cpuidle / menu: Return (-1) if there are no suitable states
[linux-2.6-block.git] / drivers / cpuidle / governors / menu.c
CommitLineData
4f86d3a8
LB
1/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
69d25870
AV
5 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
4f86d3a8 8 *
69d25870
AV
9 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
4f86d3a8
LB
11 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
e8db0be1 15#include <linux/pm_qos.h>
4f86d3a8
LB
16#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
69d25870 20#include <linux/sched.h>
5787536e 21#include <linux/math64.h>
884b17e1 22#include <linux/module.h>
4f86d3a8 23
decd51bb
TT
24/*
25 * Please note when changing the tuning values:
26 * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
27 * a scaling operation multiplication may overflow on 32 bit platforms.
28 * In that case, #define RESOLUTION as ULL to get 64 bit result:
29 * #define RESOLUTION 1024ULL
30 *
31 * The default values do not overflow.
32 */
69d25870 33#define BUCKETS 12
1f85f87d 34#define INTERVALS 8
69d25870 35#define RESOLUTION 1024
1f85f87d 36#define DECAY 8
69d25870 37#define MAX_INTERESTING 50000
1f85f87d
AV
38#define STDDEV_THRESH 400
39
69d25870
AV
40
41/*
42 * Concepts and ideas behind the menu governor
43 *
44 * For the menu governor, there are 3 decision factors for picking a C
45 * state:
46 * 1) Energy break even point
47 * 2) Performance impact
48 * 3) Latency tolerance (from pmqos infrastructure)
49 * These these three factors are treated independently.
50 *
51 * Energy break even point
52 * -----------------------
53 * C state entry and exit have an energy cost, and a certain amount of time in
54 * the C state is required to actually break even on this cost. CPUIDLE
55 * provides us this duration in the "target_residency" field. So all that we
56 * need is a good prediction of how long we'll be idle. Like the traditional
57 * menu governor, we start with the actual known "next timer event" time.
58 *
59 * Since there are other source of wakeups (interrupts for example) than
60 * the next timer event, this estimation is rather optimistic. To get a
61 * more realistic estimate, a correction factor is applied to the estimate,
62 * that is based on historic behavior. For example, if in the past the actual
63 * duration always was 50% of the next timer tick, the correction factor will
64 * be 0.5.
65 *
66 * menu uses a running average for this correction factor, however it uses a
67 * set of factors, not just a single factor. This stems from the realization
68 * that the ratio is dependent on the order of magnitude of the expected
69 * duration; if we expect 500 milliseconds of idle time the likelihood of
70 * getting an interrupt very early is much higher than if we expect 50 micro
71 * seconds of idle time. A second independent factor that has big impact on
72 * the actual factor is if there is (disk) IO outstanding or not.
73 * (as a special twist, we consider every sleep longer than 50 milliseconds
74 * as perfect; there are no power gains for sleeping longer than this)
75 *
76 * For these two reasons we keep an array of 12 independent factors, that gets
77 * indexed based on the magnitude of the expected duration as well as the
78 * "is IO outstanding" property.
79 *
1f85f87d
AV
80 * Repeatable-interval-detector
81 * ----------------------------
82 * There are some cases where "next timer" is a completely unusable predictor:
83 * Those cases where the interval is fixed, for example due to hardware
84 * interrupt mitigation, but also due to fixed transfer rate devices such as
85 * mice.
86 * For this, we use a different predictor: We track the duration of the last 8
87 * intervals and if the stand deviation of these 8 intervals is below a
88 * threshold value, we use the average of these intervals as prediction.
89 *
69d25870
AV
90 * Limiting Performance Impact
91 * ---------------------------
92 * C states, especially those with large exit latencies, can have a real
20e3341b 93 * noticeable impact on workloads, which is not acceptable for most sysadmins,
69d25870
AV
94 * and in addition, less performance has a power price of its own.
95 *
96 * As a general rule of thumb, menu assumes that the following heuristic
97 * holds:
98 * The busier the system, the less impact of C states is acceptable
99 *
100 * This rule-of-thumb is implemented using a performance-multiplier:
101 * If the exit latency times the performance multiplier is longer than
102 * the predicted duration, the C state is not considered a candidate
103 * for selection due to a too high performance impact. So the higher
104 * this multiplier is, the longer we need to be idle to pick a deep C
105 * state, and thus the less likely a busy CPU will hit such a deep
106 * C state.
107 *
108 * Two factors are used in determing this multiplier:
109 * a value of 10 is added for each point of "per cpu load average" we have.
110 * a value of 5 points is added for each process that is waiting for
111 * IO on this CPU.
