Merge remote-tracking branch 'mkp-scsi/4.9/scsi-fixes' into fixes
[linux-2.6-block.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
938d21a2
PL
40#define ATOM_RATIOS 0x66a
41#define ATOM_VIDS 0x66b
42#define ATOM_TURBO_RATIOS 0x66c
43#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 44
9522a2ff
SP
45#ifdef CONFIG_ACPI
46#include <acpi/processor.h>
47#endif
48
f0fe3cd7 49#define FRAC_BITS 8
93f0822d
DB
50#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 52
a1c9787d
RW
53#define EXT_BITS 6
54#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
93f0822d
DB
56static inline int32_t mul_fp(int32_t x, int32_t y)
57{
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59}
60
7180dddf 61static inline int32_t div_fp(s64 x, s64 y)
93f0822d 62{
7180dddf 63 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
64}
65
d022a65e
DB
66static inline int ceiling_fp(int32_t x)
67{
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75}
76
a1c9787d
RW
77static inline u64 mul_ext_fp(u64 x, u64 y)
78{
79 return (x * y) >> EXT_FRAC_BITS;
80}
81
82static inline u64 div_ext_fp(u64 x, u64 y)
83{
84 return div64_u64(x << EXT_FRAC_BITS, y);
85}
86
13ad7701
SP
87/**
88 * struct sample - Store performance sample
a1c9787d 89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 92 * P state. This can be different than core_avg_perf
13ad7701
SP
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
13ad7701
SP
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
93f0822d 105struct sample {
a1c9787d 106 int32_t core_avg_perf;
157386b6 107 int32_t busy_scaled;
93f0822d
DB
108 u64 aperf;
109 u64 mperf;
4055fad3 110 u64 tsc;
a4675fbc 111 u64 time;
93f0822d
DB
112};
113
13ad7701
SP
114/**
115 * struct pstate_data - Store P state data
116 * @current_pstate: Current requested P state
117 * @min_pstate: Min P state possible for this platform
118 * @max_pstate: Max P state possible for this platform
119 * @max_pstate_physical:This is physical Max P state for a processor
120 * This can be higher than the max_pstate which can
121 * be limited by platform thermal design power limits
122 * @scaling: Scaling factor to convert frequency to cpufreq
123 * frequency units
124 * @turbo_pstate: Max Turbo P state possible for this platform
125 *
126 * Stores the per cpu model P state limits and current P state.
127 */
93f0822d
DB
128struct pstate_data {
129 int current_pstate;
130 int min_pstate;
131 int max_pstate;
3bcc6fa9 132 int max_pstate_physical;
b27580b0 133 int scaling;
93f0822d
DB
134 int turbo_pstate;
135};
136
13ad7701
SP
137/**
138 * struct vid_data - Stores voltage information data
139 * @min: VID data for this platform corresponding to
140 * the lowest P state
141 * @max: VID data corresponding to the highest P State.
142 * @turbo: VID data for turbo P state
143 * @ratio: Ratio of (vid max - vid min) /
144 * (max P state - Min P State)
145 *
146 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147 * This data is used in Atom platforms, where in addition to target P state,
148 * the voltage data needs to be specified to select next P State.
149 */
007bea09 150struct vid_data {
21855ff5
DB
151 int min;
152 int max;
153 int turbo;
007bea09
DB
154 int32_t ratio;
155};
156
13ad7701
SP
157/**
158 * struct _pid - Stores PID data
159 * @setpoint: Target set point for busyness or performance
160 * @integral: Storage for accumulated error values
161 * @p_gain: PID proportional gain
162 * @i_gain: PID integral gain
163 * @d_gain: PID derivative gain
164 * @deadband: PID deadband
165 * @last_err: Last error storage for integral part of PID calculation
166 *
167 * Stores PID coefficients and last error for PID controller.
168 */
93f0822d
DB
169struct _pid {
170 int setpoint;
171 int32_t integral;
172 int32_t p_gain;
173 int32_t i_gain;
174 int32_t d_gain;
175 int deadband;
d253d2a5 176 int32_t last_err;
93f0822d
DB
177};
178
13ad7701
SP
179/**
180 * struct cpudata - Per CPU instance data storage
181 * @cpu: CPU number for this instance data
182 * @update_util: CPUFreq utility callback information
4578ee7e 183 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
184 * @iowait_boost: iowait-related boost fraction
185 * @last_update: Time of the last update.
13ad7701
SP
186 * @pstate: Stores P state limits for this CPU
187 * @vid: Stores VID limits for this CPU
188 * @pid: Stores PID parameters for this CPU
189 * @last_sample_time: Last Sample time
190 * @prev_aperf: Last APERF value read from APERF MSR
191 * @prev_mperf: Last MPERF value read from MPERF MSR
192 * @prev_tsc: Last timestamp counter (TSC) value
193 * @prev_cummulative_iowait: IO Wait time difference from last and
194 * current sample
195 * @sample: Storage for storing last Sample data
9522a2ff
SP
196 * @acpi_perf_data: Stores ACPI perf information read from _PSS
197 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
198 *
199 * This structure stores per CPU instance data for all CPUs.
200 */
93f0822d
DB
201struct cpudata {
202 int cpu;
203
a4675fbc 204 struct update_util_data update_util;
4578ee7e 205 bool update_util_set;
93f0822d 206
93f0822d 207 struct pstate_data pstate;
007bea09 208 struct vid_data vid;
93f0822d 209 struct _pid pid;
93f0822d 210
09c448d3 211 u64 last_update;
a4675fbc 212 u64 last_sample_time;
93f0822d
DB
213 u64 prev_aperf;
214 u64 prev_mperf;
4055fad3 215 u64 prev_tsc;
63d1d656 216 u64 prev_cummulative_iowait;
d37e2b76 217 struct sample sample;
9522a2ff
SP
218#ifdef CONFIG_ACPI
219 struct acpi_processor_performance acpi_perf_data;
220 bool valid_pss_table;
221#endif
09c448d3 222 unsigned int iowait_boost;
93f0822d
DB
223};
224
225static struct cpudata **all_cpu_data;
13ad7701
SP
226
227/**
3954517e 228 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
229 * @sample_rate_ms: PID calculation sample rate in ms
230 * @sample_rate_ns: Sample rate calculation in ns
231 * @deadband: PID deadband
232 * @setpoint: PID Setpoint
233 * @p_gain_pct: PID proportional gain
234 * @i_gain_pct: PID integral gain
235 * @d_gain_pct: PID derivative gain
09c448d3 236 * @boost_iowait: Whether or not to use iowait boosting.
13ad7701
SP
237 *
238 * Stores per CPU model static PID configuration data.
239 */
93f0822d
DB
240struct pstate_adjust_policy {
241 int sample_rate_ms;
a4675fbc 242 s64 sample_rate_ns;
93f0822d
DB
243 int deadband;
244 int setpoint;
245 int p_gain_pct;
246 int d_gain_pct;
247 int i_gain_pct;
09c448d3 248 bool boost_iowait;
93f0822d
DB
249};
250
13ad7701
SP
251/**
252 * struct pstate_funcs - Per CPU model specific callbacks
253 * @get_max: Callback to get maximum non turbo effective P state
254 * @get_max_physical: Callback to get maximum non turbo physical P state
255 * @get_min: Callback to get minimum P state
256 * @get_turbo: Callback to get turbo P state
257 * @get_scaling: Callback to get frequency scaling factor
258 * @get_val: Callback to convert P state to actual MSR write value
259 * @get_vid: Callback to get VID data for Atom platforms
260 * @get_target_pstate: Callback to a function to calculate next P state to use
261 *
262 * Core and Atom CPU models have different way to get P State limits. This
263 * structure is used to store those callbacks.
