sched/headers: Prepare to remove the <linux/gfp.h> include from <linux/sched.h>
[linux-2.6-block.git] / drivers / cpuidle / governors / menu.c
CommitLineData
4f86d3a8
LB
1/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
69d25870
AV
5 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
4f86d3a8 8 *
69d25870
AV
9 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
4f86d3a8
LB
11 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
e8db0be1 15#include <linux/pm_qos.h>
4f86d3a8
LB
16#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
69d25870 20#include <linux/sched.h>
4f17722c 21#include <linux/sched/loadavg.h>
5787536e 22#include <linux/math64.h>
9908859a 23#include <linux/cpu.h>
4f86d3a8 24
decd51bb
TT
25/*
26 * Please note when changing the tuning values:
27 * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
28 * a scaling operation multiplication may overflow on 32 bit platforms.
29 * In that case, #define RESOLUTION as ULL to get 64 bit result:
30 * #define RESOLUTION 1024ULL
31 *
32 * The default values do not overflow.
33 */
69d25870 34#define BUCKETS 12
ae779300
MG
35#define INTERVAL_SHIFT 3
36#define INTERVALS (1UL << INTERVAL_SHIFT)
69d25870 37#define RESOLUTION 1024
1f85f87d 38#define DECAY 8
69d25870 39#define MAX_INTERESTING 50000
1f85f87d 40
69d25870
AV
41
42/*
43 * Concepts and ideas behind the menu governor
44 *
45 * For the menu governor, there are 3 decision factors for picking a C
46 * state:
47 * 1) Energy break even point
48 * 2) Performance impact
49 * 3) Latency tolerance (from pmqos infrastructure)
50 * These these three factors are treated independently.
51 *
52 * Energy break even point
53 * -----------------------
54 * C state entry and exit have an energy cost, and a certain amount of time in
55 * the C state is required to actually break even on this cost. CPUIDLE
56 * provides us this duration in the "target_residency" field. So all that we
57 * need is a good prediction of how long we'll be idle. Like the traditional
58 * menu governor, we start with the actual known "next timer event" time.
59 *
60 * Since there are other source of wakeups (interrupts for example) than
61 * the next timer event, this estimation is rather optimistic. To get a
62 * more realistic estimate, a correction factor is applied to the estimate,
63 * that is based on historic behavior. For example, if in the past the actual
64 * duration always was 50% of the next timer tick, the correction factor will
65 * be 0.5.
66 *
67 * menu uses a running average for this correction factor, however it uses a
68 * set of factors, not just a single factor. This stems from the realization
69 * that the ratio is dependent on the order of magnitude of the expected
70 * duration; if we expect 500 milliseconds of idle time the likelihood of
71 * getting an interrupt very early is much higher than if we expect 50 micro
72 * seconds of idle time. A second independent factor that has big impact on
73 * the actual factor is if there is (disk) IO outstanding or not.
74 * (as a special twist, we consider every sleep longer than 50 milliseconds
75 * as perfect; there are no power gains for sleeping longer than this)
76 *
77 * For these two reasons we keep an array of 12 independent factors, that gets
78 * indexed based on the magnitude of the expected duration as well as the
79 * "is IO outstanding" property.
80 *
1f85f87d
AV
81 * Repeatable-interval-detector
82 * ----------------------------
83 * There are some cases where "next timer" is a completely unusable predictor:
84 * Those cases where the interval is fixed, for example due to hardware
85 * interrupt mitigation, but also due to fixed transfer rate devices such as
86 * mice.
87 * For this, we use a different predictor: We track the duration of the last 8
88 * intervals and if the stand deviation of these 8 intervals is below a
89 * threshold value, we use the average of these intervals as prediction.
90 *
69d25870
AV
91 * Limiting Performance Impact
92 * ---------------------------
93 * C states, especially those with large exit latencies, can have a real
20e3341b 94 * noticeable impact on workloads, which is not acceptable for most sysadmins,
69d25870
AV
95 * and in addition, less performance has a power price of its own.
