Merge tag '4.20-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6
[linux-2.6-block.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
55687da1 22#include <linux/sched/cpufreq.h>
93f0822d
DB
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
fbbcdc07 29#include <linux/acpi.h>
d6472302 30#include <linux/vmalloc.h>
93f0822d
DB
31#include <trace/events/power.h>
32
33#include <asm/div64.h>
34#include <asm/msr.h>
35#include <asm/cpu_device_id.h>
64df1fdf 36#include <asm/cpufeature.h>
5b20c944 37#include <asm/intel-family.h>
93f0822d 38
d77d4888 39#define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
eabd22c6 40
001c76f0 41#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
1b72e7fd 42#define INTEL_CPUFREQ_TRANSITION_DELAY 500
001c76f0 43
9522a2ff
SP
44#ifdef CONFIG_ACPI
45#include <acpi/processor.h>
17669006 46#include <acpi/cppc_acpi.h>
9522a2ff
SP
47#endif
48
f0fe3cd7 49#define FRAC_BITS 8
93f0822d
DB
50#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 52
a1c9787d
RW
53#define EXT_BITS 6
54#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
55#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 57
93f0822d
DB
58static inline int32_t mul_fp(int32_t x, int32_t y)
59{
60 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61}
62
7180dddf 63static inline int32_t div_fp(s64 x, s64 y)
93f0822d 64{
7180dddf 65 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
66}
67
d022a65e
DB
68static inline int ceiling_fp(int32_t x)
69{
70 int mask, ret;
71
72 ret = fp_toint(x);
73 mask = (1 << FRAC_BITS) - 1;
74 if (x & mask)
75 ret += 1;
76 return ret;
77}
78
ff35f02e
RW
79static inline int32_t percent_fp(int percent)
80{
81 return div_fp(percent, 100);
82}
83
a1c9787d
RW
84static inline u64 mul_ext_fp(u64 x, u64 y)
85{
86 return (x * y) >> EXT_FRAC_BITS;
87}
88
89static inline u64 div_ext_fp(u64 x, u64 y)
90{
91 return div64_u64(x << EXT_FRAC_BITS, y);
92}
93
e4c204ce
RW
94static inline int32_t percent_ext_fp(int percent)
95{
96 return div_ext_fp(percent, 100);
97}
98
13ad7701
SP
99/**
100 * struct sample - Store performance sample
a1c9787d 101 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
102 * performance during last sample period
103 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 104 * P state. This can be different than core_avg_perf
13ad7701
SP
105 * to account for cpu idle period
106 * @aperf: Difference of actual performance frequency clock count
107 * read from APERF MSR between last and current sample
108 * @mperf: Difference of maximum performance frequency clock count
109 * read from MPERF MSR between last and current sample
110 * @tsc: Difference of time stamp counter between last and
111 * current sample
13ad7701
SP
112 * @time: Current time from scheduler
113 *
114 * This structure is used in the cpudata structure to store performance sample
115 * data for choosing next P State.
116 */
93f0822d 117struct sample {
a1c9787d 118 int32_t core_avg_perf;
157386b6 119 int32_t busy_scaled;
93f0822d
DB
120 u64 aperf;
121 u64 mperf;
4055fad3 122 u64 tsc;
a4675fbc 123 u64 time;
93f0822d
DB
124};
125
13ad7701
SP
126/**
127 * struct pstate_data - Store P state data
128 * @current_pstate: Current requested P state
129 * @min_pstate: Min P state possible for this platform
130 * @max_pstate: Max P state possible for this platform
131 * @max_pstate_physical:This is physical Max P state for a processor
132 * This can be higher than the max_pstate which can
133 * be limited by platform thermal design power limits
134 * @scaling: Scaling factor to convert frequency to cpufreq
135 * frequency units
136 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
137 * @max_freq: @max_pstate frequency in cpufreq units
138 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
139 *
140 * Stores the per cpu model P state limits and current P state.
141 */
93f0822d
DB
142struct pstate_data {
143 int current_pstate;
144 int min_pstate;
145 int max_pstate;
3bcc6fa9 146 int max_pstate_physical;
b27580b0 147 int scaling;
93f0822d 148 int turbo_pstate;
001c76f0
RW
149 unsigned int max_freq;
150 unsigned int turbo_freq;
93f0822d
DB
151};
152
13ad7701
SP
153/**
154 * struct vid_data - Stores voltage information data
155 * @min: VID data for this platform corresponding to
156 * the lowest P state
157 * @max: VID data corresponding to the highest P State.
158 * @turbo: VID data for turbo P state
159 * @ratio: Ratio of (vid max - vid min) /
160 * (max P state - Min P State)
161 *
162 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163 * This data is used in Atom platforms, where in addition to target P state,
164 * the voltage data needs to be specified to select next P State.
165 */
007bea09 166struct vid_data {
21855ff5
DB
167 int min;
168 int max;
169 int turbo;
007bea09
DB
170 int32_t ratio;
171};
172
c5a2ee7d
RW
173/**
174 * struct global_params - Global parameters, mostly tunable via sysfs.
175 * @no_turbo: Whether or not to use turbo P-states.
176 * @turbo_disabled: Whethet or not turbo P-states are available at all,
177 * based on the MSR_IA32_MISC_ENABLE value and whether or
178 * not the maximum reported turbo P-state is different from
179 * the maximum reported non-turbo one.
180 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
181 * P-state capacity.
182 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
183 * P-state capacity.
184 */
185struct global_params {
186 bool no_turbo;
187 bool turbo_disabled;
188 int max_perf_pct;
189 int min_perf_pct;
eae48f04
SP
190};
191
13ad7701
SP
192/**
193 * struct cpudata - Per CPU instance data storage
194 * @cpu: CPU number for this instance data
2f1d407a 195 * @policy: CPUFreq policy value
13ad7701 196 * @update_util: CPUFreq utility callback information
4578ee7e 197 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
198 * @iowait_boost: iowait-related boost fraction
199 * @last_update: Time of the last update.
13ad7701
SP
200 * @pstate: Stores P state limits for this CPU
201 * @vid: Stores VID limits for this CPU
13ad7701 202 * @last_sample_time: Last Sample time
6e34e1f2
SP
203 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
204 * This shift is a multiplier to mperf delta to
205 * calculate CPU busy.
13ad7701
SP
206 * @prev_aperf: Last APERF value read from APERF MSR
207 * @prev_mperf: Last MPERF value read from MPERF MSR
208 * @prev_tsc: Last timestamp counter (TSC) value
209 * @prev_cummulative_iowait: IO Wait time difference from last and
210 * current sample
211 * @sample: Storage for storing last Sample data
1a4fe38a
SP
212 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
213 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
9522a2ff
SP
214 * @acpi_perf_data: Stores ACPI perf information read from _PSS
215 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
216 * @epp_powersave: Last saved HWP energy performance preference
217 * (EPP) or energy performance bias (EPB),
218 * when policy switched to performance
8442885f 219 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
220 * @epp_default: Power on default HWP energy performance
221 * preference/bias
222 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
223 * operation
e0efd5be
SP
224 * @hwp_req_cached: Cached value of the last HWP Request MSR
225 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
52ccc431
SP
226 * @last_io_update: Last time when IO wake flag was set
227 * @sched_flags: Store scheduler flags for possible cross CPU update
e0efd5be 228 * @hwp_boost_min: Last HWP boosted min performance
13ad7701
SP
229 *
230 * This structure stores per CPU instance data for all CPUs.
231 */
93f0822d
DB
232struct cpudata {
233 int cpu;
234
2f1d407a 235 unsigned int policy;
a4675fbc 236 struct update_util_data update_util;
4578ee7e 237 bool update_util_set;
93f0822d 238
93f0822d 239 struct pstate_data pstate;
007bea09 240 struct vid_data vid;
93f0822d 241
09c448d3 242 u64 last_update;
a4675fbc 243 u64 last_sample_time;
6e34e1f2 244 u64 aperf_mperf_shift;
93f0822d
DB
245 u64 prev_aperf;
246 u64 prev_mperf;
4055fad3 247 u64 prev_tsc;
63d1d656 248 u64 prev_cummulative_iowait;
d37e2b76 249 struct sample sample;
1a4fe38a
SP
250 int32_t min_perf_ratio;
251 int32_t max_perf_ratio;
9522a2ff
SP
252#ifdef CONFIG_ACPI
253 struct acpi_processor_performance acpi_perf_data;
254 bool valid_pss_table;
255#endif
09c448d3 256 unsigned int iowait_boost;
984edbdc 257 s16 epp_powersave;
8442885f 258 s16 epp_policy;
984edbdc
SP
259 s16 epp_default;
260 s16 epp_saved;
e0efd5be
SP
261 u64 hwp_req_cached;
262 u64 hwp_cap_cached;
52ccc431
SP
263 u64 last_io_update;
264 unsigned int sched_flags;
e0efd5be 265 u32 hwp_boost_min;
93f0822d
DB
266};
267
268static struct cpudata **all_cpu_data;
13ad7701 269
13ad7701
SP
270/**
271 * struct pstate_funcs - Per CPU model specific callbacks
272 * @get_max: Callback to get maximum non turbo effective P state
273 * @get_max_physical: Callback to get maximum non turbo physical P state
274 * @get_min: Callback to get minimum P state
275 * @get_turbo: Callback to get turbo P state
276 * @get_scaling: Callback to get frequency scaling factor
277 * @get_val: Callback to convert P state to actual MSR write value
278 * @get_vid: Callback to get VID data for Atom platforms
13ad7701
SP
279 *
280 * Core and Atom CPU models have different way to get P State limits. This
281 * structure is used to store those callbacks.
282 */
016c8150
DB
283struct pstate_funcs {
284 int (*get_max)(void);
3bcc6fa9 285 int (*get_max_physical)(void);
016c8150
DB
286 int (*get_min)(void);
287 int (*get_turbo)(void);
b27580b0 288 int (*get_scaling)(void);
6e34e1f2 289 int (*get_aperf_mperf_shift)(void);
fdfdb2b1 290 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 291 void (*get_vid)(struct cpudata *);
93f0822d
DB
292};
293
4a7cb7a9 294static struct pstate_funcs pstate_funcs __read_mostly;
5c439053 295
4a7cb7a9 296static int hwp_active __read_mostly;
ff7c9917 297static int hwp_mode_bdw __read_mostly;
eae48f04 298static bool per_cpu_limits __read_mostly;
e0efd5be 299static bool hwp_boost __read_mostly;
016c8150 300
ee8df89a 301static struct cpufreq_driver *intel_pstate_driver __read_mostly;
0c30b65b 302
9522a2ff
SP
303#ifdef CONFIG_ACPI
304static bool acpi_ppc;
305#endif
13ad7701 306
c5a2ee7d 307static struct global_params global;
93f0822d 308
0c30b65b 309static DEFINE_MUTEX(intel_pstate_driver_lock);
a410c03d
SP
310static DEFINE_MUTEX(intel_pstate_limits_lock);
311
9522a2ff 312#ifdef CONFIG_ACPI
2b3ec765 313
01e61a42 314static bool intel_pstate_acpi_pm_profile_server(void)
2b3ec765
SP
315{
316 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 return true;
319
01e61a42
SP
320 return false;
321}
322
323static bool intel_pstate_get_ppc_enable_status(void)
324{
325 if (intel_pstate_acpi_pm_profile_server())
326 return true;
327
2b3ec765
SP
328 return acpi_ppc;
329}
330
17669006
RW
331#ifdef CONFIG_ACPI_CPPC_LIB
332
333/* The work item is needed to avoid CPU hotplug locking issues */
334static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335{
336 sched_set_itmt_support();
337}
338
339static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340
341static void intel_pstate_set_itmt_prio(int cpu)
342{
343 struct cppc_perf_caps cppc_perf;
344 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345 int ret;
346
347 ret = cppc_get_perf_caps(cpu, &cppc_perf);
348 if (ret)
349 return;
350
351 /*
352 * The priorities can be set regardless of whether or not
353 * sched_set_itmt_support(true) has been called and it is valid to
354 * update them at any time after it has been called.
