
1741 if (err == -EINPROGRESS)
1742 /* Successfully submitted request for next chunk */
1743 return;
1744 }
1745
1746cb_finish:
1747 finish_req(rctx, err);
1748}
1749
1750/* ==================== Kernel Cryptographic API ==================== */
1751
1752/**
1753 * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request.
1754 * @req: Crypto API request
1755 * @encrypt: true if encrypting; false if decrypting
1756 *
1757 * Return: -EINPROGRESS if request accepted and result will be returned
1758 * asynchronously
1759 * < 0 if an error
1760 */
1761static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt)
1762{
1763 struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req);
1764 struct iproc_ctx_s *ctx =
1765 crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1766 int err;
1767
1768 flow_log("%s() enc:%u\n", __func__, encrypt);
1769
1770 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1771 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1772 rctx->parent = &req->base;
1773 rctx->is_encrypt = encrypt;
1774 rctx->bd_suppress = false;
1775 rctx->total_todo = req->nbytes;
1776 rctx->src_sent = 0;
1777 rctx->total_sent = 0;
1778 rctx->total_received = 0;
1779 rctx->ctx = ctx;
1780
1781 /* Initialize current position in src and dst scatterlists */
1782 rctx->src_sg = req->src;
1783 rctx->src_nents = 0;
1784 rctx->src_skip = 0;
1785 rctx->dst_sg = req->dst;
1786 rctx->dst_nents = 0;
1787 rctx->dst_skip = 0;
1788
1789 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1790 ctx->cipher.mode == CIPHER_MODE_CTR ||
1791 ctx->cipher.mode == CIPHER_MODE_OFB ||
1792 ctx->cipher.mode == CIPHER_MODE_XTS ||
1793 ctx->cipher.mode == CIPHER_MODE_GCM ||
1794 ctx->cipher.mode == CIPHER_MODE_CCM) {
1795 rctx->iv_ctr_len =
1796 crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
1797 memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len);
1798 } else {
1799 rctx->iv_ctr_len = 0;
1800 }
1801
1802 /* Choose a SPU to process this request */
1803 rctx->chan_idx = select_channel();
1804 err = handle_ablkcipher_req(rctx);
1805 if (err != -EINPROGRESS)
1806 /* synchronous result */
1807 spu_chunk_cleanup(rctx);
1808
1809 return err;
1810}
1811
1812static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1813 unsigned int keylen)
1814{
1815 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1816 u32 tmp[DES_EXPKEY_WORDS];
1817
1818 if (keylen == DES_KEY_SIZE) {
1819 if (des_ekey(tmp, key) == 0) {
1820 if (crypto_ablkcipher_get_flags(cipher) &
231baecd 1821 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
9d12ba86
RR
1822 u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
1823
1824 crypto_ablkcipher_set_flags(cipher, flags);
1825 return -EINVAL;
1826 }
1827 }
1828
1829 ctx->cipher_type = CIPHER_TYPE_DES;
1830 } else {
1831 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1832 return -EINVAL;
1833 }
1834 return 0;
1835}
1836
1837static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1838 unsigned int keylen)
1839{
1840 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1841
1842 if (keylen == (DES_KEY_SIZE * 3)) {
1843 const u32 *K = (const u32 *)key;
1844 u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
1845
1846 if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1847 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
1848 crypto_ablkcipher_set_flags(cipher, flags);
1849 return -EINVAL;
1850 }
1851
1852 ctx->cipher_type = CIPHER_TYPE_3DES;
1853 } else {
1854 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1855 return -EINVAL;
1856 }
1857 return 0;
1858}
1859
1860static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1861 unsigned int keylen)
1862{
1863 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1864
1865 if (ctx->cipher.mode == CIPHER_MODE_XTS)
1866 /* XTS includes two keys of equal length */
1867 keylen = keylen / 2;
1868
1869 switch (keylen) {
1870 case AES_KEYSIZE_128:
1871 ctx->cipher_type = CIPHER_TYPE_AES128;
1872 break;
1873 case AES_KEYSIZE_192:
1874 ctx->cipher_type = CIPHER_TYPE_AES192;
1875 break;
1876 case AES_KEYSIZE_256:
1877 ctx->cipher_type = CIPHER_TYPE_AES256;
1878 break;
1879 default:
1880 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1881 return -EINVAL;
1882 }
1883 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1884 ((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1885 return 0;
1886}
1887
1888static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1889 unsigned int keylen)
1890{
1891 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1892 int i;
1893
1894 ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1895
1896 ctx->enckey[0] = 0x00; /* 0x00 */
1897 ctx->enckey[1] = 0x00; /* i */
1898 ctx->enckey[2] = 0x00; /* 0x00 */
1899 ctx->enckey[3] = 0x00; /* j */
1900 for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1901 ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1902
1903 ctx->cipher_type = CIPHER_TYPE_INIT;
1904
1905 return 0;
1906}
1907
1908static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1909 unsigned int keylen)
1910{
1911 struct spu_hw *spu = &iproc_priv.spu;
1912 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1913 struct spu_cipher_parms cipher_parms;
1914 u32 alloc_len = 0;
1915 int err;
1916
1917 flow_log("ablkcipher_setkey() keylen: %d\n", keylen);
1918 flow_dump(" key: ", key, keylen);
1919
1920 switch (ctx->cipher.alg) {
1921 case CIPHER_ALG_DES:
1922 err = des_setkey(cipher, key, keylen);
1923 break;
1924 case CIPHER_ALG_3DES:
1925 err = threedes_setkey(cipher, key, keylen);
1926 break;
1927 case CIPHER_ALG_AES:
1928 err = aes_setkey(cipher, key, keylen);
1929 break;
1930 case CIPHER_ALG_RC4:
1931 err = rc4_setkey(cipher, key, keylen);
1932 break;
1933 default:
1934 pr_err("%s() Error: unknown cipher alg\n", __func__);
1935 err = -EINVAL;
1936 }
1937 if (err)
1938 return err;
1939
1940 /* RC4 already populated ctx->enkey */
1941 if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1942 memcpy(ctx->enckey, key, keylen);
1943 ctx->enckeylen = keylen;
1944 }
1945 /* SPU needs XTS keys in the reverse order the crypto API presents */
1946 if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1947 (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1948 unsigned int xts_keylen = keylen / 2;
1949
1950 memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1951 memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1952 }
1953
1954 if (spu->spu_type == SPU_TYPE_SPUM)
1955 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1956 else if (spu->spu_type == SPU_TYPE_SPU2)
1957 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1958 memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1959 cipher_parms.iv_buf = NULL;
1960 cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher);
1961 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1962
1963 cipher_parms.alg = ctx->cipher.alg;
1964 cipher_parms.mode = ctx->cipher.mode;
1965 cipher_parms.type = ctx->cipher_type;
1966 cipher_parms.key_buf = ctx->enckey;
1967 cipher_parms.key_len = ctx->enckeylen;
1968
1969 /* Prepend SPU request message with BCM header */
1970 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1971 ctx->spu_req_hdr_len =
1972 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1973 &cipher_parms);
1974
1975 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1976 ctx->enckeylen,
1977 false);
1978
1979 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1980
1981 return 0;
1982}
1983
1984static int ablkcipher_encrypt(struct ablkcipher_request *req)
1985{
1986 flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes);
1987
1988 return ablkcipher_enqueue(req, true);
1989}
1990
1991static int ablkcipher_decrypt(struct ablkcipher_request *req)
1992{
1993 flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes);
1994 return ablkcipher_enqueue(req, false);
1995}
1996
1997static int ahash_enqueue(struct ahash_request *req)
1998{
1999 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2000 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2001 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2002 int err = 0;
2003 const char *alg_name;
2004
2005 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
2006
2007 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2008 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2009 rctx->parent = &req->base;
2010 rctx->ctx = ctx;
2011 rctx->bd_suppress = true;
2012 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2013
2014 /* Initialize position in src scatterlist */
2015 rctx->src_sg = req->src;
2016 rctx->src_skip = 0;
2017 rctx->src_nents = 0;
2018 rctx->dst_sg = NULL;
2019 rctx->dst_skip = 0;
2020 rctx->dst_nents = 0;
2021
2022 /* SPU2 hardware does not compute hash of zero length data */
2023 if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
2024 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
2025 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2026 flow_log("Doing %sfinal %s zero-len hash request in software\n",
2027 rctx->is_final ? "" : "non-", alg_name);
2028 err = do_shash((unsigned char *)alg_name, req->result,
2029 NULL, 0, NULL, 0, ctx->authkey,
2030 ctx->authkeylen);
2031 if (err < 0)
2032 flow_log("Hash request failed with error %d\n", err);
2033 return err;
2034 }
2035 /* Choose a SPU to process this request */
2036 rctx->chan_idx = select_channel();
2037
2038 err = handle_ahash_req(rctx);
2039 if (err != -EINPROGRESS)
2040 /* synchronous result */
2041 spu_chunk_cleanup(rctx);
2042
2043 if (err == -EAGAIN)
2044 /*
2045 * we saved data in hash carry, but tell crypto API
2046 * we successfully completed request.
2047 */
2048 err = 0;
2049
2050 return err;
2051}
2052
2053static int __ahash_init(struct ahash_request *req)
2054{
2055 struct spu_hw *spu = &iproc_priv.spu;
2056 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2057 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2058 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2059
2060 flow_log("%s()\n", __func__);
2061
2062 /* Initialize the context */
2063 rctx->hash_carry_len = 0;
2064 rctx->is_final = 0;
2065
2066 rctx->total_todo = 0;
2067 rctx->src_sent = 0;
2068 rctx->total_sent = 0;
2069 rctx->total_received = 0;
2070
2071 ctx->digestsize = crypto_ahash_digestsize(tfm);
2072 /* If we add a hash whose digest is larger, catch it here. */
2073 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2074
2075 rctx->is_sw_hmac = false;
2076
2077 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2078 true);
2079
2080 return 0;
2081}
2082
2083/**
2084 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2085 * @ctx: Crypto session context
2086 *
2087 * SPU-2 does not support incremental hashing (we'll have to revisit and
2088 * condition based on chip revision or device tree entry if future versions do
2089 * support incremental hash)
2090 *
2091 * SPU-M also doesn't support incremental hashing of AES-XCBC
2092 *
2093 * Return: true if incremental hashing is not supported
2094 * false otherwise
2095 */
2096bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2097{
2098 struct spu_hw *spu = &iproc_priv.spu;
2099
2100 if (spu->spu_type == SPU_TYPE_SPU2)
2101 return true;
2102
2103 if ((ctx->auth.alg == HASH_ALG_AES) &&
2104 (ctx->auth.mode == HASH_MODE_XCBC))
2105 return true;
2106
2107 /* Otherwise, incremental hashing is supported */
2108 return false;
2109}
2110
2111static int ahash_init(struct ahash_request *req)
2112{
2113 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2114 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2115 const char *alg_name;
2116 struct crypto_shash *hash;
2117 int ret;
2118 gfp_t gfp;
2119
2120 if (spu_no_incr_hash(ctx)) {
2121 /*
2122 * If we get an incremental hashing request and it's not
2123 * supported by the hardware, we need to handle it in software
2124 * by calling synchronous hash functions.
2125 */
2126 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2127 hash = crypto_alloc_shash(alg_name, 0, 0);
2128 if (IS_ERR(hash)) {
2129 ret = PTR_ERR(hash);
2130 goto err;
2131 }
2132
2133 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2134 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2135 ctx->shash = kmalloc(sizeof(*ctx->shash) +
2136 crypto_shash_descsize(hash), gfp);
2137 if (!ctx->shash) {
2138 ret = -ENOMEM;
2139 goto err_hash;
2140 }
2141 ctx->shash->tfm = hash;
2142 ctx->shash->flags = 0;
2143
2144 /* Set the key using data we already have from setkey */
2145 if (ctx->authkeylen > 0) {
2146 ret = crypto_shash_setkey(hash, ctx->authkey,
2147 ctx->authkeylen);
2148 if (ret)
2149 goto err_shash;
2150 }
2151
2152 /* Initialize hash w/ this key and other params */
2153 ret = crypto_shash_init(ctx->shash);
2154 if (ret)
2155 goto err_shash;
2156 } else {
2157 /* Otherwise call the internal function which uses SPU hw */
2158 ret = __ahash_init(req);
2159 }
2160
2161 return ret;
2162
2163err_shash:
2164 kfree(ctx->shash);
2165err_hash:
2166 crypto_free_shash(hash);
2167err:
2168 return ret;
2169}
2170
2171static int __ahash_update(struct ahash_request *req)
2172{
2173 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2174
2175 flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2176
2177 if (!req->nbytes)
2178 return 0;
2179 rctx->total_todo += req->nbytes;
2180 rctx->src_sent = 0;
2181
2182 return ahash_enqueue(req);
2183}
2184
2185static int ahash_update(struct ahash_request *req)
2186{
2187 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2188 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2189 u8 *tmpbuf;
2190 int ret;
2191 int nents;
2192 gfp_t gfp;
2193
2194 if (spu_no_incr_hash(ctx)) {
2195 /*
2196 * If we get an incremental hashing request and it's not
2197 * supported by the hardware, we need to handle it in software
2198 * by calling synchronous hash functions.
