cpuidle/menu: stop seeking deeper idle if current state is deep enough
[linux-2.6-block.git] / drivers / cpuidle / governors / menu.c
CommitLineData
4f86d3a8
LB
1/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
69d25870
AV
5 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
4f86d3a8 8 *
69d25870
AV
9 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
4f86d3a8
LB
11 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
e8db0be1 15#include <linux/pm_qos.h>
4f86d3a8
LB
16#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
69d25870 20#include <linux/sched.h>
5787536e 21#include <linux/math64.h>
4f86d3a8 22
decd51bb
TT
23/*
24 * Please note when changing the tuning values:
25 * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
26 * a scaling operation multiplication may overflow on 32 bit platforms.
27 * In that case, #define RESOLUTION as ULL to get 64 bit result:
28 * #define RESOLUTION 1024ULL
29 *
30 * The default values do not overflow.
31 */
69d25870 32#define BUCKETS 12
ae779300
MG
33#define INTERVAL_SHIFT 3
34#define INTERVALS (1UL << INTERVAL_SHIFT)
69d25870 35#define RESOLUTION 1024
1f85f87d 36#define DECAY 8
69d25870 37#define MAX_INTERESTING 50000
1f85f87d 38
69d25870
AV
39
40/*
41 * Concepts and ideas behind the menu governor
42 *
43 * For the menu governor, there are 3 decision factors for picking a C
44 * state:
45 * 1) Energy break even point
46 * 2) Performance impact
47 * 3) Latency tolerance (from pmqos infrastructure)
48 * These these three factors are treated independently.
49 *
50 * Energy break even point
51 * -----------------------
52 * C state entry and exit have an energy cost, and a certain amount of time in
53 * the C state is required to actually break even on this cost. CPUIDLE
54 * provides us this duration in the "target_residency" field. So all that we
55 * need is a good prediction of how long we'll be idle. Like the traditional
56 * menu governor, we start with the actual known "next timer event" time.
57 *
58 * Since there are other source of wakeups (interrupts for example) than
59 * the next timer event, this estimation is rather optimistic. To get a
60 * more realistic estimate, a correction factor is applied to the estimate,
61 * that is based on historic behavior. For example, if in the past the actual
62 * duration always was 50% of the next timer tick, the correction factor will
63 * be 0.5.
64 *
65 * menu uses a running average for this correction factor, however it uses a
66 * set of factors, not just a single factor. This stems from the realization
67 * that the ratio is dependent on the order of magnitude of the expected
68 * duration; if we expect 500 milliseconds of idle time the likelihood of
69 * getting an interrupt very early is much higher than if we expect 50 micro
70 * seconds of idle time. A second independent factor that has big impact on
71 * the actual factor is if there is (disk) IO outstanding or not.
72 * (as a special twist, we consider every sleep longer than 50 milliseconds
73 * as perfect; there are no power gains for sleeping longer than this)
74 *
75 * For these two reasons we keep an array of 12 independent factors, that gets
76 * indexed based on the magnitude of the expected duration as well as the
77 * "is IO outstanding" property.
78 *
1f85f87d
AV
79 * Repeatable-interval-detector
80 * ----------------------------
81 * There are some cases where "next timer" is a completely unusable predictor:
82 * Those cases where the interval is fixed, for example due to hardware
83 * interrupt mitigation, but also due to fixed transfer rate devices such as
84 * mice.
85 * For this, we use a different predictor: We track the duration of the last 8
86 * intervals and if the stand deviation of these 8 intervals is below a
87 * threshold value, we use the average of these intervals as prediction.
88 *
69d25870
AV
89 * Limiting Performance Impact
90 * ---------------------------
91 * C states, especially those with large exit latencies, can have a real
20e3341b 92 * noticeable impact on workloads, which is not acceptable for most sysadmins,
69d25870
AV
93 * and in addition, less performance has a power price of its own.