96 *
97 * As a general rule of thumb, menu assumes that the following heuristic
98 * holds:
99 * The busier the system, the less impact of C states is acceptable
100 *
101 * This rule-of-thumb is implemented using a performance-multiplier:
102 * If the exit latency times the performance multiplier is longer than
103 * the predicted duration, the C state is not considered a candidate
104 * for selection due to a too high performance impact. So the higher
105 * this multiplier is, the longer we need to be idle to pick a deep C
106 * state, and thus the less likely a busy CPU will hit such a deep
107 * C state.
108 *
109 * Two factors are used in determing this multiplier:
110 * a value of 10 is added for each point of "per cpu load average" we have.
111 * a value of 5 points is added for each process that is waiting for
112 * IO on this CPU.
113 * (these values are experimentally determined)
114 *
115 * The load average factor gives a longer term (few seconds) input to the
116 * decision, while the iowait value gives a cpu local instantanious input.
117 * The iowait factor may look low, but realize that this is also already
118 * represented in the system load average.
119 *
120 */
4f86d3a8
LB
121
122struct menu_device {
123 int last_state_idx;
672917dc 124 int needs_update;
4f86d3a8 125
5dc2f5a3 126 unsigned int next_timer_us;
51f245b8 127 unsigned int predicted_us;
69d25870 128 unsigned int bucket;
51f245b8 129 unsigned int correction_factor[BUCKETS];
939e33b7 130 unsigned int intervals[INTERVALS];
1f85f87d 131 int interval_ptr;
4f86d3a8
LB
132};
133
69d25870
AV
134
135#define LOAD_INT(x) ((x) >> FSHIFT)
136#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
137
372ba8cb 138static inline int get_loadavg(unsigned long load)
69d25870 139{
372ba8cb 140 return LOAD_INT(load) * 10 + LOAD_FRAC(load) / 10;
69d25870
AV
141}
142
64b4ca5c 143static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
69d25870
AV
144{
145 int bucket = 0;
146
147 /*
148 * We keep two groups of stats; one with no
149 * IO pending, one without.
150 * This allows us to calculate
151 * E(duration)|iowait
152 */
64b4ca5c 153 if (nr_iowaiters)
69d25870
AV
154 bucket = BUCKETS/2;
155
156 if (duration < 10)
157 return bucket;
158 if (duration < 100)
159 return bucket + 1;
160 if (duration < 1000)
161 return bucket + 2;
162 if (duration < 10000)
163 return bucket + 3;
164 if (duration < 100000)
165 return bucket + 4;
166 return bucket + 5;
167}
168
169/*
170 * Return a multiplier for the exit latency that is intended
171 * to take performance requirements into account.
172 * The more performance critical we estimate the system
173 * to be, the higher this multiplier, and thus the higher
174 * the barrier to go to an expensive C state.
175 */
372ba8cb 176static inline int performance_multiplier(unsigned long nr_iowaiters, unsigned long load)
69d25870
AV
177{
178 int mult = 1;
179
180 /* for higher loadavg, we are more reluctant */
181
372ba8cb 182 mult += 2 * get_loadavg(load);
69d25870
AV
183
184 /* for IO wait tasks (per cpu!) we add 5x each */
64b4ca5c 185 mult += 10 * nr_iowaiters;
69d25870
AV
186
187 return mult;
188}
189
4f86d3a8
LB
190static DEFINE_PER_CPU(struct menu_device, menu_devices);
191
46bcfad7 192static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
672917dc 193
1f85f87d
AV
194/*
195 * Try detecting repeating patterns by keeping track of the last 8
196 * intervals, and checking if the standard deviation of that set
197 * of points is below a threshold. If it is... then use the
198 * average of these 8 points as the estimated value.