355 */
356 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357
358 if (max_highest_perf <= min_highest_perf) {
359 if (cppc_perf.highest_perf > max_highest_perf)
360 max_highest_perf = cppc_perf.highest_perf;
361
362 if (cppc_perf.highest_perf < min_highest_perf)
363 min_highest_perf = cppc_perf.highest_perf;
364
365 if (max_highest_perf > min_highest_perf) {
366 /*
367 * This code can be run during CPU online under the
368 * CPU hotplug locks, so sched_set_itmt_support()
369 * cannot be called from here. Queue up a work item
370 * to invoke it.
371 */
372 schedule_work(&sched_itmt_work);
373 }
374 }
375}
86d333a8
SP
376
377static int intel_pstate_get_cppc_guranteed(int cpu)
378{
379 struct cppc_perf_caps cppc_perf;
380 int ret;
381
382 ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 if (ret)
384 return ret;
385
386 return cppc_perf.guaranteed_perf;
387}
388
17669006
RW
389#else
390static void intel_pstate_set_itmt_prio(int cpu)
391{
392}
86d333a8
SP
393
394static int intel_pstate_get_cppc_guranteed(int cpu)
395{
396 return -ENOTSUPP;
397}
17669006
RW
398#endif
399
9522a2ff
SP
400static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
401{
402 struct cpudata *cpu;
9522a2ff
SP
403 int ret;
404 int i;
405
17669006
RW
406 if (hwp_active) {
407 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 408 return;
17669006 409 }
e59a8f7f 410
2b3ec765 411 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
412 return;
413
414 cpu = all_cpu_data[policy->cpu];
415
416 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
417 policy->cpu);
418 if (ret)
419 return;
420
421 /*
422 * Check if the control value in _PSS is for PERF_CTL MSR, which should
423 * guarantee that the states returned by it map to the states in our
424 * list directly.
425 */
426 if (cpu->acpi_perf_data.control_register.space_id !=
427 ACPI_ADR_SPACE_FIXED_HARDWARE)
428 goto err;
429
430 /*
431 * If there is only one entry _PSS, simply ignore _PSS and continue as
432 * usual without taking _PSS into account
433 */
434 if (cpu->acpi_perf_data.state_count < 2)
435 goto err;
436
437 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
438 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
439 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
440 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
441 (u32) cpu->acpi_perf_data.states[i].core_frequency,
442 (u32) cpu->acpi_perf_data.states[i].power,
443 (u32) cpu->acpi_perf_data.states[i].control);
444 }
445
446 /*
447 * The _PSS table doesn't contain whole turbo frequency range.
448 * This just contains +1 MHZ above the max non turbo frequency,
449 * with control value corresponding to max turbo ratio. But
450 * when cpufreq set policy is called, it will call with this
451 * max frequency, which will cause a reduced performance as
452 * this driver uses real max turbo frequency as the max
453 * frequency. So correct this frequency in _PSS table to
b00345d1 454 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
455 * Also need to convert to MHz as _PSS freq is in MHz.
456 */
7de32556 457 if (!global.turbo_disabled)
9522a2ff
SP
458 cpu->acpi_perf_data.states[0].core_frequency =
459 policy->cpuinfo.max_freq / 1000;
460 cpu->valid_pss_table = true;
6cacd115 461 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
462
463 return;
464
465 err:
466 cpu->valid_pss_table = false;
467 acpi_processor_unregister_performance(policy->cpu);
468}
469
470static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
471{
472 struct cpudata *cpu;
473
474 cpu = all_cpu_data[policy->cpu];
475 if (!cpu->valid_pss_table)
476 return;
477
478 acpi_processor_unregister_performance(policy->cpu);
479}
9522a2ff 480#else
7a3ba767 481static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
482{
483}
484
7a3ba767 485static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
486{
487}
01e61a42
SP
488
489static inline bool intel_pstate_acpi_pm_profile_server(void)
490{
491 return false;
492}
9522a2ff
SP
493#endif
494
4521e1a0
GM
495static inline void update_turbo_state(void)
496{
497 u64 misc_en;
498 struct cpudata *cpu;
499
500 cpu = all_cpu_data[0];
501 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
7de32556 502 global.turbo_disabled =
4521e1a0
GM
503 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
504 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
505}
506
c5a2ee7d
RW
507static int min_perf_pct_min(void)
508{
509 struct cpudata *cpu = all_cpu_data[0];
57caf4ec 510 int turbo_pstate = cpu->pstate.turbo_pstate;
c5a2ee7d 511
57caf4ec 512 return turbo_pstate ?
d4436c0d 513 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
c5a2ee7d
RW
514}
515
8442885f
SP
516static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
517{
518 u64 epb;
519 int ret;
520
521 if (!static_cpu_has(X86_FEATURE_EPB))
522 return -ENXIO;
523
524 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
525 if (ret)
526 return (s16)ret;
527
528 return (s16)(epb & 0x0f);
529}
530
531static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
532{
533 s16 epp;
534
984edbdc
SP
535 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
536 /*
537 * When hwp_req_data is 0, means that caller didn't read
538 * MSR_HWP_REQUEST, so need to read and get EPP.
539 */
540 if (!hwp_req_data) {
541 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
542 &hwp_req_data);
543 if (epp)
544 return epp;
545 }
8442885f 546 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 547 } else {
8442885f
SP
548 /* When there is no EPP present, HWP uses EPB settings */
549 epp = intel_pstate_get_epb(cpu_data);
984edbdc 550 }
8442885f
SP
551
552 return epp;
553}
554
984edbdc 555static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
556{
557 u64 epb;
984edbdc 558 int ret;
8442885f
SP
559
560 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 561 return -ENXIO;
8442885f 562
984edbdc
SP
563 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
564 if (ret)
565 return ret;
8442885f
SP
566
567 epb = (epb & ~0x0f) | pref;
568 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
569
570 return 0;
8442885f
SP
571}
572
984edbdc
SP
573/*
574 * EPP/EPB display strings corresponding to EPP index in the
575 * energy_perf_strings[]
576 * index String
577 *-------------------------------------
578 * 0 default
579 * 1 performance
580 * 2 balance_performance
581 * 3 balance_power
582 * 4 power
583 */
584static const char * const energy_perf_strings[] = {
585 "default",
586 "performance",
587 "balance_performance",
588 "balance_power",
589 "power",
590 NULL
591};
3cedbc5a
LB
592static const unsigned int epp_values[] = {
593 HWP_EPP_PERFORMANCE,
594 HWP_EPP_BALANCE_PERFORMANCE,
595 HWP_EPP_BALANCE_POWERSAVE,
596 HWP_EPP_POWERSAVE
597};
984edbdc
SP
598
599static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
600{
601 s16 epp;
602 int index = -EINVAL;
603
604 epp = intel_pstate_get_epp(cpu_data, 0);
605 if (epp < 0)
606 return epp;
607
608 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
3cedbc5a
LB
609 if (epp == HWP_EPP_PERFORMANCE)
610 return 1;
611 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
612 return 2;
613 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
614 return 3;
615 else
616 return 4;
984edbdc
SP
617 } else if (static_cpu_has(X86_FEATURE_EPB)) {
618 /*
619 * Range:
620 * 0x00-0x03 : Performance
621 * 0x04-0x07 : Balance performance
622 * 0x08-0x0B : Balance power
623 * 0x0C-0x0F : Power
624 * The EPB is a 4 bit value, but our ranges restrict the
625 * value which can be set. Here only using top two bits
626 * effectively.