2199 */
2200 if (req->src)
2201 nents = sg_nents(req->src);
2202 else
2203 return -EINVAL;
2204
2205 /* Copy data from req scatterlist to tmp buffer */
2206 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2207 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2208 tmpbuf = kmalloc(req->nbytes, gfp);
2209 if (!tmpbuf)
2210 return -ENOMEM;
2211
2212 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2213 req->nbytes) {
2214 kfree(tmpbuf);
2215 return -EINVAL;
2216 }
2217
2218 /* Call synchronous update */
2219 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2220 kfree(tmpbuf);
2221 } else {
2222 /* Otherwise call the internal function which uses SPU hw */
2223 ret = __ahash_update(req);
2224 }
2225
2226 return ret;
2227}
2228
2229static int __ahash_final(struct ahash_request *req)
2230{
2231 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2232
2233 flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2234
2235 rctx->is_final = 1;
2236
2237 return ahash_enqueue(req);
2238}
2239
2240static int ahash_final(struct ahash_request *req)
2241{
2242 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2243 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2244 int ret;
2245
2246 if (spu_no_incr_hash(ctx)) {
2247 /*
2248 * If we get an incremental hashing request and it's not
2249 * supported by the hardware, we need to handle it in software
2250 * by calling synchronous hash functions.
2251 */
2252 ret = crypto_shash_final(ctx->shash, req->result);
2253
2254 /* Done with hash, can deallocate it now */
2255 crypto_free_shash(ctx->shash->tfm);
2256 kfree(ctx->shash);
2257
2258 } else {
2259 /* Otherwise call the internal function which uses SPU hw */
2260 ret = __ahash_final(req);
2261 }
2262
2263 return ret;
2264}
2265
2266static int __ahash_finup(struct ahash_request *req)
2267{
2268 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2269
2270 flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2271
2272 rctx->total_todo += req->nbytes;
2273 rctx->src_sent = 0;
2274 rctx->is_final = 1;
2275
2276 return ahash_enqueue(req);
2277}
2278
2279static int ahash_finup(struct ahash_request *req)
2280{
2281 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2282 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2283 u8 *tmpbuf;
2284 int ret;
2285 int nents;
2286 gfp_t gfp;
2287
2288 if (spu_no_incr_hash(ctx)) {
2289 /*
2290 * If we get an incremental hashing request and it's not
2291 * supported by the hardware, we need to handle it in software
2292 * by calling synchronous hash functions.
2293 */
2294 if (req->src) {
2295 nents = sg_nents(req->src);
2296 } else {
2297 ret = -EINVAL;
2298 goto ahash_finup_exit;
2299 }
2300
2301 /* Copy data from req scatterlist to tmp buffer */
2302 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2303 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2304 tmpbuf = kmalloc(req->nbytes, gfp);
2305 if (!tmpbuf) {
2306 ret = -ENOMEM;
2307 goto ahash_finup_exit;
2308 }
2309
2310 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2311 req->nbytes) {
2312 ret = -EINVAL;
2313 goto ahash_finup_free;
2314 }
2315
2316 /* Call synchronous update */
2317 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2318 req->result);
9d12ba86
RR
2319 } else {
2320 /* Otherwise call the internal function which uses SPU hw */
2321 return __ahash_finup(req);
2322 }
2323ahash_finup_free:
2324 kfree(tmpbuf);
2325
2326ahash_finup_exit:
2327 /* Done with hash, can deallocate it now */
2328 crypto_free_shash(ctx->shash->tfm);
2329 kfree(ctx->shash);
2330 return ret;
2331}
2332
2333static int ahash_digest(struct ahash_request *req)
2334{
2335 int err = 0;
2336
2337 flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2338
2339 /* whole thing at once */
2340 err = __ahash_init(req);
2341 if (!err)
2342 err = __ahash_finup(req);
2343
2344 return err;
2345}
2346
2347static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2348 unsigned int keylen)
2349{
2350 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2351
2352 flow_log("%s() ahash:%p key:%p keylen:%u\n",
2353 __func__, ahash, key, keylen);
2354 flow_dump(" key: ", key, keylen);
2355
2356 if (ctx->auth.alg == HASH_ALG_AES) {
2357 switch (keylen) {
2358 case AES_KEYSIZE_128:
2359 ctx->cipher_type = CIPHER_TYPE_AES128;
2360 break;
2361 case AES_KEYSIZE_192:
2362 ctx->cipher_type = CIPHER_TYPE_AES192;
2363 break;
2364 case AES_KEYSIZE_256:
2365 ctx->cipher_type = CIPHER_TYPE_AES256;
2366 break;
2367 default:
2368 pr_err("%s() Error: Invalid key length\n", __func__);
2369 return -EINVAL;
2370 }
2371 } else {
2372 pr_err("%s() Error: unknown hash alg\n", __func__);
2373 return -EINVAL;
2374 }
2375 memcpy(ctx->authkey, key, keylen);
2376 ctx->authkeylen = keylen;
2377
2378 return 0;
2379}
2380
2381static int ahash_export(struct ahash_request *req, void *out)
2382{
2383 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2384 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2385
2386 spu_exp->total_todo = rctx->total_todo;
2387 spu_exp->total_sent = rctx->total_sent;
2388 spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2389 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2390 spu_exp->hash_carry_len = rctx->hash_carry_len;
2391 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2392
2393 return 0;
2394}
2395
2396static int ahash_import(struct ahash_request *req, const void *in)
2397{
2398 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2399 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2400
2401 rctx->total_todo = spu_exp->total_todo;
2402 rctx->total_sent = spu_exp->total_sent;
2403 rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2404 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2405 rctx->hash_carry_len = spu_exp->hash_carry_len;
2406 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2407
2408 return 0;
2409}
2410
2411static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2412 unsigned int keylen)
2413{
2414 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2415 unsigned int blocksize =
2416 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2417 unsigned int digestsize = crypto_ahash_digestsize(ahash);
2418 unsigned int index;
2419 int rc;
2420
2421 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2422 __func__, ahash, key, keylen, blocksize, digestsize);
2423 flow_dump(" key: ", key, keylen);
2424
2425 if (keylen > blocksize) {
2426 switch (ctx->auth.alg) {
2427 case HASH_ALG_MD5:
2428 rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2429 0, NULL, 0);
2430 break;
2431 case HASH_ALG_SHA1:
2432 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2433 0, NULL, 0);
2434 break;
2435 case HASH_ALG_SHA224:
2436 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2437 0, NULL, 0);
2438 break;
2439 case HASH_ALG_SHA256:
2440 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2441 0, NULL, 0);
2442 break;
2443 case HASH_ALG_SHA384:
2444 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2445 0, NULL, 0);
2446 break;
2447 case HASH_ALG_SHA512:
2448 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2449 0, NULL, 0);
2450 break;
2451 case HASH_ALG_SHA3_224:
2452 rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2453 NULL, 0, NULL, 0);
2454 break;
2455 case HASH_ALG_SHA3_256:
2456 rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2457 NULL, 0, NULL, 0);
2458 break;
2459 case HASH_ALG_SHA3_384:
2460 rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2461 NULL, 0, NULL, 0);
2462 break;
2463 case HASH_ALG_SHA3_512:
2464 rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2465 NULL, 0, NULL, 0);
2466 break;
2467 default:
2468 pr_err("%s() Error: unknown hash alg\n", __func__);
2469 return -EINVAL;
2470 }
2471 if (rc < 0) {
2472 pr_err("%s() Error %d computing shash for %s\n",
2473 __func__, rc, hash_alg_name[ctx->auth.alg]);
2474 return rc;
2475 }
2476 ctx->authkeylen = digestsize;
2477
2478 flow_log(" keylen > digestsize... hashed\n");
2479 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen);
2480 } else {
2481 memcpy(ctx->authkey, key, keylen);
2482 ctx->authkeylen = keylen;
2483 }
2484
2485 /*
2486 * Full HMAC operation in SPUM is not verified,
2487 * So keeping the generation of IPAD, OPAD and
2488 * outer hashing in software.
2489 */
2490 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2491 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2492 memset(ctx->ipad + ctx->authkeylen, 0,
2493 blocksize - ctx->authkeylen);
2494 ctx->authkeylen = 0;
2495 memcpy(ctx->opad, ctx->ipad, blocksize);
2496
2497 for (index = 0; index < blocksize; index++) {
1126d47d
CL
2498 ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2499 ctx->opad[index] ^= HMAC_OPAD_VALUE;
9d12ba86
RR
2500 }
2501
2502 flow_dump(" ipad: ", ctx->ipad, blocksize);
2503 flow_dump(" opad: ", ctx->opad, blocksize);
2504 }
2505 ctx->digestsize = digestsize;
2506 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2507
2508 return 0;
2509}
2510
2511static int ahash_hmac_init(struct ahash_request *req)
2512{
2513 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2514 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2515 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2516 unsigned int blocksize =
2517 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2518
2519 flow_log("ahash_hmac_init()\n");
2520
2521 /* init the context as a hash */
2522 ahash_init(req);
2523
2524 if (!spu_no_incr_hash(ctx)) {
2525 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2526 rctx->is_sw_hmac = true;
2527 ctx->auth.mode = HASH_MODE_HASH;
2528 /* start with a prepended ipad */
2529 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2530 rctx->hash_carry_len = blocksize;
2531 rctx->total_todo += blocksize;
2532 }
2533
2534 return 0;
2535}
2536
2537static int ahash_hmac_update(struct ahash_request *req)
2538{
2539 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2540
2541 if (!req->nbytes)
2542 return 0;
2543
2544 return ahash_update(req);
2545}
2546
2547static int ahash_hmac_final(struct ahash_request *req)
2548{
2549 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2550
2551 return ahash_final(req);
2552}
2553
2554static int ahash_hmac_finup(struct ahash_request *req)
2555{
2556 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2557
2558 return ahash_finup(req);
2559}
2560
2561static int ahash_hmac_digest(struct ahash_request *req)
2562{
2563 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2564 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2565 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2566 unsigned int blocksize =
2567 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2568
2569 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2570
2571 /* Perform initialization and then call finup */
2572 __ahash_init(req);
2573
2574 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2575 /*
2576 * SPU2 supports full HMAC implementation in the
2577 * hardware, need not to generate IPAD, OPAD and
2578 * outer hash in software.
2579 * Only for hash key len > hash block size, SPU2
2580 * expects to perform hashing on the key, shorten
2581 * it to digest size and feed it as hash key.
2582 */
2583 rctx->is_sw_hmac = false;
2584 ctx->auth.mode = HASH_MODE_HMAC;
2585 } else {
2586 rctx->is_sw_hmac = true;
2587 ctx->auth.mode = HASH_MODE_HASH;
2588 /* start with a prepended ipad */
2589 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2590 rctx->hash_carry_len = blocksize;
2591 rctx->total_todo += blocksize;
2592 }
2593
2594 return __ahash_finup(req);
2595}
2596
2597/* aead helpers */
2598
2599static int aead_need_fallback(struct aead_request *req)
2600{
2601 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2602 struct spu_hw *spu = &iproc_priv.spu;
2603 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2604 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2605 u32 payload_len;
2606
2607 /*
2608 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2609 * and AAD are both 0 bytes long. So use fallback in this case.
2610 */
2611 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2612 (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2613 (req->assoclen == 0)) {
2614 if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2615 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2616 flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2617 return 1;
2618 }
2619 }
2620
2621 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2622 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2623 (spu->spu_type == SPU_TYPE_SPUM) &&
2624 (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2625 (ctx->digestsize != 16)) {
b1a4b182 2626 flow_log("%s() AES CCM needs fallback for digest size %d\n",
9d12ba86
RR
2627 __func__, ctx->digestsize);
2628 return 1;
2629 }
2630
2631 /*
2632 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2633 * when AAD size is 0
2634 */
2635 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2636 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2637 (req->assoclen == 0)) {
2638 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2639 __func__);
2640 return 1;
2641 }
2642
2643 payload_len = req->cryptlen;
2644 if (spu->spu_type == SPU_TYPE_SPUM)
2645 payload_len += req->assoclen;
2646
2647 flow_log("%s() payload len: %u\n", __func__, payload_len);
2648
2649 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2650 return 0;
2651 else
2652 return payload_len > ctx->max_payload;
2653}
2654
2655static void aead_complete(struct crypto_async_request *areq, int err)
2656{
2657 struct aead_request *req =
2658 container_of(areq, struct aead_request, base);
2659 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2660 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2661
2662 flow_log("%s() err:%d\n", __func__, err);
2663
2664 areq->tfm = crypto_aead_tfm(aead);
2665
2666 areq->complete = rctx->old_complete;
2667 areq->data = rctx->old_data;
2668
2669 areq->complete(areq, err);
2670}
2671
2672static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2673{
2674 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2675 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2676 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2677 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2678 int err;
2679 u32 req_flags;
2680
2681 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2682
2683 if (ctx->fallback_cipher) {
2684 /* Store the cipher tfm and then use the fallback tfm */
2685 rctx->old_tfm = tfm;
2686 aead_request_set_tfm(req, ctx->fallback_cipher);
2687 /*
2688 * Save the callback and chain ourselves in, so we can restore
2689 * the tfm
2690 */
2691 rctx->old_complete = req->base.complete;
2692 rctx->old_data = req->base.data;
2693 req_flags = aead_request_flags(req);
2694 aead_request_set_callback(req, req_flags, aead_complete, req);
2695 err = is_encrypt ? crypto_aead_encrypt(req) :
2696 crypto_aead_decrypt(req);
2697
2698 if (err == 0) {
2699 /*
2700 * fallback was synchronous (did not return
2701 * -EINPROGRESS). So restore request state here.
