cpuidle: Rearrange code and comments in get_typical_interval()
[linux-2.6-block.git] / drivers / cpuidle / governors / menu.c
CommitLineData
4f86d3a8
LB
1/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
69d25870
AV
5 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
4f86d3a8 8 *
69d25870
AV
9 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
4f86d3a8
LB
11 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
e8db0be1 15#include <linux/pm_qos.h>
4f86d3a8
LB
16#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
69d25870 20#include <linux/sched.h>
5787536e 21#include <linux/math64.h>
884b17e1 22#include <linux/module.h>
4f86d3a8 23
69d25870 24#define BUCKETS 12
1f85f87d 25#define INTERVALS 8
69d25870 26#define RESOLUTION 1024
1f85f87d 27#define DECAY 8
69d25870 28#define MAX_INTERESTING 50000
1f85f87d
AV
29#define STDDEV_THRESH 400
30
69d25870
AV
31
32/*
33 * Concepts and ideas behind the menu governor
34 *
35 * For the menu governor, there are 3 decision factors for picking a C
36 * state:
37 * 1) Energy break even point
38 * 2) Performance impact
39 * 3) Latency tolerance (from pmqos infrastructure)
40 * These these three factors are treated independently.
41 *
42 * Energy break even point
43 * -----------------------
44 * C state entry and exit have an energy cost, and a certain amount of time in
45 * the C state is required to actually break even on this cost. CPUIDLE
46 * provides us this duration in the "target_residency" field. So all that we
47 * need is a good prediction of how long we'll be idle. Like the traditional
48 * menu governor, we start with the actual known "next timer event" time.
49 *
50 * Since there are other source of wakeups (interrupts for example) than
51 * the next timer event, this estimation is rather optimistic. To get a
52 * more realistic estimate, a correction factor is applied to the estimate,
53 * that is based on historic behavior. For example, if in the past the actual
54 * duration always was 50% of the next timer tick, the correction factor will
55 * be 0.5.
56 *
57 * menu uses a running average for this correction factor, however it uses a
58 * set of factors, not just a single factor. This stems from the realization
59 * that the ratio is dependent on the order of magnitude of the expected
60 * duration; if we expect 500 milliseconds of idle time the likelihood of
61 * getting an interrupt very early is much higher than if we expect 50 micro
62 * seconds of idle time. A second independent factor that has big impact on
63 * the actual factor is if there is (disk) IO outstanding or not.
64 * (as a special twist, we consider every sleep longer than 50 milliseconds
65 * as perfect; there are no power gains for sleeping longer than this)
66 *
67 * For these two reasons we keep an array of 12 independent factors, that gets
68 * indexed based on the magnitude of the expected duration as well as the
69 * "is IO outstanding" property.
70 *
1f85f87d
AV
71 * Repeatable-interval-detector
72 * ----------------------------
73 * There are some cases where "next timer" is a completely unusable predictor:
74 * Those cases where the interval is fixed, for example due to hardware
75 * interrupt mitigation, but also due to fixed transfer rate devices such as
76 * mice.
77 * For this, we use a different predictor: We track the duration of the last 8
78 * intervals and if the stand deviation of these 8 intervals is below a
79 * threshold value, we use the average of these intervals as prediction.
80 *
69d25870
AV
81 * Limiting Performance Impact
82 * ---------------------------
83 * C states, especially those with large exit latencies, can have a real
20e3341b 84 * noticeable impact on workloads, which is not acceptable for most sysadmins,
69d25870
AV
85 * and in addition, less performance has a power price of its own.
86 *
87 * As a general rule of thumb, menu assumes that the following heuristic
88 * holds:
89 * The busier the system, the less impact of C states is acceptable
90 *
91 * This rule-of-thumb is implemented using a performance-multiplier:
92 * If the exit latency times the performance multiplier is longer than
93 * the predicted duration, the C state is not considered a candidate
94 * for selection due to a too high performance impact. So the higher
95 * this multiplier is, the longer we need to be idle to pick a deep C
96 * state, and thus the less likely a busy CPU will hit such a deep
97 * C state.