94 *
95 * As a general rule of thumb, menu assumes that the following heuristic
96 * holds:
97 * The busier the system, the less impact of C states is acceptable
98 *
99 * This rule-of-thumb is implemented using a performance-multiplier:
100 * If the exit latency times the performance multiplier is longer than
101 * the predicted duration, the C state is not considered a candidate
102 * for selection due to a too high performance impact. So the higher
103 * this multiplier is, the longer we need to be idle to pick a deep C
104 * state, and thus the less likely a busy CPU will hit such a deep
105 * C state.
106 *
107 * Two factors are used in determing this multiplier:
108 * a value of 10 is added for each point of "per cpu load average" we have.
109 * a value of 5 points is added for each process that is waiting for
110 * IO on this CPU.
111 * (these values are experimentally determined)
112 *
113 * The load average factor gives a longer term (few seconds) input to the
114 * decision, while the iowait value gives a cpu local instantanious input.
115 * The iowait factor may look low, but realize that this is also already
116 * represented in the system load average.
117 *
118 */
4f86d3a8
LB
119
120struct menu_device {
121 int last_state_idx;
672917dc 122 int needs_update;
4f86d3a8 123
5dc2f5a3 124 unsigned int next_timer_us;
51f245b8 125 unsigned int predicted_us;
69d25870 126 unsigned int bucket;
51f245b8 127 unsigned int correction_factor[BUCKETS];
939e33b7 128 unsigned int intervals[INTERVALS];
1f85f87d 129 int interval_ptr;
4f86d3a8
LB
130};
131
69d25870
AV
132
133#define LOAD_INT(x) ((x) >> FSHIFT)
134#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
135
372ba8cb 136static inline int get_loadavg(unsigned long load)
69d25870 137{
372ba8cb 138 return LOAD_INT(load) * 10 + LOAD_FRAC(load) / 10;
69d25870
AV
139}
140
64b4ca5c 141static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
69d25870
AV
142{
143 int bucket = 0;
144
145 /*
146 * We keep two groups of stats; one with no
147 * IO pending, one without.
148 * This allows us to calculate
149 * E(duration)|iowait
150 */
64b4ca5c 151 if (nr_iowaiters)
69d25870
AV
152 bucket = BUCKETS/2;
153
154 if (duration < 10)
155 return bucket;
156 if (duration < 100)
157 return bucket + 1;
158 if (duration < 1000)
159 return bucket + 2;
160 if (duration < 10000)
161 return bucket + 3;
162 if (duration < 100000)
163 return bucket + 4;
164 return bucket + 5;
165}
166
167/*
168 * Return a multiplier for the exit latency that is intended
169 * to take performance requirements into account.
170 * The more performance critical we estimate the system
171 * to be, the higher this multiplier, and thus the higher
172 * the barrier to go to an expensive C state.
173 */
372ba8cb 174static inline int performance_multiplier(unsigned long nr_iowaiters, unsigned long load)
69d25870
AV
175{
176 int mult = 1;
177
178 /* for higher loadavg, we are more reluctant */
179
372ba8cb 180 mult += 2 * get_loadavg(load);
69d25870
AV
181
182 /* for IO wait tasks (per cpu!) we add 5x each */
64b4ca5c 183 mult += 10 * nr_iowaiters;
69d25870
AV
184
185 return mult;
186}
187
4f86d3a8
LB
188static DEFINE_PER_CPU(struct menu_device, menu_devices);
189
46bcfad7 190static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
672917dc 191
1f85f87d
AV
192/*
193 * Try detecting repeating patterns by keeping track of the last 8
194 * intervals, and checking if the standard deviation of that set
195 * of points is below a threshold. If it is... then use the
196 * average of these 8 points as the estimated value.