2702 */
2703 aead_request_set_callback(req, req_flags,
2704 rctx->old_complete, req);
2705 req->base.data = rctx->old_data;
2706 aead_request_set_tfm(req, aead);
2707 flow_log("%s() fallback completed successfully\n\n",
2708 __func__);
2709 }
2710 } else {
2711 err = -EINVAL;
2712 }
2713
2714 return err;
2715}
2716
2717static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2718{
2719 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2720 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2721 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2722 int err;
2723
2724 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2725
2726 if (req->assoclen > MAX_ASSOC_SIZE) {
2727 pr_err
2728 ("%s() Error: associated data too long. (%u > %u bytes)\n",
2729 __func__, req->assoclen, MAX_ASSOC_SIZE);
2730 return -EINVAL;
2731 }
2732
2733 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2734 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2735 rctx->parent = &req->base;
2736 rctx->is_encrypt = is_encrypt;
2737 rctx->bd_suppress = false;
2738 rctx->total_todo = req->cryptlen;
2739 rctx->src_sent = 0;
2740 rctx->total_sent = 0;
2741 rctx->total_received = 0;
2742 rctx->is_sw_hmac = false;
2743 rctx->ctx = ctx;
2744 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2745
2746 /* assoc data is at start of src sg */
2747 rctx->assoc = req->src;
2748
2749 /*
2750 * Init current position in src scatterlist to be after assoc data.
2751 * src_skip set to buffer offset where data begins. (Assoc data could
2752 * end in the middle of a buffer.)
2753 */
2754 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2755 &rctx->src_skip) < 0) {
2756 pr_err("%s() Error: Unable to find start of src data\n",
2757 __func__);
2758 return -EINVAL;
2759 }
2760
2761 rctx->src_nents = 0;
2762 rctx->dst_nents = 0;
2763 if (req->dst == req->src) {
2764 rctx->dst_sg = rctx->src_sg;
2765 rctx->dst_skip = rctx->src_skip;
2766 } else {
2767 /*
2768 * Expect req->dst to have room for assoc data followed by
2769 * output data and ICV, if encrypt. So initialize dst_sg
2770 * to point beyond assoc len offset.
2771 */
2772 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2773 &rctx->dst_skip) < 0) {
2774 pr_err("%s() Error: Unable to find start of dst data\n",
2775 __func__);
2776 return -EINVAL;
2777 }
2778 }
2779
2780 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2781 ctx->cipher.mode == CIPHER_MODE_CTR ||
2782 ctx->cipher.mode == CIPHER_MODE_OFB ||
2783 ctx->cipher.mode == CIPHER_MODE_XTS ||
2784 ctx->cipher.mode == CIPHER_MODE_GCM) {
2785 rctx->iv_ctr_len =
2786 ctx->salt_len +
2787 crypto_aead_ivsize(crypto_aead_reqtfm(req));
2788 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2789 rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2790 } else {
2791 rctx->iv_ctr_len = 0;
2792 }
2793
2794 rctx->hash_carry_len = 0;
2795
2796 flow_log(" src sg: %p\n", req->src);
2797 flow_log(" rctx->src_sg: %p, src_skip %u\n",
2798 rctx->src_sg, rctx->src_skip);
2799 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen);
2800 flow_log(" dst sg: %p\n", req->dst);
2801 flow_log(" rctx->dst_sg: %p, dst_skip %u\n",
2802 rctx->dst_sg, rctx->dst_skip);
2803 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len);
2804 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len);
2805 flow_log(" authkeylen:%u\n", ctx->authkeylen);
2806 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2807
2808 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2809 flow_log(" max_payload infinite");
2810 else
2811 flow_log(" max_payload: %u\n", ctx->max_payload);
2812
2813 if (unlikely(aead_need_fallback(req)))
2814 return aead_do_fallback(req, is_encrypt);
2815
2816 /*
2817 * Do memory allocations for request after fallback check, because if we
2818 * do fallback, we won't call finish_req() to dealloc.
2819 */
2820 if (rctx->iv_ctr_len) {
2821 if (ctx->salt_len)
2822 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2823 ctx->salt, ctx->salt_len);
2824 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2825 req->iv,
2826 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2827 }
2828
2829 rctx->chan_idx = select_channel();
2830 err = handle_aead_req(rctx);
2831 if (err != -EINPROGRESS)
2832 /* synchronous result */
2833 spu_chunk_cleanup(rctx);
2834
2835 return err;
2836}
2837
2838static int aead_authenc_setkey(struct crypto_aead *cipher,
2839 const u8 *key, unsigned int keylen)
2840{
2841 struct spu_hw *spu = &iproc_priv.spu;
2842 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2843 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
ab57b335
EB
2844 struct crypto_authenc_keys keys;
2845 int ret;
9d12ba86
RR
2846
2847 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2848 keylen);
2849 flow_dump(" key: ", key, keylen);
2850
ab57b335
EB
2851 ret = crypto_authenc_extractkeys(&keys, key, keylen);
2852 if (ret)
9d12ba86 2853 goto badkey;
9d12ba86 2854
ab57b335
EB
2855 if (keys.enckeylen > MAX_KEY_SIZE ||
2856 keys.authkeylen > MAX_KEY_SIZE)
9d12ba86
RR
2857 goto badkey;
2858
ab57b335
EB
2859 ctx->enckeylen = keys.enckeylen;
2860 ctx->authkeylen = keys.authkeylen;
9d12ba86 2861
ab57b335 2862 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
9d12ba86
RR
2863 /* May end up padding auth key. So make sure it's zeroed. */
2864 memset(ctx->authkey, 0, sizeof(ctx->authkey));
ab57b335 2865 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
9d12ba86
RR
2866
2867 switch (ctx->alg->cipher_info.alg) {
2868 case CIPHER_ALG_DES:
2869 if (ctx->enckeylen == DES_KEY_SIZE) {
2870 u32 tmp[DES_EXPKEY_WORDS];
2871 u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
2872
ab57b335 2873 if (des_ekey(tmp, keys.enckey) == 0) {
9d12ba86 2874 if (crypto_aead_get_flags(cipher) &
231baecd 2875 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
9d12ba86
RR
2876 crypto_aead_set_flags(cipher, flags);
2877 return -EINVAL;
2878 }
2879 }
2880
2881 ctx->cipher_type = CIPHER_TYPE_DES;
2882 } else {
2883 goto badkey;
2884 }
2885 break;
2886 case CIPHER_ALG_3DES:
2887 if (ctx->enckeylen == (DES_KEY_SIZE * 3)) {
ab57b335 2888 const u32 *K = (const u32 *)keys.enckey;
9d12ba86
RR
2889 u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
2890
2891 if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
2892 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
2893 crypto_aead_set_flags(cipher, flags);
2894 return -EINVAL;
2895 }
2896
2897 ctx->cipher_type = CIPHER_TYPE_3DES;
2898 } else {
2899 crypto_aead_set_flags(cipher,
2900 CRYPTO_TFM_RES_BAD_KEY_LEN);
2901 return -EINVAL;
2902 }
2903 break;
2904 case CIPHER_ALG_AES:
2905 switch (ctx->enckeylen) {
2906 case AES_KEYSIZE_128:
2907 ctx->cipher_type = CIPHER_TYPE_AES128;
2908 break;
2909 case AES_KEYSIZE_192:
2910 ctx->cipher_type = CIPHER_TYPE_AES192;
2911 break;
2912 case AES_KEYSIZE_256:
2913 ctx->cipher_type = CIPHER_TYPE_AES256;
2914 break;
2915 default:
2916 goto badkey;
2917 }
2918 break;
2919 case CIPHER_ALG_RC4:
2920 ctx->cipher_type = CIPHER_TYPE_INIT;
2921 break;
2922 default:
2923 pr_err("%s() Error: Unknown cipher alg\n", __func__);
2924 return -EINVAL;
2925 }
2926
2927 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2928 ctx->authkeylen);
2929 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
2930 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
2931
2932 /* setkey the fallback just in case we needto use it */
2933 if (ctx->fallback_cipher) {
2934 flow_log(" running fallback setkey()\n");
2935
2936 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2937 ctx->fallback_cipher->base.crt_flags |=
2938 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
ab57b335 2939 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
9d12ba86
RR
2940 if (ret) {
2941 flow_log(" fallback setkey() returned:%d\n", ret);
2942 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2943 tfm->crt_flags |=
2944 (ctx->fallback_cipher->base.crt_flags &
2945 CRYPTO_TFM_RES_MASK);
2946 }
2947 }
2948
2949 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2950 ctx->enckeylen,
2951 false);
2952
2953 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2954
2955 return ret;
2956
2957badkey:
2958 ctx->enckeylen = 0;
2959 ctx->authkeylen = 0;
2960 ctx->digestsize = 0;
2961
2962 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2963 return -EINVAL;
2964}
2965
2966static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2967 const u8 *key, unsigned int keylen)
2968{
2969 struct spu_hw *spu = &iproc_priv.spu;
2970 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2971 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2972
2973 int ret = 0;
2974
2975 flow_log("%s() keylen:%u\n", __func__, keylen);
2976 flow_dump(" key: ", key, keylen);
2977
2978 if (!ctx->is_esp)
2979 ctx->digestsize = keylen;
2980
2981 ctx->enckeylen = keylen;
2982 ctx->authkeylen = 0;
2983 memcpy(ctx->enckey, key, ctx->enckeylen);
2984
2985 switch (ctx->enckeylen) {
2986 case AES_KEYSIZE_128:
2987 ctx->cipher_type = CIPHER_TYPE_AES128;
2988 break;
2989 case AES_KEYSIZE_192:
2990 ctx->cipher_type = CIPHER_TYPE_AES192;
2991 break;
2992 case AES_KEYSIZE_256:
2993 ctx->cipher_type = CIPHER_TYPE_AES256;
2994 break;
2995 default:
2996 goto badkey;
2997 }
2998
2999 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3000 ctx->authkeylen);
3001 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
3002 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
3003
3004 /* setkey the fallback just in case we need to use it */
3005 if (ctx->fallback_cipher) {
3006 flow_log(" running fallback setkey()\n");
3007
3008 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
3009 ctx->fallback_cipher->base.crt_flags |=
3010 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
3011 ret = crypto_aead_setkey(ctx->fallback_cipher, key,
3012 keylen + ctx->salt_len);
3013 if (ret) {
3014 flow_log(" fallback setkey() returned:%d\n", ret);
3015 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
3016 tfm->crt_flags |=
3017 (ctx->fallback_cipher->base.crt_flags &
3018 CRYPTO_TFM_RES_MASK);
3019 }
3020 }
3021
3022 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
3023 ctx->enckeylen,
3024 false);
3025
3026 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
3027
3028 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3029 ctx->authkeylen);
3030
3031 return ret;
3032
3033badkey:
3034 ctx->enckeylen = 0;
3035 ctx->authkeylen = 0;
3036 ctx->digestsize = 0;
3037
3038 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
3039 return -EINVAL;
3040}
3041
3042/**
3043 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
3044 * @cipher: AEAD structure
3045 * @key: Key followed by 4 bytes of salt
3046 * @keylen: Length of key plus salt, in bytes
3047 *
3048 * Extracts salt from key and stores it to be prepended to IV on each request.
3049 * Digest is always 16 bytes
3050 *
3051 * Return: Value from generic gcm setkey.
3052 */
3053static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
3054 const u8 *key, unsigned int keylen)
3055{
3056 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3057
3058 flow_log("%s\n", __func__);
3059 ctx->salt_len = GCM_ESP_SALT_SIZE;
3060 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3061 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3062 keylen -= GCM_ESP_SALT_SIZE;
3063 ctx->digestsize = GCM_ESP_DIGESTSIZE;
3064 ctx->is_esp = true;
3065 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3066
3067 return aead_gcm_ccm_setkey(cipher, key, keylen);
3068}
3069
3070/**
3071 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3072 * cipher: AEAD structure
3073 * key: Key followed by 4 bytes of salt
3074 * keylen: Length of key plus salt, in bytes
3075 *
3076 * Extracts salt from key and stores it to be prepended to IV on each request.