199 */
e132b9b3 200static unsigned int get_typical_interval(struct menu_device *data)
1f85f87d 201{
4cd46bca 202 int i, divisor;
3b99669b
RV
203 unsigned int max, thresh, avg;
204 uint64_t sum, variance;
0e96d5ad
TT
205
206 thresh = UINT_MAX; /* Discard outliers above this value */
1f85f87d 207
c96ca4fb 208again:
1f85f87d 209
0e96d5ad 210 /* First calculate the average of past intervals */
4cd46bca 211 max = 0;
3b99669b 212 sum = 0;
4cd46bca 213 divisor = 0;
c96ca4fb 214 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 215 unsigned int value = data->intervals[i];
c96ca4fb 216 if (value <= thresh) {
3b99669b 217 sum += value;
c96ca4fb
YS
218 divisor++;
219 if (value > max)
220 max = value;
221 }
222 }
ae779300 223 if (divisor == INTERVALS)
3b99669b 224 avg = sum >> INTERVAL_SHIFT;
ae779300 225 else
3b99669b 226 avg = div_u64(sum, divisor);
c96ca4fb 227
7024b18c
RV
228 /* Then try to determine variance */
229 variance = 0;
c96ca4fb 230 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 231 unsigned int value = data->intervals[i];
c96ca4fb 232 if (value <= thresh) {
3b99669b 233 int64_t diff = (int64_t)value - avg;
7024b18c 234 variance += diff * diff;
c96ca4fb
YS
235 }
236 }
ae779300 237 if (divisor == INTERVALS)
7024b18c 238 variance >>= INTERVAL_SHIFT;
ae779300 239 else
7024b18c 240 do_div(variance, divisor);
ae779300 241
1f85f87d 242 /*
7024b18c
RV
243 * The typical interval is obtained when standard deviation is
244 * small (stddev <= 20 us, variance <= 400 us^2) or standard
245 * deviation is small compared to the average interval (avg >
246 * 6*stddev, avg^2 > 36*variance). The average is smaller than
247 * UINT_MAX aka U32_MAX, so computing its square does not
248 * overflow a u64. We simply reject this candidate average if
249 * the standard deviation is greater than 715 s (which is
250 * rather unlikely).
0d6a7ffa 251 *
330647a9 252 * Use this result only if there is no timer to wake us up sooner.
1f85f87d 253 */
7024b18c 254 if (likely(variance <= U64_MAX/36)) {
3b99669b 255 if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3))
7024b18c 256 || variance <= 400) {
e132b9b3 257 return avg;
0d6a7ffa 258 }
69a37bea 259 }
017099e2
TT
260
261 /*
262 * If we have outliers to the upside in our distribution, discard
263 * those by setting the threshold to exclude these outliers, then
264 * calculate the average and standard deviation again. Once we get
265 * down to the bottom 3/4 of our samples, stop excluding samples.
266 *
267 * This can deal with workloads that have long pauses interspersed
268 * with sporadic activity with a bunch of short pauses.
269 */
270 if ((divisor * 4) <= INTERVALS * 3)
e132b9b3 271 return UINT_MAX;
017099e2
TT
272
273 thresh = max - 1;
274 goto again;
1f85f87d
AV
275}
276
4f86d3a8
LB
277/**
278 * menu_select - selects the next idle state to enter
46bcfad7 279 * @drv: cpuidle driver containing state data
4f86d3a8
LB
280 * @dev: the CPU
281 */
46bcfad7 282static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8 283{
229b6863 284 struct menu_device *data = this_cpu_ptr(&menu_devices);
9908859a 285 struct device *device = get_cpu_device(dev->cpu);
ed77134b 286 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
4f86d3a8 287 int i;
96e95182 288 unsigned int interactivity_req;
e132b9b3 289 unsigned int expected_interval;
372ba8cb 290 unsigned long nr_iowaiters, cpu_load;
9908859a 291 int resume_latency = dev_pm_qos_read_value(device);
69d25870 292
672917dc 293 if (data->needs_update) {
46bcfad7 294 menu_update(drv, dev);
672917dc
CZ
295 data->needs_update = 0;
296 }
297
9908859a
AS
298 /* resume_latency is 0 means no restriction */
299 if (resume_latency && resume_latency < latency_req)
300 latency_req = resume_latency;
301
a2bd9202 302 /* Special case when user has set very strict latency requirement */
69d25870 303 if (unlikely(latency_req == 0))
a2bd9202 304 return 0;
a2bd9202 305
69d25870 306 /* determine the expected residency time, round up */
107d4f46 307 data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length());
69d25870 308
372ba8cb 309 get_iowait_load(&nr_iowaiters, &cpu_load);
64b4ca5c 310 data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
69d25870 311
51f245b8
TT
312 /*
313 * Force the result of multiplication to be 64 bits even if both
314 * operands are 32 bits.
