Merge tag 'pm-5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-block.git] / drivers / cpuidle / governors / menu.c
CommitLineData
4f86d3a8
LB
1/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
69d25870
AV
5 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
4f86d3a8 8 *
69d25870
AV
9 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
4f86d3a8
LB
11 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
4f86d3a8
LB
15#include <linux/time.h>
16#include <linux/ktime.h>
17#include <linux/hrtimer.h>
18#include <linux/tick.h>
69d25870 19#include <linux/sched.h>
4f17722c 20#include <linux/sched/loadavg.h>
03441a34 21#include <linux/sched/stat.h>
5787536e 22#include <linux/math64.h>
4f86d3a8 23
decd51bb
TT
24/*
25 * Please note when changing the tuning values:
26 * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
27 * a scaling operation multiplication may overflow on 32 bit platforms.
28 * In that case, #define RESOLUTION as ULL to get 64 bit result:
29 * #define RESOLUTION 1024ULL
30 *
31 * The default values do not overflow.
32 */
69d25870 33#define BUCKETS 12
ae779300
MG
34#define INTERVAL_SHIFT 3
35#define INTERVALS (1UL << INTERVAL_SHIFT)
69d25870 36#define RESOLUTION 1024
1f85f87d 37#define DECAY 8
69d25870 38#define MAX_INTERESTING 50000
1f85f87d 39
69d25870
AV
40
41/*
42 * Concepts and ideas behind the menu governor
43 *
44 * For the menu governor, there are 3 decision factors for picking a C
45 * state:
46 * 1) Energy break even point
47 * 2) Performance impact
48 * 3) Latency tolerance (from pmqos infrastructure)
49 * These these three factors are treated independently.
50 *
51 * Energy break even point
52 * -----------------------
53 * C state entry and exit have an energy cost, and a certain amount of time in
54 * the C state is required to actually break even on this cost. CPUIDLE
55 * provides us this duration in the "target_residency" field. So all that we
56 * need is a good prediction of how long we'll be idle. Like the traditional
57 * menu governor, we start with the actual known "next timer event" time.
58 *
59 * Since there are other source of wakeups (interrupts for example) than
60 * the next timer event, this estimation is rather optimistic. To get a
61 * more realistic estimate, a correction factor is applied to the estimate,
62 * that is based on historic behavior. For example, if in the past the actual
63 * duration always was 50% of the next timer tick, the correction factor will
64 * be 0.5.
65 *
66 * menu uses a running average for this correction factor, however it uses a
67 * set of factors, not just a single factor. This stems from the realization
68 * that the ratio is dependent on the order of magnitude of the expected
69 * duration; if we expect 500 milliseconds of idle time the likelihood of
70 * getting an interrupt very early is much higher than if we expect 50 micro
71 * seconds of idle time. A second independent factor that has big impact on
72 * the actual factor is if there is (disk) IO outstanding or not.
73 * (as a special twist, we consider every sleep longer than 50 milliseconds
74 * as perfect; there are no power gains for sleeping longer than this)
75 *
76 * For these two reasons we keep an array of 12 independent factors, that gets
77 * indexed based on the magnitude of the expected duration as well as the
78 * "is IO outstanding" property.
79 *
1f85f87d
AV
80 * Repeatable-interval-detector
81 * ----------------------------
82 * There are some cases where "next timer" is a completely unusable predictor:
83 * Those cases where the interval is fixed, for example due to hardware
84 * interrupt mitigation, but also due to fixed transfer rate devices such as
85 * mice.
86 * For this, we use a different predictor: We track the duration of the last 8
87 * intervals and if the stand deviation of these 8 intervals is below a
88 * threshold value, we use the average of these intervals as prediction.
89 *
69d25870
AV
90 * Limiting Performance Impact
91 * ---------------------------
92 * C states, especially those with large exit latencies, can have a real
20e3341b 93 * noticeable impact on workloads, which is not acceptable for most sysadmins,
69d25870
AV
94 * and in addition, less performance has a power price of its own.