3077 * Digest is always 16 bytes
3078 *
3079 * Return: Value from generic gcm setkey.
3080 */
3081static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3082 const u8 *key, unsigned int keylen)
3083{
3084 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3085
3086 flow_log("%s\n", __func__);
3087 ctx->salt_len = GCM_ESP_SALT_SIZE;
3088 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3089 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3090 keylen -= GCM_ESP_SALT_SIZE;
3091 ctx->digestsize = GCM_ESP_DIGESTSIZE;
3092 ctx->is_esp = true;
3093 ctx->is_rfc4543 = true;
3094 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3095
3096 return aead_gcm_ccm_setkey(cipher, key, keylen);
3097}
3098
3099/**
3100 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3101 * @cipher: AEAD structure
3102 * @key: Key followed by 4 bytes of salt
3103 * @keylen: Length of key plus salt, in bytes
3104 *
3105 * Extracts salt from key and stores it to be prepended to IV on each request.
3106 * Digest is always 16 bytes
3107 *
3108 * Return: Value from generic ccm setkey.
3109 */
3110static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3111 const u8 *key, unsigned int keylen)
3112{
3113 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3114
3115 flow_log("%s\n", __func__);
3116 ctx->salt_len = CCM_ESP_SALT_SIZE;
3117 ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3118 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3119 keylen -= CCM_ESP_SALT_SIZE;
3120 ctx->is_esp = true;
3121 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3122
3123 return aead_gcm_ccm_setkey(cipher, key, keylen);
3124}
3125
3126static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3127{
3128 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3129 int ret = 0;
3130
3131 flow_log("%s() authkeylen:%u authsize:%u\n",
3132 __func__, ctx->authkeylen, authsize);
3133
3134 ctx->digestsize = authsize;
3135
3136 /* setkey the fallback just in case we needto use it */
3137 if (ctx->fallback_cipher) {
3138 flow_log(" running fallback setauth()\n");
3139
3140 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3141 if (ret)
3142 flow_log(" fallback setauth() returned:%d\n", ret);
3143 }
3144
3145 return ret;
3146}
3147
3148static int aead_encrypt(struct aead_request *req)
3149{
3150 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3151 req->cryptlen);
3152 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3153 flow_log(" assoc_len:%u\n", req->assoclen);
3154
3155 return aead_enqueue(req, true);
3156}
3157
3158static int aead_decrypt(struct aead_request *req)
3159{
3160 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3161 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3162 flow_log(" assoc_len:%u\n", req->assoclen);
3163
3164 return aead_enqueue(req, false);
3165}
3166
3167/* ==================== Supported Cipher Algorithms ==================== */
3168
3169static struct iproc_alg_s driver_algs[] = {
3170 {
3171 .type = CRYPTO_ALG_TYPE_AEAD,
3172 .alg.aead = {
3173 .base = {
3174 .cra_name = "gcm(aes)",
3175 .cra_driver_name = "gcm-aes-iproc",
3176 .cra_blocksize = AES_BLOCK_SIZE,
3177 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3178 },
3179 .setkey = aead_gcm_ccm_setkey,
3180 .ivsize = GCM_AES_IV_SIZE,
3181 .maxauthsize = AES_BLOCK_SIZE,
3182 },
3183 .cipher_info = {
3184 .alg = CIPHER_ALG_AES,
3185 .mode = CIPHER_MODE_GCM,
3186 },
3187 .auth_info = {
3188 .alg = HASH_ALG_AES,
3189 .mode = HASH_MODE_GCM,
3190 },
3191 .auth_first = 0,
3192 },
3193 {
3194 .type = CRYPTO_ALG_TYPE_AEAD,
3195 .alg.aead = {
3196 .base = {
3197 .cra_name = "ccm(aes)",
3198 .cra_driver_name = "ccm-aes-iproc",
3199 .cra_blocksize = AES_BLOCK_SIZE,
3200 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3201 },
3202 .setkey = aead_gcm_ccm_setkey,
3203 .ivsize = CCM_AES_IV_SIZE,
3204 .maxauthsize = AES_BLOCK_SIZE,
3205 },
3206 .cipher_info = {
3207 .alg = CIPHER_ALG_AES,
3208 .mode = CIPHER_MODE_CCM,
3209 },
3210 .auth_info = {
3211 .alg = HASH_ALG_AES,
3212 .mode = HASH_MODE_CCM,
3213 },
3214 .auth_first = 0,
3215 },
3216 {
3217 .type = CRYPTO_ALG_TYPE_AEAD,
3218 .alg.aead = {
3219 .base = {
3220 .cra_name = "rfc4106(gcm(aes))",
3221 .cra_driver_name = "gcm-aes-esp-iproc",
3222 .cra_blocksize = AES_BLOCK_SIZE,
3223 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3224 },
3225 .setkey = aead_gcm_esp_setkey,
a59851d2 3226 .ivsize = GCM_RFC4106_IV_SIZE,
9d12ba86
RR
3227 .maxauthsize = AES_BLOCK_SIZE,
3228 },
3229 .cipher_info = {
3230 .alg = CIPHER_ALG_AES,
3231 .mode = CIPHER_MODE_GCM,
3232 },
3233 .auth_info = {
3234 .alg = HASH_ALG_AES,
3235 .mode = HASH_MODE_GCM,
3236 },
3237 .auth_first = 0,
3238 },
3239 {
3240 .type = CRYPTO_ALG_TYPE_AEAD,
3241 .alg.aead = {
3242 .base = {
3243 .cra_name = "rfc4309(ccm(aes))",
3244 .cra_driver_name = "ccm-aes-esp-iproc",
3245 .cra_blocksize = AES_BLOCK_SIZE,
3246 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3247 },
3248 .setkey = aead_ccm_esp_setkey,
3249 .ivsize = CCM_AES_IV_SIZE,
3250 .maxauthsize = AES_BLOCK_SIZE,
3251 },
3252 .cipher_info = {
3253 .alg = CIPHER_ALG_AES,
3254 .mode = CIPHER_MODE_CCM,
3255 },
3256 .auth_info = {
3257 .alg = HASH_ALG_AES,
3258 .mode = HASH_MODE_CCM,
3259 },
3260 .auth_first = 0,
3261 },
3262 {
3263 .type = CRYPTO_ALG_TYPE_AEAD,
3264 .alg.aead = {
3265 .base = {
3266 .cra_name = "rfc4543(gcm(aes))",
3267 .cra_driver_name = "gmac-aes-esp-iproc",
3268 .cra_blocksize = AES_BLOCK_SIZE,
3269 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3270 },
3271 .setkey = rfc4543_gcm_esp_setkey,
a59851d2 3272 .ivsize = GCM_RFC4106_IV_SIZE,
9d12ba86
RR
3273 .maxauthsize = AES_BLOCK_SIZE,
3274 },
3275 .cipher_info = {
3276 .alg = CIPHER_ALG_AES,
3277 .mode = CIPHER_MODE_GCM,
3278 },
3279 .auth_info = {
3280 .alg = HASH_ALG_AES,
3281 .mode = HASH_MODE_GCM,
3282 },
3283 .auth_first = 0,
3284 },
3285 {
3286 .type = CRYPTO_ALG_TYPE_AEAD,
3287 .alg.aead = {
3288 .base = {
3289 .cra_name = "authenc(hmac(md5),cbc(aes))",
3290 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3291 .cra_blocksize = AES_BLOCK_SIZE,
3292 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3293 },
3294 .setkey = aead_authenc_setkey,
3295 .ivsize = AES_BLOCK_SIZE,
3296 .maxauthsize = MD5_DIGEST_SIZE,
3297 },
3298 .cipher_info = {
3299 .alg = CIPHER_ALG_AES,
3300 .mode = CIPHER_MODE_CBC,
3301 },
3302 .auth_info = {
3303 .alg = HASH_ALG_MD5,
3304 .mode = HASH_MODE_HMAC,
3305 },
3306 .auth_first = 0,
3307 },
3308 {
3309 .type = CRYPTO_ALG_TYPE_AEAD,
3310 .alg.aead = {
3311 .base = {
3312 .cra_name = "authenc(hmac(sha1),cbc(aes))",
3313 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3314 .cra_blocksize = AES_BLOCK_SIZE,
3315 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3316 },
3317 .setkey = aead_authenc_setkey,
3318 .ivsize = AES_BLOCK_SIZE,
3319 .maxauthsize = SHA1_DIGEST_SIZE,
3320 },
3321 .cipher_info = {
3322 .alg = CIPHER_ALG_AES,
3323 .mode = CIPHER_MODE_CBC,
3324 },
3325 .auth_info = {
3326 .alg = HASH_ALG_SHA1,
3327 .mode = HASH_MODE_HMAC,
3328 },
3329 .auth_first = 0,
3330 },
3331 {
3332 .type = CRYPTO_ALG_TYPE_AEAD,
3333 .alg.aead = {
3334 .base = {
3335 .cra_name = "authenc(hmac(sha256),cbc(aes))",
3336 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3337 .cra_blocksize = AES_BLOCK_SIZE,
3338 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3339 },
3340 .setkey = aead_authenc_setkey,
3341 .ivsize = AES_BLOCK_SIZE,
3342 .maxauthsize = SHA256_DIGEST_SIZE,
3343 },
3344 .cipher_info = {
3345 .alg = CIPHER_ALG_AES,
3346 .mode = CIPHER_MODE_CBC,
3347 },
3348 .auth_info = {
3349 .alg = HASH_ALG_SHA256,
3350 .mode = HASH_MODE_HMAC,
3351 },
3352 .auth_first = 0,
3353 },
3354 {
3355 .type = CRYPTO_ALG_TYPE_AEAD,
3356 .alg.aead = {
3357 .base = {
3358 .cra_name = "authenc(hmac(md5),cbc(des))",
3359 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3360 .cra_blocksize = DES_BLOCK_SIZE,
3361 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3362 },
3363 .setkey = aead_authenc_setkey,
3364 .ivsize = DES_BLOCK_SIZE,
3365 .maxauthsize = MD5_DIGEST_SIZE,
3366 },
3367 .cipher_info = {
3368 .alg = CIPHER_ALG_DES,
3369 .mode = CIPHER_MODE_CBC,
3370 },
3371 .auth_info = {
3372 .alg = HASH_ALG_MD5,
3373 .mode = HASH_MODE_HMAC,
3374 },
3375 .auth_first = 0,
3376 },
3377 {
3378 .type = CRYPTO_ALG_TYPE_AEAD,
3379 .alg.aead = {
3380 .base = {
3381 .cra_name = "authenc(hmac(sha1),cbc(des))",
3382 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3383 .cra_blocksize = DES_BLOCK_SIZE,
3384 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3385 },
3386 .setkey = aead_authenc_setkey,
3387 .ivsize = DES_BLOCK_SIZE,
3388 .maxauthsize = SHA1_DIGEST_SIZE,
3389 },
3390 .cipher_info = {
3391 .alg = CIPHER_ALG_DES,
3392 .mode = CIPHER_MODE_CBC,
3393 },
3394 .auth_info = {
3395 .alg = HASH_ALG_SHA1,
3396 .mode = HASH_MODE_HMAC,
3397 },
3398 .auth_first = 0,
3399 },
3400 {
3401 .type = CRYPTO_ALG_TYPE_AEAD,
3402 .alg.aead = {
3403 .base = {
3404 .cra_name = "authenc(hmac(sha224),cbc(des))",
3405 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3406 .cra_blocksize = DES_BLOCK_SIZE,
3407 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3408 },
3409 .setkey = aead_authenc_setkey,
3410 .ivsize = DES_BLOCK_SIZE,
3411 .maxauthsize = SHA224_DIGEST_SIZE,
3412 },
3413 .cipher_info = {
3414 .alg = CIPHER_ALG_DES,
3415 .mode = CIPHER_MODE_CBC,
3416 },
3417 .auth_info = {
3418 .alg = HASH_ALG_SHA224,
3419 .mode = HASH_MODE_HMAC,
3420 },
