[CPUFREQ] Rewrite lock in cpufreq to eliminate cpufreq/hotplug related issues
[linux-2.6-block.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
1da177e4 15#include <linux/init.h>
1da177e4 16#include <linux/cpufreq.h>
138a0128 17#include <linux/cpu.h>
1da177e4
LT
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
3fc54d37 20#include <linux/mutex.h>
1da177e4
LT
21
22/*
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
25 */
26
27#define DEF_FREQUENCY_UP_THRESHOLD (80)
c29f1403 28#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
29#define MAX_FREQUENCY_UP_THRESHOLD (100)
30
32ee8c3e
DJ
31/*
32 * The polling frequency of this governor depends on the capability of
1da177e4 33 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
36 * rate.
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
40 */
32ee8c3e 41static unsigned int def_sampling_rate;
df8b59be
DJ
42#define MIN_SAMPLING_RATE_RATIO (2)
43/* for correct statistics, we need at least 10 ticks between each measure */
e08f5f5b
GS
44#define MIN_STAT_SAMPLING_RATE \
45 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
46#define MIN_SAMPLING_RATE \
47 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
1da177e4
LT
48#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
49#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
1da177e4 50#define TRANSITION_LATENCY_LIMIT (10 * 1000)
1da177e4 51
c4028958
DH
52static void do_dbs_timer(struct work_struct *work);
53
54/* Sampling types */
55enum dbs_sample {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
1da177e4
LT
56
57struct cpu_dbs_info_s {
ccb2fe20
VP
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
32ee8c3e 60 struct cpufreq_policy *cur_policy;
c4028958
DH
61 struct delayed_work work;
62 enum dbs_sample sample_type;
32ee8c3e 63 unsigned int enable;
05ca0350
AS
64 struct cpufreq_frequency_table *freq_table;
65 unsigned int freq_lo;
66 unsigned int freq_lo_jiffies;
67 unsigned int freq_hi_jiffies;
1da177e4
LT
68};
69static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
70
71static unsigned int dbs_enable; /* number of CPUs using this policy */
72
4ec223d0
VP
73/*
74 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
75 * lock and dbs_mutex. cpu_hotplug lock should always be held before
76 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
77 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
78 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
79 * is recursive for the same process. -Venki
80 */
ffac80e9 81static DEFINE_MUTEX(dbs_mutex);
1da177e4 82
2f8a835c 83static struct workqueue_struct *kondemand_wq;
6810b548 84
05ca0350 85static struct dbs_tuners {
32ee8c3e 86 unsigned int sampling_rate;
32ee8c3e
DJ
87 unsigned int up_threshold;
88 unsigned int ignore_nice;
05ca0350
AS
89 unsigned int powersave_bias;
90} dbs_tuners_ins = {
32ee8c3e 91 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
9cbad61b 92 .ignore_nice = 0,
05ca0350 93 .powersave_bias = 0,
1da177e4
LT
94};
95
ccb2fe20 96static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
dac1c1a5 97{
ccb2fe20
VP
98 cputime64_t retval;
99
100 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
101 kstat_cpu(cpu).cpustat.iowait);
102
103 if (dbs_tuners_ins.ignore_nice)
104 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
105
106 return retval;
dac1c1a5
DJ
107}
108
05ca0350
AS
109/*
110 * Find right freq to be set now with powersave_bias on.