95 *
96 * As a general rule of thumb, menu assumes that the following heuristic
97 * holds:
98 * The busier the system, the less impact of C states is acceptable
99 *
100 * This rule-of-thumb is implemented using a performance-multiplier:
101 * If the exit latency times the performance multiplier is longer than
102 * the predicted duration, the C state is not considered a candidate
103 * for selection due to a too high performance impact. So the higher
104 * this multiplier is, the longer we need to be idle to pick a deep C
105 * state, and thus the less likely a busy CPU will hit such a deep
106 * C state.
107 *
108 * Two factors are used in determing this multiplier:
109 * a value of 10 is added for each point of "per cpu load average" we have.
110 * a value of 5 points is added for each process that is waiting for
111 * IO on this CPU.
112 * (these values are experimentally determined)
113 *
114 * The load average factor gives a longer term (few seconds) input to the
115 * decision, while the iowait value gives a cpu local instantanious input.
116 * The iowait factor may look low, but realize that this is also already
117 * represented in the system load average.
118 *
119 */
4f86d3a8
LB
120
121struct menu_device {
122 int last_state_idx;
672917dc 123 int needs_update;
45f1ff59 124 int tick_wakeup;
4f86d3a8 125
5dc2f5a3 126 unsigned int next_timer_us;
69d25870 127 unsigned int bucket;
51f245b8 128 unsigned int correction_factor[BUCKETS];
939e33b7 129 unsigned int intervals[INTERVALS];
1f85f87d 130 int interval_ptr;
4f86d3a8
LB
131};
132
64b4ca5c 133static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
69d25870
AV
134{
135 int bucket = 0;
136
137 /*
138 * We keep two groups of stats; one with no
139 * IO pending, one without.
140 * This allows us to calculate
141 * E(duration)|iowait
142 */
64b4ca5c 143 if (nr_iowaiters)
69d25870
AV
144 bucket = BUCKETS/2;
145
146 if (duration < 10)
147 return bucket;
148 if (duration < 100)
149 return bucket + 1;
150 if (duration < 1000)
151 return bucket + 2;
152 if (duration < 10000)
153 return bucket + 3;
154 if (duration < 100000)
155 return bucket + 4;
156 return bucket + 5;
157}
158
159/*
160 * Return a multiplier for the exit latency that is intended
161 * to take performance requirements into account.
162 * The more performance critical we estimate the system
163 * to be, the higher this multiplier, and thus the higher
164 * the barrier to go to an expensive C state.
165 */
a7fe5190 166static inline int performance_multiplier(unsigned long nr_iowaiters)
69d25870 167{
a7fe5190
DL
168 /* for IO wait tasks (per cpu!) we add 10x each */
169 return 1 + 10 * nr_iowaiters;
69d25870
AV
170}
171
4f86d3a8
LB
172static DEFINE_PER_CPU(struct menu_device, menu_devices);
173
46bcfad7 174static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
672917dc 175
1f85f87d
AV
176/*
177 * Try detecting repeating patterns by keeping track of the last 8
178 * intervals, and checking if the standard deviation of that set
179 * of points is below a threshold. If it is... then use the
180 * average of these 8 points as the estimated value.
181 */
f1c8e410
RW
182static unsigned int get_typical_interval(struct menu_device *data,
183 unsigned int predicted_us)
1f85f87d 184{
4cd46bca 185 int i, divisor;
f1c8e410 186 unsigned int min, max, thresh, avg;
3b99669b 187 uint64_t sum, variance;
0e96d5ad
TT
188
189 thresh = UINT_MAX; /* Discard outliers above this value */
1f85f87d 190
c96ca4fb 191again:
1f85f87d 192
0e96d5ad 193 /* First calculate the average of past intervals */
f1c8e410 194 min = UINT_MAX;
4cd46bca 195 max = 0;
3b99669b 196 sum = 0;
4cd46bca 197 divisor = 0;
c96ca4fb 198 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 199 unsigned int value = data->intervals[i];
c96ca4fb 200 if (value <= thresh) {
3b99669b 201 sum += value;
c96ca4fb
YS
202 divisor++;
203 if (value > max)
204 max = value;
f1c8e410
RW
205
206 if (value < min)
207 min = value;
c96ca4fb
YS
208 }
209 }
f1c8e410
RW
210
211 /*
212 * If the result of the computation is going to be discarded anyway,
213 * avoid the computation altogether.