3421 .auth_first = 0,
3422 },
3423 {
3424 .type = CRYPTO_ALG_TYPE_AEAD,
3425 .alg.aead = {
3426 .base = {
3427 .cra_name = "authenc(hmac(sha256),cbc(des))",
3428 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3429 .cra_blocksize = DES_BLOCK_SIZE,
3430 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3431 },
3432 .setkey = aead_authenc_setkey,
3433 .ivsize = DES_BLOCK_SIZE,
3434 .maxauthsize = SHA256_DIGEST_SIZE,
3435 },
3436 .cipher_info = {
3437 .alg = CIPHER_ALG_DES,
3438 .mode = CIPHER_MODE_CBC,
3439 },
3440 .auth_info = {
3441 .alg = HASH_ALG_SHA256,
3442 .mode = HASH_MODE_HMAC,
3443 },
3444 .auth_first = 0,
3445 },
3446 {
3447 .type = CRYPTO_ALG_TYPE_AEAD,
3448 .alg.aead = {
3449 .base = {
3450 .cra_name = "authenc(hmac(sha384),cbc(des))",
3451 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3452 .cra_blocksize = DES_BLOCK_SIZE,
3453 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3454 },
3455 .setkey = aead_authenc_setkey,
3456 .ivsize = DES_BLOCK_SIZE,
3457 .maxauthsize = SHA384_DIGEST_SIZE,
3458 },
3459 .cipher_info = {
3460 .alg = CIPHER_ALG_DES,
3461 .mode = CIPHER_MODE_CBC,
3462 },
3463 .auth_info = {
3464 .alg = HASH_ALG_SHA384,
3465 .mode = HASH_MODE_HMAC,
3466 },
3467 .auth_first = 0,
3468 },
3469 {
3470 .type = CRYPTO_ALG_TYPE_AEAD,
3471 .alg.aead = {
3472 .base = {
3473 .cra_name = "authenc(hmac(sha512),cbc(des))",
3474 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3475 .cra_blocksize = DES_BLOCK_SIZE,
3476 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3477 },
3478 .setkey = aead_authenc_setkey,
3479 .ivsize = DES_BLOCK_SIZE,
3480 .maxauthsize = SHA512_DIGEST_SIZE,
3481 },
3482 .cipher_info = {
3483 .alg = CIPHER_ALG_DES,
3484 .mode = CIPHER_MODE_CBC,
3485 },
3486 .auth_info = {
3487 .alg = HASH_ALG_SHA512,
3488 .mode = HASH_MODE_HMAC,
3489 },
3490 .auth_first = 0,
3491 },
3492 {
3493 .type = CRYPTO_ALG_TYPE_AEAD,
3494 .alg.aead = {
3495 .base = {
3496 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3497 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3498 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3499 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3500 },
3501 .setkey = aead_authenc_setkey,
3502 .ivsize = DES3_EDE_BLOCK_SIZE,
3503 .maxauthsize = MD5_DIGEST_SIZE,
3504 },
3505 .cipher_info = {
3506 .alg = CIPHER_ALG_3DES,
3507 .mode = CIPHER_MODE_CBC,
3508 },
3509 .auth_info = {
3510 .alg = HASH_ALG_MD5,
3511 .mode = HASH_MODE_HMAC,
3512 },
3513 .auth_first = 0,
3514 },
3515 {
3516 .type = CRYPTO_ALG_TYPE_AEAD,
3517 .alg.aead = {
3518 .base = {
3519 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3520 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3521 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3522 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3523 },
3524 .setkey = aead_authenc_setkey,
3525 .ivsize = DES3_EDE_BLOCK_SIZE,
3526 .maxauthsize = SHA1_DIGEST_SIZE,
3527 },
3528 .cipher_info = {
3529 .alg = CIPHER_ALG_3DES,
3530 .mode = CIPHER_MODE_CBC,
3531 },
3532 .auth_info = {
3533 .alg = HASH_ALG_SHA1,
3534 .mode = HASH_MODE_HMAC,
3535 },
3536 .auth_first = 0,
3537 },
3538 {
3539 .type = CRYPTO_ALG_TYPE_AEAD,
3540 .alg.aead = {
3541 .base = {
3542 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3543 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3544 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3545 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3546 },
3547 .setkey = aead_authenc_setkey,
3548 .ivsize = DES3_EDE_BLOCK_SIZE,
3549 .maxauthsize = SHA224_DIGEST_SIZE,
3550 },
3551 .cipher_info = {
3552 .alg = CIPHER_ALG_3DES,
3553 .mode = CIPHER_MODE_CBC,
3554 },
3555 .auth_info = {
3556 .alg = HASH_ALG_SHA224,
3557 .mode = HASH_MODE_HMAC,
3558 },
3559 .auth_first = 0,
3560 },
3561 {
3562 .type = CRYPTO_ALG_TYPE_AEAD,
3563 .alg.aead = {
3564 .base = {
3565 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3566 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3567 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3568 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3569 },
3570 .setkey = aead_authenc_setkey,
3571 .ivsize = DES3_EDE_BLOCK_SIZE,
3572 .maxauthsize = SHA256_DIGEST_SIZE,
3573 },
3574 .cipher_info = {
3575 .alg = CIPHER_ALG_3DES,
3576 .mode = CIPHER_MODE_CBC,
3577 },
3578 .auth_info = {
3579 .alg = HASH_ALG_SHA256,
3580 .mode = HASH_MODE_HMAC,
3581 },
3582 .auth_first = 0,
3583 },
3584 {
3585 .type = CRYPTO_ALG_TYPE_AEAD,
3586 .alg.aead = {
3587 .base = {
3588 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3589 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3590 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3591 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3592 },
3593 .setkey = aead_authenc_setkey,
3594 .ivsize = DES3_EDE_BLOCK_SIZE,
3595 .maxauthsize = SHA384_DIGEST_SIZE,
3596 },
3597 .cipher_info = {
3598 .alg = CIPHER_ALG_3DES,
3599 .mode = CIPHER_MODE_CBC,
3600 },
3601 .auth_info = {
3602 .alg = HASH_ALG_SHA384,
3603 .mode = HASH_MODE_HMAC,
3604 },
3605 .auth_first = 0,
3606 },
3607 {
3608 .type = CRYPTO_ALG_TYPE_AEAD,
3609 .alg.aead = {
3610 .base = {
3611 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3612 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3613 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3614 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3615 },
3616 .setkey = aead_authenc_setkey,
3617 .ivsize = DES3_EDE_BLOCK_SIZE,
3618 .maxauthsize = SHA512_DIGEST_SIZE,
3619 },
3620 .cipher_info = {
3621 .alg = CIPHER_ALG_3DES,
3622 .mode = CIPHER_MODE_CBC,
3623 },
3624 .auth_info = {
3625 .alg = HASH_ALG_SHA512,
3626 .mode = HASH_MODE_HMAC,
3627 },
3628 .auth_first = 0,
3629 },
3630
3631/* ABLKCIPHER algorithms. */
3632 {
3633 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3634 .alg.crypto = {
3635 .cra_name = "ecb(arc4)",
3636 .cra_driver_name = "ecb-arc4-iproc",
3637 .cra_blocksize = ARC4_BLOCK_SIZE,
3638 .cra_ablkcipher = {
3639 .min_keysize = ARC4_MIN_KEY_SIZE,
3640 .max_keysize = ARC4_MAX_KEY_SIZE,
3641 .ivsize = 0,
3642 }
3643 },
3644 .cipher_info = {
3645 .alg = CIPHER_ALG_RC4,
3646 .mode = CIPHER_MODE_NONE,
3647 },
3648 .auth_info = {
3649 .alg = HASH_ALG_NONE,
3650 .mode = HASH_MODE_NONE,
3651 },
3652 },
3653 {
3654 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3655 .alg.crypto = {
3656 .cra_name = "ofb(des)",
3657 .cra_driver_name = "ofb-des-iproc",
3658 .cra_blocksize = DES_BLOCK_SIZE,
3659 .cra_ablkcipher = {
3660 .min_keysize = DES_KEY_SIZE,
3661 .max_keysize = DES_KEY_SIZE,
3662 .ivsize = DES_BLOCK_SIZE,
3663 }
3664 },
3665 .cipher_info = {
3666 .alg = CIPHER_ALG_DES,
3667 .mode = CIPHER_MODE_OFB,
3668 },
3669 .auth_info = {
3670 .alg = HASH_ALG_NONE,
3671 .mode = HASH_MODE_NONE,
3672 },
3673 },
3674 {
3675 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3676 .alg.crypto = {
3677 .cra_name = "cbc(des)",
3678 .cra_driver_name = "cbc-des-iproc",
3679 .cra_blocksize = DES_BLOCK_SIZE,
3680 .cra_ablkcipher = {
3681 .min_keysize = DES_KEY_SIZE,
3682 .max_keysize = DES_KEY_SIZE,
3683 .ivsize = DES_BLOCK_SIZE,
3684 }
3685 },
3686 .cipher_info = {
3687 .alg = CIPHER_ALG_DES,
3688 .mode = CIPHER_MODE_CBC,
3689 },
3690 .auth_info = {
3691 .alg = HASH_ALG_NONE,
3692 .mode = HASH_MODE_NONE,
3693 },
3694 },
3695 {
3696 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3697 .alg.crypto = {
3698 .cra_name = "ecb(des)",
3699 .cra_driver_name = "ecb-des-iproc",
3700 .cra_blocksize = DES_BLOCK_SIZE,
3701 .cra_ablkcipher = {
3702 .min_keysize = DES_KEY_SIZE,
3703 .max_keysize = DES_KEY_SIZE,
3704 .ivsize = 0,
3705 }
3706 },
3707 .cipher_info = {
3708 .alg = CIPHER_ALG_DES,
3709 .mode = CIPHER_MODE_ECB,
3710 },
3711 .auth_info = {
3712 .alg = HASH_ALG_NONE,
3713 .mode = HASH_MODE_NONE,
3714 },
3715 },
3716 {
3717 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3718 .alg.crypto = {
3719 .cra_name = "ofb(des3_ede)",
3720 .cra_driver_name = "ofb-des3-iproc",
3721 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3722 .cra_ablkcipher = {
3723 .min_keysize = DES3_EDE_KEY_SIZE,
3724 .max_keysize = DES3_EDE_KEY_SIZE,
3725 .ivsize = DES3_EDE_BLOCK_SIZE,
3726 }
3727 },
3728 .cipher_info = {
3729 .alg = CIPHER_ALG_3DES,
3730 .mode = CIPHER_MODE_OFB,
3731 },
3732 .auth_info = {
3733 .alg = HASH_ALG_NONE,
3734 .mode = HASH_MODE_NONE,
3735 },
3736 },
3737 {
3738 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3739 .alg.crypto = {
3740 .cra_name = "cbc(des3_ede)",
3741 .cra_driver_name = "cbc-des3-iproc",
3742 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3743 .cra_ablkcipher = {
3744 .min_keysize = DES3_EDE_KEY_SIZE,
3745 .max_keysize = DES3_EDE_KEY_SIZE,
3746 .ivsize = DES3_EDE_BLOCK_SIZE,
3747 }
3748 },
3749 .cipher_info = {
3750 .alg = CIPHER_ALG_3DES,
3751 .mode = CIPHER_MODE_CBC,
3752 },
3753 .auth_info = {
3754 .alg = HASH_ALG_NONE,
3755 .mode = HASH_MODE_NONE,
3756 },
3757 },
3758 {
3759 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3760 .alg.crypto = {
3761 .cra_name = "ecb(des3_ede)",
3762 .cra_driver_name = "ecb-des3-iproc",
3763 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3764 .cra_ablkcipher = {
3765 .min_keysize = DES3_EDE_KEY_SIZE,
3766 .max_keysize = DES3_EDE_KEY_SIZE,
3767 .ivsize = 0,
3768 }
3769 },
3770 .cipher_info = {
3771 .alg = CIPHER_ALG_3DES,
3772 .mode = CIPHER_MODE_ECB,
3773 },
3774 .auth_info = {
3775 .alg = HASH_ALG_NONE,
3776 .mode = HASH_MODE_NONE,
3777 },
3778 },
3779 {