111 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
112 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
113 */
b5ecf60f
AB
114static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
115 unsigned int freq_next,
116 unsigned int relation)
05ca0350
AS
117{
118 unsigned int freq_req, freq_reduc, freq_avg;
119 unsigned int freq_hi, freq_lo;
120 unsigned int index = 0;
121 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
122 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
123
124 if (!dbs_info->freq_table) {
125 dbs_info->freq_lo = 0;
126 dbs_info->freq_lo_jiffies = 0;
127 return freq_next;
128 }
129
130 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
131 relation, &index);
132 freq_req = dbs_info->freq_table[index].frequency;
133 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
134 freq_avg = freq_req - freq_reduc;
135
136 /* Find freq bounds for freq_avg in freq_table */
137 index = 0;
138 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
139 CPUFREQ_RELATION_H, &index);
140 freq_lo = dbs_info->freq_table[index].frequency;
141 index = 0;
142 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
143 CPUFREQ_RELATION_L, &index);
144 freq_hi = dbs_info->freq_table[index].frequency;
145
146 /* Find out how long we have to be in hi and lo freqs */
147 if (freq_hi == freq_lo) {
148 dbs_info->freq_lo = 0;
149 dbs_info->freq_lo_jiffies = 0;
150 return freq_lo;
151 }
152 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
153 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
154 jiffies_hi += ((freq_hi - freq_lo) / 2);
155 jiffies_hi /= (freq_hi - freq_lo);
156 jiffies_lo = jiffies_total - jiffies_hi;
157 dbs_info->freq_lo = freq_lo;
158 dbs_info->freq_lo_jiffies = jiffies_lo;
159 dbs_info->freq_hi_jiffies = jiffies_hi;
160 return freq_hi;
161}
162
163static void ondemand_powersave_bias_init(void)
164{
165 int i;
166 for_each_online_cpu(i) {
167 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
168 dbs_info->freq_table = cpufreq_frequency_get_table(i);
169 dbs_info->freq_lo = 0;
170 }
171}
172
1da177e4
LT
173/************************** sysfs interface ************************/
174static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
175{
176 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
177}
178
179static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
180{
181 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
182}
183
32ee8c3e
DJ
184#define define_one_ro(_name) \
185static struct freq_attr _name = \
1da177e4
LT
186__ATTR(_name, 0444, show_##_name, NULL)
187
188define_one_ro(sampling_rate_max);
189define_one_ro(sampling_rate_min);
190
191/* cpufreq_ondemand Governor Tunables */
192#define show_one(file_name, object) \
193static ssize_t show_##file_name \
194(struct cpufreq_policy *unused, char *buf) \
195{ \
196 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
197}
198show_one(sampling_rate, sampling_rate);
1da177e4 199show_one(up_threshold, up_threshold);
001893cd 200show_one(ignore_nice_load, ignore_nice);
05ca0350 201show_one(powersave_bias, powersave_bias);
1da177e4 202
32ee8c3e 203static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
1da177e4
LT
204 const char *buf, size_t count)
205{
206 unsigned int input;
207 int ret;
ffac80e9 208 ret = sscanf(buf, "%u", &input);
1da177e4 209
3fc54d37 210 mutex_lock(&dbs_mutex);
e08f5f5b
GS
211 if (ret != 1 || input > MAX_SAMPLING_RATE
212 || input < MIN_SAMPLING_RATE) {
3fc54d37 213 mutex_unlock(&dbs_mutex);
1da177e4
LT
214 return -EINVAL;
215 }
216
217 dbs_tuners_ins.sampling_rate = input;
3fc54d37 218 mutex_unlock(&dbs_mutex);
1da177e4
LT
219
220 return count;
221}
222
32ee8c3e 223static ssize_t store_up_threshold(struct cpufreq_policy *unused,
1da177e4
LT
224 const char *buf, size_t count)
225{
226 unsigned int input;
227 int ret;
ffac80e9 228 ret = sscanf(buf, "%u", &input);
1da177e4 229
3fc54d37 230 mutex_lock(&dbs_mutex);
32ee8c3e 231 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 232 input < MIN_FREQUENCY_UP_THRESHOLD) {
3fc54d37 233 mutex_unlock(&dbs_mutex);
1da177e4
LT
234 return -EINVAL;
235 }
236
237 dbs_tuners_ins.up_threshold = input;
3fc54d37 238 mutex_unlock(&dbs_mutex);
1da177e4
LT
239
240 return count;
241}
242
001893cd 243static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
3d5ee9e5
DJ
244 const char *buf, size_t count)
245{
246 unsigned int input;
247 int ret;
248
249 unsigned int j;
32ee8c3e 250
ffac80e9 251 ret = sscanf(buf, "%u", &input);
3d5ee9e5
DJ
252 if ( ret != 1 )
253 return -EINVAL;
254
255 if ( input > 1 )
256 input = 1;
32ee8c3e 257
3fc54d37 258 mutex_lock(&dbs_mutex);
3d5ee9e5 259 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