214 */
215 if (min >= predicted_us)
216 return UINT_MAX;
217
ae779300 218 if (divisor == INTERVALS)
3b99669b 219 avg = sum >> INTERVAL_SHIFT;
ae779300 220 else
3b99669b 221 avg = div_u64(sum, divisor);
c96ca4fb 222
7024b18c
RV
223 /* Then try to determine variance */
224 variance = 0;
c96ca4fb 225 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 226 unsigned int value = data->intervals[i];
c96ca4fb 227 if (value <= thresh) {
3b99669b 228 int64_t diff = (int64_t)value - avg;
7024b18c 229 variance += diff * diff;
c96ca4fb
YS
230 }
231 }
ae779300 232 if (divisor == INTERVALS)
7024b18c 233 variance >>= INTERVAL_SHIFT;
ae779300 234 else
7024b18c 235 do_div(variance, divisor);
ae779300 236
1f85f87d 237 /*
7024b18c
RV
238 * The typical interval is obtained when standard deviation is
239 * small (stddev <= 20 us, variance <= 400 us^2) or standard
240 * deviation is small compared to the average interval (avg >
241 * 6*stddev, avg^2 > 36*variance). The average is smaller than
242 * UINT_MAX aka U32_MAX, so computing its square does not
243 * overflow a u64. We simply reject this candidate average if
244 * the standard deviation is greater than 715 s (which is
245 * rather unlikely).
0d6a7ffa 246 *
330647a9 247 * Use this result only if there is no timer to wake us up sooner.
1f85f87d 248 */
7024b18c 249 if (likely(variance <= U64_MAX/36)) {
3b99669b 250 if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3))
7024b18c 251 || variance <= 400) {
e132b9b3 252 return avg;
0d6a7ffa 253 }
69a37bea 254 }
017099e2
TT
255
256 /*
257 * If we have outliers to the upside in our distribution, discard
258 * those by setting the threshold to exclude these outliers, then
259 * calculate the average and standard deviation again. Once we get
260 * down to the bottom 3/4 of our samples, stop excluding samples.
261 *
262 * This can deal with workloads that have long pauses interspersed
263 * with sporadic activity with a bunch of short pauses.
264 */
265 if ((divisor * 4) <= INTERVALS * 3)
e132b9b3 266 return UINT_MAX;
017099e2
TT
267
268 thresh = max - 1;
269 goto again;
1f85f87d
AV
270}
271
4f86d3a8
LB
272/**
273 * menu_select - selects the next idle state to enter
46bcfad7 274 * @drv: cpuidle driver containing state data
4f86d3a8 275 * @dev: the CPU
45f1ff59 276 * @stop_tick: indication on whether or not to stop the tick
4f86d3a8 277 */
45f1ff59
RW
278static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
279 bool *stop_tick)
4f86d3a8 280{
229b6863 281 struct menu_device *data = this_cpu_ptr(&menu_devices);
0fc784fb 282 int latency_req = cpuidle_governor_latency_req(dev->cpu);
4f86d3a8 283 int i;
3ed09c94 284 int idx;
96e95182 285 unsigned int interactivity_req;
03dba278 286 unsigned int predicted_us;
a7fe5190 287 unsigned long nr_iowaiters;
296bb1e5 288 ktime_t delta_next;
69d25870 289
672917dc 290 if (data->needs_update) {
46bcfad7 291 menu_update(drv, dev);
672917dc
CZ
292 data->needs_update = 0;
293 }
294
69d25870 295 /* determine the expected residency time, round up */
296bb1e5 296 data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length(&delta_next));
69d25870 297
a7fe5190 298 nr_iowaiters = nr_iowait_cpu(dev->cpu);
64b4ca5c 299 data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
69d25870 300
53812cdc 301 if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
8b007ebe
RW
302 ((data->next_timer_us < drv->states[1].target_residency ||
303 latency_req < drv->states[1].exit_latency) &&
304 !drv->states[0].disabled && !dev->states_usage[0].disable)) {
305 /*
306 * In this case state[0] will be used no matter what, so return
307 * it right away and keep the tick running.