98 *
99 * Two factors are used in determing this multiplier:
100 * a value of 10 is added for each point of "per cpu load average" we have.
101 * a value of 5 points is added for each process that is waiting for
102 * IO on this CPU.
103 * (these values are experimentally determined)
104 *
105 * The load average factor gives a longer term (few seconds) input to the
106 * decision, while the iowait value gives a cpu local instantanious input.
107 * The iowait factor may look low, but realize that this is also already
108 * represented in the system load average.
109 *
110 */
4f86d3a8
LB
111
112struct menu_device {
113 int last_state_idx;
672917dc 114 int needs_update;
4f86d3a8
LB
115
116 unsigned int expected_us;
56e6943b 117 u64 predicted_us;
69d25870
AV
118 unsigned int exit_us;
119 unsigned int bucket;
120 u64 correction_factor[BUCKETS];
1f85f87d
AV
121 u32 intervals[INTERVALS];
122 int interval_ptr;
4f86d3a8
LB
123};
124
69d25870
AV
125
126#define LOAD_INT(x) ((x) >> FSHIFT)
127#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
128
129static int get_loadavg(void)
130{
131 unsigned long this = this_cpu_load();
132
133
134 return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
135}
136
137static inline int which_bucket(unsigned int duration)
138{
139 int bucket = 0;
140
141 /*
142 * We keep two groups of stats; one with no
143 * IO pending, one without.
144 * This allows us to calculate
145 * E(duration)|iowait
146 */
8c215bd3 147 if (nr_iowait_cpu(smp_processor_id()))
69d25870
AV
148 bucket = BUCKETS/2;
149
150 if (duration < 10)
151 return bucket;
152 if (duration < 100)
153 return bucket + 1;
154 if (duration < 1000)
155 return bucket + 2;
156 if (duration < 10000)
157 return bucket + 3;
158 if (duration < 100000)
159 return bucket + 4;
160 return bucket + 5;
161}
162
163/*
164 * Return a multiplier for the exit latency that is intended
165 * to take performance requirements into account.
166 * The more performance critical we estimate the system
167 * to be, the higher this multiplier, and thus the higher
168 * the barrier to go to an expensive C state.
169 */
170static inline int performance_multiplier(void)
171{
172 int mult = 1;
173
174 /* for higher loadavg, we are more reluctant */
175
176 mult += 2 * get_loadavg();
177
178 /* for IO wait tasks (per cpu!) we add 5x each */
8c215bd3 179 mult += 10 * nr_iowait_cpu(smp_processor_id());
69d25870
AV
180
181 return mult;
182}
183
4f86d3a8
LB
184static DEFINE_PER_CPU(struct menu_device, menu_devices);
185
46bcfad7 186static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
672917dc 187
5787536e
SH
188/* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
189static u64 div_round64(u64 dividend, u32 divisor)
190{
191 return div_u64(dividend + (divisor / 2), divisor);
192}
193
1f85f87d
AV
194/*
195 * Try detecting repeating patterns by keeping track of the last 8
196 * intervals, and checking if the standard deviation of that set
197 * of points is below a threshold. If it is... then use the
198 * average of these 8 points as the estimated value.
199 */
14851912 200static void get_typical_interval(struct menu_device *data)
1f85f87d 201{
c96ca4fb
YS
202 int i = 0, divisor = 0;
203 uint64_t max = 0, avg = 0, stddev = 0;
204 int64_t thresh = LLONG_MAX; /* Discard outliers above this value. */
1f85f87d 205
c96ca4fb 206again:
1f85f87d 207
c96ca4fb
YS
208 /* first calculate average and standard deviation of the past */
209 max = avg = divisor = stddev = 0;
210 for (i = 0; i < INTERVALS; i++) {
211 int64_t value = data->intervals[i];
212 if (value <= thresh) {
213 avg += value;
214 divisor++;
215 if (value > max)
216 max = value;
217 }
218 }
219 do_div(avg, divisor);
220
221 for (i = 0; i < INTERVALS; i++) {
222 int64_t value = data->intervals[i];
223 if (value <= thresh) {
224 int64_t diff = value - avg;
225 stddev += diff * diff;
226 }
227 }
228 do_div(stddev, divisor);
229 stddev = int_sqrt(stddev);
1f85f87d 230 /*
c96ca4fb
YS
231 * The typical interval is obtained when standard deviation is small
232 * or standard deviation is small compared to the average interval.