3fc54d37 260 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
261 return count;
262 }
263 dbs_tuners_ins.ignore_nice = input;
264
ccb2fe20 265 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 266 for_each_online_cpu(j) {
ccb2fe20
VP
267 struct cpu_dbs_info_s *dbs_info;
268 dbs_info = &per_cpu(cpu_dbs_info, j);
269 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
270 dbs_info->prev_cpu_wall = get_jiffies_64();
3d5ee9e5 271 }
3fc54d37 272 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
273
274 return count;
275}
276
05ca0350
AS
277static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
278 const char *buf, size_t count)
279{
280 unsigned int input;
281 int ret;
282 ret = sscanf(buf, "%u", &input);
283
284 if (ret != 1)
285 return -EINVAL;
286
287 if (input > 1000)
288 input = 1000;
289
290 mutex_lock(&dbs_mutex);
291 dbs_tuners_ins.powersave_bias = input;
292 ondemand_powersave_bias_init();
293 mutex_unlock(&dbs_mutex);
294
295 return count;
296}
297
1da177e4
LT
298#define define_one_rw(_name) \
299static struct freq_attr _name = \
300__ATTR(_name, 0644, show_##_name, store_##_name)
301
302define_one_rw(sampling_rate);
1da177e4 303define_one_rw(up_threshold);
001893cd 304define_one_rw(ignore_nice_load);
05ca0350 305define_one_rw(powersave_bias);
1da177e4
LT
306
307static struct attribute * dbs_attributes[] = {
308 &sampling_rate_max.attr,
309 &sampling_rate_min.attr,
310 &sampling_rate.attr,
1da177e4 311 &up_threshold.attr,
001893cd 312 &ignore_nice_load.attr,
05ca0350 313 &powersave_bias.attr,
1da177e4
LT
314 NULL
315};
316
317static struct attribute_group dbs_attr_group = {
318 .attrs = dbs_attributes,
319 .name = "ondemand",
320};
321
322/************************** sysfs end ************************/
323
2f8a835c 324static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
1da177e4 325{
ccb2fe20
VP
326 unsigned int idle_ticks, total_ticks;
327 unsigned int load;
ccb2fe20 328 cputime64_t cur_jiffies;
1da177e4
LT
329
330 struct cpufreq_policy *policy;
331 unsigned int j;
332
1da177e4
LT
333 if (!this_dbs_info->enable)
334 return;
335
05ca0350 336 this_dbs_info->freq_lo = 0;
1da177e4 337 policy = this_dbs_info->cur_policy;
ccb2fe20
VP
338 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
339 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
340 this_dbs_info->prev_cpu_wall);
341 this_dbs_info->prev_cpu_wall = cur_jiffies;
2cd7cbdf
LT
342 if (!total_ticks)
343 return;
32ee8c3e 344 /*
c29f1403
DJ
345 * Every sampling_rate, we check, if current idle time is less
346 * than 20% (default), then we try to increase frequency
ccb2fe20 347 * Every sampling_rate, we look for a the lowest
c29f1403
DJ
348 * frequency which can sustain the load while keeping idle time over
349 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 350 *
32ee8c3e
DJ
351 * Any frequency increase takes it to the maximum frequency.
352 * Frequency reduction happens at minimum steps of
353 * 5% (default) of current frequency
1da177e4
LT
354 */
355
ccb2fe20 356 /* Get Idle Time */
9c7d269b 357 idle_ticks = UINT_MAX;
1da177e4 358 for_each_cpu_mask(j, policy->cpus) {
ccb2fe20
VP
359 cputime64_t total_idle_ticks;
360 unsigned int tmp_idle_ticks;
1da177e4
LT
361 struct cpu_dbs_info_s *j_dbs_info;
362
1da177e4 363 j_dbs_info = &per_cpu(cpu_dbs_info, j);
dac1c1a5 364 total_idle_ticks = get_cpu_idle_time(j);
ccb2fe20
VP
365 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
366 j_dbs_info->prev_cpu_idle);
367 j_dbs_info->prev_cpu_idle = total_idle_ticks;
1da177e4
LT
368
369 if (tmp_idle_ticks < idle_ticks)
370 idle_ticks = tmp_idle_ticks;
371 }
ccb2fe20 372 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
1da177e4 373
ccb2fe20
VP
374 /* Check for frequency increase */
375 if (load > dbs_tuners_ins.up_threshold) {
c11420a6 376 /* if we are already at full speed then break out early */
05ca0350
AS
377 if (!dbs_tuners_ins.powersave_bias) {
378 if (policy->cur == policy->max)
379 return;
380
381 __cpufreq_driver_target(policy, policy->max,
382 CPUFREQ_RELATION_H);
383 } else {
384 int freq = powersave_bias_target(policy, policy->max,
385 CPUFREQ_RELATION_H);
386 __cpufreq_driver_target(policy, freq,
387 CPUFREQ_RELATION_L);
388 }
1da177e4
LT
389 return;
390 }
391
392 /* Check for frequency decrease */
c29f1403
DJ
393 /* if we cannot reduce the frequency anymore, break out early */
394 if (policy->cur == policy->min)
395 return;
1da177e4 396
c29f1403
DJ
397 /*
398 * The optimal frequency is the frequency that is the lowest that
399 * can support the current CPU usage without triggering the up
400 * policy. To be safe, we focus 10 points under the threshold.