627 */
628 index = (epp >> 2) + 1;
629 }
630
631 return index;
632}
633
634static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
635 int pref_index)
636{
637 int epp = -EINVAL;
638 int ret;
639
640 if (!pref_index)
641 epp = cpu_data->epp_default;
642
643 mutex_lock(&intel_pstate_limits_lock);
644
645 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
646 u64 value;
647
648 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
649 if (ret)
650 goto return_pref;
651
652 value &= ~GENMASK_ULL(31, 24);
653
984edbdc 654 if (epp == -EINVAL)
3cedbc5a 655 epp = epp_values[pref_index - 1];
984edbdc
SP
656
657 value |= (u64)epp << 24;
658 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
659 } else {
660 if (epp == -EINVAL)
661 epp = (pref_index - 1) << 2;
662 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
663 }
664return_pref:
665 mutex_unlock(&intel_pstate_limits_lock);
666
667 return ret;
668}
669
670static ssize_t show_energy_performance_available_preferences(
671 struct cpufreq_policy *policy, char *buf)
672{
673 int i = 0;
674 int ret = 0;
675
676 while (energy_perf_strings[i] != NULL)
677 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
678
679 ret += sprintf(&buf[ret], "\n");
680
681 return ret;
682}
683
684cpufreq_freq_attr_ro(energy_performance_available_preferences);
685
686static ssize_t store_energy_performance_preference(
687 struct cpufreq_policy *policy, const char *buf, size_t count)
688{
689 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
690 char str_preference[21];
1111b783 691 int ret;
984edbdc
SP
692
693 ret = sscanf(buf, "%20s", str_preference);
694 if (ret != 1)
695 return -EINVAL;
696
1111b783
XY
697 ret = match_string(energy_perf_strings, -1, str_preference);
698 if (ret < 0)
699 return ret;
984edbdc 700
1111b783
XY
701 intel_pstate_set_energy_pref_index(cpu_data, ret);
702 return count;
984edbdc
SP
703}
704
705static ssize_t show_energy_performance_preference(
706 struct cpufreq_policy *policy, char *buf)
707{
708 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
709 int preference;
710
711 preference = intel_pstate_get_energy_pref_index(cpu_data);
712 if (preference < 0)
713 return preference;
714
715 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
716}
717
718cpufreq_freq_attr_rw(energy_performance_preference);
719
86d333a8
SP
720static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
721{
722 struct cpudata *cpu;
723 u64 cap;
724 int ratio;
725
726 ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
727 if (ratio <= 0) {
728 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
729 ratio = HWP_GUARANTEED_PERF(cap);
730 }
731
732 cpu = all_cpu_data[policy->cpu];
733
734 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
735}
736
737cpufreq_freq_attr_ro(base_frequency);
738
984edbdc
SP
739static struct freq_attr *hwp_cpufreq_attrs[] = {
740 &energy_performance_preference,
741 &energy_performance_available_preferences,
86d333a8 742 &base_frequency,
984edbdc
SP
743 NULL,
744};
745
1a4fe38a
SP
746static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
747 int *current_max)
2f86dc4c 748{
1a4fe38a 749 u64 cap;
74da56ce 750
2bfc4cbb 751 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
e0efd5be 752 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
2bfc4cbb 753 if (global.no_turbo)
1a4fe38a 754 *current_max = HWP_GUARANTEED_PERF(cap);
2bfc4cbb 755 else
1a4fe38a
SP
756 *current_max = HWP_HIGHEST_PERF(cap);
757
758 *phy_max = HWP_HIGHEST_PERF(cap);
759}
760
761static void intel_pstate_hwp_set(unsigned int cpu)
762{
763 struct cpudata *cpu_data = all_cpu_data[cpu];
764 int max, min;
765 u64 value;
766 s16 epp;
767
768 max = cpu_data->max_perf_ratio;
769 min = cpu_data->min_perf_ratio;
eae48f04 770
2bfc4cbb
RW
771 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
772 min = max;
3f8ed54a 773
2bfc4cbb 774 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
2f86dc4c 775
2bfc4cbb
RW
776 value &= ~HWP_MIN_PERF(~0L);
777 value |= HWP_MIN_PERF(min);
8442885f 778
2bfc4cbb
RW
779 value &= ~HWP_MAX_PERF(~0L);
780 value |= HWP_MAX_PERF(max);
8442885f 781
2bfc4cbb
RW
782 if (cpu_data->epp_policy == cpu_data->policy)
783 goto skip_epp;
8442885f 784
2bfc4cbb 785 cpu_data->epp_policy = cpu_data->policy;
984edbdc 786
2bfc4cbb
RW
787 if (cpu_data->epp_saved >= 0) {
788 epp = cpu_data->epp_saved;
789 cpu_data->epp_saved = -EINVAL;
790 goto update_epp;
791 }
8442885f 792
2bfc4cbb
RW
793 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
794 epp = intel_pstate_get_epp(cpu_data, value);
795 cpu_data->epp_powersave = epp;
796 /* If EPP read was failed, then don't try to write */
797 if (epp < 0)
798 goto skip_epp;
8442885f 799
2bfc4cbb
RW
800 epp = 0;
801 } else {
802 /* skip setting EPP, when saved value is invalid */
803 if (cpu_data->epp_powersave < 0)
804 goto skip_epp;
8442885f 805
2bfc4cbb
RW
806 /*
807 * No need to restore EPP when it is not zero. This
808 * means:
809 * - Policy is not changed
810 * - user has manually changed
811 * - Error reading EPB
812 */
813 epp = intel_pstate_get_epp(cpu_data, value);
814 if (epp)
815 goto skip_epp;
8442885f 816
2bfc4cbb
RW
817 epp = cpu_data->epp_powersave;
818 }
984edbdc 819update_epp:
2bfc4cbb
RW
820 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
821 value &= ~GENMASK_ULL(31, 24);
822 value |= (u64)epp << 24;
823 } else {
824 intel_pstate_set_epb(cpu, epp);
2f86dc4c 825 }
2bfc4cbb 826skip_epp:
e0efd5be 827 WRITE_ONCE(cpu_data->hwp_req_cached, value);
2bfc4cbb 828 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
41cfd64c 829}
2f86dc4c 830
984edbdc
SP
831static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
832{
833 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
834
835 if (!hwp_active)
836 return 0;
837
838 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
839
840 return 0;
841}
842
70f6bf2a
CY
843static void intel_pstate_hwp_enable(struct cpudata *cpudata);
844
8442885f
SP
845static int intel_pstate_resume(struct cpufreq_policy *policy)
846{
847 if (!hwp_active)
848 return 0;
849
aa439248
RW
850 mutex_lock(&intel_pstate_limits_lock);
851
70f6bf2a
CY
852 if (policy->cpu == 0)
853 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
854
8442885f 855 all_cpu_data[policy->cpu]->epp_policy = 0;
2bfc4cbb 856 intel_pstate_hwp_set(policy->cpu);
aa439248
RW
857
858 mutex_unlock(&intel_pstate_limits_lock);
859
5f98ced1 860 return 0;
8442885f
SP
861}
862
111b8b3f 863static void intel_pstate_update_policies(void)
41cfd64c 864{
111b8b3f
RW
865 int cpu;
866
867 for_each_possible_cpu(cpu)
868 cpufreq_update_policy(cpu);
2f86dc4c
DB
869}
870
93f0822d
DB
871/************************** sysfs begin ************************/
872#define show_one(file_name, object) \
873 static ssize_t show_##file_name \
874 (struct kobject *kobj, struct attribute *attr, char *buf) \
875 { \
7de32556 876 return sprintf(buf, "%u\n", global.object); \
93f0822d
DB
877 }
878
fb1fe104
RW
879static ssize_t intel_pstate_show_status(char *buf);
880static int intel_pstate_update_status(const char *buf, size_t size);
881
882static ssize_t show_status(struct kobject *kobj,
883 struct attribute *attr, char *buf)
884{
885 ssize_t ret;
886
887 mutex_lock(&intel_pstate_driver_lock);
888 ret = intel_pstate_show_status(buf);
889 mutex_unlock(&intel_pstate_driver_lock);
890
891 return ret;
892}
893
894static ssize_t store_status(struct kobject *a, struct attribute *b,
895 const char *buf, size_t count)
896{
897 char *p = memchr(buf, '\n', count);
898 int ret;
899
900 mutex_lock(&intel_pstate_driver_lock);
901 ret = intel_pstate_update_status(buf, p ? p - buf : count);
902 mutex_unlock(&intel_pstate_driver_lock);
903
904 return ret < 0 ? ret : count;
905}
906
d01b1f48
KCA
907static ssize_t show_turbo_pct(struct kobject *kobj,
908 struct attribute *attr, char *buf)
909{
910 struct cpudata *cpu;
911 int total, no_turbo, turbo_pct;
912 uint32_t turbo_fp;
913
0c30b65b
RW
914 mutex_lock(&intel_pstate_driver_lock);
915
ee8df89a 916 if (!intel_pstate_driver) {
0c30b65b
RW
917 mutex_unlock(&intel_pstate_driver_lock);
918 return -EAGAIN;
919 }
920
d01b1f48
KCA
921 cpu = all_cpu_data[0];
922
923 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
924 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 925 turbo_fp = div_fp(no_turbo, total);
d01b1f48 926 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
0c30b65b
RW
927
928 mutex_unlock(&intel_pstate_driver_lock);
929
d01b1f48
KCA
930 return sprintf(buf, "%u\n", turbo_pct);
931}
932
0522424e
KCA
933static ssize_t show_num_pstates(struct kobject *kobj,
934 struct attribute *attr, char *buf)
935{
936 struct cpudata *cpu;
937 int total;
938
0c30b65b
RW
939 mutex_lock(&intel_pstate_driver_lock);
940
ee8df89a 941 if (!intel_pstate_driver) {
0c30b65b
RW
942 mutex_unlock(&intel_pstate_driver_lock);
943 return -EAGAIN;
944 }
945
0522424e
KCA
946 cpu = all_cpu_data[0];
947 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
0c30b65b
RW
948
949 mutex_unlock(&intel_pstate_driver_lock);
950
0522424e
KCA
951 return sprintf(buf, "%u\n", total);
952}
953
4521e1a0
GM
954static ssize_t show_no_turbo(struct kobject *kobj,
955 struct attribute *attr, char *buf)
956{
957 ssize_t ret;
958
0c30b65b
RW
959 mutex_lock(&intel_pstate_driver_lock);
960
ee8df89a 961 if (!intel_pstate_driver) {
0c30b65b
RW
962 mutex_unlock(&intel_pstate_driver_lock);
963 return -EAGAIN;
964 }
965
4521e1a0 966 update_turbo_state();
7de32556
RW
967 if (global.turbo_disabled)
968 ret = sprintf(buf, "%u\n", global.turbo_disabled);
4521e1a0 969 else
7de32556 970 ret = sprintf(buf, "%u\n", global.no_turbo);
4521e1a0 971
0c30b65b
RW
972 mutex_unlock(&intel_pstate_driver_lock);
973
4521e1a0
GM
974 return ret;
975}
976
93f0822d 977static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 978 const char *buf, size_t count)
93f0822d
DB
979{
980 unsigned int input;
981 int ret;
845c1cbe 982
93f0822d
DB
983 ret = sscanf(buf, "%u", &input);
984 if (ret != 1)
985 return -EINVAL;
4521e1a0 986
0c30b65b
RW
987 mutex_lock(&intel_pstate_driver_lock);
988
ee8df89a 989 if (!intel_pstate_driver) {
0c30b65b
RW
990 mutex_unlock(&intel_pstate_driver_lock);
991 return -EAGAIN;
992 }
993
a410c03d
SP
994 mutex_lock(&intel_pstate_limits_lock);
995
4521e1a0 996 update_turbo_state();
7de32556 997 if (global.turbo_disabled) {
4836df17 998 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 999 mutex_unlock(&intel_pstate_limits_lock);
0c30b65b 1000 mutex_unlock(&intel_pstate_driver_lock);
4521e1a0 1001 return -EPERM;
dd5fbf70 1002 }
2f86dc4c 1003
7de32556 1004 global.no_turbo = clamp_t(int, input, 0, 1);
111b8b3f 1005
c5a2ee7d
RW
1006 if (global.no_turbo) {
1007 struct cpudata *cpu = all_cpu_data[0];
1008 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1009
1010 /* Squash the global minimum into the permitted range. */
1011 if (global.min_perf_pct > pct)
1012 global.min_perf_pct = pct;
1013 }
1014
cd59b4be
RW
1015 mutex_unlock(&intel_pstate_limits_lock);
1016
7de32556
RW
1017 intel_pstate_update_policies();
1018
0c30b65b
RW
1019 mutex_unlock(&intel_pstate_driver_lock);
1020
93f0822d
DB
1021 return count;
1022}
1023
1024static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1025 const char *buf, size_t count)
93f0822d
DB
1026{
1027 unsigned int input;
1028 int ret;
845c1cbe 1029
93f0822d
DB
1030 ret = sscanf(buf, "%u", &input);