330647a9
TT
233 *
234 * Use this result only if there is no timer to wake us up sooner.
1f85f87d 235 */
c96ca4fb
YS
236 if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
237 || stddev <= 20) {
330647a9
TT
238 if (data->expected_us > avg)
239 data->predicted_us = avg;
14851912 240 return;
69a37bea 241 }
017099e2
TT
242
243 /*
244 * If we have outliers to the upside in our distribution, discard
245 * those by setting the threshold to exclude these outliers, then
246 * calculate the average and standard deviation again. Once we get
247 * down to the bottom 3/4 of our samples, stop excluding samples.
248 *
249 * This can deal with workloads that have long pauses interspersed
250 * with sporadic activity with a bunch of short pauses.
251 */
252 if ((divisor * 4) <= INTERVALS * 3)
253 return;
254
255 thresh = max - 1;
256 goto again;
1f85f87d
AV
257}
258
4f86d3a8
LB
259/**
260 * menu_select - selects the next idle state to enter
46bcfad7 261 * @drv: cpuidle driver containing state data
4f86d3a8
LB
262 * @dev: the CPU
263 */
46bcfad7 264static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8
LB
265{
266 struct menu_device *data = &__get_cpu_var(menu_devices);
ed77134b 267 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
4f86d3a8 268 int i;
69d25870 269 int multiplier;
7467571f 270 struct timespec t;
69d25870 271
672917dc 272 if (data->needs_update) {
46bcfad7 273 menu_update(drv, dev);
672917dc
CZ
274 data->needs_update = 0;
275 }
276
1c6fe036
AV
277 data->last_state_idx = 0;
278 data->exit_us = 0;
279
a2bd9202 280 /* Special case when user has set very strict latency requirement */
69d25870 281 if (unlikely(latency_req == 0))
a2bd9202 282 return 0;
a2bd9202 283
69d25870 284 /* determine the expected residency time, round up */
7467571f 285 t = ktime_to_timespec(tick_nohz_get_sleep_length());
4f86d3a8 286 data->expected_us =
7467571f 287 t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
69d25870
AV
288
289
290 data->bucket = which_bucket(data->expected_us);
291
292 multiplier = performance_multiplier();
293
294 /*
295 * if the correction factor is 0 (eg first time init or cpu hotplug
296 * etc), we actually want to start out with a unity factor.
297 */
298 if (data->correction_factor[data->bucket] == 0)
299 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
300
301 /* Make sure to round up for half microseconds */
5787536e
SH
302 data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
303 RESOLUTION * DECAY);
69d25870 304
14851912 305 get_typical_interval(data);
1f85f87d 306
69d25870
AV
307 /*
308 * We want to default to C1 (hlt), not to busy polling
309 * unless the timer is happening really really soon.
310 */
3a53396b 311 if (data->expected_us > 5 &&
cbc9ef02 312 !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
dc7fd275 313 dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
69d25870 314 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
4f86d3a8 315
71abbbf8
AL
316 /*
317 * Find the idle state with the lowest power while satisfying
318 * our constraints.
319 */
46bcfad7
DD
320 for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
321 struct cpuidle_state *s = &drv->states[i];
dc7fd275 322 struct cpuidle_state_usage *su = &dev->states_usage[i];
4f86d3a8 323
cbc9ef02 324 if (s->disabled || su->disable)
3a53396b 325 continue;
14851912 326 if (s->target_residency > data->predicted_us)
71abbbf8 327 continue;
a2bd9202 328 if (s->exit_latency > latency_req)
71abbbf8 329 continue;
69d25870 330 if (s->exit_latency * multiplier > data->predicted_us)
71abbbf8
AL
331 continue;
332
8aef33a7
DL
333 data->last_state_idx = i;
334 data->exit_us = s->exit_latency;
4f86d3a8
LB
335 }
336
69d25870 337 return data->last_state_idx;
4f86d3a8
LB
338}
339
340/**
672917dc 341 * menu_reflect - records that data structures need update
4f86d3a8 342 * @dev: the CPU
e978aa7d 343 * @index: the index of actual entered state
4f86d3a8
LB
344 *
345 * NOTE: it's important to be fast here because this operation will add to
346 * the overall exit latency.