264 */
016c8150
DB
265struct pstate_funcs {
266 int (*get_max)(void);
3bcc6fa9 267 int (*get_max_physical)(void);
016c8150
DB
268 int (*get_min)(void);
269 int (*get_turbo)(void);
b27580b0 270 int (*get_scaling)(void);
fdfdb2b1 271 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 272 void (*get_vid)(struct cpudata *);
157386b6 273 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
274};
275
13ad7701
SP
276/**
277 * struct cpu_defaults- Per CPU model default config data
278 * @pid_policy: PID config data
279 * @funcs: Callback function data
280 */
016c8150
DB
281struct cpu_defaults {
282 struct pstate_adjust_policy pid_policy;
283 struct pstate_funcs funcs;
93f0822d
DB
284};
285
157386b6 286static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 287static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 288
4a7cb7a9
JZ
289static struct pstate_adjust_policy pid_params __read_mostly;
290static struct pstate_funcs pstate_funcs __read_mostly;
291static int hwp_active __read_mostly;
016c8150 292
9522a2ff
SP
293#ifdef CONFIG_ACPI
294static bool acpi_ppc;
295#endif
13ad7701
SP
296
297/**
298 * struct perf_limits - Store user and policy limits
299 * @no_turbo: User requested turbo state from intel_pstate sysfs
300 * @turbo_disabled: Platform turbo status either from msr
301 * MSR_IA32_MISC_ENABLE or when maximum available pstate
302 * matches the maximum turbo pstate
303 * @max_perf_pct: Effective maximum performance limit in percentage, this
304 * is minimum of either limits enforced by cpufreq policy
305 * or limits from user set limits via intel_pstate sysfs
306 * @min_perf_pct: Effective minimum performance limit in percentage, this
307 * is maximum of either limits enforced by cpufreq policy
308 * or limits from user set limits via intel_pstate sysfs
309 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
310 * This value is used to limit max pstate
311 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
312 * This value is used to limit min pstate
313 * @max_policy_pct: The maximum performance in percentage enforced by
314 * cpufreq setpolicy interface
315 * @max_sysfs_pct: The maximum performance in percentage enforced by
316 * intel pstate sysfs interface
317 * @min_policy_pct: The minimum performance in percentage enforced by
318 * cpufreq setpolicy interface
319 * @min_sysfs_pct: The minimum performance in percentage enforced by
320 * intel pstate sysfs interface
321 *
322 * Storage for user and policy defined limits.
323 */
93f0822d
DB
324struct perf_limits {
325 int no_turbo;
dd5fbf70 326 int turbo_disabled;
93f0822d
DB
327 int max_perf_pct;
328 int min_perf_pct;
329 int32_t max_perf;
330 int32_t min_perf;
d8f469e9
DB
331 int max_policy_pct;
332 int max_sysfs_pct;
a0475992
KCA
333 int min_policy_pct;
334 int min_sysfs_pct;
93f0822d
DB
335};
336
51443fbf
PB
337static struct perf_limits performance_limits = {
338 .no_turbo = 0,
339 .turbo_disabled = 0,
340 .max_perf_pct = 100,
341 .max_perf = int_tofp(1),
342 .min_perf_pct = 100,
343 .min_perf = int_tofp(1),
344 .max_policy_pct = 100,
345 .max_sysfs_pct = 100,
346 .min_policy_pct = 0,
347 .min_sysfs_pct = 0,
348};
349
350static struct perf_limits powersave_limits = {
93f0822d 351 .no_turbo = 0,
4521e1a0 352 .turbo_disabled = 0,
93f0822d
DB
353 .max_perf_pct = 100,
354 .max_perf = int_tofp(1),
355 .min_perf_pct = 0,
356 .min_perf = 0,
d8f469e9
DB
357 .max_policy_pct = 100,
358 .max_sysfs_pct = 100,
a0475992
KCA
359 .min_policy_pct = 0,
360 .min_sysfs_pct = 0,
93f0822d
DB
361};
362
51443fbf
PB
363#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
364static struct perf_limits *limits = &performance_limits;
365#else
366static struct perf_limits *limits = &powersave_limits;
367#endif
368
9522a2ff 369#ifdef CONFIG_ACPI
2b3ec765
SP
370
371static bool intel_pstate_get_ppc_enable_status(void)
372{
373 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
374 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
375 return true;
376
377 return acpi_ppc;
378}
379
9522a2ff
SP
380static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
381{
382 struct cpudata *cpu;
9522a2ff
SP
383 int ret;
384 int i;
385
e59a8f7f
SP
386 if (hwp_active)
387 return;
388
2b3ec765 389 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
390 return;
391
392 cpu = all_cpu_data[policy->cpu];
393
394 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
395 policy->cpu);
396 if (ret)
397 return;
398
399 /*
400 * Check if the control value in _PSS is for PERF_CTL MSR, which should
401 * guarantee that the states returned by it map to the states in our
402 * list directly.
403 */
404 if (cpu->acpi_perf_data.control_register.space_id !=
405 ACPI_ADR_SPACE_FIXED_HARDWARE)
406 goto err;
407
408 /*
409 * If there is only one entry _PSS, simply ignore _PSS and continue as
410 * usual without taking _PSS into account
411 */
412 if (cpu->acpi_perf_data.state_count < 2)
413 goto err;
414
415 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
416 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
417 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
418 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
419 (u32) cpu->acpi_perf_data.states[i].core_frequency,
420 (u32) cpu->acpi_perf_data.states[i].power,
421 (u32) cpu->acpi_perf_data.states[i].control);
422 }
423
424 /*
425 * The _PSS table doesn't contain whole turbo frequency range.
426 * This just contains +1 MHZ above the max non turbo frequency,
427 * with control value corresponding to max turbo ratio. But
428 * when cpufreq set policy is called, it will call with this
429 * max frequency, which will cause a reduced performance as
430 * this driver uses real max turbo frequency as the max
431 * frequency. So correct this frequency in _PSS table to
b00345d1 432 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
433 * Also need to convert to MHz as _PSS freq is in MHz.