1031 if (ret != 1)
1032 return -EINVAL;
1033
0c30b65b
RW
1034 mutex_lock(&intel_pstate_driver_lock);
1035
ee8df89a 1036 if (!intel_pstate_driver) {
0c30b65b
RW
1037 mutex_unlock(&intel_pstate_driver_lock);
1038 return -EAGAIN;
1039 }
1040
a410c03d
SP
1041 mutex_lock(&intel_pstate_limits_lock);
1042
c5a2ee7d 1043 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
111b8b3f 1044
cd59b4be
RW
1045 mutex_unlock(&intel_pstate_limits_lock);
1046
7de32556
RW
1047 intel_pstate_update_policies();
1048
0c30b65b
RW
1049 mutex_unlock(&intel_pstate_driver_lock);
1050
93f0822d
DB
1051 return count;
1052}
1053
1054static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1055 const char *buf, size_t count)
93f0822d
DB
1056{
1057 unsigned int input;
1058 int ret;
845c1cbe 1059
93f0822d
DB
1060 ret = sscanf(buf, "%u", &input);
1061 if (ret != 1)
1062 return -EINVAL;
a0475992 1063
0c30b65b
RW
1064 mutex_lock(&intel_pstate_driver_lock);
1065
ee8df89a 1066 if (!intel_pstate_driver) {
0c30b65b
RW
1067 mutex_unlock(&intel_pstate_driver_lock);
1068 return -EAGAIN;
1069 }
1070
a410c03d
SP
1071 mutex_lock(&intel_pstate_limits_lock);
1072
c5a2ee7d
RW
1073 global.min_perf_pct = clamp_t(int, input,
1074 min_perf_pct_min(), global.max_perf_pct);
111b8b3f 1075
cd59b4be
RW
1076 mutex_unlock(&intel_pstate_limits_lock);
1077
7de32556
RW
1078 intel_pstate_update_policies();
1079
0c30b65b
RW
1080 mutex_unlock(&intel_pstate_driver_lock);
1081
93f0822d
DB
1082 return count;
1083}
1084
aaaece3d
SP
1085static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1086 struct attribute *attr, char *buf)
1087{
1088 return sprintf(buf, "%u\n", hwp_boost);
1089}
1090
1091static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
1092 const char *buf, size_t count)
1093{
1094 unsigned int input;
1095 int ret;
1096
1097 ret = kstrtouint(buf, 10, &input);
1098 if (ret)
1099 return ret;
1100
1101 mutex_lock(&intel_pstate_driver_lock);
1102 hwp_boost = !!input;
1103 intel_pstate_update_policies();
1104 mutex_unlock(&intel_pstate_driver_lock);
1105
1106 return count;
1107}
1108
93f0822d
DB
1109show_one(max_perf_pct, max_perf_pct);
1110show_one(min_perf_pct, min_perf_pct);
1111
fb1fe104 1112define_one_global_rw(status);
93f0822d
DB
1113define_one_global_rw(no_turbo);
1114define_one_global_rw(max_perf_pct);
1115define_one_global_rw(min_perf_pct);
d01b1f48 1116define_one_global_ro(turbo_pct);
0522424e 1117define_one_global_ro(num_pstates);
aaaece3d 1118define_one_global_rw(hwp_dynamic_boost);
93f0822d
DB
1119
1120static struct attribute *intel_pstate_attributes[] = {
fb1fe104 1121 &status.attr,
93f0822d 1122 &no_turbo.attr,
d01b1f48 1123 &turbo_pct.attr,
0522424e 1124 &num_pstates.attr,
93f0822d
DB
1125 NULL
1126};
1127
106c9c77 1128static const struct attribute_group intel_pstate_attr_group = {
93f0822d
DB
1129 .attrs = intel_pstate_attributes,
1130};
93f0822d 1131
317dd50e 1132static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1133{
317dd50e 1134 struct kobject *intel_pstate_kobject;
93f0822d
DB
1135 int rc;
1136
1137 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1138 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1139 if (WARN_ON(!intel_pstate_kobject))
1140 return;
1141
2d8d1f18 1142 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1143 if (WARN_ON(rc))
1144 return;
1145
1146 /*
1147 * If per cpu limits are enforced there are no global limits, so
1148 * return without creating max/min_perf_pct attributes
1149 */
1150 if (per_cpu_limits)
1151 return;
1152
1153 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1154 WARN_ON(rc);
1155
1156 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1157 WARN_ON(rc);
1158
aaaece3d
SP
1159 if (hwp_active) {
1160 rc = sysfs_create_file(intel_pstate_kobject,
1161 &hwp_dynamic_boost.attr);
1162 WARN_ON(rc);
1163 }
93f0822d 1164}
93f0822d 1165/************************** sysfs end ************************/
2f86dc4c 1166
ba88d433 1167static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1168{
f05c9665 1169 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1170 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1171 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1172
ba88d433 1173 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1174 cpudata->epp_policy = 0;
984edbdc
SP
1175 if (cpudata->epp_default == -EINVAL)
1176 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1177}
1178
6e978b22
SP
1179#define MSR_IA32_POWER_CTL_BIT_EE 19
1180
1181/* Disable energy efficiency optimization */
1182static void intel_pstate_disable_ee(int cpu)
1183{
1184 u64 power_ctl;
1185 int ret;
1186
1187 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1188 if (ret)
1189 return;
1190
1191 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1192 pr_info("Disabling energy efficiency optimization\n");
1193 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1194 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1195 }
1196}
1197
938d21a2 1198static int atom_get_min_pstate(void)
19e77c28
DB
1199{
1200 u64 value;
845c1cbe 1201
92134bdb 1202 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1203 return (value >> 8) & 0x7F;
19e77c28
DB
1204}
1205
938d21a2 1206static int atom_get_max_pstate(void)
19e77c28
DB
1207{
1208 u64 value;
845c1cbe 1209
92134bdb 1210 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1211 return (value >> 16) & 0x7F;
19e77c28 1212}
93f0822d 1213
938d21a2 1214static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1215{
1216 u64 value;
845c1cbe 1217
92134bdb 1218 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
c16ed060 1219 return value & 0x7F;
61d8d2ab
DB
1220}
1221
fdfdb2b1 1222static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1223{
1224 u64 val;
1225 int32_t vid_fp;
1226 u32 vid;
1227
144c8e17 1228 val = (u64)pstate << 8;
7de32556 1229 if (global.no_turbo && !global.turbo_disabled)
007bea09
DB
1230 val |= (u64)1 << 32;
1231
1232 vid_fp = cpudata->vid.min + mul_fp(
1233 int_tofp(pstate - cpudata->pstate.min_pstate),
1234 cpudata->vid.ratio);
1235
1236 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1237 vid = ceiling_fp(vid_fp);
007bea09 1238
21855ff5
DB
1239 if (pstate > cpudata->pstate.max_pstate)
1240 vid = cpudata->vid.turbo;
1241
fdfdb2b1 1242 return val | vid;
007bea09
DB
1243}
1244
1421df63 1245static int silvermont_get_scaling(void)
b27580b0
DB
1246{
1247 u64 value;
1248 int i;
1421df63
PL
1249 /* Defined in Table 35-6 from SDM (Sept 2015) */
1250 static int silvermont_freq_table[] = {
1251 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1252
1253 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1254 i = value & 0x7;
1255 WARN_ON(i > 4);
b27580b0 1256
1421df63
PL
1257 return silvermont_freq_table[i];
1258}
b27580b0 1259
1421df63
PL
1260static int airmont_get_scaling(void)
1261{
1262 u64 value;
1263 int i;
1264 /* Defined in Table 35-10 from SDM (Sept 2015) */
1265 static int airmont_freq_table[] = {
1266 83300, 100000, 133300, 116700, 80000,
1267 93300, 90000, 88900, 87500};
1268
1269 rdmsrl(MSR_FSB_FREQ, value);
1270 i = value & 0xF;
1271 WARN_ON(i > 8);
1272
1273 return airmont_freq_table[i];
b27580b0
DB
1274}
1275
938d21a2 1276static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1277{
1278 u64 value;
1279
92134bdb 1280 rdmsrl(MSR_ATOM_CORE_VIDS, value);
c16ed060
DB
1281 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1282 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1283 cpudata->vid.ratio = div_fp(
1284 cpudata->vid.max - cpudata->vid.min,
1285 int_tofp(cpudata->pstate.max_pstate -
1286 cpudata->pstate.min_pstate));
21855ff5 1287
92134bdb 1288 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
21855ff5 1289 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1290}
1291
016c8150 1292static int core_get_min_pstate(void)
93f0822d
DB
1293{
1294 u64 value;
845c1cbe 1295
05e99c8c 1296 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1297 return (value >> 40) & 0xFF;
1298}
1299
3bcc6fa9 1300static int core_get_max_pstate_physical(void)
93f0822d
DB
1301{
1302 u64 value;
845c1cbe 1303
05e99c8c 1304 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1305 return (value >> 8) & 0xFF;
1306}
1307
8fc7554a
SP
1308static int core_get_tdp_ratio(u64 plat_info)
1309{
1310 /* Check how many TDP levels present */
1311 if (plat_info & 0x600000000) {
1312 u64 tdp_ctrl;
1313 u64 tdp_ratio;
1314 int tdp_msr;
1315 int err;
1316
1317 /* Get the TDP level (0, 1, 2) to get ratios */
1318 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1319 if (err)
1320 return err;
1321
1322 /* TDP MSR are continuous starting at 0x648 */
1323 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1324 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1325 if (err)
1326 return err;
1327
1328 /* For level 1 and 2, bits[23:16] contain the ratio */
1329 if (tdp_ctrl & 0x03)
1330 tdp_ratio >>= 16;
1331
1332 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1333 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1334
1335 return (int)tdp_ratio;
1336 }
1337
1338 return -ENXIO;
1339}
1340
016c8150 1341static int core_get_max_pstate(void)
93f0822d 1342{
6a35fc2d
SP
1343 u64 tar;
1344 u64 plat_info;
1345 int max_pstate;
8fc7554a 1346 int tdp_ratio;
6a35fc2d
SP
1347 int err;
1348
1349 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1350 max_pstate = (plat_info >> 8) & 0xFF;
1351
8fc7554a
SP
1352 tdp_ratio = core_get_tdp_ratio(plat_info);
1353 if (tdp_ratio <= 0)
1354 return max_pstate;
1355
1356 if (hwp_active) {
1357 /* Turbo activation ratio is not used on HWP platforms */
1358 return tdp_ratio;
1359 }
1360
6a35fc2d
SP
1361 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1362 if (!err) {
8fc7554a
SP
1363 int tar_levels;
1364
6a35fc2d 1365 /* Do some sanity checking for safety */
8fc7554a
SP
1366 tar_levels = tar & 0xff;
1367 if (tdp_ratio - 1 == tar_levels) {
1368 max_pstate = tar_levels;
1369 pr_debug("max_pstate=TAC %x\n", max_pstate);
6a35fc2d
SP
1370 }
1371 }
845c1cbe 1372
6a35fc2d 1373 return max_pstate;
93f0822d
DB
1374}
1375
016c8150 1376static int core_get_turbo_pstate(void)
93f0822d
DB
1377{
1378 u64 value;
1379 int nont, ret;
845c1cbe 1380
100cf6f2 1381 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1382 nont = core_get_max_pstate();
285cb990 1383 ret = (value) & 255;
93f0822d
DB
1384 if (ret <= nont)
1385 ret = nont;
1386 return ret;
1387}
1388
b27580b0
DB
1389static inline int core_get_scaling(void)
1390{
1391 return 100000;
1392}
1393
fdfdb2b1 1394static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1395{
1396 u64 val;
1397
144c8e17 1398 val = (u64)pstate << 8;
7de32556 1399 if (global.no_turbo && !global.turbo_disabled)
016c8150
DB
1400 val |= (u64)1 << 32;
1401
fdfdb2b1 1402 return val;
016c8150
DB
1403}
1404
6e34e1f2
SP
1405static int knl_get_aperf_mperf_shift(void)
1406{
1407 return 10;
1408}
1409
b34ef932
DC
1410static int knl_get_turbo_pstate(void)
1411{
1412 u64 value;
1413 int nont, ret;
1414
100cf6f2 1415 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1416 nont = core_get_max_pstate();
1417 ret = (((value) >> 8) & 0xFF);
1418 if (ret <= nont)
1419 ret = nont;
1420 return ret;
1421}
1422
b02aabe8 1423static int intel_pstate_get_base_pstate(struct cpudata *cpu)
93f0822d 1424{
b02aabe8
RW
1425 return global.no_turbo || global.turbo_disabled ?