401 */
ccb2fe20 402 if (load < (dbs_tuners_ins.up_threshold - 10)) {
dfde5d62
VP
403 unsigned int freq_next, freq_cur;
404
405 freq_cur = cpufreq_driver_getavg(policy);
406 if (!freq_cur)
407 freq_cur = policy->cur;
408
409 freq_next = (freq_cur * load) /
c29f1403 410 (dbs_tuners_ins.up_threshold - 10);
dfde5d62 411
05ca0350
AS
412 if (!dbs_tuners_ins.powersave_bias) {
413 __cpufreq_driver_target(policy, freq_next,
414 CPUFREQ_RELATION_L);
415 } else {
416 int freq = powersave_bias_target(policy, freq_next,
417 CPUFREQ_RELATION_L);
418 __cpufreq_driver_target(policy, freq,
419 CPUFREQ_RELATION_L);
420 }
ccb2fe20 421 }
1da177e4
LT
422}
423
c4028958 424static void do_dbs_timer(struct work_struct *work)
32ee8c3e 425{
2f8a835c
VP
426 unsigned int cpu = smp_processor_id();
427 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
c4028958 428 enum dbs_sample sample_type = dbs_info->sample_type;
1ce28d6b
AS
429 /* We want all CPUs to do sampling nearly on same jiffy */
430 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
c4028958
DH
431
432 /* Permit rescheduling of this work item */
433 work_release(work);
434
1ce28d6b 435 delay -= jiffies % delay;
2f8a835c 436
2cd7cbdf
LT
437 if (!dbs_info->enable)
438 return;
05ca0350 439 /* Common NORMAL_SAMPLE setup */
c4028958 440 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
05ca0350 441 if (!dbs_tuners_ins.powersave_bias ||
c4028958 442 sample_type == DBS_NORMAL_SAMPLE) {
05ca0350 443 dbs_check_cpu(dbs_info);
05ca0350
AS
444 if (dbs_info->freq_lo) {
445 /* Setup timer for SUB_SAMPLE */
c4028958 446 dbs_info->sample_type = DBS_SUB_SAMPLE;
05ca0350
AS
447 delay = dbs_info->freq_hi_jiffies;
448 }
449 } else {
450 __cpufreq_driver_target(dbs_info->cur_policy,
451 dbs_info->freq_lo,
452 CPUFREQ_RELATION_H);
453 }
1ce28d6b 454 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
32ee8c3e 455}
1da177e4 456
2f8a835c 457static inline void dbs_timer_init(unsigned int cpu)
1da177e4 458{
2f8a835c 459 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
1ce28d6b
AS
460 /* We want all CPUs to do sampling nearly on same jiffy */
461 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
462 delay -= jiffies % delay;
2f8a835c 463
05ca0350 464 ondemand_powersave_bias_init();
c4028958
DH
465 INIT_DELAYED_WORK_NAR(&dbs_info->work, do_dbs_timer);
466 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
1ce28d6b 467 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
1da177e4
LT
468}
469
2cd7cbdf 470static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
1da177e4 471{
2cd7cbdf
LT
472 dbs_info->enable = 0;
473 cancel_delayed_work(&dbs_info->work);
474 flush_workqueue(kondemand_wq);
1da177e4
LT
475}
476
477static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
478 unsigned int event)
479{
480 unsigned int cpu = policy->cpu;
481 struct cpu_dbs_info_s *this_dbs_info;
482 unsigned int j;
914f7c31 483 int rc;
1da177e4
LT
484
485 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
486
487 switch (event) {
488 case CPUFREQ_GOV_START:
ffac80e9 489 if ((!cpu_online(cpu)) || (!policy->cur))
1da177e4
LT
490 return -EINVAL;
491
492 if (policy->cpuinfo.transition_latency >
ff8c288d
EP
493 (TRANSITION_LATENCY_LIMIT * 1000)) {
494 printk(KERN_WARNING "ondemand governor failed to load "
495 "due to too long transition latency\n");
1da177e4 496 return -EINVAL;
ff8c288d 497 }
1da177e4
LT
498 if (this_dbs_info->enable) /* Already enabled */