434 */
b00345d1 435 if (!limits->turbo_disabled)
9522a2ff
SP
436 cpu->acpi_perf_data.states[0].core_frequency =
437 policy->cpuinfo.max_freq / 1000;
438 cpu->valid_pss_table = true;
6cacd115 439 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
440
441 return;
442
443 err:
444 cpu->valid_pss_table = false;
445 acpi_processor_unregister_performance(policy->cpu);
446}
447
448static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
449{
450 struct cpudata *cpu;
451
452 cpu = all_cpu_data[policy->cpu];
453 if (!cpu->valid_pss_table)
454 return;
455
456 acpi_processor_unregister_performance(policy->cpu);
457}
458
459#else
460static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
461{
462}
463
464static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
465{
466}
467#endif
468
93f0822d 469static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 470 int deadband, int integral) {
b54a0dfd
PL
471 pid->setpoint = int_tofp(setpoint);
472 pid->deadband = int_tofp(deadband);
93f0822d 473 pid->integral = int_tofp(integral);
d98d099b 474 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
475}
476
477static inline void pid_p_gain_set(struct _pid *pid, int percent)
478{
22590efb 479 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
480}
481
482static inline void pid_i_gain_set(struct _pid *pid, int percent)
483{
22590efb 484 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
485}
486
487static inline void pid_d_gain_set(struct _pid *pid, int percent)
488{
22590efb 489 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
490}
491
d253d2a5 492static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 493{
d253d2a5 494 signed int result;
93f0822d
DB
495 int32_t pterm, dterm, fp_error;
496 int32_t integral_limit;
497
b54a0dfd 498 fp_error = pid->setpoint - busy;
93f0822d 499
b54a0dfd 500 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
501 return 0;
502
503 pterm = mul_fp(pid->p_gain, fp_error);
504
505 pid->integral += fp_error;
506
e0d4c8f8
KCA
507 /*
508 * We limit the integral here so that it will never
509 * get higher than 30. This prevents it from becoming
510 * too large an input over long periods of time and allows
511 * it to get factored out sooner.
512 *
513 * The value of 30 was chosen through experimentation.
514 */
93f0822d
DB
515 integral_limit = int_tofp(30);
516 if (pid->integral > integral_limit)
517 pid->integral = integral_limit;
518 if (pid->integral < -integral_limit)
519 pid->integral = -integral_limit;
520
d253d2a5
BS
521 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
522 pid->last_err = fp_error;
93f0822d
DB
523
524 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 525 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
526 return (signed int)fp_toint(result);
527}
528
529static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
530{
016c8150
DB
531 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
532 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
533 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 534
2d8d1f18 535 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
536}
537
93f0822d
DB
538static inline void intel_pstate_reset_all_pid(void)
539{
540 unsigned int cpu;
845c1cbe 541
93f0822d
DB
542 for_each_online_cpu(cpu) {
543 if (all_cpu_data[cpu])
544 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
545 }
546}
547
4521e1a0
GM
548static inline void update_turbo_state(void)
549{
550 u64 misc_en;
551 struct cpudata *cpu;
552
553 cpu = all_cpu_data[0];
554 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 555 limits->turbo_disabled =
4521e1a0
GM
556 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
557 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
558}
559
41cfd64c 560static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 561{
74da56ce
KCA
562 int min, hw_min, max, hw_max, cpu, range, adj_range;
563 u64 value, cap;
564
41cfd64c 565 for_each_cpu(cpu, cpumask) {
f9f4872d
SP
566 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
567 hw_min = HWP_LOWEST_PERF(cap);
568 hw_max = HWP_HIGHEST_PERF(cap);
569 range = hw_max - hw_min;
570
2f86dc4c 571 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 572 adj_range = limits->min_perf_pct * range / 100;
74da56ce 573 min = hw_min + adj_range;
2f86dc4c
DB
574 value &= ~HWP_MIN_PERF(~0L);
575 value |= HWP_MIN_PERF(min);
576
51443fbf 577 adj_range = limits->max_perf_pct * range / 100;
74da56ce 578 max = hw_min + adj_range;
51443fbf 579 if (limits->no_turbo) {
74da56ce
KCA
580 hw_max = HWP_GUARANTEED_PERF(cap);
581 if (hw_max < max)
582 max = hw_max;
2f86dc4c
DB
583 }
584
585 value &= ~HWP_MAX_PERF(~0L);
586 value |= HWP_MAX_PERF(max);
587 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
588 }
41cfd64c 589}
2f86dc4c 590
ba41e1bc
RW
591static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
592{
593 if (hwp_active)
594 intel_pstate_hwp_set(policy->cpus);
595
596 return 0;
597}
598
41cfd64c
VK
599static void intel_pstate_hwp_set_online_cpus(void)
600{
601 get_online_cpus();
602 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
603 put_online_cpus();
604}
605
93f0822d
DB
606/************************** debugfs begin ************************/
607static int pid_param_set(void *data, u64 val)
608{
609 *(u32 *)data = val;
610 intel_pstate_reset_all_pid();
611 return 0;
612}
845c1cbe 613
93f0822d
DB
614static int pid_param_get(void *data, u64 *val)
615{
616 *val = *(u32 *)data;
617 return 0;
618}
2d8d1f18 619DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
620
621struct pid_param {
622 char *name;
623 void *value;
624};
625
626static struct pid_param pid_files[] = {
016c8150
DB
627 {"sample_rate_ms", &pid_params.sample_rate_ms},
628 {"d_gain_pct", &pid_params.d_gain_pct},
629 {"i_gain_pct", &pid_params.i_gain_pct},
630 {"deadband", &pid_params.deadband},
631 {"setpoint", &pid_params.setpoint},
632 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
633 {NULL, NULL}
634};
635
317dd50e 636static void __init intel_pstate_debug_expose_params(void)
93f0822d 637{
317dd50e 638 struct dentry *debugfs_parent;
93f0822d
DB
639 int i = 0;
640
2f86dc4c
DB
641 if (hwp_active)
642 return;
93f0822d
DB
643 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
644 if (IS_ERR_OR_NULL(debugfs_parent))
645 return;
646 while (pid_files[i].name) {
647 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
648 debugfs_parent, pid_files[i].value,
649 &fops_pid_param);
93f0822d
DB
650 i++;
651 }
652}
653
654/************************** debugfs end ************************/
655
656/************************** sysfs begin ************************/
657#define show_one(file_name, object) \
658 static ssize_t show_##file_name \
659 (struct kobject *kobj, struct attribute *attr, char *buf) \
660 { \
51443fbf 661 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
662 }
663
d01b1f48
KCA
664static ssize_t show_turbo_pct(struct kobject *kobj,
665 struct attribute *attr, char *buf)
666{
667 struct cpudata *cpu;
668 int total, no_turbo, turbo_pct;
669 uint32_t turbo_fp;
670
671 cpu = all_cpu_data[0];
672
673 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