1426 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
93f0822d
DB
1427}
1428
a6c6ead1 1429static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1430{
bc95a454
RW
1431 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1432 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1433 /*
1434 * Generally, there is no guarantee that this code will always run on
1435 * the CPU being updated, so force the register update to run on the
1436 * right CPU.
1437 */
1438 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1439 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1440}
1441
a6c6ead1
RW
1442static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1443{
1444 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1445}
1446
1447static void intel_pstate_max_within_limits(struct cpudata *cpu)
1448{
b02aabe8 1449 int pstate;
a6c6ead1
RW
1450
1451 update_turbo_state();
b02aabe8 1452 pstate = intel_pstate_get_base_pstate(cpu);
1a4fe38a 1453 pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
b02aabe8 1454 intel_pstate_set_pstate(cpu, pstate);
a6c6ead1
RW
1455}
1456
93f0822d
DB
1457static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1458{
016c8150
DB
1459 cpu->pstate.min_pstate = pstate_funcs.get_min();
1460 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1461 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1462 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1463 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0 1464 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
ff7c9917
SP
1465
1466 if (hwp_active && !hwp_mode_bdw) {
1467 unsigned int phy_max, current_max;
1468
1469 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1470 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1471 } else {
1472 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1473 }
93f0822d 1474
6e34e1f2
SP
1475 if (pstate_funcs.get_aperf_mperf_shift)
1476 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1477
007bea09
DB
1478 if (pstate_funcs.get_vid)
1479 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1480
1481 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1482}
1483
e0efd5be
SP
1484/*
1485 * Long hold time will keep high perf limits for long time,
1486 * which negatively impacts perf/watt for some workloads,
1487 * like specpower. 3ms is based on experiements on some
1488 * workoads.
1489 */
1490static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1491
1492static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1493{
1494 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1495 u32 max_limit = (hwp_req & 0xff00) >> 8;
1496 u32 min_limit = (hwp_req & 0xff);
1497 u32 boost_level1;
1498
1499 /*
1500 * Cases to consider (User changes via sysfs or boot time):
1501 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1502 * No boost, return.
1503 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1504 * Should result in one level boost only for P0.
1505 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1506 * Should result in two level boost:
1507 * (min + p1)/2 and P1.
1508 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1509 * Should result in three level boost:
1510 * (min + p1)/2, P1 and P0.
1511 */
1512
1513 /* If max and min are equal or already at max, nothing to boost */
1514 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1515 return;
1516
1517 if (!cpu->hwp_boost_min)
1518 cpu->hwp_boost_min = min_limit;
1519
1520 /* level at half way mark between min and guranteed */
1521 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1522
1523 if (cpu->hwp_boost_min < boost_level1)
1524 cpu->hwp_boost_min = boost_level1;
1525 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1526 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1527 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1528 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1529 cpu->hwp_boost_min = max_limit;
1530 else
1531 return;
1532
1533 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1534 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1535 cpu->last_update = cpu->sample.time;
1536}
1537
1538static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1539{
1540 if (cpu->hwp_boost_min) {
1541 bool expired;
1542
1543 /* Check if we are idle for hold time to boost down */
1544 expired = time_after64(cpu->sample.time, cpu->last_update +
1545 hwp_boost_hold_time_ns);
1546 if (expired) {
1547 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1548 cpu->hwp_boost_min = 0;
1549 }
1550 }
1551 cpu->last_update = cpu->sample.time;
1552}
1553
52ccc431
SP
1554static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1555 u64 time)
1556{
1557 cpu->sample.time = time;
1558
1559 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1560 bool do_io = false;
1561
1562 cpu->sched_flags = 0;
1563 /*
1564 * Set iowait_boost flag and update time. Since IO WAIT flag
1565 * is set all the time, we can't just conclude that there is
1566 * some IO bound activity is scheduled on this CPU with just
1567 * one occurrence. If we receive at least two in two
1568 * consecutive ticks, then we treat as boost candidate.
1569 */
1570 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1571 do_io = true;
1572
1573 cpu->last_io_update = time;
1574
1575 if (do_io)
1576 intel_pstate_hwp_boost_up(cpu);
1577
1578 } else {
1579 intel_pstate_hwp_boost_down(cpu);
1580 }
1581}
1582
e0efd5be
SP
1583static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1584 u64 time, unsigned int flags)
1585{
52ccc431
SP
1586 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1587
1588 cpu->sched_flags |= flags;
1589
1590 if (smp_processor_id() == cpu->cpu)
1591 intel_pstate_update_util_hwp_local(cpu, time);
e0efd5be
SP
1592}
1593
a1c9787d 1594static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1595{
6b17ddb2 1596 struct sample *sample = &cpu->sample;
e66c1768 1597
a1c9787d 1598 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1599}
1600
4fec7ad5 1601static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1602{
93f0822d 1603 u64 aperf, mperf;
4ab60c3f 1604 unsigned long flags;
4055fad3 1605 u64 tsc;
93f0822d 1606
4ab60c3f 1607 local_irq_save(flags);
93f0822d
DB
1608 rdmsrl(MSR_IA32_APERF, aperf);
1609 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1610 tsc = rdtsc();
4fec7ad5 1611 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1612 local_irq_restore(flags);
4fec7ad5 1613 return false;
8e601a9f 1614 }
4ab60c3f 1615 local_irq_restore(flags);
b69880f9 1616
c4ee841f 1617 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1618 cpu->sample.time = time;
d37e2b76
DB
1619 cpu->sample.aperf = aperf;
1620 cpu->sample.mperf = mperf;
4055fad3 1621 cpu->sample.tsc = tsc;
d37e2b76
DB
1622 cpu->sample.aperf -= cpu->prev_aperf;
1623 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1624 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1625
93f0822d
DB
1626 cpu->prev_aperf = aperf;
1627 cpu->prev_mperf = mperf;
4055fad3 1628 cpu->prev_tsc = tsc;
febce40f
RW
1629 /*
1630 * First time this function is invoked in a given cycle, all of the
1631 * previous sample data fields are equal to zero or stale and they must
1632 * be populated with meaningful numbers for things to work, so assume
1633 * that sample.time will always be reset before setting the utilization
1634 * update hook and make the caller skip the sample then.
1635 */
eabd22c6
RW
1636 if (cpu->last_sample_time) {
1637 intel_pstate_calc_avg_perf(cpu);
1638 return true;
1639 }
1640 return false;
93f0822d
DB
1641}
1642
8fa520af
PL
1643static inline int32_t get_avg_frequency(struct cpudata *cpu)
1644{
c587c79f 1645 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
8fa520af
PL
1646}
1647
bdcaa23f
PL
1648static inline int32_t get_avg_pstate(struct cpudata *cpu)
1649{
8edb0a6e
RW
1650 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1651 cpu->sample.core_avg_perf);
bdcaa23f
PL
1652}
1653
d77d4888 1654static inline int32_t get_target_pstate(struct cpudata *cpu)
e70eed2b
PL
1655{
1656 struct sample *sample = &cpu->sample;
09c448d3 1657 int32_t busy_frac, boost;
0843e83c 1658 int target, avg_pstate;
e70eed2b 1659
6e34e1f2
SP
1660 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1661 sample->tsc);
63d1d656 1662
09c448d3
RW
1663 boost = cpu->iowait_boost;
1664 cpu->iowait_boost >>= 1;
63d1d656 1665
09c448d3
RW
1666 if (busy_frac < boost)
1667 busy_frac = boost;
63d1d656 1668
09c448d3 1669 sample->busy_scaled = busy_frac * 100;
0843e83c 1670
7de32556 1671 target = global.no_turbo || global.turbo_disabled ?
0843e83c
RW
1672 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1673 target += target >> 2;
1674 target = mul_fp(target, busy_frac);
1675 if (target < cpu->pstate.min_pstate)
1676 target = cpu->pstate.min_pstate;
1677
1678 /*
1679 * If the average P-state during the previous cycle was higher than the
1680 * current target, add 50% of the difference to the target to reduce
1681 * possible performance oscillations and offset possible performance
1682 * loss related to moving the workload from one CPU to another within
1683 * a package/module.