197 */
e132b9b3 198static unsigned int get_typical_interval(struct menu_device *data)
1f85f87d 199{
4cd46bca 200 int i, divisor;
3b99669b
RV
201 unsigned int max, thresh, avg;
202 uint64_t sum, variance;
0e96d5ad
TT
203
204 thresh = UINT_MAX; /* Discard outliers above this value */
1f85f87d 205
c96ca4fb 206again:
1f85f87d 207
0e96d5ad 208 /* First calculate the average of past intervals */
4cd46bca 209 max = 0;
3b99669b 210 sum = 0;
4cd46bca 211 divisor = 0;
c96ca4fb 212 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 213 unsigned int value = data->intervals[i];
c96ca4fb 214 if (value <= thresh) {
3b99669b 215 sum += value;
c96ca4fb
YS
216 divisor++;
217 if (value > max)
218 max = value;
219 }
220 }
ae779300 221 if (divisor == INTERVALS)
3b99669b 222 avg = sum >> INTERVAL_SHIFT;
ae779300 223 else
3b99669b 224 avg = div_u64(sum, divisor);
c96ca4fb 225
7024b18c
RV
226 /* Then try to determine variance */
227 variance = 0;
c96ca4fb 228 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 229 unsigned int value = data->intervals[i];
c96ca4fb 230 if (value <= thresh) {
3b99669b 231 int64_t diff = (int64_t)value - avg;
7024b18c 232 variance += diff * diff;
c96ca4fb
YS
233 }
234 }
ae779300 235 if (divisor == INTERVALS)
7024b18c 236 variance >>= INTERVAL_SHIFT;
ae779300 237 else
7024b18c 238 do_div(variance, divisor);
ae779300 239
1f85f87d 240 /*
7024b18c
RV
241 * The typical interval is obtained when standard deviation is
242 * small (stddev <= 20 us, variance <= 400 us^2) or standard
243 * deviation is small compared to the average interval (avg >
244 * 6*stddev, avg^2 > 36*variance). The average is smaller than
245 * UINT_MAX aka U32_MAX, so computing its square does not
246 * overflow a u64. We simply reject this candidate average if
247 * the standard deviation is greater than 715 s (which is
248 * rather unlikely).
0d6a7ffa 249 *
330647a9 250 * Use this result only if there is no timer to wake us up sooner.
1f85f87d 251 */
7024b18c 252 if (likely(variance <= U64_MAX/36)) {
3b99669b 253 if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3))
7024b18c 254 || variance <= 400) {
e132b9b3 255 return avg;
0d6a7ffa 256 }
69a37bea 257 }
017099e2
TT
258
259 /*
260 * If we have outliers to the upside in our distribution, discard
261 * those by setting the threshold to exclude these outliers, then
262 * calculate the average and standard deviation again. Once we get
263 * down to the bottom 3/4 of our samples, stop excluding samples.
264 *
265 * This can deal with workloads that have long pauses interspersed
266 * with sporadic activity with a bunch of short pauses.
267 */
268 if ((divisor * 4) <= INTERVALS * 3)
e132b9b3 269 return UINT_MAX;
017099e2
TT
270
271 thresh = max - 1;
272 goto again;
1f85f87d
AV
273}
274
4f86d3a8
LB
275/**
276 * menu_select - selects the next idle state to enter
46bcfad7 277 * @drv: cpuidle driver containing state data
4f86d3a8
LB
278 * @dev: the CPU
279 */
46bcfad7 280static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8 281{
229b6863 282 struct menu_device *data = this_cpu_ptr(&menu_devices);
ed77134b 283 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
4f86d3a8 284 int i;
96e95182 285 unsigned int interactivity_req;
e132b9b3 286 unsigned int expected_interval;
372ba8cb 287 unsigned long nr_iowaiters, cpu_load;
69d25870 288
672917dc 289 if (data->needs_update) {
46bcfad7 290 menu_update(drv, dev);
672917dc
CZ
291 data->needs_update = 0;
292 }
293
a2bd9202 294 /* Special case when user has set very strict latency requirement */
69d25870 295 if (unlikely(latency_req == 0))
a2bd9202 296 return 0;
a2bd9202 297
69d25870 298 /* determine the expected residency time, round up */
107d4f46 299 data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length());
69d25870 300
372ba8cb 301 get_iowait_load(&nr_iowaiters, &cpu_load);
64b4ca5c 302 data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
69d25870 303
51f245b8
TT
304 /*
305 * Force the result of multiplication to be 64 bits even if both
306 * operands are 32 bits.