308 */
309 *stop_tick = false;
310 return 0;
311 }
312
51f245b8
TT
313 /*
314 * Force the result of multiplication to be 64 bits even if both
315 * operands are 32 bits.
316 * Make sure to round up for half microseconds.
317 */
03dba278 318 predicted_us = DIV_ROUND_CLOSEST_ULL((uint64_t)data->next_timer_us *
51f245b8 319 data->correction_factor[data->bucket],
5787536e 320 RESOLUTION * DECAY);
e132b9b3
RR
321 /*
322 * Use the lowest expected idle interval to pick the idle state.
323 */
f1c8e410 324 predicted_us = min(predicted_us, get_typical_interval(data, predicted_us));
e132b9b3 325
87c9fe6e
RW
326 if (tick_nohz_tick_stopped()) {
327 /*
328 * If the tick is already stopped, the cost of possible short
329 * idle duration misprediction is much higher, because the CPU
330 * may be stuck in a shallow idle state for a long time as a
5ef499cd
RW
331 * result of it. In that case say we might mispredict and use
332 * the known time till the closest timer event for the idle
333 * state selection.
87c9fe6e 334 */
03dba278
RW
335 if (predicted_us < TICK_USEC)
336 predicted_us = ktime_to_us(delta_next);
87c9fe6e
RW
337 } else {
338 /*
339 * Use the performance multiplier and the user-configurable
340 * latency_req to determine the maximum exit latency.
341 */
a7fe5190 342 interactivity_req = predicted_us / performance_multiplier(nr_iowaiters);
87c9fe6e
RW
343 if (latency_req > interactivity_req)
344 latency_req = interactivity_req;
345 }
e132b9b3 346
71abbbf8
AL
347 /*
348 * Find the idle state with the lowest power while satisfying
349 * our constraints.
350 */
3ed09c94 351 idx = -1;
96c3d11d 352 for (i = 0; i < drv->state_count; i++) {
46bcfad7 353 struct cpuidle_state *s = &drv->states[i];
dc7fd275 354 struct cpuidle_state_usage *su = &dev->states_usage[i];
4f86d3a8 355
cbc9ef02 356 if (s->disabled || su->disable)
3a53396b 357 continue;
96c3d11d 358
3ed09c94
NP
359 if (idx == -1)
360 idx = i; /* first enabled state */
96c3d11d 361
03dba278 362 if (s->target_residency > predicted_us) {
96c3d11d
RW
363 /*
364 * Use a physical idle state, not busy polling, unless
bde091ec 365 * a timer is going to trigger soon enough.
96c3d11d
RW
366 */
367 if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
bde091ec
RW
368 s->exit_latency <= latency_req &&
369 s->target_residency <= data->next_timer_us) {
370 predicted_us = s->target_residency;
96c3d11d
RW
371 idx = i;
372 break;
373 }
03dba278 374 if (predicted_us < TICK_USEC)
5ef499cd
RW
375 break;
376
757ab15c
RW
377 if (!tick_nohz_tick_stopped()) {
378 /*
379 * If the state selected so far is shallow,
380 * waking up early won't hurt, so retain the
381 * tick in that case and let the governor run
382 * again in the next iteration of the loop.
383 */
03dba278 384 predicted_us = drv->states[idx].target_residency;
757ab15c
RW
385 break;
386 }
387
5ef499cd
RW
388 /*
389 * If the state selected so far is shallow and this
390 * state's target residency matches the time till the
391 * closest timer event, select this one to avoid getting
392 * stuck in the shallow one for too long.