112 * (these values are experimentally determined)
113 *
114 * The load average factor gives a longer term (few seconds) input to the
115 * decision, while the iowait value gives a cpu local instantanious input.
116 * The iowait factor may look low, but realize that this is also already
117 * represented in the system load average.
118 *
119 */
4f86d3a8
LB
120
121struct menu_device {
122 int last_state_idx;
672917dc 123 int needs_update;
4f86d3a8 124
5dc2f5a3 125 unsigned int next_timer_us;
51f245b8 126 unsigned int predicted_us;
69d25870 127 unsigned int bucket;
51f245b8 128 unsigned int correction_factor[BUCKETS];
939e33b7 129 unsigned int intervals[INTERVALS];
1f85f87d 130 int interval_ptr;
4f86d3a8
LB
131};
132
69d25870
AV
133
134#define LOAD_INT(x) ((x) >> FSHIFT)
135#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
136
137static int get_loadavg(void)
138{
139 unsigned long this = this_cpu_load();
140
141
142 return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
143}
144
145static inline int which_bucket(unsigned int duration)
146{
147 int bucket = 0;
148
149 /*
150 * We keep two groups of stats; one with no
151 * IO pending, one without.
152 * This allows us to calculate
153 * E(duration)|iowait
154 */
8c215bd3 155 if (nr_iowait_cpu(smp_processor_id()))
69d25870
AV
156 bucket = BUCKETS/2;
157
158 if (duration < 10)
159 return bucket;
160 if (duration < 100)
161 return bucket + 1;
162 if (duration < 1000)
163 return bucket + 2;
164 if (duration < 10000)
165 return bucket + 3;
166 if (duration < 100000)
167 return bucket + 4;
168 return bucket + 5;
169}
170
171/*
172 * Return a multiplier for the exit latency that is intended
173 * to take performance requirements into account.
174 * The more performance critical we estimate the system
175 * to be, the higher this multiplier, and thus the higher
176 * the barrier to go to an expensive C state.
177 */
178static inline int performance_multiplier(void)
179{
180 int mult = 1;
181
182 /* for higher loadavg, we are more reluctant */
183
184 mult += 2 * get_loadavg();
185
186 /* for IO wait tasks (per cpu!) we add 5x each */
8c215bd3 187 mult += 10 * nr_iowait_cpu(smp_processor_id());
69d25870
AV
188
189 return mult;
190}
191
4f86d3a8
LB
192static DEFINE_PER_CPU(struct menu_device, menu_devices);
193
46bcfad7 194static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
672917dc 195
5787536e
SH
196/* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
197static u64 div_round64(u64 dividend, u32 divisor)
198{
199 return div_u64(dividend + (divisor / 2), divisor);
200}
201
1f85f87d
AV
202/*
203 * Try detecting repeating patterns by keeping track of the last 8
204 * intervals, and checking if the standard deviation of that set
205 * of points is below a threshold. If it is... then use the
206 * average of these 8 points as the estimated value.
207 */
14851912 208static void get_typical_interval(struct menu_device *data)
1f85f87d 209{
4cd46bca 210 int i, divisor;
0e96d5ad
TT
211 unsigned int max, thresh;
212 uint64_t avg, stddev;
213
214 thresh = UINT_MAX; /* Discard outliers above this value */
1f85f87d 215
c96ca4fb 216again:
1f85f87d 217
0e96d5ad 218 /* First calculate the average of past intervals */
4cd46bca
TT
219 max = 0;
220 avg = 0;
221 divisor = 0;
c96ca4fb 222 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 223 unsigned int value = data->intervals[i];
c96ca4fb
YS
224 if (value <= thresh) {
225 avg += value;
226 divisor++;
227 if (value > max)
228 max = value;
229 }
230 }
231 do_div(avg, divisor);
232
0e96d5ad
TT
233 /* Then try to determine standard deviation */
234 stddev = 0;
c96ca4fb 235 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 236 unsigned int value = data->intervals[i];
c96ca4fb
YS
237 if (value <= thresh) {
238 int64_t diff = value - avg;
239 stddev += diff * diff;
240 }
241 }
242 do_div(stddev, divisor);
1f85f87d 243 /*
c96ca4fb
YS
244 * The typical interval is obtained when standard deviation is small
245 * or standard deviation is small compared to the average interval.
330647a9 246 *
0d6a7ffa
TT
247 * int_sqrt() formal parameter type is unsigned long. When the
248 * greatest difference to an outlier exceeds ~65 ms * sqrt(divisor)
249 * the resulting squared standard deviation exceeds the input domain
250 * of int_sqrt on platforms where unsigned long is 32 bits in size.
251 * In such case reject the candidate average.