674 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 675 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
676 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
677 return sprintf(buf, "%u\n", turbo_pct);
678}
679
0522424e
KCA
680static ssize_t show_num_pstates(struct kobject *kobj,
681 struct attribute *attr, char *buf)
682{
683 struct cpudata *cpu;
684 int total;
685
686 cpu = all_cpu_data[0];
687 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
688 return sprintf(buf, "%u\n", total);
689}
690
4521e1a0
GM
691static ssize_t show_no_turbo(struct kobject *kobj,
692 struct attribute *attr, char *buf)
693{
694 ssize_t ret;
695
696 update_turbo_state();
51443fbf
PB
697 if (limits->turbo_disabled)
698 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 699 else
51443fbf 700 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
701
702 return ret;
703}
704
93f0822d 705static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 706 const char *buf, size_t count)
93f0822d
DB
707{
708 unsigned int input;
709 int ret;
845c1cbe 710
93f0822d
DB
711 ret = sscanf(buf, "%u", &input);
712 if (ret != 1)
713 return -EINVAL;
4521e1a0
GM
714
715 update_turbo_state();
51443fbf 716 if (limits->turbo_disabled) {
4836df17 717 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 718 return -EPERM;
dd5fbf70 719 }
2f86dc4c 720
51443fbf 721 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 722
2f86dc4c 723 if (hwp_active)
41cfd64c 724 intel_pstate_hwp_set_online_cpus();
2f86dc4c 725
93f0822d
DB
726 return count;
727}
728
729static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 730 const char *buf, size_t count)
93f0822d
DB
731{
732 unsigned int input;
733 int ret;
845c1cbe 734
93f0822d
DB
735 ret = sscanf(buf, "%u", &input);
736 if (ret != 1)
737 return -EINVAL;
738
51443fbf
PB
739 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
740 limits->max_perf_pct = min(limits->max_policy_pct,
741 limits->max_sysfs_pct);
742 limits->max_perf_pct = max(limits->min_policy_pct,
743 limits->max_perf_pct);
744 limits->max_perf_pct = max(limits->min_perf_pct,
745 limits->max_perf_pct);
22590efb 746 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 747
2f86dc4c 748 if (hwp_active)
41cfd64c 749 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
750 return count;
751}
752
753static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 754 const char *buf, size_t count)
93f0822d
DB
755{
756 unsigned int input;
757 int ret;
845c1cbe 758
93f0822d
DB
759 ret = sscanf(buf, "%u", &input);
760 if (ret != 1)
761 return -EINVAL;
a0475992 762
51443fbf
PB
763 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
764 limits->min_perf_pct = max(limits->min_policy_pct,
765 limits->min_sysfs_pct);
766 limits->min_perf_pct = min(limits->max_policy_pct,
767 limits->min_perf_pct);
768 limits->min_perf_pct = min(limits->max_perf_pct,
769 limits->min_perf_pct);
22590efb 770 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 771
2f86dc4c 772 if (hwp_active)
41cfd64c 773 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
774 return count;
775}
776
93f0822d
DB
777show_one(max_perf_pct, max_perf_pct);
778show_one(min_perf_pct, min_perf_pct);
779
780define_one_global_rw(no_turbo);
781define_one_global_rw(max_perf_pct);
782define_one_global_rw(min_perf_pct);
d01b1f48 783define_one_global_ro(turbo_pct);
0522424e 784define_one_global_ro(num_pstates);
93f0822d
DB
785
786static struct attribute *intel_pstate_attributes[] = {
787 &no_turbo.attr,
788 &max_perf_pct.attr,
789 &min_perf_pct.attr,
d01b1f48 790 &turbo_pct.attr,
0522424e 791 &num_pstates.attr,
93f0822d
DB
792 NULL
793};
794
795static struct attribute_group intel_pstate_attr_group = {
796 .attrs = intel_pstate_attributes,
797};
93f0822d 798
317dd50e 799static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 800{
317dd50e 801 struct kobject *intel_pstate_kobject;
93f0822d
DB
802 int rc;
803
804 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
805 &cpu_subsys.dev_root->kobj);
806 BUG_ON(!intel_pstate_kobject);
2d8d1f18 807 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
808 BUG_ON(rc);
809}
93f0822d 810/************************** sysfs end ************************/
2f86dc4c 811
ba88d433 812static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 813{
f05c9665 814 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
815 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
816 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 817
ba88d433 818 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
819}
820
938d21a2 821static int atom_get_min_pstate(void)
19e77c28
DB
822{
823 u64 value;
845c1cbe 824
938d21a2 825 rdmsrl(ATOM_RATIOS, value);
c16ed060 826 return (value >> 8) & 0x7F;
19e77c28
DB
827}
828
938d21a2 829static int atom_get_max_pstate(void)
19e77c28
DB
830{
831 u64 value;
845c1cbe 832
938d21a2 833 rdmsrl(ATOM_RATIOS, value);
c16ed060 834 return (value >> 16) & 0x7F;
19e77c28 835}
93f0822d 836
938d21a2 837static int atom_get_turbo_pstate(void)
61d8d2ab
DB
838{
839 u64 value;
845c1cbe 840
938d21a2 841 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 842 return value & 0x7F;
61d8d2ab
DB
843}
844
fdfdb2b1 845static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
846{
847 u64 val;
848 int32_t vid_fp;
849 u32 vid;
850
144c8e17 851 val = (u64)pstate << 8;
51443fbf 852 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
853 val |= (u64)1 << 32;
854
855 vid_fp = cpudata->vid.min + mul_fp(
856 int_tofp(pstate - cpudata->pstate.min_pstate),
857 cpudata->vid.ratio);
858
859 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 860 vid = ceiling_fp(vid_fp);
007bea09 861
21855ff5
DB
862 if (pstate > cpudata->pstate.max_pstate)
863 vid = cpudata->vid.turbo;
864
fdfdb2b1 865 return val | vid;
007bea09
DB
866}
867
1421df63 868static int silvermont_get_scaling(void)
b27580b0
DB
869{
870 u64 value;
871 int i;
1421df63
PL
872 /* Defined in Table 35-6 from SDM (Sept 2015) */
873 static int silvermont_freq_table[] = {
874 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
875
876 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
877 i = value & 0x7;
878 WARN_ON(i > 4);
b27580b0 879
1421df63
PL
880 return silvermont_freq_table[i];
881}
b27580b0 882
1421df63
PL
883static int airmont_get_scaling(void)
884{
885 u64 value;
886 int i;
887 /* Defined in Table 35-10 from SDM (Sept 2015) */
888 static int airmont_freq_table[] = {
889 83300, 100000, 133300, 116700, 80000,
890 93300, 90000, 88900, 87500};
891
892 rdmsrl(MSR_FSB_FREQ, value);
893 i = value & 0xF;
894 WARN_ON(i > 8);
895
896 return airmont_freq_table[i];
b27580b0
DB
897}
898
938d21a2 899static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
900{
901 u64 value;
902
938d21a2 903 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
904 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
905 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
906 cpudata->vid.ratio = div_fp(
907 cpudata->vid.max - cpudata->vid.min,
908 int_tofp(cpudata->pstate.max_pstate -
909 cpudata->pstate.min_pstate));
21855ff5 910