307 * Make sure to round up for half microseconds.
308 */
ee3c86f3 309 data->predicted_us = DIV_ROUND_CLOSEST_ULL((uint64_t)data->next_timer_us *
51f245b8 310 data->correction_factor[data->bucket],
5787536e 311 RESOLUTION * DECAY);
69d25870 312
e132b9b3
RR
313 expected_interval = get_typical_interval(data);
314 expected_interval = min(expected_interval, data->next_timer_us);
96e95182 315
9c4b2867 316 if (CPUIDLE_DRIVER_STATE_START > 0) {
0c313cb2
RW
317 struct cpuidle_state *s = &drv->states[CPUIDLE_DRIVER_STATE_START];
318 unsigned int polling_threshold;
319
9c4b2867
RW
320 /*
321 * We want to default to C1 (hlt), not to busy polling
e132b9b3
RR
322 * unless the timer is happening really really soon, or
323 * C1's exit latency exceeds the user configured limit.
9c4b2867 324 */
0c313cb2
RW
325 polling_threshold = max_t(unsigned int, 20, s->target_residency);
326 if (data->next_timer_us > polling_threshold &&
327 latency_req > s->exit_latency && !s->disabled &&
e132b9b3 328 !dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable)
9c4b2867 329 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
0c313cb2
RW
330 else
331 data->last_state_idx = CPUIDLE_DRIVER_STATE_START - 1;
9c4b2867 332 } else {
69d25870 333 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
9c4b2867 334 }
4f86d3a8 335
e132b9b3
RR
336 /*
337 * Use the lowest expected idle interval to pick the idle state.
338 */
339 data->predicted_us = min(data->predicted_us, expected_interval);
340
341 /*
342 * Use the performance multiplier and the user-configurable
343 * latency_req to determine the maximum exit latency.
344 */
345 interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
346 if (latency_req > interactivity_req)
347 latency_req = interactivity_req;
348
71abbbf8
AL
349 /*
350 * Find the idle state with the lowest power while satisfying
351 * our constraints.
352 */
5bb1729c 353 for (i = data->last_state_idx + 1; i < drv->state_count; i++) {
46bcfad7 354 struct cpuidle_state *s = &drv->states[i];
dc7fd275 355 struct cpuidle_state_usage *su = &dev->states_usage[i];
4f86d3a8 356
cbc9ef02 357 if (s->disabled || su->disable)
3a53396b 358 continue;
14851912 359 if (s->target_residency > data->predicted_us)
8e37e1a2 360 break;
a2bd9202 361 if (s->exit_latency > latency_req)
8e37e1a2 362 break;
71abbbf8 363
8aef33a7 364 data->last_state_idx = i;
4f86d3a8
LB
365 }
366
69d25870 367 return data->last_state_idx;
4f86d3a8
LB
368}
369
370/**
672917dc 371 * menu_reflect - records that data structures need update
4f86d3a8 372 * @dev: the CPU
e978aa7d 373 * @index: the index of actual entered state
4f86d3a8
LB
374 *
375 * NOTE: it's important to be fast here because this operation will add to
376 * the overall exit latency.
377 */
e978aa7d 378static void menu_reflect(struct cpuidle_device *dev, int index)
672917dc 379{
229b6863 380 struct menu_device *data = this_cpu_ptr(&menu_devices);
a802ea96 381
e978aa7d 382 data->last_state_idx = index;
a802ea96 383 data->needs_update = 1;
672917dc
CZ
384}
385
386/**
387 * menu_update - attempts to guess what happened after entry
46bcfad7 388 * @drv: cpuidle driver containing state data
672917dc
CZ
389 * @dev: the CPU
390 */
46bcfad7 391static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8 392{
229b6863 393 struct menu_device *data = this_cpu_ptr(&menu_devices);
4f86d3a8 394 int last_idx = data->last_state_idx;
46bcfad7 395 struct cpuidle_state *target = &drv->states[last_idx];
320eee77 396 unsigned int measured_us;
51f245b8 397 unsigned int new_factor;
4f86d3a8
LB
398
399 /*
61c66d6e 400 * Try to figure out how much time passed between entry to low
401 * power state and occurrence of the wakeup event.