1684 */
1685 avg_pstate = get_avg_pstate(cpu);
1686 if (avg_pstate > target)
1687 target += (avg_pstate - target) >> 1;
1688
1689 return target;
e70eed2b
PL
1690}
1691
001c76f0 1692static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1 1693{
b02aabe8
RW
1694 int max_pstate = intel_pstate_get_base_pstate(cpu);
1695 int min_pstate;
fdfdb2b1 1696
1a4fe38a
SP
1697 min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1698 max_pstate = max(min_pstate, cpu->max_perf_ratio);
b02aabe8 1699 return clamp_t(int, pstate, min_pstate, max_pstate);
001c76f0
RW
1700}
1701
1702static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1703{
fdfdb2b1
RW
1704 if (pstate == cpu->pstate.current_pstate)
1705 return;
1706
bc95a454 1707 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1708 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1709}
1710
a891283e 1711static void intel_pstate_adjust_pstate(struct cpudata *cpu)
93f0822d 1712{
67dd9bf4 1713 int from = cpu->pstate.current_pstate;
4055fad3 1714 struct sample *sample;
a891283e 1715 int target_pstate;
4055fad3 1716
001c76f0
RW
1717 update_turbo_state();
1718
d77d4888 1719 target_pstate = get_target_pstate(cpu);
64078299
RW
1720 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1721 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1 1722 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1723
1724 sample = &cpu->sample;
a1c9787d 1725 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1726 fp_toint(sample->busy_scaled),
4055fad3
DS
1727 from,
1728 cpu->pstate.current_pstate,
1729 sample->mperf,
1730 sample->aperf,
1731 sample->tsc,
3ba7bcaa
SP
1732 get_avg_frequency(cpu),
1733 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1734}
1735
a4675fbc 1736static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1737 unsigned int flags)
93f0822d 1738{
a4675fbc 1739 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1740 u64 delta_ns;
1741
674e7541
VK
1742 /* Don't allow remote callbacks */
1743 if (smp_processor_id() != cpu->cpu)
1744 return;
1745
eabd22c6
RW
1746 if (flags & SCHED_CPUFREQ_IOWAIT) {
1747 cpu->iowait_boost = int_tofp(1);
7bde2d50
SP
1748 cpu->last_update = time;
1749 /*
1750 * The last time the busy was 100% so P-state was max anyway
1751 * so avoid overhead of computation.
1752 */
1753 if (fp_toint(cpu->sample.busy_scaled) == 100)
1754 return;
1755
1756 goto set_pstate;
eabd22c6
RW
1757 } else if (cpu->iowait_boost) {
1758 /* Clear iowait_boost if the CPU may have been idle. */
1759 delta_ns = time - cpu->last_update;
1760 if (delta_ns > TICK_NSEC)
1761 cpu->iowait_boost = 0;
09c448d3 1762 }
eabd22c6 1763 cpu->last_update = time;
09c448d3 1764 delta_ns = time - cpu->sample.time;
d77d4888 1765 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
eabd22c6 1766 return;
4fec7ad5 1767
7bde2d50 1768set_pstate:
a891283e
RW
1769 if (intel_pstate_sample(cpu, time))
1770 intel_pstate_adjust_pstate(cpu);
67dd9bf4 1771}
eabd22c6 1772
2f49afc2
RW
1773static struct pstate_funcs core_funcs = {
1774 .get_max = core_get_max_pstate,
1775 .get_max_physical = core_get_max_pstate_physical,
1776 .get_min = core_get_min_pstate,
1777 .get_turbo = core_get_turbo_pstate,
1778 .get_scaling = core_get_scaling,
1779 .get_val = core_get_val,
de4a76cb
RW
1780};
1781
2f49afc2
RW
1782static const struct pstate_funcs silvermont_funcs = {
1783 .get_max = atom_get_max_pstate,
1784 .get_max_physical = atom_get_max_pstate,
1785 .get_min = atom_get_min_pstate,
1786 .get_turbo = atom_get_turbo_pstate,
1787 .get_val = atom_get_val,
1788 .get_scaling = silvermont_get_scaling,
1789 .get_vid = atom_get_vid,
de4a76cb
RW
1790};
1791
2f49afc2
RW
1792static const struct pstate_funcs airmont_funcs = {
1793 .get_max = atom_get_max_pstate,
1794 .get_max_physical = atom_get_max_pstate,
1795 .get_min = atom_get_min_pstate,
1796 .get_turbo = atom_get_turbo_pstate,
1797 .get_val = atom_get_val,
1798 .get_scaling = airmont_get_scaling,
1799 .get_vid = atom_get_vid,
de4a76cb
RW
1800};
1801
2f49afc2
RW
1802static const struct pstate_funcs knl_funcs = {
1803 .get_max = core_get_max_pstate,
1804 .get_max_physical = core_get_max_pstate_physical,
1805 .get_min = core_get_min_pstate,
1806 .get_turbo = knl_get_turbo_pstate,
6e34e1f2 1807 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2f49afc2
RW
1808 .get_scaling = core_get_scaling,
1809 .get_val = core_get_val,
de4a76cb
RW
1810};
1811
93f0822d 1812#define ICPU(model, policy) \
6cbd7ee1
DB
1813 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1814 (unsigned long)&policy }
93f0822d
DB
1815
1816static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2f49afc2
RW
1817 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1818 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
f2c4db1b 1819 ICPU(INTEL_FAM6_ATOM_SILVERMONT, silvermont_funcs),
2f49afc2
RW
1820 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1821 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1822 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1823 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1824 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1825 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1826 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1827 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1828 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1829 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1830 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1831 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1832 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1833 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1834 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
dbd49b85 1835 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs),
f2c4db1b 1836 ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS, core_funcs),
d8de7a44 1837 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
93f0822d
DB
1838 {}
1839};
1840MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1841
29327c84 1842static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2f49afc2
RW
1843 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1844 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1845 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
2f86dc4c
DB
1846 {}
1847};
1848
6e978b22 1849static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2f49afc2 1850 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
6e978b22
SP
1851 {}
1852};
1853
41ab43c9
SP
1854static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1855 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1856 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1857 {}
1858};
1859
93f0822d
DB
1860static int intel_pstate_init_cpu(unsigned int cpunum)
1861{
93f0822d
DB
1862 struct cpudata *cpu;
1863
eae48f04
SP
1864 cpu = all_cpu_data[cpunum];
1865
1866 if (!cpu) {
c5a2ee7d 1867 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
eae48f04
SP
1868 if (!cpu)
1869 return -ENOMEM;
1870
1871 all_cpu_data[cpunum] = cpu;
eae48f04 1872
984edbdc
SP
1873 cpu->epp_default = -EINVAL;
1874 cpu->epp_powersave = -EINVAL;
1875 cpu->epp_saved = -EINVAL;
eae48f04 1876 }
93f0822d
DB
1877
1878 cpu = all_cpu_data[cpunum];
1879
93f0822d 1880 cpu->cpu = cpunum;
ba88d433 1881
a4675fbc 1882 if (hwp_active) {
6e978b22
SP
1883 const struct x86_cpu_id *id;
1884
1885 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1886 if (id)
1887 intel_pstate_disable_ee(cpunum);
1888
ba88d433 1889 intel_pstate_hwp_enable(cpu);
41ab43c9
SP
1890
1891 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
01e61a42 1892 if (id && intel_pstate_acpi_pm_profile_server())
41ab43c9 1893 hwp_boost = true;
a4675fbc 1894 }
ba88d433 1895
179e8471 1896 intel_pstate_get_cpu_pstates(cpu);
016c8150 1897
4836df17 1898 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1899
1900 return 0;
1901}
1902
febce40f 1903static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1904{
febce40f
RW
1905 struct cpudata *cpu = all_cpu_data[cpu_num];
1906
e0efd5be 1907 if (hwp_active && !hwp_boost)
62611cb9
LB
1908 return;
1909
5ab666e0
RW
1910 if (cpu->update_util_set)
1911 return;
1912
febce40f
RW
1913 /* Prevent intel_pstate_update_util() from using stale data. */
1914 cpu->sample.time = 0;
67dd9bf4 1915 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
e0efd5be
SP
1916 (hwp_active ?
1917 intel_pstate_update_util_hwp :
1918 intel_pstate_update_util));
4578ee7e 1919 cpu->update_util_set = true;
bb6ab52f
RW
1920}
1921
1922static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1923{
4578ee7e
CY
1924 struct cpudata *cpu_data = all_cpu_data[cpu];
1925
1926 if (!cpu_data->update_util_set)
1927 return;
1928
0bed612b 1929 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1930 cpu_data->update_util_set = false;
bb6ab52f
RW
1931 synchronize_sched();
1932}
1933
80b120ca
RW
1934static int intel_pstate_get_max_freq(struct cpudata *cpu)
1935{
1936 return global.turbo_disabled || global.no_turbo ?
1937 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1938}
1939
eae48f04 1940static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
c5a2ee7d 1941 struct cpudata *cpu)
eae48f04 1942{
80b120ca 1943 int max_freq = intel_pstate_get_max_freq(cpu);
e4c204ce 1944 int32_t max_policy_perf, min_policy_perf;
1a4fe38a 1945 int max_state, turbo_max;
a410c03d 1946
1a4fe38a
SP
1947 /*
1948 * HWP needs some special consideration, because on BDX the
1949 * HWP_REQUEST uses abstract value to represent performance
1950 * rather than pure ratios.
1951 */
1952 if (hwp_active) {
1953 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1954 } else {
1955 max_state = intel_pstate_get_base_pstate(cpu);
1956 turbo_max = cpu->pstate.turbo_pstate;
1957 }
1958
1959 max_policy_perf = max_state * policy->max / max_freq;
5879f877 1960 if (policy->max == policy->min) {
e4c204ce 1961 min_policy_perf = max_policy_perf;
5879f877 1962 } else {
1a4fe38a 1963 min_policy_perf = max_state * policy->min / max_freq;
e4c204ce
RW
1964 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1965 0, max_policy_perf);
5879f877 1966 }
eae48f04 1967
1a4fe38a
SP
1968 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1969 policy->cpu, max_state,
1970 min_policy_perf, max_policy_perf);
1971
e4c204ce 1972 /* Normalize user input to [min_perf, max_perf] */
c5a2ee7d 1973 if (per_cpu_limits) {
1a4fe38a
SP
1974 cpu->min_perf_ratio = min_policy_perf;
1975 cpu->max_perf_ratio = max_policy_perf;
c5a2ee7d
RW
1976 } else {
1977 int32_t global_min, global_max;
1978
1979 /* Global limits are in percent of the maximum turbo P-state. */
1a4fe38a
SP
1980 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1981 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
c5a2ee7d 1982 global_min = clamp_t(int32_t, global_min, 0, global_max);
eae48f04 1983
1a4fe38a
SP
1984 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1985 global_min, global_max);
c5a2ee7d 1986
1a4fe38a
SP
1987 cpu->min_perf_ratio = max(min_policy_perf, global_min);
1988 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1989 cpu->max_perf_ratio = min(max_policy_perf, global_max);
1990 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
eae48f04 1991
1a4fe38a
SP
1992 /* Make sure min_perf <= max_perf */
1993 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1994 cpu->max_perf_ratio);
eae48f04 1995
1a4fe38a
SP
1996 }
1997 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1998 cpu->max_perf_ratio,
1999 cpu->min_perf_ratio);
eae48f04
SP
2000}
2001
93f0822d
DB
2002static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2003{
3be9200d
SP
2004 struct cpudata *cpu;
2005
d3929b83
DB
2006 if (!policy->cpuinfo.max_freq)
2007 return -ENODEV;
2008
2c2c1af4
SP
2009 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2010 policy->cpuinfo.max_freq, policy->max);
2011
a6c6ead1 2012 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
2013 cpu->policy = policy->policy;
2014
b59fe540
SP
2015 mutex_lock(&intel_pstate_limits_lock);
2016
c5a2ee7d 2017 intel_pstate_update_perf_limits(policy, cpu);
a240c4aa 2018
2f1d407a 2019 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2020 /*
2021 * NOHZ_FULL CPUs need this as the governor callback may not
2022 * be invoked on them.