938d21a2 911 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 912 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
913}
914
016c8150 915static int core_get_min_pstate(void)
93f0822d
DB
916{
917 u64 value;
845c1cbe 918
05e99c8c 919 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
920 return (value >> 40) & 0xFF;
921}
922
3bcc6fa9 923static int core_get_max_pstate_physical(void)
93f0822d
DB
924{
925 u64 value;
845c1cbe 926
05e99c8c 927 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
928 return (value >> 8) & 0xFF;
929}
930
016c8150 931static int core_get_max_pstate(void)
93f0822d 932{
6a35fc2d
SP
933 u64 tar;
934 u64 plat_info;
935 int max_pstate;
936 int err;
937
938 rdmsrl(MSR_PLATFORM_INFO, plat_info);
939 max_pstate = (plat_info >> 8) & 0xFF;
940
941 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
942 if (!err) {
943 /* Do some sanity checking for safety */
944 if (plat_info & 0x600000000) {
945 u64 tdp_ctrl;
946 u64 tdp_ratio;
947 int tdp_msr;
948
949 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
950 if (err)
951 goto skip_tar;
952
5fc8f707 953 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
6a35fc2d
SP
954 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
955 if (err)
956 goto skip_tar;
957
1becf035
SP
958 /* For level 1 and 2, bits[23:16] contain the ratio */
959 if (tdp_ctrl)
960 tdp_ratio >>= 16;
961
962 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
963 if (tdp_ratio - 1 == tar) {
964 max_pstate = tar;
965 pr_debug("max_pstate=TAC %x\n", max_pstate);
966 } else {
967 goto skip_tar;
968 }
969 }
970 }
845c1cbe 971
6a35fc2d
SP
972skip_tar:
973 return max_pstate;
93f0822d
DB
974}
975
016c8150 976static int core_get_turbo_pstate(void)
93f0822d
DB
977{
978 u64 value;
979 int nont, ret;
845c1cbe 980
100cf6f2 981 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 982 nont = core_get_max_pstate();
285cb990 983 ret = (value) & 255;
93f0822d
DB
984 if (ret <= nont)
985 ret = nont;
986 return ret;
987}
988
b27580b0
DB
989static inline int core_get_scaling(void)
990{
991 return 100000;
992}
993
fdfdb2b1 994static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
995{
996 u64 val;
997
144c8e17 998 val = (u64)pstate << 8;
51443fbf 999 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
1000 val |= (u64)1 << 32;
1001
fdfdb2b1 1002 return val;
016c8150
DB
1003}
1004
b34ef932
DC
1005static int knl_get_turbo_pstate(void)
1006{
1007 u64 value;
1008 int nont, ret;
1009
100cf6f2 1010 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1011 nont = core_get_max_pstate();
1012 ret = (((value) >> 8) & 0xFF);
1013 if (ret <= nont)
1014 ret = nont;
1015 return ret;
1016}
1017
016c8150
DB
1018static struct cpu_defaults core_params = {
1019 .pid_policy = {
1020 .sample_rate_ms = 10,
1021 .deadband = 0,
1022 .setpoint = 97,
1023 .p_gain_pct = 20,
1024 .d_gain_pct = 0,
1025 .i_gain_pct = 0,
1026 },
1027 .funcs = {
1028 .get_max = core_get_max_pstate,
3bcc6fa9 1029 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1030 .get_min = core_get_min_pstate,
1031 .get_turbo = core_get_turbo_pstate,
b27580b0 1032 .get_scaling = core_get_scaling,
fdfdb2b1 1033 .get_val = core_get_val,
157386b6 1034 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1035 },
1036};
1037
42ce8921 1038static const struct cpu_defaults silvermont_params = {
1421df63
PL
1039 .pid_policy = {
1040 .sample_rate_ms = 10,
1041 .deadband = 0,
1042 .setpoint = 60,
1043 .p_gain_pct = 14,
1044 .d_gain_pct = 0,
1045 .i_gain_pct = 4,
09c448d3 1046 .boost_iowait = true,
1421df63
PL
1047 },
1048 .funcs = {
1049 .get_max = atom_get_max_pstate,
1050 .get_max_physical = atom_get_max_pstate,
1051 .get_min = atom_get_min_pstate,
1052 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1053 .get_val = atom_get_val,
1421df63
PL
1054 .get_scaling = silvermont_get_scaling,
1055 .get_vid = atom_get_vid,
e70eed2b 1056 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1057 },
1058};
1059
42ce8921 1060static const struct cpu_defaults airmont_params = {
19e77c28
DB
1061 .pid_policy = {
1062 .sample_rate_ms = 10,
1063 .deadband = 0,
6a82ba6d 1064 .setpoint = 60,
19e77c28
DB
1065 .p_gain_pct = 14,
1066 .d_gain_pct = 0,
1067 .i_gain_pct = 4,
09c448d3 1068 .boost_iowait = true,
19e77c28
DB
1069 },
1070 .funcs = {
938d21a2
PL
1071 .get_max = atom_get_max_pstate,
1072 .get_max_physical = atom_get_max_pstate,
1073 .get_min = atom_get_min_pstate,
1074 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1075 .get_val = atom_get_val,
1421df63 1076 .get_scaling = airmont_get_scaling,
938d21a2 1077 .get_vid = atom_get_vid,
e70eed2b 1078 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1079 },
1080};
1081
42ce8921 1082static const struct cpu_defaults knl_params = {
b34ef932
DC
1083 .pid_policy = {
1084 .sample_rate_ms = 10,
1085 .deadband = 0,
1086 .setpoint = 97,
1087 .p_gain_pct = 20,
1088 .d_gain_pct = 0,
1089 .i_gain_pct = 0,
1090 },
1091 .funcs = {
1092 .get_max = core_get_max_pstate,
3bcc6fa9 1093 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1094 .get_min = core_get_min_pstate,
1095 .get_turbo = knl_get_turbo_pstate,
69cefc27 1096 .get_scaling = core_get_scaling,
fdfdb2b1 1097 .get_val = core_get_val,
157386b6 1098 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1099 },
1100};
1101
42ce8921 1102static const struct cpu_defaults bxt_params = {
41bad47f
SP
1103 .pid_policy = {
1104 .sample_rate_ms = 10,
1105 .deadband = 0,
1106 .setpoint = 60,
1107 .p_gain_pct = 14,
1108 .d_gain_pct = 0,
1109 .i_gain_pct = 4,
09c448d3 1110 .boost_iowait = true,
41bad47f
SP
1111 },
1112 .funcs = {
1113 .get_max = core_get_max_pstate,
1114 .get_max_physical = core_get_max_pstate_physical,
1115 .get_min = core_get_min_pstate,
1116 .get_turbo = core_get_turbo_pstate,
1117 .get_scaling = core_get_scaling,
1118 .get_val = core_get_val,
1119 .get_target_pstate = get_target_pstate_use_cpu_load,
1120 },
1121};
1122
93f0822d
DB
1123static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1124{
1125 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1126 int max_perf_adj;
93f0822d 1127 int min_perf;
845c1cbe 1128
51443fbf 1129 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1130 max_perf = cpu->pstate.max_pstate;
1131
e0d4c8f8
KCA
1132 /*
1133 * performance can be limited by user through sysfs, by cpufreq
1134 * policy, or by cpu specific default values determined through
1135 * experimentation.
1136 */
a158bed5 1137 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
1138 *max = clamp_t(int, max_perf_adj,
1139 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1140
a158bed5 1141 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 1142 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1143}
1144
fdfdb2b1
RW
1145static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1146{
1147 int pstate = cpu->pstate.min_pstate;
1148
bc95a454
RW
1149 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1150 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1151 /*
1152 * Generally, there is no guarantee that this code will always run on
1153 * the CPU being updated, so force the register update to run on the
1154 * right CPU.