499 break;
32ee8c3e 500
3fc54d37 501 mutex_lock(&dbs_mutex);
2f8a835c
VP
502 dbs_enable++;
503 if (dbs_enable == 1) {
504 kondemand_wq = create_workqueue("kondemand");
505 if (!kondemand_wq) {
e08f5f5b
GS
506 printk(KERN_ERR
507 "Creation of kondemand failed\n");
2f8a835c
VP
508 dbs_enable--;
509 mutex_unlock(&dbs_mutex);
510 return -ENOSPC;
511 }
512 }
914f7c31
JG
513
514 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
515 if (rc) {
516 if (dbs_enable == 1)
517 destroy_workqueue(kondemand_wq);
518 dbs_enable--;
519 mutex_unlock(&dbs_mutex);
520 return rc;
521 }
522
1da177e4
LT
523 for_each_cpu_mask(j, policy->cpus) {
524 struct cpu_dbs_info_s *j_dbs_info;
525 j_dbs_info = &per_cpu(cpu_dbs_info, j);
526 j_dbs_info->cur_policy = policy;
32ee8c3e 527
ccb2fe20
VP
528 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
529 j_dbs_info->prev_cpu_wall = get_jiffies_64();
1da177e4
LT
530 }
531 this_dbs_info->enable = 1;
1da177e4
LT
532 /*
533 * Start the timerschedule work, when this governor
534 * is used for first time
535 */
536 if (dbs_enable == 1) {
537 unsigned int latency;
538 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
539 latency = policy->cpuinfo.transition_latency / 1000;
540 if (latency == 0)
541 latency = 1;
1da177e4 542
df8b59be 543 def_sampling_rate = latency *
1da177e4 544 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
df8b59be
DJ
545
546 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
547 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
548
1da177e4 549 dbs_tuners_ins.sampling_rate = def_sampling_rate;
1da177e4 550 }
2f8a835c 551 dbs_timer_init(policy->cpu);
32ee8c3e 552
3fc54d37 553 mutex_unlock(&dbs_mutex);
1da177e4
LT
554 break;
555
556 case CPUFREQ_GOV_STOP:
3fc54d37 557 mutex_lock(&dbs_mutex);
2cd7cbdf 558 dbs_timer_exit(this_dbs_info);
1da177e4
LT
559 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
560 dbs_enable--;
32ee8c3e 561 if (dbs_enable == 0)
2f8a835c 562 destroy_workqueue(kondemand_wq);
32ee8c3e 563
3fc54d37 564 mutex_unlock(&dbs_mutex);
1da177e4
LT
565
566 break;
567
568 case CPUFREQ_GOV_LIMITS:
3fc54d37 569 mutex_lock(&dbs_mutex);
1da177e4 570 if (policy->max < this_dbs_info->cur_policy->cur)
ffac80e9
VP
571 __cpufreq_driver_target(this_dbs_info->cur_policy,
572 policy->max,
573 CPUFREQ_RELATION_H);
1da177e4 574 else if (policy->min > this_dbs_info->cur_policy->cur)
ffac80e9
VP
575 __cpufreq_driver_target(this_dbs_info->cur_policy,
576 policy->min,
577 CPUFREQ_RELATION_L);
3fc54d37 578 mutex_unlock(&dbs_mutex);
1da177e4
LT
579 break;
580 }
581 return 0;
582}
583
7f335d4e 584static struct cpufreq_governor cpufreq_gov_dbs = {
ffac80e9
VP
585 .name = "ondemand",
586 .governor = cpufreq_governor_dbs,
587 .owner = THIS_MODULE,
1da177e4 588};
1da177e4
LT
589
590static int __init cpufreq_gov_dbs_init(void)
591{
592 return cpufreq_register_governor(&cpufreq_gov_dbs);
593}
594
595static void __exit cpufreq_gov_dbs_exit(void)
596{
1da177e4
LT
597 cpufreq_unregister_governor(&cpufreq_gov_dbs);
598}
599
600
ffac80e9
VP
601MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
602MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
603MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
604 "Low Latency Frequency Transition capable processors");
605MODULE_LICENSE("GPL");
1da177e4
LT
606
607module_init(cpufreq_gov_dbs_init);
608module_exit(cpufreq_gov_dbs_exit);