2023 */
2024 intel_pstate_clear_update_util_hook(policy->cpu);
2025 intel_pstate_max_within_limits(cpu);
82b4e03e
LB
2026 } else {
2027 intel_pstate_set_update_util_hook(policy->cpu);
a6c6ead1
RW
2028 }
2029
e0efd5be
SP
2030 if (hwp_active) {
2031 /*
2032 * When hwp_boost was active before and dynamically it
2033 * was turned off, in that case we need to clear the
2034 * update util hook.
2035 */
2036 if (!hwp_boost)
2037 intel_pstate_clear_update_util_hook(policy->cpu);
2bfc4cbb 2038 intel_pstate_hwp_set(policy->cpu);
e0efd5be 2039 }
2f86dc4c 2040
b59fe540
SP
2041 mutex_unlock(&intel_pstate_limits_lock);
2042
93f0822d
DB
2043 return 0;
2044}
2045
80b120ca
RW
2046static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2047 struct cpudata *cpu)
2048{
d3264f75
SP
2049 if (!hwp_active &&
2050 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
80b120ca
RW
2051 policy->max < policy->cpuinfo.max_freq &&
2052 policy->max > cpu->pstate.max_freq) {
2053 pr_debug("policy->max > max non turbo frequency\n");
2054 policy->max = policy->cpuinfo.max_freq;
2055 }
2056}
2057
93f0822d
DB
2058static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2059{
7d9a8a9f 2060 struct cpudata *cpu = all_cpu_data[policy->cpu];
7d9a8a9f
SP
2061
2062 update_turbo_state();
80b120ca
RW
2063 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2064 intel_pstate_get_max_freq(cpu));
93f0822d 2065
285cb990 2066 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2067 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2068 return -EINVAL;
2069
80b120ca
RW
2070 intel_pstate_adjust_policy_max(policy, cpu);
2071
93f0822d
DB
2072 return 0;
2073}
2074
001c76f0
RW
2075static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2076{
2077 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2078}
2079
bb18008f 2080static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2081{
001c76f0 2082 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2083
001c76f0 2084 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2085 if (hwp_active)
2086 intel_pstate_hwp_save_state(policy);
2087 else
001c76f0
RW
2088 intel_cpufreq_stop_cpu(policy);
2089}
bb18008f 2090
001c76f0
RW
2091static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2092{
2093 intel_pstate_exit_perf_limits(policy);
a4675fbc 2094
001c76f0 2095 policy->fast_switch_possible = false;
2f86dc4c 2096
001c76f0 2097 return 0;
93f0822d
DB
2098}
2099
001c76f0 2100static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2101{
93f0822d 2102 struct cpudata *cpu;
52e0a509 2103 int rc;
93f0822d
DB
2104
2105 rc = intel_pstate_init_cpu(policy->cpu);
2106 if (rc)
2107 return rc;
2108
2109 cpu = all_cpu_data[policy->cpu];
2110
1a4fe38a
SP
2111 cpu->max_perf_ratio = 0xFF;
2112 cpu->min_perf_ratio = 0;
93f0822d 2113
b27580b0
DB
2114 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2115 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2116
2117 /* cpuinfo and default policy values */
b27580b0 2118 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e 2119 update_turbo_state();
7de32556 2120 policy->cpuinfo.max_freq = global.turbo_disabled ?
983e600e
SP
2121 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2122 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2123
eea033d0
SP
2124 if (hwp_active) {
2125 unsigned int max_freq;
2126
2127 max_freq = global.turbo_disabled ?
2128 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2129 if (max_freq < policy->cpuinfo.max_freq)
2130 policy->cpuinfo.max_freq = max_freq;
2131 }
2132
9522a2ff 2133 intel_pstate_init_acpi_perf_limits(policy);
93f0822d 2134
001c76f0
RW
2135 policy->fast_switch_possible = true;
2136
93f0822d
DB
2137 return 0;
2138}
2139
001c76f0 2140static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2141{
001c76f0
RW
2142 int ret = __intel_pstate_cpu_init(policy);
2143
2144 if (ret)
2145 return ret;
2146
7de32556 2147 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
001c76f0
RW
2148 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2149 else
2150 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2151
2152 return 0;
2153}
2154
001c76f0 2155static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2156 .flags = CPUFREQ_CONST_LOOPS,
2157 .verify = intel_pstate_verify_policy,
2158 .setpolicy = intel_pstate_set_policy,
984edbdc 2159 .suspend = intel_pstate_hwp_save_state,
8442885f 2160 .resume = intel_pstate_resume,
93f0822d 2161 .init = intel_pstate_cpu_init,
9522a2ff 2162 .exit = intel_pstate_cpu_exit,
bb18008f 2163 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2164 .name = "intel_pstate",
93f0822d
DB
2165};
2166
001c76f0
RW
2167static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2168{
2169 struct cpudata *cpu = all_cpu_data[policy->cpu];
001c76f0
RW
2170
2171 update_turbo_state();
80b120ca
RW
2172 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2173 intel_pstate_get_max_freq(cpu));
001c76f0 2174
80b120ca 2175 intel_pstate_adjust_policy_max(policy, cpu);
001c76f0 2176
c5a2ee7d
RW
2177 intel_pstate_update_perf_limits(policy, cpu);
2178
001c76f0
RW
2179 return 0;
2180}
2181
50e9ffab
DS
2182/* Use of trace in passive mode:
2183 *
2184 * In passive mode the trace core_busy field (also known as the
2185 * performance field, and lablelled as such on the graphs; also known as
2186 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2187 * driver call was via the normal or fast switch path. Various graphs
2188 * output from the intel_pstate_tracer.py utility that include core_busy
2189 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2190 * so we use 10 to indicate the the normal path through the driver, and
2191 * 90 to indicate the fast switch path through the driver.
2192 * The scaled_busy field is not used, and is set to 0.
2193 */
2194
2195#define INTEL_PSTATE_TRACE_TARGET 10
2196#define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2197
2198static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2199{
2200 struct sample *sample;
2201
2202 if (!trace_pstate_sample_enabled())
2203 return;
2204
2205 if (!intel_pstate_sample(cpu, ktime_get()))
2206 return;
2207
2208 sample = &cpu->sample;
2209 trace_pstate_sample(trace_type,
2210 0,
2211 old_pstate,
2212 cpu->pstate.current_pstate,
2213 sample->mperf,
2214 sample->aperf,
2215 sample->tsc,
2216 get_avg_frequency(cpu),
2217 fp_toint(cpu->iowait_boost * 100));
2218}
2219
001c76f0
RW
2220static int intel_cpufreq_target(struct cpufreq_policy *policy,
2221 unsigned int target_freq,
2222 unsigned int relation)
2223{
2224 struct cpudata *cpu = all_cpu_data[policy->cpu];
2225 struct cpufreq_freqs freqs;
50e9ffab 2226 int target_pstate, old_pstate;
001c76f0 2227
64897b20
RW
2228 update_turbo_state();
2229
001c76f0 2230 freqs.old = policy->cur;
64897b20 2231 freqs.new = target_freq;
001c76f0
RW
2232
2233 cpufreq_freq_transition_begin(policy, &freqs);
2234 switch (relation) {
2235 case CPUFREQ_RELATION_L:
2236 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2237 break;
2238 case CPUFREQ_RELATION_H:
2239 target_pstate = freqs.new / cpu->pstate.scaling;
2240 break;
2241 default:
2242 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2243 break;
2244 }
2245 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
50e9ffab 2246 old_pstate = cpu->pstate.current_pstate;
001c76f0
RW
2247 if (target_pstate != cpu->pstate.current_pstate) {
2248 cpu->pstate.current_pstate = target_pstate;
2249 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2250 pstate_funcs.get_val(cpu, target_pstate));
2251 }
64078299 2252 freqs.new = target_pstate * cpu->pstate.scaling;
50e9ffab 2253 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
001c76f0
RW
2254 cpufreq_freq_transition_end(policy, &freqs, false);
2255
2256 return 0;
2257}
2258
2259static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2260 unsigned int target_freq)
2261{
2262 struct cpudata *cpu = all_cpu_data[policy->cpu];
50e9ffab 2263 int target_pstate, old_pstate;
001c76f0 2264
64897b20
RW
2265 update_turbo_state();
2266
001c76f0 2267 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
64078299 2268 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
50e9ffab 2269 old_pstate = cpu->pstate.current_pstate;
001c76f0 2270 intel_pstate_update_pstate(cpu, target_pstate);
50e9ffab 2271 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
64078299 2272 return target_pstate * cpu->pstate.scaling;
001c76f0
RW
2273}
2274
2275static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2276{
2277 int ret = __intel_pstate_cpu_init(policy);
2278
2279 if (ret)
2280 return ret;
2281
2282 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
1b72e7fd 2283 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
001c76f0
RW
2284 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2285 policy->cur = policy->cpuinfo.min_freq;
2286
2287 return 0;
2288}
2289
2290static struct cpufreq_driver intel_cpufreq = {
2291 .flags = CPUFREQ_CONST_LOOPS,
2292 .verify = intel_cpufreq_verify_policy,
2293 .target = intel_cpufreq_target,
2294 .fast_switch = intel_cpufreq_fast_switch,
2295 .init = intel_cpufreq_cpu_init,
2296 .exit = intel_pstate_cpu_exit,
2297 .stop_cpu = intel_cpufreq_stop_cpu,
2298 .name = "intel_cpufreq",
2299};
2300
ee8df89a 2301static struct cpufreq_driver *default_driver = &intel_pstate;
001c76f0 2302
fb1fe104
RW
2303static void intel_pstate_driver_cleanup(void)
2304{
2305 unsigned int cpu;
2306
2307 get_online_cpus();
2308 for_each_online_cpu(cpu) {
2309 if (all_cpu_data[cpu]) {
2310 if (intel_pstate_driver == &intel_pstate)
2311 intel_pstate_clear_update_util_hook(cpu);
2312
2313 kfree(all_cpu_data[cpu]);
2314 all_cpu_data[cpu] = NULL;
2315 }
2316 }
2317 put_online_cpus();
ee8df89a 2318 intel_pstate_driver = NULL;
fb1fe104
RW
2319}
2320
ee8df89a 2321static int intel_pstate_register_driver(struct cpufreq_driver *driver)
fb1fe104
RW
2322{
2323 int ret;
2324
c5a2ee7d
RW
2325 memset(&global, 0, sizeof(global));
2326 global.max_perf_pct = 100;
c3a49c89 2327
ee8df89a 2328 intel_pstate_driver = driver;
fb1fe104
RW
2329 ret = cpufreq_register_driver(intel_pstate_driver);
2330 if (ret) {
2331 intel_pstate_driver_cleanup();
2332 return ret;
2333 }
2334
c5a2ee7d
RW
2335 global.min_perf_pct = min_perf_pct_min();
2336
fb1fe104
RW
2337 return 0;
2338}
2339
2340static int intel_pstate_unregister_driver(void)
2341{
2342 if (hwp_active)
2343 return -EBUSY;
2344
fb1fe104
RW
2345 cpufreq_unregister_driver(intel_pstate_driver);
2346 intel_pstate_driver_cleanup();
2347
2348 return 0;
2349}
2350
2351static ssize_t intel_pstate_show_status(char *buf)
2352{
ee8df89a 2353 if (!intel_pstate_driver)
fb1fe104
RW
2354 return sprintf(buf, "off\n");
2355
2356 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2357 "active" : "passive");
2358}
2359
2360static int intel_pstate_update_status(const char *buf, size_t size)
2361{
2362 int ret;
2363
2364 if (size == 3 && !strncmp(buf, "off", size))
ee8df89a 2365 return intel_pstate_driver ?