315 * Make sure to round up for half microseconds.
316 */
ee3c86f3 317 data->predicted_us = DIV_ROUND_CLOSEST_ULL((uint64_t)data->next_timer_us *
51f245b8 318 data->correction_factor[data->bucket],
5787536e 319 RESOLUTION * DECAY);
69d25870 320
e132b9b3
RR
321 expected_interval = get_typical_interval(data);
322 expected_interval = min(expected_interval, data->next_timer_us);
96e95182 323
9c4b2867 324 if (CPUIDLE_DRIVER_STATE_START > 0) {
0c313cb2
RW
325 struct cpuidle_state *s = &drv->states[CPUIDLE_DRIVER_STATE_START];
326 unsigned int polling_threshold;
327
9c4b2867
RW
328 /*
329 * We want to default to C1 (hlt), not to busy polling
e132b9b3
RR
330 * unless the timer is happening really really soon, or
331 * C1's exit latency exceeds the user configured limit.
9c4b2867 332 */
0c313cb2
RW
333 polling_threshold = max_t(unsigned int, 20, s->target_residency);
334 if (data->next_timer_us > polling_threshold &&
335 latency_req > s->exit_latency && !s->disabled &&
e132b9b3 336 !dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable)
9c4b2867 337 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
0c313cb2
RW
338 else
339 data->last_state_idx = CPUIDLE_DRIVER_STATE_START - 1;
9c4b2867 340 } else {
69d25870 341 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
9c4b2867 342 }
4f86d3a8 343
e132b9b3
RR
344 /*
345 * Use the lowest expected idle interval to pick the idle state.
346 */
347 data->predicted_us = min(data->predicted_us, expected_interval);
348
349 /*
350 * Use the performance multiplier and the user-configurable
351 * latency_req to determine the maximum exit latency.
352 */
353 interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
354 if (latency_req > interactivity_req)
355 latency_req = interactivity_req;
356
71abbbf8
AL
357 /*
358 * Find the idle state with the lowest power while satisfying
359 * our constraints.
360 */
5bb1729c 361 for (i = data->last_state_idx + 1; i < drv->state_count; i++) {
46bcfad7 362 struct cpuidle_state *s = &drv->states[i];
dc7fd275 363 struct cpuidle_state_usage *su = &dev->states_usage[i];
4f86d3a8 364
cbc9ef02 365 if (s->disabled || su->disable)
3a53396b 366 continue;
14851912 367 if (s->target_residency > data->predicted_us)
8e37e1a2 368 break;
a2bd9202 369 if (s->exit_latency > latency_req)
8e37e1a2 370 break;
71abbbf8 371
8aef33a7 372 data->last_state_idx = i;
4f86d3a8
LB
373 }
374
69d25870 375 return data->last_state_idx;
4f86d3a8
LB
376}
377
378/**
672917dc 379 * menu_reflect - records that data structures need update
4f86d3a8 380 * @dev: the CPU
e978aa7d 381 * @index: the index of actual entered state
4f86d3a8
LB
382 *
383 * NOTE: it's important to be fast here because this operation will add to
384 * the overall exit latency.
385 */
e978aa7d 386static void menu_reflect(struct cpuidle_device *dev, int index)
672917dc 387{
229b6863 388 struct menu_device *data = this_cpu_ptr(&menu_devices);
a802ea96 389
e978aa7d 390 data->last_state_idx = index;
a802ea96 391 data->needs_update = 1;
672917dc
CZ
392}
393
394/**
395 * menu_update - attempts to guess what happened after entry
46bcfad7 396 * @drv: cpuidle driver containing state data
672917dc
CZ
397 * @dev: the CPU
398 */
46bcfad7 399static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8 400{
229b6863 401 struct menu_device *data = this_cpu_ptr(&menu_devices);
4f86d3a8 402 int last_idx = data->last_state_idx;
46bcfad7 403 struct cpuidle_state *target = &drv->states[last_idx];
320eee77 404 unsigned int measured_us;
51f245b8 405 unsigned int new_factor;
4f86d3a8
LB
406
407 /*
61c66d6e 408 * Try to figure out how much time passed between entry to low
409 * power state and occurrence of the wakeup event.