252 *
330647a9 253 * Use this result only if there is no timer to wake us up sooner.
1f85f87d 254 */
0d6a7ffa
TT
255 if (likely(stddev <= ULONG_MAX)) {
256 stddev = int_sqrt(stddev);
257 if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
c96ca4fb 258 || stddev <= 20) {
5dc2f5a3 259 if (data->next_timer_us > avg)
0d6a7ffa
TT
260 data->predicted_us = avg;
261 return;
262 }
69a37bea 263 }
017099e2
TT
264
265 /*
266 * If we have outliers to the upside in our distribution, discard
267 * those by setting the threshold to exclude these outliers, then
268 * calculate the average and standard deviation again. Once we get
269 * down to the bottom 3/4 of our samples, stop excluding samples.
270 *
271 * This can deal with workloads that have long pauses interspersed
272 * with sporadic activity with a bunch of short pauses.
273 */
274 if ((divisor * 4) <= INTERVALS * 3)
275 return;
276
277 thresh = max - 1;
278 goto again;
1f85f87d
AV
279}
280
4f86d3a8
LB
281/**
282 * menu_select - selects the next idle state to enter
46bcfad7 283 * @drv: cpuidle driver containing state data
4f86d3a8
LB
284 * @dev: the CPU
285 */
46bcfad7 286static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8
LB
287{
288 struct menu_device *data = &__get_cpu_var(menu_devices);
ed77134b 289 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
4f86d3a8 290 int i;
96e95182 291 unsigned int interactivity_req;
7467571f 292 struct timespec t;
69d25870 293
672917dc 294 if (data->needs_update) {
46bcfad7 295 menu_update(drv, dev);
672917dc
CZ
296 data->needs_update = 0;
297 }
298
3836785a 299 data->last_state_idx = CPUIDLE_DRIVER_STATE_START - 1;
1c6fe036 300
a2bd9202 301 /* Special case when user has set very strict latency requirement */
69d25870 302 if (unlikely(latency_req == 0))
a2bd9202 303 return 0;
a2bd9202 304
69d25870 305 /* determine the expected residency time, round up */
7467571f 306 t = ktime_to_timespec(tick_nohz_get_sleep_length());
5dc2f5a3 307 data->next_timer_us =
7467571f 308 t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
69d25870
AV
309
310
5dc2f5a3 311 data->bucket = which_bucket(data->next_timer_us);
69d25870 312
69d25870
AV
313 /*
314 * if the correction factor is 0 (eg first time init or cpu hotplug
315 * etc), we actually want to start out with a unity factor.
316 */
317 if (data->correction_factor[data->bucket] == 0)
318 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
319
51f245b8
TT
320 /*
321 * Force the result of multiplication to be 64 bits even if both
322 * operands are 32 bits.
323 * Make sure to round up for half microseconds.
324 */
5dc2f5a3 325 data->predicted_us = div_round64((uint64_t)data->next_timer_us *
51f245b8 326 data->correction_factor[data->bucket],
5787536e 327 RESOLUTION * DECAY);
69d25870 328
14851912 329 get_typical_interval(data);
1f85f87d 330
96e95182 331 /*
332 * Performance multiplier defines a minimum predicted idle
333 * duration / latency ratio. Adjust the latency limit if
334 * necessary.
335 */
336 interactivity_req = data->predicted_us / performance_multiplier();
337 if (latency_req > interactivity_req)
338 latency_req = interactivity_req;
339
69d25870
AV
340 /*
341 * We want to default to C1 (hlt), not to busy polling
342 * unless the timer is happening really really soon.
343 */
5dc2f5a3 344 if (data->next_timer_us > 5 &&
cbc9ef02 345 !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
dc7fd275 346 dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
69d25870 347 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
4f86d3a8 348
71abbbf8
AL
349 /*
350 * Find the idle state with the lowest power while satisfying
351 * our constraints.
352 */
46bcfad7
DD
353 for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
354 struct cpuidle_state *s = &drv->states[i];
dc7fd275 355 struct cpuidle_state_usage *su = &dev->states_usage[i];
4f86d3a8 356
cbc9ef02 357 if (s->disabled || su->disable)
3a53396b 358 continue;
14851912 359 if (s->target_residency > data->predicted_us)
71abbbf8 360 continue;
a2bd9202 361 if (s->exit_latency > latency_req)
71abbbf8 362 continue;
71abbbf8 363
8aef33a7 364 data->last_state_idx = i;
4f86d3a8
LB
365 }
366
69d25870 367 return data->last_state_idx;
4f86d3a8
LB
368}
369
370/**
672917dc 371 * menu_reflect - records that data structures need update
4f86d3a8 372 * @dev: the CPU
e978aa7d 373 * @index: the index of actual entered state
4f86d3a8
LB
374 *
375 * NOTE: it's important to be fast here because this operation will add to
376 * the overall exit latency.