1155 */
1156 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1157 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1158}
1159
93f0822d
DB
1160static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1161{
016c8150
DB
1162 cpu->pstate.min_pstate = pstate_funcs.get_min();
1163 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1164 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1165 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1166 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1167
007bea09
DB
1168 if (pstate_funcs.get_vid)
1169 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1170
1171 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1172}
1173
a1c9787d 1174static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1175{
6b17ddb2 1176 struct sample *sample = &cpu->sample;
e66c1768 1177
a1c9787d 1178 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1179}
1180
4fec7ad5 1181static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1182{
93f0822d 1183 u64 aperf, mperf;
4ab60c3f 1184 unsigned long flags;
4055fad3 1185 u64 tsc;
93f0822d 1186
4ab60c3f 1187 local_irq_save(flags);
93f0822d
DB
1188 rdmsrl(MSR_IA32_APERF, aperf);
1189 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1190 tsc = rdtsc();
4fec7ad5 1191 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1192 local_irq_restore(flags);
4fec7ad5 1193 return false;
8e601a9f 1194 }
4ab60c3f 1195 local_irq_restore(flags);
b69880f9 1196
c4ee841f 1197 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1198 cpu->sample.time = time;
d37e2b76
DB
1199 cpu->sample.aperf = aperf;
1200 cpu->sample.mperf = mperf;
4055fad3 1201 cpu->sample.tsc = tsc;
d37e2b76
DB
1202 cpu->sample.aperf -= cpu->prev_aperf;
1203 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1204 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1205
93f0822d
DB
1206 cpu->prev_aperf = aperf;
1207 cpu->prev_mperf = mperf;
4055fad3 1208 cpu->prev_tsc = tsc;
febce40f
RW
1209 /*
1210 * First time this function is invoked in a given cycle, all of the
1211 * previous sample data fields are equal to zero or stale and they must
1212 * be populated with meaningful numbers for things to work, so assume
1213 * that sample.time will always be reset before setting the utilization
1214 * update hook and make the caller skip the sample then.
1215 */
1216 return !!cpu->last_sample_time;
93f0822d
DB
1217}
1218
8fa520af
PL
1219static inline int32_t get_avg_frequency(struct cpudata *cpu)
1220{
a1c9787d
RW
1221 return mul_ext_fp(cpu->sample.core_avg_perf,
1222 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1223}
1224
bdcaa23f
PL
1225static inline int32_t get_avg_pstate(struct cpudata *cpu)
1226{
8edb0a6e
RW
1227 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1228 cpu->sample.core_avg_perf);
bdcaa23f
PL
1229}
1230
e70eed2b
PL
1231static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1232{
1233 struct sample *sample = &cpu->sample;
09c448d3 1234 int32_t busy_frac, boost;
0843e83c 1235 int target, avg_pstate;
e70eed2b 1236
09c448d3 1237 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1238
09c448d3
RW
1239 boost = cpu->iowait_boost;
1240 cpu->iowait_boost >>= 1;
63d1d656 1241
09c448d3
RW
1242 if (busy_frac < boost)
1243 busy_frac = boost;
63d1d656 1244
09c448d3 1245 sample->busy_scaled = busy_frac * 100;
0843e83c
RW
1246
1247 target = limits->no_turbo || limits->turbo_disabled ?
1248 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1249 target += target >> 2;
1250 target = mul_fp(target, busy_frac);
1251 if (target < cpu->pstate.min_pstate)
1252 target = cpu->pstate.min_pstate;
1253
1254 /*
1255 * If the average P-state during the previous cycle was higher than the
1256 * current target, add 50% of the difference to the target to reduce
1257 * possible performance oscillations and offset possible performance
1258 * loss related to moving the workload from one CPU to another within
1259 * a package/module.
1260 */
1261 avg_pstate = get_avg_pstate(cpu);
1262 if (avg_pstate > target)
1263 target += (avg_pstate - target) >> 1;
1264
1265 return target;
e70eed2b
PL
1266}
1267
157386b6 1268static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1269{
1aa7a6e2 1270 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1271 u64 duration_ns;
93f0822d 1272
e0d4c8f8 1273 /*
f00593a4
RW
1274 * perf_scaled is the ratio of the average P-state during the last
1275 * sampling period to the P-state requested last time (in percent).
1276 *
1277 * That measures the system's response to the previous P-state
1278 * selection.
e0d4c8f8 1279 */
22590efb
RW
1280 max_pstate = cpu->pstate.max_pstate_physical;
1281 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1282 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1283 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1284
e0d4c8f8 1285 /*
a4675fbc
RW
1286 * Since our utilization update callback will not run unless we are
1287 * in C0, check if the actual elapsed time is significantly greater (3x)
1288 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1289 * enough period of time to adjust our performance metric.
e0d4c8f8 1290 */
a4675fbc 1291 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1292 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1293 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1294 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1295 } else {
1296 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1297 if (sample_ratio < int_tofp(1))
1aa7a6e2 1298 perf_scaled = 0;
c4ee841f
DB
1299 }
1300
1aa7a6e2
RW
1301 cpu->sample.busy_scaled = perf_scaled;
1302 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1303}
1304
fdfdb2b1
RW
1305static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1306{
1307 int max_perf, min_perf;
1308
1309 update_turbo_state();
1310
1311 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1312 pstate = clamp_t(int, pstate, min_perf, max_perf);
bc95a454 1313 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1
RW
1314 if (pstate == cpu->pstate.current_pstate)
1315 return;
1316
bc95a454 1317 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1318 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1319}
1320
93f0822d
DB
1321static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1322{
157386b6 1323 int from, target_pstate;
4055fad3
DS
1324 struct sample *sample;
1325
1326 from = cpu->pstate.current_pstate;
93f0822d 1327
157386b6 1328 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1329
fdfdb2b1 1330 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1331
1332 sample = &cpu->sample;
a1c9787d 1333 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1334 fp_toint(sample->busy_scaled),
4055fad3
DS
1335 from,
1336 cpu->pstate.current_pstate,
1337 sample->mperf,
1338 sample->aperf,
1339 sample->tsc,
3ba7bcaa
SP
1340 get_avg_frequency(cpu),
1341 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1342}
1343
a4675fbc 1344static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1345 unsigned int flags)
93f0822d 1346{
a4675fbc 1347 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1348 u64 delta_ns;
1349
1350 if (pid_params.boost_iowait) {
1351 if (flags & SCHED_CPUFREQ_IOWAIT) {
1352 cpu->iowait_boost = int_tofp(1);
1353 } else if (cpu->iowait_boost) {
1354 /* Clear iowait_boost if the CPU may have been idle. */
1355 delta_ns = time - cpu->last_update;
1356 if (delta_ns > TICK_NSEC)
1357 cpu->iowait_boost = 0;
1358 }
1359 cpu->last_update = time;
1360 }
b69880f9 1361
09c448d3 1362 delta_ns = time - cpu->sample.time;
a4675fbc 1363 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1364 bool sample_taken = intel_pstate_sample(cpu, time);
1365
6d45b719 1366 if (sample_taken) {
a1c9787d 1367 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1368 if (!hwp_active)
1369 intel_pstate_adjust_busy_pstate(cpu);
1370 }
a4675fbc 1371 }
93f0822d
DB
1372}
1373
1374#define ICPU(model, policy) \
6cbd7ee1
DB
1375 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1376 (unsigned long)&policy }
93f0822d
DB
1377