402 *
403 * If the entered idle state didn't support residency measurements,
4108b3d9
LB
404 * we use them anyway if they are short, and if long,
405 * truncate to the whole expected time.
61c66d6e 406 *
407 * Any measured amount of time will include the exit latency.
408 * Since we are interested in when the wakeup begun, not when it
2fba5376 409 * was completed, we must subtract the exit latency. However, if
61c66d6e 410 * the measured amount of time is less than the exit latency,
411 * assume the state was never reached and the exit latency is 0.
4f86d3a8 412 */
69d25870 413
4108b3d9
LB
414 /* measured value */
415 measured_us = cpuidle_get_last_residency(dev);
4f86d3a8 416
4108b3d9 417 /* Deduct exit latency */
efddfd90 418 if (measured_us > 2 * target->exit_latency)
4108b3d9 419 measured_us -= target->exit_latency;
efddfd90
RR
420 else
421 measured_us /= 2;
69d25870 422
4108b3d9
LB
423 /* Make sure our coefficients do not exceed unity */
424 if (measured_us > data->next_timer_us)
425 measured_us = data->next_timer_us;
69d25870 426
51f245b8
TT
427 /* Update our correction ratio */
428 new_factor = data->correction_factor[data->bucket];
429 new_factor -= new_factor / DECAY;
69d25870 430
5dc2f5a3 431 if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
432 new_factor += RESOLUTION * measured_us / data->next_timer_us;
320eee77 433 else
69d25870
AV
434 /*
435 * we were idle so long that we count it as a perfect
436 * prediction
437 */
438 new_factor += RESOLUTION;
320eee77 439
69d25870
AV
440 /*
441 * We don't want 0 as factor; we always want at least
51f245b8
TT
442 * a tiny bit of estimated time. Fortunately, due to rounding,
443 * new_factor will stay nonzero regardless of measured_us values
444 * and the compiler can eliminate this test as long as DECAY > 1.
69d25870 445 */
51f245b8 446 if (DECAY == 1 && unlikely(new_factor == 0))
69d25870 447 new_factor = 1;
320eee77 448
69d25870 449 data->correction_factor[data->bucket] = new_factor;
1f85f87d
AV
450
451 /* update the repeating-pattern data */
61c66d6e 452 data->intervals[data->interval_ptr++] = measured_us;
1f85f87d
AV
453 if (data->interval_ptr >= INTERVALS)
454 data->interval_ptr = 0;
4f86d3a8
LB
455}
456
457/**
458 * menu_enable_device - scans a CPU's states and does setup
46bcfad7 459 * @drv: cpuidle driver
4f86d3a8
LB
460 * @dev: the CPU
461 */
46bcfad7
DD
462static int menu_enable_device(struct cpuidle_driver *drv,
463 struct cpuidle_device *dev)
4f86d3a8
LB
464{
465 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
bed4d597 466 int i;
4f86d3a8
LB
467
468 memset(data, 0, sizeof(struct menu_device));
469
bed4d597
CK
470 /*
471 * if the correction factor is 0 (eg first time init or cpu hotplug
472 * etc), we actually want to start out with a unity factor.
473 */
474 for(i = 0; i < BUCKETS; i++)
475 data->correction_factor[i] = RESOLUTION * DECAY;
476
4f86d3a8
LB
477 return 0;
478}
479
480static struct cpuidle_governor menu_governor = {
481 .name = "menu",
482 .rating = 20,
483 .enable = menu_enable_device,
484 .select = menu_select,
485 .reflect = menu_reflect,
4f86d3a8
LB
486};
487
488/**
489 * init_menu - initializes the governor
490 */
491static int __init init_menu(void)
492{
493 return cpuidle_register_governor(&menu_governor);
494}
495
137b944e 496postcore_initcall(init_menu);