377 */
e978aa7d 378static void menu_reflect(struct cpuidle_device *dev, int index)
672917dc
CZ
379{
380 struct menu_device *data = &__get_cpu_var(menu_devices);
e978aa7d
DD
381 data->last_state_idx = index;
382 if (index >= 0)
383 data->needs_update = 1;
672917dc
CZ
384}
385
386/**
387 * menu_update - attempts to guess what happened after entry
46bcfad7 388 * @drv: cpuidle driver containing state data
672917dc
CZ
389 * @dev: the CPU
390 */
46bcfad7 391static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8
LB
392{
393 struct menu_device *data = &__get_cpu_var(menu_devices);
394 int last_idx = data->last_state_idx;
46bcfad7 395 struct cpuidle_state *target = &drv->states[last_idx];
320eee77 396 unsigned int measured_us;
51f245b8 397 unsigned int new_factor;
4f86d3a8
LB
398
399 /*
61c66d6e 400 * Try to figure out how much time passed between entry to low
401 * power state and occurrence of the wakeup event.
402 *
403 * If the entered idle state didn't support residency measurements,
404 * we are basically lost in the dark how much time passed.
405 * As a compromise, assume we slept for the whole expected time.
406 *
407 * Any measured amount of time will include the exit latency.
408 * Since we are interested in when the wakeup begun, not when it
409 * was completed, we must substract the exit latency. However, if
410 * the measured amount of time is less than the exit latency,
411 * assume the state was never reached and the exit latency is 0.
4f86d3a8 412 */
61c66d6e 413 if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID))) {
414 /* Use timer value as is */
415 measured_us = data->next_timer_us;
69d25870 416
61c66d6e 417 } else {
418 /* Use measured value */
419 measured_us = cpuidle_get_last_residency(dev);
4f86d3a8 420
61c66d6e 421 /* Deduct exit latency */
422 if (measured_us > target->exit_latency)
423 measured_us -= target->exit_latency;
69d25870 424
61c66d6e 425 /* Make sure our coefficients do not exceed unity */
426 if (measured_us > data->next_timer_us)
427 measured_us = data->next_timer_us;
428 }
69d25870 429
51f245b8
TT
430 /* Update our correction ratio */
431 new_factor = data->correction_factor[data->bucket];
432 new_factor -= new_factor / DECAY;
69d25870 433
5dc2f5a3 434 if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
435 new_factor += RESOLUTION * measured_us / data->next_timer_us;
320eee77 436 else
69d25870
AV
437 /*
438 * we were idle so long that we count it as a perfect
439 * prediction
440 */
441 new_factor += RESOLUTION;
320eee77 442
69d25870
AV
443 /*
444 * We don't want 0 as factor; we always want at least
51f245b8
TT
445 * a tiny bit of estimated time. Fortunately, due to rounding,
446 * new_factor will stay nonzero regardless of measured_us values
447 * and the compiler can eliminate this test as long as DECAY > 1.
69d25870 448 */
51f245b8 449 if (DECAY == 1 && unlikely(new_factor == 0))
69d25870 450 new_factor = 1;
320eee77 451
69d25870 452 data->correction_factor[data->bucket] = new_factor;
1f85f87d
AV
453
454 /* update the repeating-pattern data */
61c66d6e 455 data->intervals[data->interval_ptr++] = measured_us;
1f85f87d
AV
456 if (data->interval_ptr >= INTERVALS)
457 data->interval_ptr = 0;
4f86d3a8
LB
458}
459
460/**
461 * menu_enable_device - scans a CPU's states and does setup
46bcfad7 462 * @drv: cpuidle driver
4f86d3a8
LB
463 * @dev: the CPU
464 */
46bcfad7
DD
465static int menu_enable_device(struct cpuidle_driver *drv,
466 struct cpuidle_device *dev)
4f86d3a8
LB
467{
468 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
469
470 memset(data, 0, sizeof(struct menu_device));
471
472 return 0;
473}
474
475static struct cpuidle_governor menu_governor = {
476 .name = "menu",
477 .rating = 20,
478 .enable = menu_enable_device,
479 .select = menu_select,
480 .reflect = menu_reflect,
481 .owner = THIS_MODULE,
482};
483
484/**
485 * init_menu - initializes the governor
486 */
487static int __init init_menu(void)
488{
489 return cpuidle_register_governor(&menu_governor);
490}
491
137b944e 492postcore_initcall(init_menu);