1378static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1379 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1380 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1381 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1382 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1383 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1384 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1385 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1386 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1387 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1388 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1389 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1390 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1391 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1392 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1393 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1394 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1395 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
41bad47f 1396 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1397 {}
1398};
1399MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1400
29327c84 1401static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1402 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1403 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1404 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1405 {}
1406};
1407
93f0822d
DB
1408static int intel_pstate_init_cpu(unsigned int cpunum)
1409{
93f0822d
DB
1410 struct cpudata *cpu;
1411
c0348717
DB
1412 if (!all_cpu_data[cpunum])
1413 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1414 GFP_KERNEL);
93f0822d
DB
1415 if (!all_cpu_data[cpunum])
1416 return -ENOMEM;
1417
1418 cpu = all_cpu_data[cpunum];
1419
93f0822d 1420 cpu->cpu = cpunum;
ba88d433 1421
a4675fbc 1422 if (hwp_active) {
ba88d433 1423 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1424 pid_params.sample_rate_ms = 50;
1425 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1426 }
ba88d433 1427
179e8471 1428 intel_pstate_get_cpu_pstates(cpu);
016c8150 1429
93f0822d 1430 intel_pstate_busy_pid_reset(cpu);
93f0822d 1431
4836df17 1432 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1433
1434 return 0;
1435}
1436
1437static unsigned int intel_pstate_get(unsigned int cpu_num)
1438{
f96fd0c8 1439 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1440
f96fd0c8 1441 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1442}
1443
febce40f 1444static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1445{
febce40f
RW
1446 struct cpudata *cpu = all_cpu_data[cpu_num];
1447
5ab666e0
RW
1448 if (cpu->update_util_set)
1449 return;
1450
febce40f
RW
1451 /* Prevent intel_pstate_update_util() from using stale data. */
1452 cpu->sample.time = 0;
0bed612b
RW
1453 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1454 intel_pstate_update_util);
4578ee7e 1455 cpu->update_util_set = true;
bb6ab52f
RW
1456}
1457
1458static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1459{
4578ee7e
CY
1460 struct cpudata *cpu_data = all_cpu_data[cpu];
1461
1462 if (!cpu_data->update_util_set)
1463 return;
1464
0bed612b 1465 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1466 cpu_data->update_util_set = false;
bb6ab52f
RW
1467 synchronize_sched();
1468}
1469
30a39153
SP
1470static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1471{
1472 limits->no_turbo = 0;
1473 limits->turbo_disabled = 0;
1474 limits->max_perf_pct = 100;
1475 limits->max_perf = int_tofp(1);
1476 limits->min_perf_pct = 100;
1477 limits->min_perf = int_tofp(1);
1478 limits->max_policy_pct = 100;
1479 limits->max_sysfs_pct = 100;
1480 limits->min_policy_pct = 0;
1481 limits->min_sysfs_pct = 0;
1482}
1483
93f0822d
DB
1484static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1485{
3be9200d
SP
1486 struct cpudata *cpu;
1487
d3929b83
DB
1488 if (!policy->cpuinfo.max_freq)
1489 return -ENODEV;
1490
2c2c1af4
SP
1491 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1492 policy->cpuinfo.max_freq, policy->max);
1493
3be9200d 1494 cpu = all_cpu_data[0];
c749c64f
RW
1495 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1496 policy->max < policy->cpuinfo.max_freq &&
1497 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1498 pr_debug("policy->max > max non turbo frequency\n");
1499 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
1500 }
1501
30a39153 1502 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
51443fbf 1503 limits = &performance_limits;
30a39153 1504 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1505 pr_debug("set performance\n");
30a39153
SP
1506 intel_pstate_set_performance_limits(limits);
1507 goto out;
1508 }
1509 } else {
4836df17 1510 pr_debug("set powersave\n");
30a39153 1511 limits = &powersave_limits;
93f0822d 1512 }
2f86dc4c 1513
51443fbf
PB
1514 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1515 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1516 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1517 policy->cpuinfo.max_freq);
51443fbf 1518 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1519
1520 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1521 limits->min_perf_pct = max(limits->min_policy_pct,
1522 limits->min_sysfs_pct);
1523 limits->min_perf_pct = min(limits->max_policy_pct,
1524 limits->min_perf_pct);
1525 limits->max_perf_pct = min(limits->max_policy_pct,
1526 limits->max_sysfs_pct);
1527 limits->max_perf_pct = max(limits->min_policy_pct,
1528 limits->max_perf_pct);
43717aad
CY
1529
1530 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1531 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1532
22590efb
RW
1533 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1534 limits->max_perf = div_fp(limits->max_perf_pct, 100);
2c2c1af4 1535 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
93f0822d 1536
bb6ab52f
RW
1537 out:
1538 intel_pstate_set_update_util_hook(policy->cpu);
1539
ba41e1bc 1540 intel_pstate_hwp_set_policy(policy);
2f86dc4c 1541
93f0822d
DB
1542 return 0;
1543}
1544
1545static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1546{
be49e346 1547 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1548
285cb990 1549 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1550 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1551 return -EINVAL;
1552
1553 return 0;
1554}
1555
bb18008f 1556static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1557{
bb18008f
DB
1558 int cpu_num = policy->cpu;
1559 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1560
4836df17 1561 pr_debug("CPU %d exiting\n", cpu_num);
bb18008f 1562
bb6ab52f 1563 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1564
2f86dc4c
DB
1565 if (hwp_active)
1566 return;
1567
fdfdb2b1 1568 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1569}
1570
2760984f 1571static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1572{
93f0822d 1573 struct cpudata *cpu;
52e0a509 1574 int rc;
93f0822d
DB
1575
1576 rc = intel_pstate_init_cpu(policy->cpu);
1577 if (rc)
1578 return rc;
1579
1580 cpu = all_cpu_data[policy->cpu];
1581
51443fbf 1582 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1583 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1584 else
1585 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1586
b27580b0
DB
1587 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1588 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1589
1590 /* cpuinfo and default policy values */
b27580b0 1591 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
1592 update_turbo_state();
1593 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1594 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1595 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1596
9522a2ff 1597 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1598 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1599 cpumask_set_cpu(policy->cpu, policy->cpus);
1600
1601 return 0;
1602}
1603
9522a2ff
SP
1604static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1605{
1606 intel_pstate_exit_perf_limits(policy);
1607
1608 return 0;
1609}