393 */
394 if (drv->states[idx].target_residency < TICK_USEC &&
395 s->target_residency <= ktime_to_us(delta_next))
396 idx = i;
397
eb40a380 398 return idx;
5ef499cd 399 }
45f1ff59
RW
400 if (s->exit_latency > latency_req) {
401 /*
402 * If we break out of the loop for latency reasons, use
403 * the target residency of the selected state as the
404 * expected idle duration so that the tick is retained
405 * as long as that target residency is low enough.
406 */
03dba278 407 predicted_us = drv->states[idx].target_residency;
8e37e1a2 408 break;
45f1ff59 409 }
3ed09c94 410 idx = i;
4f86d3a8
LB
411 }
412
3ed09c94
NP
413 if (idx == -1)
414 idx = 0; /* No states enabled. Must use 0. */
415
45f1ff59
RW
416 /*
417 * Don't stop the tick if the selected state is a polling one or if the
418 * expected idle duration is shorter than the tick period length.
419 */
5ef499cd 420 if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
03dba278 421 predicted_us < TICK_USEC) && !tick_nohz_tick_stopped()) {
296bb1e5
RW
422 unsigned int delta_next_us = ktime_to_us(delta_next);
423
45f1ff59
RW
424 *stop_tick = false;
425
5ef499cd 426 if (idx > 0 && drv->states[idx].target_residency > delta_next_us) {
296bb1e5
RW
427 /*
428 * The tick is not going to be stopped and the target
429 * residency of the state to be returned is not within
430 * the time until the next timer event including the
431 * tick, so try to correct that.
432 */
433 for (i = idx - 1; i >= 0; i--) {
f390c5eb
RW
434 if (drv->states[i].disabled ||
435 dev->states_usage[i].disable)
296bb1e5
RW
436 continue;
437
438 idx = i;
439 if (drv->states[i].target_residency <= delta_next_us)
440 break;
441 }
442 }
443 }
444
eb40a380 445 return idx;
4f86d3a8
LB
446}
447
448/**
672917dc 449 * menu_reflect - records that data structures need update
4f86d3a8 450 * @dev: the CPU
e978aa7d 451 * @index: the index of actual entered state
4f86d3a8
LB
452 *
453 * NOTE: it's important to be fast here because this operation will add to
454 * the overall exit latency.
455 */
e978aa7d 456static void menu_reflect(struct cpuidle_device *dev, int index)
672917dc 457{
229b6863 458 struct menu_device *data = this_cpu_ptr(&menu_devices);
a802ea96 459
e978aa7d 460 data->last_state_idx = index;
a802ea96 461 data->needs_update = 1;
45f1ff59 462 data->tick_wakeup = tick_nohz_idle_got_tick();
672917dc
CZ
463}
464
465/**
466 * menu_update - attempts to guess what happened after entry
46bcfad7 467 * @drv: cpuidle driver containing state data
672917dc
CZ
468 * @dev: the CPU
469 */
46bcfad7 470static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8 471{
229b6863 472 struct menu_device *data = this_cpu_ptr(&menu_devices);
4f86d3a8 473 int last_idx = data->last_state_idx;
46bcfad7 474 struct cpuidle_state *target = &drv->states[last_idx];
320eee77 475 unsigned int measured_us;
51f245b8 476 unsigned int new_factor;
4f86d3a8
LB
477
478 /*
61c66d6e 479 * Try to figure out how much time passed between entry to low
480 * power state and occurrence of the wakeup event.
481 *
482 * If the entered idle state didn't support residency measurements,
4108b3d9
LB
483 * we use them anyway if they are short, and if long,
484 * truncate to the whole expected time.
61c66d6e 485 *
486 * Any measured amount of time will include the exit latency.
487 * Since we are interested in when the wakeup begun, not when it
2fba5376 488 * was completed, we must subtract the exit latency. However, if
61c66d6e 489 * the measured amount of time is less than the exit latency,
490 * assume the state was never reached and the exit latency is 0.