3780 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3781 .alg.crypto = {
3782 .cra_name = "ofb(aes)",
3783 .cra_driver_name = "ofb-aes-iproc",
3784 .cra_blocksize = AES_BLOCK_SIZE,
3785 .cra_ablkcipher = {
3786 .min_keysize = AES_MIN_KEY_SIZE,
3787 .max_keysize = AES_MAX_KEY_SIZE,
3788 .ivsize = AES_BLOCK_SIZE,
3789 }
3790 },
3791 .cipher_info = {
3792 .alg = CIPHER_ALG_AES,
3793 .mode = CIPHER_MODE_OFB,
3794 },
3795 .auth_info = {
3796 .alg = HASH_ALG_NONE,
3797 .mode = HASH_MODE_NONE,
3798 },
3799 },
3800 {
3801 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3802 .alg.crypto = {
3803 .cra_name = "cbc(aes)",
3804 .cra_driver_name = "cbc-aes-iproc",
3805 .cra_blocksize = AES_BLOCK_SIZE,
3806 .cra_ablkcipher = {
3807 .min_keysize = AES_MIN_KEY_SIZE,
3808 .max_keysize = AES_MAX_KEY_SIZE,
3809 .ivsize = AES_BLOCK_SIZE,
3810 }
3811 },
3812 .cipher_info = {
3813 .alg = CIPHER_ALG_AES,
3814 .mode = CIPHER_MODE_CBC,
3815 },
3816 .auth_info = {
3817 .alg = HASH_ALG_NONE,
3818 .mode = HASH_MODE_NONE,
3819 },
3820 },
3821 {
3822 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3823 .alg.crypto = {
3824 .cra_name = "ecb(aes)",
3825 .cra_driver_name = "ecb-aes-iproc",
3826 .cra_blocksize = AES_BLOCK_SIZE,
3827 .cra_ablkcipher = {
3828 .min_keysize = AES_MIN_KEY_SIZE,
3829 .max_keysize = AES_MAX_KEY_SIZE,
3830 .ivsize = 0,
3831 }
3832 },
3833 .cipher_info = {
3834 .alg = CIPHER_ALG_AES,
3835 .mode = CIPHER_MODE_ECB,
3836 },
3837 .auth_info = {
3838 .alg = HASH_ALG_NONE,
3839 .mode = HASH_MODE_NONE,
3840 },
3841 },
3842 {
3843 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3844 .alg.crypto = {
3845 .cra_name = "ctr(aes)",
3846 .cra_driver_name = "ctr-aes-iproc",
3847 .cra_blocksize = AES_BLOCK_SIZE,
3848 .cra_ablkcipher = {
9d12ba86
RR
3849 .min_keysize = AES_MIN_KEY_SIZE,
3850 .max_keysize = AES_MAX_KEY_SIZE,
3851 .ivsize = AES_BLOCK_SIZE,
3852 }
3853 },
3854 .cipher_info = {
3855 .alg = CIPHER_ALG_AES,
3856 .mode = CIPHER_MODE_CTR,
3857 },
3858 .auth_info = {
3859 .alg = HASH_ALG_NONE,
3860 .mode = HASH_MODE_NONE,
3861 },
3862 },
3863{
3864 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3865 .alg.crypto = {
3866 .cra_name = "xts(aes)",
3867 .cra_driver_name = "xts-aes-iproc",
3868 .cra_blocksize = AES_BLOCK_SIZE,
3869 .cra_ablkcipher = {
3870 .min_keysize = 2 * AES_MIN_KEY_SIZE,
3871 .max_keysize = 2 * AES_MAX_KEY_SIZE,
3872 .ivsize = AES_BLOCK_SIZE,
3873 }
3874 },
3875 .cipher_info = {
3876 .alg = CIPHER_ALG_AES,
3877 .mode = CIPHER_MODE_XTS,
3878 },
3879 .auth_info = {
3880 .alg = HASH_ALG_NONE,
3881 .mode = HASH_MODE_NONE,
3882 },
3883 },
3884
3885/* AHASH algorithms. */
3886 {
3887 .type = CRYPTO_ALG_TYPE_AHASH,
3888 .alg.hash = {
3889 .halg.digestsize = MD5_DIGEST_SIZE,
3890 .halg.base = {
3891 .cra_name = "md5",
3892 .cra_driver_name = "md5-iproc",
3893 .cra_blocksize = MD5_BLOCK_WORDS * 4,
6a38f622 3894 .cra_flags = CRYPTO_ALG_ASYNC,
9d12ba86
RR
3895 }
3896 },
3897 .cipher_info = {
3898 .alg = CIPHER_ALG_NONE,
3899 .mode = CIPHER_MODE_NONE,
3900 },
3901 .auth_info = {
3902 .alg = HASH_ALG_MD5,
3903 .mode = HASH_MODE_HASH,
3904 },
3905 },
3906 {
3907 .type = CRYPTO_ALG_TYPE_AHASH,
3908 .alg.hash = {
3909 .halg.digestsize = MD5_DIGEST_SIZE,
3910 .halg.base = {
3911 .cra_name = "hmac(md5)",
3912 .cra_driver_name = "hmac-md5-iproc",
3913 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3914 }
3915 },
3916 .cipher_info = {
3917 .alg = CIPHER_ALG_NONE,
3918 .mode = CIPHER_MODE_NONE,
3919 },
3920 .auth_info = {
3921 .alg = HASH_ALG_MD5,
3922 .mode = HASH_MODE_HMAC,
3923 },
3924 },
3925 {.type = CRYPTO_ALG_TYPE_AHASH,
3926 .alg.hash = {
3927 .halg.digestsize = SHA1_DIGEST_SIZE,
3928 .halg.base = {
3929 .cra_name = "sha1",
3930 .cra_driver_name = "sha1-iproc",
3931 .cra_blocksize = SHA1_BLOCK_SIZE,
3932 }
3933 },
3934 .cipher_info = {
3935 .alg = CIPHER_ALG_NONE,
3936 .mode = CIPHER_MODE_NONE,
3937 },
3938 .auth_info = {
3939 .alg = HASH_ALG_SHA1,
3940 .mode = HASH_MODE_HASH,
3941 },
3942 },
3943 {.type = CRYPTO_ALG_TYPE_AHASH,
3944 .alg.hash = {
3945 .halg.digestsize = SHA1_DIGEST_SIZE,
3946 .halg.base = {
3947 .cra_name = "hmac(sha1)",
3948 .cra_driver_name = "hmac-sha1-iproc",
3949 .cra_blocksize = SHA1_BLOCK_SIZE,
3950 }
3951 },
3952 .cipher_info = {
3953 .alg = CIPHER_ALG_NONE,
3954 .mode = CIPHER_MODE_NONE,
3955 },
3956 .auth_info = {
3957 .alg = HASH_ALG_SHA1,
3958 .mode = HASH_MODE_HMAC,
3959 },
3960 },
3961 {.type = CRYPTO_ALG_TYPE_AHASH,
3962 .alg.hash = {
3963 .halg.digestsize = SHA224_DIGEST_SIZE,
3964 .halg.base = {
3965 .cra_name = "sha224",
3966 .cra_driver_name = "sha224-iproc",
3967 .cra_blocksize = SHA224_BLOCK_SIZE,
3968 }
3969 },
3970 .cipher_info = {
3971 .alg = CIPHER_ALG_NONE,
3972 .mode = CIPHER_MODE_NONE,
3973 },
3974 .auth_info = {
3975 .alg = HASH_ALG_SHA224,
3976 .mode = HASH_MODE_HASH,
3977 },
3978 },
3979 {.type = CRYPTO_ALG_TYPE_AHASH,
3980 .alg.hash = {
3981 .halg.digestsize = SHA224_DIGEST_SIZE,
3982 .halg.base = {
3983 .cra_name = "hmac(sha224)",
3984 .cra_driver_name = "hmac-sha224-iproc",
3985 .cra_blocksize = SHA224_BLOCK_SIZE,
3986 }
3987 },
3988 .cipher_info = {
3989 .alg = CIPHER_ALG_NONE,
3990 .mode = CIPHER_MODE_NONE,
3991 },
3992 .auth_info = {
3993 .alg = HASH_ALG_SHA224,
3994 .mode = HASH_MODE_HMAC,
3995 },
3996 },
3997 {.type = CRYPTO_ALG_TYPE_AHASH,
3998 .alg.hash = {
3999 .halg.digestsize = SHA256_DIGEST_SIZE,
4000 .halg.base = {
4001 .cra_name = "sha256",
4002 .cra_driver_name = "sha256-iproc",
4003 .cra_blocksize = SHA256_BLOCK_SIZE,
4004 }
4005 },
4006 .cipher_info = {
4007 .alg = CIPHER_ALG_NONE,
4008 .mode = CIPHER_MODE_NONE,
4009 },
4010 .auth_info = {
4011 .alg = HASH_ALG_SHA256,
4012 .mode = HASH_MODE_HASH,
4013 },
4014 },
4015 {.type = CRYPTO_ALG_TYPE_AHASH,
4016 .alg.hash = {
4017 .halg.digestsize = SHA256_DIGEST_SIZE,
4018 .halg.base = {
4019 .cra_name = "hmac(sha256)",
4020 .cra_driver_name = "hmac-sha256-iproc",
4021 .cra_blocksize = SHA256_BLOCK_SIZE,
4022 }
4023 },
4024 .cipher_info = {
4025 .alg = CIPHER_ALG_NONE,
4026 .mode = CIPHER_MODE_NONE,
4027 },
4028 .auth_info = {
4029 .alg = HASH_ALG_SHA256,
4030 .mode = HASH_MODE_HMAC,
4031 },
4032 },
4033 {
4034 .type = CRYPTO_ALG_TYPE_AHASH,
4035 .alg.hash = {
4036 .halg.digestsize = SHA384_DIGEST_SIZE,
4037 .halg.base = {
4038 .cra_name = "sha384",
4039 .cra_driver_name = "sha384-iproc",
4040 .cra_blocksize = SHA384_BLOCK_SIZE,
4041 }
4042 },
4043 .cipher_info = {
4044 .alg = CIPHER_ALG_NONE,
4045 .mode = CIPHER_MODE_NONE,
4046 },
4047 .auth_info = {
4048 .alg = HASH_ALG_SHA384,
4049 .mode = HASH_MODE_HASH,
4050 },
4051 },
4052 {
4053 .type = CRYPTO_ALG_TYPE_AHASH,
4054 .alg.hash = {
4055 .halg.digestsize = SHA384_DIGEST_SIZE,
4056 .halg.base = {
4057 .cra_name = "hmac(sha384)",
4058 .cra_driver_name = "hmac-sha384-iproc",
4059 .cra_blocksize = SHA384_BLOCK_SIZE,
4060 }
4061 },
4062 .cipher_info = {
4063 .alg = CIPHER_ALG_NONE,
4064 .mode = CIPHER_MODE_NONE,
4065 },
4066 .auth_info = {
4067 .alg = HASH_ALG_SHA384,
4068 .mode = HASH_MODE_HMAC,
4069 },
4070 },
4071 {
4072 .type = CRYPTO_ALG_TYPE_AHASH,
4073 .alg.hash = {
4074 .halg.digestsize = SHA512_DIGEST_SIZE,
4075 .halg.base = {
4076 .cra_name = "sha512",
4077 .cra_driver_name = "sha512-iproc",
4078 .cra_blocksize = SHA512_BLOCK_SIZE,
4079 }
4080 },
4081 .cipher_info = {
4082 .alg = CIPHER_ALG_NONE,
4083 .mode = CIPHER_MODE_NONE,
4084 },
4085 .auth_info = {
4086 .alg = HASH_ALG_SHA512,
4087 .mode = HASH_MODE_HASH,
4088 },
4089 },
4090 {
4091 .type = CRYPTO_ALG_TYPE_AHASH,
4092 .alg.hash = {
4093 .halg.digestsize = SHA512_DIGEST_SIZE,
4094 .halg.base = {
4095 .cra_name = "hmac(sha512)",
4096 .cra_driver_name = "hmac-sha512-iproc",
4097 .cra_blocksize = SHA512_BLOCK_SIZE,
4098 }
4099 },
4100 .cipher_info = {
4101 .alg = CIPHER_ALG_NONE,
4102 .mode = CIPHER_MODE_NONE,
4103 },
4104 .auth_info = {
4105 .alg = HASH_ALG_SHA512,
4106 .mode = HASH_MODE_HMAC,
4107 },
4108 },
4109 {
4110 .type = CRYPTO_ALG_TYPE_AHASH,
4111 .alg.hash = {
4112 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4113 .halg.base = {
4114 .cra_name = "sha3-224",
4115 .cra_driver_name = "sha3-224-iproc",
4116 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4117 }
4118 },
4119 .cipher_info = {
4120 .alg = CIPHER_ALG_NONE,
4121 .mode = CIPHER_MODE_NONE,
4122 },
4123 .auth_info = {
4124 .alg = HASH_ALG_SHA3_224,
4125 .mode = HASH_MODE_HASH,
4126 },
4127 },
4128 {
4129 .type = CRYPTO_ALG_TYPE_AHASH,
4130 .alg.hash = {
4131 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4132 .halg.base = {
4133 .cra_name = "hmac(sha3-224)",
4134 .cra_driver_name = "hmac-sha3-224-iproc",
4135 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4136 }
4137 },
4138 .cipher_info = {
4139 .alg = CIPHER_ALG_NONE,
4140 .mode = CIPHER_MODE_NONE,
4141 },
4142 .auth_info = {
4143 .alg = HASH_ALG_SHA3_224,
4144 .mode = HASH_MODE_HMAC
4145 },
4146 },
4147 {
4148 .type = CRYPTO_ALG_TYPE_AHASH,
4149 .alg.hash = {
4150 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4151 .halg.base = {
4152 .cra_name = "sha3-256",
4153 .cra_driver_name = "sha3-256-iproc",
4154 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4155 }
4156 },
4157 .cipher_info = {
4158 .alg = CIPHER_ALG_NONE,
4159 .mode = CIPHER_MODE_NONE,
4160 },
4161 .auth_info = {
4162 .alg = HASH_ALG_SHA3_256,
4163 .mode = HASH_MODE_HASH,
4164 },
4165 },
4166 {
4167 .type = CRYPTO_ALG_TYPE_AHASH,
4168 .alg.hash = {
4169 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4170 .halg.base = {
4171 .cra_name = "hmac(sha3-256)",