347 */
e978aa7d 348static void menu_reflect(struct cpuidle_device *dev, int index)
672917dc
CZ
349{
350 struct menu_device *data = &__get_cpu_var(menu_devices);
e978aa7d
DD
351 data->last_state_idx = index;
352 if (index >= 0)
353 data->needs_update = 1;
672917dc
CZ
354}
355
356/**
357 * menu_update - attempts to guess what happened after entry
46bcfad7 358 * @drv: cpuidle driver containing state data
672917dc
CZ
359 * @dev: the CPU
360 */
46bcfad7 361static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8
LB
362{
363 struct menu_device *data = &__get_cpu_var(menu_devices);
364 int last_idx = data->last_state_idx;
320eee77 365 unsigned int last_idle_us = cpuidle_get_last_residency(dev);
46bcfad7 366 struct cpuidle_state *target = &drv->states[last_idx];
320eee77 367 unsigned int measured_us;
69d25870 368 u64 new_factor;
4f86d3a8
LB
369
370 /*
371 * Ugh, this idle state doesn't support residency measurements, so we
372 * are basically lost in the dark. As a compromise, assume we slept
69d25870 373 * for the whole expected time.
4f86d3a8 374 */
320eee77 375 if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
69d25870
AV
376 last_idle_us = data->expected_us;
377
378
379 measured_us = last_idle_us;
4f86d3a8 380
320eee77 381 /*
69d25870
AV
382 * We correct for the exit latency; we are assuming here that the
383 * exit latency happens after the event that we're interested in.
320eee77 384 */
69d25870
AV
385 if (measured_us > data->exit_us)
386 measured_us -= data->exit_us;
387
388
389 /* update our correction ratio */
390
391 new_factor = data->correction_factor[data->bucket]
392 * (DECAY - 1) / DECAY;
393
1c6fe036 394 if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
69d25870 395 new_factor += RESOLUTION * measured_us / data->expected_us;
320eee77 396 else
69d25870
AV
397 /*
398 * we were idle so long that we count it as a perfect
399 * prediction
400 */
401 new_factor += RESOLUTION;
320eee77 402
69d25870
AV
403 /*
404 * We don't want 0 as factor; we always want at least
405 * a tiny bit of estimated time.
406 */
407 if (new_factor == 0)
408 new_factor = 1;
320eee77 409
69d25870 410 data->correction_factor[data->bucket] = new_factor;
1f85f87d
AV
411
412 /* update the repeating-pattern data */
413 data->intervals[data->interval_ptr++] = last_idle_us;
414 if (data->interval_ptr >= INTERVALS)
415 data->interval_ptr = 0;
4f86d3a8
LB
416}
417
418/**
419 * menu_enable_device - scans a CPU's states and does setup
46bcfad7 420 * @drv: cpuidle driver
4f86d3a8
LB
421 * @dev: the CPU
422 */
46bcfad7
DD
423static int menu_enable_device(struct cpuidle_driver *drv,
424 struct cpuidle_device *dev)
4f86d3a8
LB
425{
426 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
427
428 memset(data, 0, sizeof(struct menu_device));
429
430 return 0;
431}
432
433static struct cpuidle_governor menu_governor = {
434 .name = "menu",
435 .rating = 20,
436 .enable = menu_enable_device,
437 .select = menu_select,
438 .reflect = menu_reflect,
439 .owner = THIS_MODULE,
440};
441
442/**
443 * init_menu - initializes the governor
444 */
445static int __init init_menu(void)
446{
447 return cpuidle_register_governor(&menu_governor);
448}
449
137b944e 450postcore_initcall(init_menu);