4f86d3a8 491 */
69d25870 492
45f1ff59
RW
493 if (data->tick_wakeup && data->next_timer_us > TICK_USEC) {
494 /*
495 * The nohz code said that there wouldn't be any events within
496 * the tick boundary (if the tick was stopped), but the idle
497 * duration predictor had a differing opinion. Since the CPU
498 * was woken up by a tick (that wasn't stopped after all), the
499 * predictor was not quite right, so assume that the CPU could
500 * have been idle long (but not forever) to help the idle
501 * duration predictor do a better job next time.
502 */
503 measured_us = 9 * MAX_INTERESTING / 10;
5f26bdce
RW
504 } else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
505 dev->poll_time_limit) {
506 /*
507 * The CPU exited the "polling" state due to a time limit, so
508 * the idle duration prediction leading to the selection of that
509 * state was inaccurate. If a better prediction had been made,
510 * the CPU might have been woken up from idle by the next timer.
511 * Assume that to be the case.
512 */
513 measured_us = data->next_timer_us;
45f1ff59
RW
514 } else {
515 /* measured value */
6a5f95b5 516 measured_us = dev->last_residency;
45f1ff59
RW
517
518 /* Deduct exit latency */
519 if (measured_us > 2 * target->exit_latency)
520 measured_us -= target->exit_latency;
521 else
522 measured_us /= 2;
523 }
69d25870 524
4108b3d9
LB
525 /* Make sure our coefficients do not exceed unity */
526 if (measured_us > data->next_timer_us)
527 measured_us = data->next_timer_us;
69d25870 528
51f245b8
TT
529 /* Update our correction ratio */
530 new_factor = data->correction_factor[data->bucket];
531 new_factor -= new_factor / DECAY;
69d25870 532
5dc2f5a3 533 if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
534 new_factor += RESOLUTION * measured_us / data->next_timer_us;
320eee77 535 else
69d25870
AV
536 /*
537 * we were idle so long that we count it as a perfect
538 * prediction
539 */
540 new_factor += RESOLUTION;
320eee77 541
69d25870
AV
542 /*
543 * We don't want 0 as factor; we always want at least
51f245b8
TT
544 * a tiny bit of estimated time. Fortunately, due to rounding,
545 * new_factor will stay nonzero regardless of measured_us values
546 * and the compiler can eliminate this test as long as DECAY > 1.
69d25870 547 */
51f245b8 548 if (DECAY == 1 && unlikely(new_factor == 0))
69d25870 549 new_factor = 1;
320eee77 550
69d25870 551 data->correction_factor[data->bucket] = new_factor;
1f85f87d
AV
552
553 /* update the repeating-pattern data */
61c66d6e 554 data->intervals[data->interval_ptr++] = measured_us;
1f85f87d
AV
555 if (data->interval_ptr >= INTERVALS)
556 data->interval_ptr = 0;
4f86d3a8
LB
557}
558
559/**
560 * menu_enable_device - scans a CPU's states and does setup
46bcfad7 561 * @drv: cpuidle driver
4f86d3a8
LB
562 * @dev: the CPU
563 */
46bcfad7
DD
564static int menu_enable_device(struct cpuidle_driver *drv,
565 struct cpuidle_device *dev)
4f86d3a8
LB
566{
567 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
bed4d597 568 int i;
4f86d3a8
LB
569
570 memset(data, 0, sizeof(struct menu_device));
571
bed4d597
CK
572 /*
573 * if the correction factor is 0 (eg first time init or cpu hotplug
574 * etc), we actually want to start out with a unity factor.
575 */
576 for(i = 0; i < BUCKETS; i++)
577 data->correction_factor[i] = RESOLUTION * DECAY;
578
4f86d3a8
LB
579 return 0;
580}
581
582static struct cpuidle_governor menu_governor = {
583 .name = "menu",
584 .rating = 20,
585 .enable = menu_enable_device,
586 .select = menu_select,
587 .reflect = menu_reflect,
4f86d3a8
LB
588};
589
590/**
591 * init_menu - initializes the governor
592 */
593static int __init init_menu(void)
594{
595 return cpuidle_register_governor(&menu_governor);
596}
597
137b944e 598postcore_initcall(init_menu);