410 *
411 * If the entered idle state didn't support residency measurements,
4108b3d9
LB
412 * we use them anyway if they are short, and if long,
413 * truncate to the whole expected time.
61c66d6e 414 *
415 * Any measured amount of time will include the exit latency.
416 * Since we are interested in when the wakeup begun, not when it
2fba5376 417 * was completed, we must subtract the exit latency. However, if
61c66d6e 418 * the measured amount of time is less than the exit latency,
419 * assume the state was never reached and the exit latency is 0.
4f86d3a8 420 */
69d25870 421
4108b3d9
LB
422 /* measured value */
423 measured_us = cpuidle_get_last_residency(dev);
4f86d3a8 424
4108b3d9 425 /* Deduct exit latency */
efddfd90 426 if (measured_us > 2 * target->exit_latency)
4108b3d9 427 measured_us -= target->exit_latency;
efddfd90
RR
428 else
429 measured_us /= 2;
69d25870 430
4108b3d9
LB
431 /* Make sure our coefficients do not exceed unity */
432 if (measured_us > data->next_timer_us)
433 measured_us = data->next_timer_us;
69d25870 434
51f245b8
TT
435 /* Update our correction ratio */
436 new_factor = data->correction_factor[data->bucket];
437 new_factor -= new_factor / DECAY;
69d25870 438
5dc2f5a3 439 if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
440 new_factor += RESOLUTION * measured_us / data->next_timer_us;
320eee77 441 else
69d25870
AV
442 /*
443 * we were idle so long that we count it as a perfect
444 * prediction
445 */
446 new_factor += RESOLUTION;
320eee77 447
69d25870
AV
448 /*
449 * We don't want 0 as factor; we always want at least
51f245b8
TT
450 * a tiny bit of estimated time. Fortunately, due to rounding,
451 * new_factor will stay nonzero regardless of measured_us values
452 * and the compiler can eliminate this test as long as DECAY > 1.
69d25870 453 */
51f245b8 454 if (DECAY == 1 && unlikely(new_factor == 0))
69d25870 455 new_factor = 1;
320eee77 456
69d25870 457 data->correction_factor[data->bucket] = new_factor;
1f85f87d
AV
458
459 /* update the repeating-pattern data */
61c66d6e 460 data->intervals[data->interval_ptr++] = measured_us;
1f85f87d
AV
461 if (data->interval_ptr >= INTERVALS)
462 data->interval_ptr = 0;
4f86d3a8
LB
463}
464
465/**
466 * menu_enable_device - scans a CPU's states and does setup
46bcfad7 467 * @drv: cpuidle driver
4f86d3a8
LB
468 * @dev: the CPU
469 */
46bcfad7
DD
470static int menu_enable_device(struct cpuidle_driver *drv,
471 struct cpuidle_device *dev)
4f86d3a8
LB
472{
473 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
bed4d597 474 int i;
4f86d3a8
LB
475
476 memset(data, 0, sizeof(struct menu_device));
477
bed4d597
CK
478 /*
479 * if the correction factor is 0 (eg first time init or cpu hotplug
480 * etc), we actually want to start out with a unity factor.
481 */
482 for(i = 0; i < BUCKETS; i++)
483 data->correction_factor[i] = RESOLUTION * DECAY;
484
4f86d3a8
LB
485 return 0;
486}
487
488static struct cpuidle_governor menu_governor = {
489 .name = "menu",
490 .rating = 20,
491 .enable = menu_enable_device,
492 .select = menu_select,
493 .reflect = menu_reflect,
4f86d3a8
LB
494};
495
496/**
497 * init_menu - initializes the governor
498 */
499static int __init init_menu(void)
500{
501 return cpuidle_register_governor(&menu_governor);
502}
503
137b944e 504postcore_initcall(init_menu);