4172 .cra_driver_name = "hmac-sha3-256-iproc",
4173 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4174 }
4175 },
4176 .cipher_info = {
4177 .alg = CIPHER_ALG_NONE,
4178 .mode = CIPHER_MODE_NONE,
4179 },
4180 .auth_info = {
4181 .alg = HASH_ALG_SHA3_256,
4182 .mode = HASH_MODE_HMAC,
4183 },
4184 },
4185 {
4186 .type = CRYPTO_ALG_TYPE_AHASH,
4187 .alg.hash = {
4188 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4189 .halg.base = {
4190 .cra_name = "sha3-384",
4191 .cra_driver_name = "sha3-384-iproc",
4192 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4193 }
4194 },
4195 .cipher_info = {
4196 .alg = CIPHER_ALG_NONE,
4197 .mode = CIPHER_MODE_NONE,
4198 },
4199 .auth_info = {
4200 .alg = HASH_ALG_SHA3_384,
4201 .mode = HASH_MODE_HASH,
4202 },
4203 },
4204 {
4205 .type = CRYPTO_ALG_TYPE_AHASH,
4206 .alg.hash = {
4207 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4208 .halg.base = {
4209 .cra_name = "hmac(sha3-384)",
4210 .cra_driver_name = "hmac-sha3-384-iproc",
4211 .cra_blocksize = SHA3_384_BLOCK_SIZE,
4212 }
4213 },
4214 .cipher_info = {
4215 .alg = CIPHER_ALG_NONE,
4216 .mode = CIPHER_MODE_NONE,
4217 },
4218 .auth_info = {
4219 .alg = HASH_ALG_SHA3_384,
4220 .mode = HASH_MODE_HMAC,
4221 },
4222 },
4223 {
4224 .type = CRYPTO_ALG_TYPE_AHASH,
4225 .alg.hash = {
4226 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4227 .halg.base = {
4228 .cra_name = "sha3-512",
4229 .cra_driver_name = "sha3-512-iproc",
4230 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4231 }
4232 },
4233 .cipher_info = {
4234 .alg = CIPHER_ALG_NONE,
4235 .mode = CIPHER_MODE_NONE,
4236 },
4237 .auth_info = {
4238 .alg = HASH_ALG_SHA3_512,
4239 .mode = HASH_MODE_HASH,
4240 },
4241 },
4242 {
4243 .type = CRYPTO_ALG_TYPE_AHASH,
4244 .alg.hash = {
4245 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4246 .halg.base = {
4247 .cra_name = "hmac(sha3-512)",
4248 .cra_driver_name = "hmac-sha3-512-iproc",
4249 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4250 }
4251 },
4252 .cipher_info = {
4253 .alg = CIPHER_ALG_NONE,
4254 .mode = CIPHER_MODE_NONE,
4255 },
4256 .auth_info = {
4257 .alg = HASH_ALG_SHA3_512,
4258 .mode = HASH_MODE_HMAC,
4259 },
4260 },
4261 {
4262 .type = CRYPTO_ALG_TYPE_AHASH,
4263 .alg.hash = {
4264 .halg.digestsize = AES_BLOCK_SIZE,
4265 .halg.base = {
4266 .cra_name = "xcbc(aes)",
4267 .cra_driver_name = "xcbc-aes-iproc",
4268 .cra_blocksize = AES_BLOCK_SIZE,
4269 }
4270 },
4271 .cipher_info = {
4272 .alg = CIPHER_ALG_NONE,
4273 .mode = CIPHER_MODE_NONE,
4274 },
4275 .auth_info = {
4276 .alg = HASH_ALG_AES,
4277 .mode = HASH_MODE_XCBC,
4278 },
4279 },
4280 {
4281 .type = CRYPTO_ALG_TYPE_AHASH,
4282 .alg.hash = {
4283 .halg.digestsize = AES_BLOCK_SIZE,
4284 .halg.base = {
4285 .cra_name = "cmac(aes)",
4286 .cra_driver_name = "cmac-aes-iproc",
4287 .cra_blocksize = AES_BLOCK_SIZE,
4288 }
4289 },
4290 .cipher_info = {
4291 .alg = CIPHER_ALG_NONE,
4292 .mode = CIPHER_MODE_NONE,
4293 },
4294 .auth_info = {
4295 .alg = HASH_ALG_AES,
4296 .mode = HASH_MODE_CMAC,
4297 },
4298 },
4299};
4300
4301static int generic_cra_init(struct crypto_tfm *tfm,
4302 struct iproc_alg_s *cipher_alg)
4303{
4304 struct spu_hw *spu = &iproc_priv.spu;
4305 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4306 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4307
4308 flow_log("%s()\n", __func__);
4309
4310 ctx->alg = cipher_alg;
4311 ctx->cipher = cipher_alg->cipher_info;
4312 ctx->auth = cipher_alg->auth_info;
4313 ctx->auth_first = cipher_alg->auth_first;
4314 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4315 ctx->cipher.mode,
4316 blocksize);
4317 ctx->fallback_cipher = NULL;
4318
4319 ctx->enckeylen = 0;
4320 ctx->authkeylen = 0;
4321
4322 atomic_inc(&iproc_priv.stream_count);
4323 atomic_inc(&iproc_priv.session_count);
4324
4325 return 0;
4326}
4327
4328static int ablkcipher_cra_init(struct crypto_tfm *tfm)
4329{
4330 struct crypto_alg *alg = tfm->__crt_alg;
4331 struct iproc_alg_s *cipher_alg;
4332
4333 flow_log("%s()\n", __func__);
4334
4335 tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s);
4336
4337 cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto);
4338 return generic_cra_init(tfm, cipher_alg);
4339}
4340
4341static int ahash_cra_init(struct crypto_tfm *tfm)
4342{
4343 int err;
4344 struct crypto_alg *alg = tfm->__crt_alg;
4345 struct iproc_alg_s *cipher_alg;
4346
4347 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4348 alg.hash);
4349
4350 err = generic_cra_init(tfm, cipher_alg);
4351 flow_log("%s()\n", __func__);
4352
4353 /*
4354 * export state size has to be < 512 bytes. So don't include msg bufs
4355 * in state size.
4356 */
4357 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4358 sizeof(struct iproc_reqctx_s));
4359
4360 return err;
4361}
4362
4363static int aead_cra_init(struct crypto_aead *aead)
4364{
4365 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4366 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4367 struct crypto_alg *alg = tfm->__crt_alg;
4368 struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4369 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4370 alg.aead);
4371
4372 int err = generic_cra_init(tfm, cipher_alg);
4373
4374 flow_log("%s()\n", __func__);
4375
4376 crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4377 ctx->is_esp = false;
4378 ctx->salt_len = 0;
4379 ctx->salt_offset = 0;
4380
4381 /* random first IV */
4382 get_random_bytes(ctx->iv, MAX_IV_SIZE);
4383 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE);
4384
4385 if (!err) {
4386 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4387 flow_log("%s() creating fallback cipher\n", __func__);
4388
4389 ctx->fallback_cipher =
4390 crypto_alloc_aead(alg->cra_name, 0,
4391 CRYPTO_ALG_ASYNC |
4392 CRYPTO_ALG_NEED_FALLBACK);
4393 if (IS_ERR(ctx->fallback_cipher)) {
4394 pr_err("%s() Error: failed to allocate fallback for %s\n",
4395 __func__, alg->cra_name);
4396 return PTR_ERR(ctx->fallback_cipher);
4397 }
4398 }
4399 }
4400
4401 return err;
4402}
4403
4404static void generic_cra_exit(struct crypto_tfm *tfm)
4405{
4406 atomic_dec(&iproc_priv.session_count);
4407}
4408
4409static void aead_cra_exit(struct crypto_aead *aead)
4410{
4411 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4412 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4413
4414 generic_cra_exit(tfm);
4415
4416 if (ctx->fallback_cipher) {
4417 crypto_free_aead(ctx->fallback_cipher);
4418 ctx->fallback_cipher = NULL;
4419 }
4420}
4421
4422/**
4423 * spu_functions_register() - Specify hardware-specific SPU functions based on
4424 * SPU type read from device tree.
4425 * @dev: device structure
4426 * @spu_type: SPU hardware generation
4427 * @spu_subtype: SPU hardware version
4428 */
4429static void spu_functions_register(struct device *dev,
4430 enum spu_spu_type spu_type,
4431 enum spu_spu_subtype spu_subtype)
4432{
4433 struct spu_hw *spu = &iproc_priv.spu;
4434
4435 if (spu_type == SPU_TYPE_SPUM) {
4436 dev_dbg(dev, "Registering SPUM functions");
4437 spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4438 spu->spu_payload_length = spum_payload_length;
4439 spu->spu_response_hdr_len = spum_response_hdr_len;
4440 spu->spu_hash_pad_len = spum_hash_pad_len;
4441 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4442 spu->spu_assoc_resp_len = spum_assoc_resp_len;
4443 spu->spu_aead_ivlen = spum_aead_ivlen;
4444 spu->spu_hash_type = spum_hash_type;
4445 spu->spu_digest_size = spum_digest_size;
4446 spu->spu_create_request = spum_create_request;
4447 spu->spu_cipher_req_init = spum_cipher_req_init;
4448 spu->spu_cipher_req_finish = spum_cipher_req_finish;
4449 spu->spu_request_pad = spum_request_pad;
4450 spu->spu_tx_status_len = spum_tx_status_len;
4451 spu->spu_rx_status_len = spum_rx_status_len;
4452 spu->spu_status_process = spum_status_process;
4453 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4454 spu->spu_ccm_update_iv = spum_ccm_update_iv;
4455 spu->spu_wordalign_padlen = spum_wordalign_padlen;
4456 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4457 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4458 else
4459 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4460 } else {
4461 dev_dbg(dev, "Registering SPU2 functions");
4462 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4463 spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4464 spu->spu_payload_length = spu2_payload_length;
4465 spu->spu_response_hdr_len = spu2_response_hdr_len;
4466 spu->spu_hash_pad_len = spu2_hash_pad_len;
4467 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4468 spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4469 spu->spu_aead_ivlen = spu2_aead_ivlen;
4470 spu->spu_hash_type = spu2_hash_type;
4471 spu->spu_digest_size = spu2_digest_size;
4472 spu->spu_create_request = spu2_create_request;
4473 spu->spu_cipher_req_init = spu2_cipher_req_init;
4474 spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4475 spu->spu_request_pad = spu2_request_pad;
4476 spu->spu_tx_status_len = spu2_tx_status_len;
4477 spu->spu_rx_status_len = spu2_rx_status_len;
4478 spu->spu_status_process = spu2_status_process;
4479 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4480 spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4481 spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4482 }
4483}
4484
4485/**
4486 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4487 * channel for the SPU being probed.