1610
93f0822d
DB
1611static struct cpufreq_driver intel_pstate_driver = {
1612 .flags = CPUFREQ_CONST_LOOPS,
1613 .verify = intel_pstate_verify_policy,
1614 .setpolicy = intel_pstate_set_policy,
ba41e1bc 1615 .resume = intel_pstate_hwp_set_policy,
93f0822d
DB
1616 .get = intel_pstate_get,
1617 .init = intel_pstate_cpu_init,
9522a2ff 1618 .exit = intel_pstate_cpu_exit,
bb18008f 1619 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1620 .name = "intel_pstate",
93f0822d
DB
1621};
1622
eed43609
JZ
1623static int no_load __initdata;
1624static int no_hwp __initdata;
1625static int hwp_only __initdata;
29327c84 1626static unsigned int force_load __initdata;
6be26498 1627
29327c84 1628static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 1629{
016c8150 1630 if (!pstate_funcs.get_max() ||
c410833a
SK
1631 !pstate_funcs.get_min() ||
1632 !pstate_funcs.get_turbo())
b563b4e3
DB
1633 return -ENODEV;
1634
b563b4e3
DB
1635 return 0;
1636}
016c8150 1637
29327c84 1638static void __init copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1639{
1640 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1641 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1642 pid_params.p_gain_pct = policy->p_gain_pct;
1643 pid_params.i_gain_pct = policy->i_gain_pct;
1644 pid_params.d_gain_pct = policy->d_gain_pct;
1645 pid_params.deadband = policy->deadband;
1646 pid_params.setpoint = policy->setpoint;
1647}
1648
29327c84 1649static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1650{
1651 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1652 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1653 pstate_funcs.get_min = funcs->get_min;
1654 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1655 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1656 pstate_funcs.get_val = funcs->get_val;
007bea09 1657 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1658 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1659
016c8150
DB
1660}
1661
9522a2ff 1662#ifdef CONFIG_ACPI
fbbcdc07 1663
29327c84 1664static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
1665{
1666 int i;
1667
1668 for_each_possible_cpu(i) {
1669 acpi_status status;
1670 union acpi_object *pss;
1671 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1672 struct acpi_processor *pr = per_cpu(processors, i);
1673
1674 if (!pr)
1675 continue;
1676
1677 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1678 if (ACPI_FAILURE(status))
1679 continue;
1680
1681 pss = buffer.pointer;
1682 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1683 kfree(pss);
1684 return false;
1685 }
1686
1687 kfree(pss);
1688 }
1689
1690 return true;
1691}
1692
29327c84 1693static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 1694{
1695 int i;
1696
1697 for_each_possible_cpu(i) {
1698 struct acpi_processor *pr = per_cpu(processors, i);
1699
1700 if (!pr)
1701 continue;
1702 if (acpi_has_method(pr->handle, "_PPC"))
1703 return true;
1704 }
1705 return false;
1706}
1707
1708enum {
1709 PSS,
1710 PPC,
1711};
1712
fbbcdc07
AH
1713struct hw_vendor_info {
1714 u16 valid;
1715 char oem_id[ACPI_OEM_ID_SIZE];
1716 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1717 int oem_pwr_table;
fbbcdc07
AH
1718};
1719
1720/* Hardware vendor-specific info that has its own power management modes */
29327c84 1721static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 1722 {1, "HP ", "ProLiant", PSS},
1723 {1, "ORACLE", "X4-2 ", PPC},
1724 {1, "ORACLE", "X4-2L ", PPC},
1725 {1, "ORACLE", "X4-2B ", PPC},
1726 {1, "ORACLE", "X3-2 ", PPC},
1727 {1, "ORACLE", "X3-2L ", PPC},
1728 {1, "ORACLE", "X3-2B ", PPC},
1729 {1, "ORACLE", "X4470M2 ", PPC},
1730 {1, "ORACLE", "X4270M3 ", PPC},
1731 {1, "ORACLE", "X4270M2 ", PPC},
1732 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1733 {1, "ORACLE", "X4170 M3", PPC},
1734 {1, "ORACLE", "X4275 M3", PPC},
1735 {1, "ORACLE", "X6-2 ", PPC},
1736 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1737 {0, "", ""},
1738};
1739
29327c84 1740static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
1741{
1742 struct acpi_table_header hdr;
1743 struct hw_vendor_info *v_info;
2f86dc4c
DB
1744 const struct x86_cpu_id *id;
1745 u64 misc_pwr;
1746
1747 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1748 if (id) {
1749 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1750 if ( misc_pwr & (1 << 8))
1751 return true;
1752 }
fbbcdc07 1753
c410833a
SK
1754 if (acpi_disabled ||
1755 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1756 return false;
1757
1758 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1759 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1760 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1761 ACPI_OEM_TABLE_ID_SIZE))
1762 switch (v_info->oem_pwr_table) {
1763 case PSS:
1764 return intel_pstate_no_acpi_pss();
1765 case PPC:
aa4ea34d
EZ
1766 return intel_pstate_has_acpi_ppc() &&
1767 (!force_load);
966916ea 1768 }
fbbcdc07
AH
1769 }
1770
1771 return false;
1772}
1773#else /* CONFIG_ACPI not enabled */
1774static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1775static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1776#endif /* CONFIG_ACPI */
1777
7791e4aa
SP
1778static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1779 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1780 {}
1781};
1782
93f0822d
DB
1783static int __init intel_pstate_init(void)
1784{
907cc908 1785 int cpu, rc = 0;
93f0822d 1786 const struct x86_cpu_id *id;
64df1fdf 1787 struct cpu_defaults *cpu_def;
93f0822d 1788
6be26498
DB
1789 if (no_load)
1790 return -ENODEV;
1791
7791e4aa
SP
1792 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1793 copy_cpu_funcs(&core_params.funcs);
1794 hwp_active++;
1795 goto hwp_cpu_matched;
1796 }
1797
93f0822d
DB
1798 id = x86_match_cpu(intel_pstate_cpu_ids);
1799 if (!id)
1800 return -ENODEV;
1801
64df1fdf 1802 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1803
64df1fdf
BP
1804 copy_pid_params(&cpu_def->pid_policy);
1805 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1806
b563b4e3
DB
1807 if (intel_pstate_msrs_not_valid())
1808 return -ENODEV;
1809
7791e4aa
SP
1810hwp_cpu_matched:
1811 /*
1812 * The Intel pstate driver will be ignored if the platform
1813 * firmware has its own power management modes.
1814 */
1815 if (intel_pstate_platform_pwr_mgmt_exists())
1816 return -ENODEV;
1817
4836df17 1818 pr_info("Intel P-state driver initializing\n");
93f0822d 1819
b57ffac5 1820 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1821 if (!all_cpu_data)
1822 return -ENOMEM;
93f0822d 1823
d64c3b0b
KCA
1824 if (!hwp_active && hwp_only)
1825 goto out;
1826
93f0822d
DB
1827 rc = cpufreq_register_driver(&intel_pstate_driver);
1828 if (rc)
1829 goto out;
1830
1831 intel_pstate_debug_expose_params();
1832 intel_pstate_sysfs_expose_params();
b69880f9 1833
7791e4aa 1834 if (hwp_active)
4836df17 1835 pr_info("HWP enabled\n");
7791e4aa 1836
93f0822d
DB
1837 return rc;
1838out:
907cc908
DB
1839 get_online_cpus();
1840 for_each_online_cpu(cpu) {
1841 if (all_cpu_data[cpu]) {
bb6ab52f 1842 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1843 kfree(all_cpu_data[cpu]);
1844 }
1845 }
1846
1847 put_online_cpus();
1848 vfree(all_cpu_data);
93f0822d
DB
1849 return -ENODEV;
1850}
1851device_initcall(intel_pstate_init);
1852
6be26498
DB
1853static int __init intel_pstate_setup(char *str)
1854{
1855 if (!str)
1856 return -EINVAL;
1857
1858 if (!strcmp(str, "disable"))
1859 no_load = 1;
539342f6 1860 if (!strcmp(str, "no_hwp")) {
4836df17 1861 pr_info("HWP disabled\n");
2f86dc4c 1862 no_hwp = 1;
539342f6 1863 }
aa4ea34d
EZ
1864 if (!strcmp(str, "force"))
1865 force_load = 1;
d64c3b0b
KCA
1866 if (!strcmp(str, "hwp_only"))
1867 hwp_only = 1;
9522a2ff
SP
1868
1869#ifdef CONFIG_ACPI
1870 if (!strcmp(str, "support_acpi_ppc"))
1871 acpi_ppc = true;
1872#endif
1873
6be26498
DB
1874 return 0;
1875}
1876early_param("intel_pstate", intel_pstate_setup);
1877
93f0822d
DB
1878MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1879MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1880MODULE_LICENSE("GPL");