fb1fe104
RW
2366 intel_pstate_unregister_driver() : -EINVAL;
2367
2368 if (size == 6 && !strncmp(buf, "active", size)) {
ee8df89a 2369 if (intel_pstate_driver) {
fb1fe104
RW
2370 if (intel_pstate_driver == &intel_pstate)
2371 return 0;
2372
2373 ret = intel_pstate_unregister_driver();
2374 if (ret)
2375 return ret;
2376 }
2377
ee8df89a 2378 return intel_pstate_register_driver(&intel_pstate);
fb1fe104
RW
2379 }
2380
2381 if (size == 7 && !strncmp(buf, "passive", size)) {
ee8df89a 2382 if (intel_pstate_driver) {
0042b2c0 2383 if (intel_pstate_driver == &intel_cpufreq)
fb1fe104
RW
2384 return 0;
2385
2386 ret = intel_pstate_unregister_driver();
2387 if (ret)
2388 return ret;
2389 }
2390
ee8df89a 2391 return intel_pstate_register_driver(&intel_cpufreq);
fb1fe104
RW
2392 }
2393
2394 return -EINVAL;
2395}
2396
eed43609
JZ
2397static int no_load __initdata;
2398static int no_hwp __initdata;
2399static int hwp_only __initdata;
29327c84 2400static unsigned int force_load __initdata;
6be26498 2401
29327c84 2402static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2403{
016c8150 2404 if (!pstate_funcs.get_max() ||
c410833a
SK
2405 !pstate_funcs.get_min() ||
2406 !pstate_funcs.get_turbo())
b563b4e3
DB
2407 return -ENODEV;
2408
b563b4e3
DB
2409 return 0;
2410}
016c8150 2411
29327c84 2412static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2413{
2414 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2415 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2416 pstate_funcs.get_min = funcs->get_min;
2417 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2418 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2419 pstate_funcs.get_val = funcs->get_val;
007bea09 2420 pstate_funcs.get_vid = funcs->get_vid;
6e34e1f2 2421 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
016c8150
DB
2422}
2423
9522a2ff 2424#ifdef CONFIG_ACPI
fbbcdc07 2425
29327c84 2426static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2427{
2428 int i;
2429
2430 for_each_possible_cpu(i) {
2431 acpi_status status;
2432 union acpi_object *pss;
2433 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2434 struct acpi_processor *pr = per_cpu(processors, i);
2435
2436 if (!pr)
2437 continue;
2438
2439 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2440 if (ACPI_FAILURE(status))
2441 continue;
2442
2443 pss = buffer.pointer;
2444 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2445 kfree(pss);
2446 return false;
2447 }
2448
2449 kfree(pss);
2450 }
2451
2452 return true;
2453}
2454
95d6c085
RW
2455static bool __init intel_pstate_no_acpi_pcch(void)
2456{
2457 acpi_status status;
2458 acpi_handle handle;
2459
2460 status = acpi_get_handle(NULL, "\\_SB", &handle);
2461 if (ACPI_FAILURE(status))
2462 return true;
2463
2464 return !acpi_has_method(handle, "PCCH");
2465}
2466
29327c84 2467static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2468{
2469 int i;
2470
2471 for_each_possible_cpu(i) {
2472 struct acpi_processor *pr = per_cpu(processors, i);
2473
2474 if (!pr)
2475 continue;
2476 if (acpi_has_method(pr->handle, "_PPC"))
2477 return true;
2478 }
2479 return false;
2480}
2481
2482enum {
2483 PSS,
2484 PPC,
2485};
2486
fbbcdc07 2487/* Hardware vendor-specific info that has its own power management modes */
5e932321
TK
2488static struct acpi_platform_list plat_info[] __initdata = {
2489 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2490 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2491 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2492 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2493 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2494 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2495 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2496 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2497 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2498 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2499 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2500 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2501 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2502 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2503 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2504 { } /* End */
fbbcdc07
AH
2505};
2506
29327c84 2507static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07 2508{
2f86dc4c
DB
2509 const struct x86_cpu_id *id;
2510 u64 misc_pwr;
5e932321 2511 int idx;
2f86dc4c
DB
2512
2513 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2514 if (id) {
2515 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2516 if ( misc_pwr & (1 << 8))
2517 return true;
2518 }
fbbcdc07 2519
5e932321
TK
2520 idx = acpi_match_platform_list(plat_info);
2521 if (idx < 0)
fbbcdc07
AH
2522 return false;
2523
5e932321
TK
2524 switch (plat_info[idx].data) {
2525 case PSS:
95d6c085
RW
2526 if (!intel_pstate_no_acpi_pss())
2527 return false;
2528
2529 return intel_pstate_no_acpi_pcch();
5e932321
TK
2530 case PPC:
2531 return intel_pstate_has_acpi_ppc() && !force_load;
fbbcdc07
AH
2532 }
2533
2534 return false;
2535}
d0ea59e1
RW
2536
2537static void intel_pstate_request_control_from_smm(void)
2538{
2539 /*
2540 * It may be unsafe to request P-states control from SMM if _PPC support
2541 * has not been enabled.
2542 */
2543 if (acpi_ppc)
2544 acpi_processor_pstate_control();
2545}
fbbcdc07
AH
2546#else /* CONFIG_ACPI not enabled */
2547static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2548static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2549static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2550#endif /* CONFIG_ACPI */
2551
ff7c9917
SP
2552#define INTEL_PSTATE_HWP_BROADWELL 0x01
2553
2554#define ICPU_HWP(model, hwp_mode) \
2555 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2556
7791e4aa 2557static const struct x86_cpu_id hwp_support_ids[] __initconst = {
ff7c9917
SP
2558 ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2559 ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2560 ICPU_HWP(X86_MODEL_ANY, 0),
7791e4aa
SP
2561 {}
2562};
2563
93f0822d
DB
2564static int __init intel_pstate_init(void)
2565{
ff7c9917 2566 const struct x86_cpu_id *id;
eb5139d1 2567 int rc;
93f0822d 2568
6be26498
DB
2569 if (no_load)
2570 return -ENODEV;
2571
ff7c9917
SP
2572 id = x86_match_cpu(hwp_support_ids);
2573 if (id) {
2f49afc2 2574 copy_cpu_funcs(&core_funcs);
c4f3f70c 2575 if (!no_hwp) {
eb5139d1 2576 hwp_active++;
ff7c9917 2577 hwp_mode_bdw = id->driver_data;
eb5139d1
RW
2578 intel_pstate.attr = hwp_cpufreq_attrs;
2579 goto hwp_cpu_matched;
2580 }
2581 } else {
eb5139d1
RW
2582 id = x86_match_cpu(intel_pstate_cpu_ids);
2583 if (!id)
2584 return -ENODEV;
93f0822d 2585
2f49afc2 2586 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
eb5139d1 2587 }
016c8150 2588
b563b4e3
DB
2589 if (intel_pstate_msrs_not_valid())
2590 return -ENODEV;
2591
7791e4aa
SP
2592hwp_cpu_matched:
2593 /*
2594 * The Intel pstate driver will be ignored if the platform
2595 * firmware has its own power management modes.
2596 */
2597 if (intel_pstate_platform_pwr_mgmt_exists())
2598 return -ENODEV;
2599
fb1fe104
RW
2600 if (!hwp_active && hwp_only)
2601 return -ENOTSUPP;
2602
4836df17 2603 pr_info("Intel P-state driver initializing\n");
93f0822d 2604
fad953ce 2605 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
93f0822d
DB
2606 if (!all_cpu_data)
2607 return -ENOMEM;
93f0822d 2608
d0ea59e1
RW
2609 intel_pstate_request_control_from_smm();
2610
93f0822d 2611 intel_pstate_sysfs_expose_params();
b69880f9 2612
0c30b65b 2613 mutex_lock(&intel_pstate_driver_lock);
ee8df89a 2614 rc = intel_pstate_register_driver(default_driver);
0c30b65b 2615 mutex_unlock(&intel_pstate_driver_lock);
fb1fe104
RW
2616 if (rc)
2617 return rc;
366430b5 2618
7791e4aa 2619 if (hwp_active)
4836df17 2620 pr_info("HWP enabled\n");
7791e4aa 2621
fb1fe104 2622 return 0;
93f0822d
DB
2623}
2624device_initcall(intel_pstate_init);
2625
6be26498
DB
2626static int __init intel_pstate_setup(char *str)
2627{
2628 if (!str)
2629 return -EINVAL;
2630
001c76f0 2631 if (!strcmp(str, "disable")) {
6be26498 2632 no_load = 1;
001c76f0
RW
2633 } else if (!strcmp(str, "passive")) {
2634 pr_info("Passive mode enabled\n");
ee8df89a 2635 default_driver = &intel_cpufreq;
001c76f0
RW
2636 no_hwp = 1;
2637 }
539342f6 2638 if (!strcmp(str, "no_hwp")) {
4836df17 2639 pr_info("HWP disabled\n");
2f86dc4c 2640 no_hwp = 1;
539342f6 2641 }
aa4ea34d
EZ
2642 if (!strcmp(str, "force"))
2643 force_load = 1;
d64c3b0b
KCA
2644 if (!strcmp(str, "hwp_only"))
2645 hwp_only = 1;
eae48f04
SP
2646 if (!strcmp(str, "per_cpu_perf_limits"))
2647 per_cpu_limits = true;
9522a2ff
SP
2648
2649#ifdef CONFIG_ACPI
2650 if (!strcmp(str, "support_acpi_ppc"))
2651 acpi_ppc = true;
2652#endif
2653
6be26498
DB
2654 return 0;
2655}
2656early_param("intel_pstate", intel_pstate_setup);
2657
93f0822d
DB
2658MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2659MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2660MODULE_LICENSE("GPL");