4488 * @dev: SPU driver device structure
4489 *
4490 * Return: 0 if successful
4491 * < 0 otherwise
4492 */
4493static int spu_mb_init(struct device *dev)
4494{
9166c443 4495 struct mbox_client *mcl = &iproc_priv.mcl;
4496 int err, i;
4497
4498 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4499 sizeof(struct mbox_chan *), GFP_KERNEL);
4500 if (!iproc_priv.mbox)
4501 return -ENOMEM;
9d12ba86
RR
4502
4503 mcl->dev = dev;
4504 mcl->tx_block = false;
4505 mcl->tx_tout = 0;
f0e2ce58 4506 mcl->knows_txdone = true;
9d12ba86
RR
4507 mcl->rx_callback = spu_rx_callback;
4508 mcl->tx_done = NULL;
4509
9166c443 4510 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4511 iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4512 if (IS_ERR(iproc_priv.mbox[i])) {
4513 err = (int)PTR_ERR(iproc_priv.mbox[i]);
4514 dev_err(dev,
4515 "Mbox channel %d request failed with err %d",
4516 i, err);
4517 iproc_priv.mbox[i] = NULL;
4518 goto free_channels;
4519 }
9d12ba86
RR
4520 }
4521
4522 return 0;
9166c443 4523free_channels:
4524 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4525 if (iproc_priv.mbox[i])
4526 mbox_free_channel(iproc_priv.mbox[i]);
4527 }
4528
4529 return err;
9d12ba86
RR
4530}
4531
4532static void spu_mb_release(struct platform_device *pdev)
4533{
4534 int i;
4535
9166c443 4536 for (i = 0; i < iproc_priv.spu.num_chan; i++)
9d12ba86
RR
4537 mbox_free_channel(iproc_priv.mbox[i]);
4538}
4539
4540static void spu_counters_init(void)
4541{
4542 int i;
4543 int j;
4544
4545 atomic_set(&iproc_priv.session_count, 0);
4546 atomic_set(&iproc_priv.stream_count, 0);
9166c443 4547 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
9d12ba86
RR
4548 atomic64_set(&iproc_priv.bytes_in, 0);
4549 atomic64_set(&iproc_priv.bytes_out, 0);
4550 for (i = 0; i < SPU_OP_NUM; i++) {
4551 atomic_set(&iproc_priv.op_counts[i], 0);
4552 atomic_set(&iproc_priv.setkey_cnt[i], 0);
4553 }
4554 for (i = 0; i < CIPHER_ALG_LAST; i++)
4555 for (j = 0; j < CIPHER_MODE_LAST; j++)
4556 atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4557
4558 for (i = 0; i < HASH_ALG_LAST; i++) {
4559 atomic_set(&iproc_priv.hash_cnt[i], 0);
4560 atomic_set(&iproc_priv.hmac_cnt[i], 0);
4561 }
4562 for (i = 0; i < AEAD_TYPE_LAST; i++)
4563 atomic_set(&iproc_priv.aead_cnt[i], 0);
4564
4565 atomic_set(&iproc_priv.mb_no_spc, 0);
4566 atomic_set(&iproc_priv.mb_send_fail, 0);
4567 atomic_set(&iproc_priv.bad_icv, 0);
4568}
4569
4570static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg)
4571{
4572 struct spu_hw *spu = &iproc_priv.spu;
4573 struct crypto_alg *crypto = &driver_alg->alg.crypto;
4574 int err;
4575
4576 /* SPU2 does not support RC4 */
4577 if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4578 (spu->spu_type == SPU_TYPE_SPU2))
4579 return 0;
4580
4581 crypto->cra_module = THIS_MODULE;
4582 crypto->cra_priority = cipher_pri;
4583 crypto->cra_alignmask = 0;
4584 crypto->cra_ctxsize = sizeof(struct iproc_ctx_s);
9d12ba86
RR
4585
4586 crypto->cra_init = ablkcipher_cra_init;
4587 crypto->cra_exit = generic_cra_exit;
4588 crypto->cra_type = &crypto_ablkcipher_type;
4589 crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
4590 CRYPTO_ALG_KERN_DRIVER_ONLY;
4591
4592 crypto->cra_ablkcipher.setkey = ablkcipher_setkey;
4593 crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt;
4594 crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt;
4595
4596 err = crypto_register_alg(crypto);
4597 /* Mark alg as having been registered, if successful */
4598 if (err == 0)
4599 driver_alg->registered = true;
4600 pr_debug(" registered ablkcipher %s\n", crypto->cra_driver_name);
4601 return err;
4602}
4603
4604static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4605{
4606 struct spu_hw *spu = &iproc_priv.spu;
4607 struct ahash_alg *hash = &driver_alg->alg.hash;
4608 int err;
4609
4610 /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4611 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4612 (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4613 (spu->spu_type == SPU_TYPE_SPUM))
4614 return 0;
4615
4616 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4617 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4618 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4619 return 0;
4620
4621 hash->halg.base.cra_module = THIS_MODULE;
4622 hash->halg.base.cra_priority = hash_pri;
4623 hash->halg.base.cra_alignmask = 0;
4624 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4625 hash->halg.base.cra_init = ahash_cra_init;
4626 hash->halg.base.cra_exit = generic_cra_exit;
6a38f622 4627 hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
9d12ba86
RR
4628 hash->halg.statesize = sizeof(struct spu_hash_export_s);
4629
4630 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
9d12ba86
RR
4631 hash->init = ahash_init;
4632 hash->update = ahash_update;
4633 hash->final = ahash_final;
4634 hash->finup = ahash_finup;
4635 hash->digest = ahash_digest;
4f0129d1
RP
4636 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4637 ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4638 (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4639 hash->setkey = ahash_setkey;
4640 }
9d12ba86
RR
4641 } else {
4642 hash->setkey = ahash_hmac_setkey;
4643 hash->init = ahash_hmac_init;
4644 hash->update = ahash_hmac_update;
4645 hash->final = ahash_hmac_final;
4646 hash->finup = ahash_hmac_finup;
4647 hash->digest = ahash_hmac_digest;
4648 }
4649 hash->export = ahash_export;
4650 hash->import = ahash_import;
4651
4652 err = crypto_register_ahash(hash);
4653 /* Mark alg as having been registered, if successful */
4654 if (err == 0)
4655 driver_alg->registered = true;
4656 pr_debug(" registered ahash %s\n",
4657 hash->halg.base.cra_driver_name);
4658 return err;
4659}
4660
4661static int spu_register_aead(struct iproc_alg_s *driver_alg)
4662{
4663 struct aead_alg *aead = &driver_alg->alg.aead;
4664 int err;
4665
4666 aead->base.cra_module = THIS_MODULE;
4667 aead->base.cra_priority = aead_pri;
4668 aead->base.cra_alignmask = 0;
4669 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
9d12ba86 4670
3f4a537a 4671 aead->base.cra_flags |= CRYPTO_ALG_ASYNC;
9d12ba86
RR
4672 /* setkey set in alg initialization */
4673 aead->setauthsize = aead_setauthsize;
4674 aead->encrypt = aead_encrypt;
4675 aead->decrypt = aead_decrypt;
4676 aead->init = aead_cra_init;
4677 aead->exit = aead_cra_exit;
4678
4679 err = crypto_register_aead(aead);
4680 /* Mark alg as having been registered, if successful */
4681 if (err == 0)
4682 driver_alg->registered = true;
4683 pr_debug(" registered aead %s\n", aead->base.cra_driver_name);
4684 return err;
4685}
4686
4687/* register crypto algorithms the device supports */
4688static int spu_algs_register(struct device *dev)
4689{
4690 int i, j;
4691 int err;
4692
4693 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4694 switch (driver_algs[i].type) {
4695 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4696 err = spu_register_ablkcipher(&driver_algs[i]);
4697 break;
4698 case CRYPTO_ALG_TYPE_AHASH:
4699 err = spu_register_ahash(&driver_algs[i]);
4700 break;
4701 case CRYPTO_ALG_TYPE_AEAD:
4702 err = spu_register_aead(&driver_algs[i]);
4703 break;
4704 default:
4705 dev_err(dev,
4706 "iproc-crypto: unknown alg type: %d",
4707 driver_algs[i].type);
4708 err = -EINVAL;
4709 }
4710
4711 if (err) {
4712 dev_err(dev, "alg registration failed with error %d\n",
4713 err);
4714 goto err_algs;
4715 }
4716 }
4717
4718 return 0;
4719
4720err_algs:
4721 for (j = 0; j < i; j++) {
4722 /* Skip any algorithm not registered */
4723 if (!driver_algs[j].registered)
4724 continue;
4725 switch (driver_algs[j].type) {
4726 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4727 crypto_unregister_alg(&driver_algs[j].alg.crypto);
4728 driver_algs[j].registered = false;
4729 break;
4730 case CRYPTO_ALG_TYPE_AHASH:
4731 crypto_unregister_ahash(&driver_algs[j].alg.hash);
4732 driver_algs[j].registered = false;
4733 break;
4734 case CRYPTO_ALG_TYPE_AEAD:
4735 crypto_unregister_aead(&driver_algs[j].alg.aead);
4736 driver_algs[j].registered = false;
4737 break;
4738 }
4739 }
4740 return err;
4741}
4742
4743/* ==================== Kernel Platform API ==================== */
4744
4745static struct spu_type_subtype spum_ns2_types = {
4746 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4747};
4748
4749static struct spu_type_subtype spum_nsp_types = {
4750 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4751};
4752
4753static struct spu_type_subtype spu2_types = {
4754 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4755};
4756
4757static struct spu_type_subtype spu2_v2_types = {
4758 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4759};
4760
4761static const struct of_device_id bcm_spu_dt_ids[] = {
4762 {
4763 .compatible = "brcm,spum-crypto",
4764 .data = &spum_ns2_types,
4765 },
4766 {
4767 .compatible = "brcm,spum-nsp-crypto",
4768 .data = &spum_nsp_types,
4769 },
4770 {
4771 .compatible = "brcm,spu2-crypto",
4772 .data = &spu2_types,
4773 },
4774 {
4775 .compatible = "brcm,spu2-v2-crypto",
4776 .data = &spu2_v2_types,
4777 },
4778 { /* sentinel */ }
4779};
4780
4781MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4782
4783static int spu_dt_read(struct platform_device *pdev)
4784{
4785 struct device *dev = &pdev->dev;
4786 struct spu_hw *spu = &iproc_priv.spu;
4787 struct resource *spu_ctrl_regs;
9d12ba86 4788 const struct spu_type_subtype *matched_spu_type;
9166c443 4789 struct device_node *dn = pdev->dev.of_node;
4790 int err, i;
4791
4792 /* Count number of mailbox channels */
4793 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
9d12ba86 4794
d9fa482e
CL
4795 matched_spu_type = of_device_get_match_data(dev);
4796 if (!matched_spu_type) {
c6090480
GS
4797 dev_err(&pdev->dev, "Failed to match device\n");
4798 return -ENODEV;
4799 }
4800
9166c443 4801 spu->spu_type = matched_spu_type->type;
4802 spu->spu_subtype = matched_spu_type->subtype;
9d12ba86 4803
9166c443 4804 i = 0;
4805 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4806 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
9d12ba86 4807
9166c443 4808 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4809 if (IS_ERR(spu->reg_vbase[i])) {
4810 err = PTR_ERR(spu->reg_vbase[i]);
4811 dev_err(&pdev->dev, "Failed to map registers: %d\n",
4812 err);
4813 spu->reg_vbase[i] = NULL;
4814 return err;
4815 }
9d12ba86 4816 }
9166c443 4817 spu->num_spu = i;
4818 dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
9d12ba86
RR
4819
4820 return 0;
4821}
4822
4823int bcm_spu_probe(struct platform_device *pdev)
4824{
4825 struct device *dev = &pdev->dev;
4826 struct spu_hw *spu = &iproc_priv.spu;
4827 int err = 0;
4828
9166c443 4829 iproc_priv.pdev = pdev;
4830 platform_set_drvdata(iproc_priv.pdev,
9d12ba86
RR
4831 &iproc_priv);
4832
4833 err = spu_dt_read(pdev);
4834 if (err < 0)
4835 goto failure;
4836
4837 err = spu_mb_init(&pdev->dev);
4838 if (err < 0)
4839 goto failure;
4840
9d12ba86
RR
4841 if (spu->spu_type == SPU_TYPE_SPUM)
4842 iproc_priv.bcm_hdr_len = 8;
4843 else if (spu->spu_type == SPU_TYPE_SPU2)
4844 iproc_priv.bcm_hdr_len = 0;
4845
4846 spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype);
4847
4848 spu_counters_init();
4849
4850 spu_setup_debugfs();
4851
4852 err = spu_algs_register(dev);
4853 if (err < 0)
4854 goto fail_reg;
4855
9d12ba86
RR
4856 return 0;
4857
4858fail_reg:
4859 spu_free_debugfs();
4860failure:
4861 spu_mb_release(pdev);
4862 dev_err(dev, "%s failed with error %d.\n", __func__, err);
4863
4864 return err;
4865}
4866
4867int bcm_spu_remove(struct platform_device *pdev)
4868{
4869 int i;
4870 struct device *dev = &pdev->dev;
4871 char *cdn;
4872
4873 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4874 /*
4875 * Not all algorithms were registered, depending on whether
4876 * hardware is SPU or SPU2. So here we make sure to skip
4877 * those algorithms that were not previously registered.
4878 */
4879 if (!driver_algs[i].registered)
4880 continue;
4881
4882 switch (driver_algs[i].type) {
4883 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4884 crypto_unregister_alg(&driver_algs[i].alg.crypto);
4885 dev_dbg(dev, " unregistered cipher %s\n",
4886 driver_algs[i].alg.crypto.cra_driver_name);
4887 driver_algs[i].registered = false;
4888 break;
4889 case CRYPTO_ALG_TYPE_AHASH:
4890 crypto_unregister_ahash(&driver_algs[i].alg.hash);
4891 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4892 dev_dbg(dev, " unregistered hash %s\n", cdn);
4893 driver_algs[i].registered = false;
4894 break;
4895 case CRYPTO_ALG_TYPE_AEAD:
4896 crypto_unregister_aead(&driver_algs[i].alg.aead);
4897 dev_dbg(dev, " unregistered aead %s\n",
4898 driver_algs[i].alg.aead.base.cra_driver_name);
4899 driver_algs[i].registered = false;
4900 break;
4901 }
4902 }
4903 spu_free_debugfs();
4904 spu_mb_release(pdev);
4905 return 0;
4906}
4907
4908/* ===== Kernel Module API ===== */
4909
4910static struct platform_driver bcm_spu_pdriver = {
4911 .driver = {
4912 .name = "brcm-spu-crypto",
4913 .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4914 },
4915 .probe = bcm_spu_probe,
4916 .remove = bcm_spu_remove,
4917};
4918module_platform_driver(bcm_spu_pdriver);
4919
4920MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4921MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4922MODULE_LICENSE("GPL v2");