[CPUFREQ] Add S3C2416/S3C2450 cpufreq driver
[linux-2.6-block.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
1da177e4 15#include <linux/init.h>
1da177e4 16#include <linux/cpufreq.h>
138a0128 17#include <linux/cpu.h>
1da177e4
LT
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
3fc54d37 20#include <linux/mutex.h>
80800913 21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
9411b4ef 24#include <linux/sched.h>
1da177e4
LT
25
26/*
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
29 */
30
e9d95bf7 31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
1da177e4 32#define DEF_FREQUENCY_UP_THRESHOLD (80)
3f78a9f7
DN
33#define DEF_SAMPLING_DOWN_FACTOR (1)
34#define MAX_SAMPLING_DOWN_FACTOR (100000)
80800913 35#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36#define MICRO_FREQUENCY_UP_THRESHOLD (95)
cef9615a 37#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
c29f1403 38#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
39#define MAX_FREQUENCY_UP_THRESHOLD (100)
40
32ee8c3e
DJ
41/*
42 * The polling frequency of this governor depends on the capability of
1da177e4 43 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
50 */
df8b59be 51#define MIN_SAMPLING_RATE_RATIO (2)
112124ab 52
cef9615a
TR
53static unsigned int min_sampling_rate;
54
112124ab 55#define LATENCY_MULTIPLIER (1000)
cef9615a 56#define MIN_LATENCY_MULTIPLIER (100)
1c256245 57#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
1da177e4 58
c4028958 59static void do_dbs_timer(struct work_struct *work);
0e625ac1
TR
60static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 unsigned int event);
62
63#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64static
65#endif
66struct cpufreq_governor cpufreq_gov_ondemand = {
67 .name = "ondemand",
68 .governor = cpufreq_governor_dbs,
69 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70 .owner = THIS_MODULE,
71};
c4028958
DH
72
73/* Sampling types */
529af7a1 74enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
1da177e4
LT
75
76struct cpu_dbs_info_s {
ccb2fe20 77 cputime64_t prev_cpu_idle;
6b8fcd90 78 cputime64_t prev_cpu_iowait;
ccb2fe20 79 cputime64_t prev_cpu_wall;
80800913 80 cputime64_t prev_cpu_nice;
32ee8c3e 81 struct cpufreq_policy *cur_policy;
2b03f891 82 struct delayed_work work;
05ca0350
AS
83 struct cpufreq_frequency_table *freq_table;
84 unsigned int freq_lo;
85 unsigned int freq_lo_jiffies;
86 unsigned int freq_hi_jiffies;
3f78a9f7 87 unsigned int rate_mult;
529af7a1 88 int cpu;
5a75c828 89 unsigned int sample_type:1;
90 /*
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
94 */
95 struct mutex timer_mutex;
1da177e4 96};
245b2e70 97static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
1da177e4
LT
98
99static unsigned int dbs_enable; /* number of CPUs using this policy */
100
4ec223d0 101/*
326c86de 102 * dbs_mutex protects dbs_enable in governor start/stop.
4ec223d0 103 */
ffac80e9 104static DEFINE_MUTEX(dbs_mutex);
1da177e4 105
05ca0350 106static struct dbs_tuners {
32ee8c3e 107 unsigned int sampling_rate;
32ee8c3e 108 unsigned int up_threshold;
e9d95bf7 109 unsigned int down_differential;
32ee8c3e 110 unsigned int ignore_nice;
3f78a9f7 111 unsigned int sampling_down_factor;
05ca0350 112 unsigned int powersave_bias;
19379b11 113 unsigned int io_is_busy;
05ca0350 114} dbs_tuners_ins = {
32ee8c3e 115 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
3f78a9f7 116 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
e9d95bf7 117 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
9cbad61b 118 .ignore_nice = 0,
05ca0350 119 .powersave_bias = 0,
1da177e4
LT
120};
121
3292beb3 122static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
dac1c1a5 123{
3292beb3 124 u64 idle_time;
612ef28a 125 u64 cur_wall_time;
3292beb3 126 u64 busy_time;
ccb2fe20 127
3430502d 128 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
ccb2fe20 129
612ef28a
MS
130 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
131 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
3292beb3
GC
132 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
133 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
134 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
135 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
64861634
MS
136
137 idle_time = cur_wall_time - busy_time;
3430502d 138 if (wall)
3292beb3 139 *wall = jiffies_to_usecs(cur_wall_time);
3430502d 140
3292beb3 141 return jiffies_to_usecs(idle_time);
dac1c1a5
DJ
142}
143
80800913 144static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
145{
6beea0cd 146 u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
80800913 147
148 if (idle_time == -1ULL)
149 return get_cpu_idle_time_jiffy(cpu, wall);
6beea0cd
MH
150 else
151 idle_time += get_cpu_iowait_time_us(cpu, wall);
80800913 152
80800913 153 return idle_time;
154}
155
6b8fcd90
AV
156static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
157{
158 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
159
160 if (iowait_time == -1ULL)
161 return 0;
162
163 return iowait_time;
164}
165
05ca0350
AS
166/*
167 * Find right freq to be set now with powersave_bias on.
168 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
169 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
170 */
b5ecf60f
AB
171static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
172 unsigned int freq_next,
173 unsigned int relation)
05ca0350
AS
174{
175 unsigned int freq_req, freq_reduc, freq_avg;
176 unsigned int freq_hi, freq_lo;
177 unsigned int index = 0;
178 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
245b2e70
TH
179 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
180 policy->cpu);
05ca0350
AS
181
182 if (!dbs_info->freq_table) {
183 dbs_info->freq_lo = 0;
184 dbs_info->freq_lo_jiffies = 0;
185 return freq_next;
186 }
187
188 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
189 relation, &index);
190 freq_req = dbs_info->freq_table[index].frequency;
191 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
192 freq_avg = freq_req - freq_reduc;
193
194 /* Find freq bounds for freq_avg in freq_table */
195 index = 0;
196 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
197 CPUFREQ_RELATION_H, &index);
198 freq_lo = dbs_info->freq_table[index].frequency;
199 index = 0;
200 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
201 CPUFREQ_RELATION_L, &index);
202 freq_hi = dbs_info->freq_table[index].frequency;
203
204 /* Find out how long we have to be in hi and lo freqs */
205 if (freq_hi == freq_lo) {
206 dbs_info->freq_lo = 0;
207 dbs_info->freq_lo_jiffies = 0;
208 return freq_lo;
209 }
210 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
211 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
212 jiffies_hi += ((freq_hi - freq_lo) / 2);
213 jiffies_hi /= (freq_hi - freq_lo);
214 jiffies_lo = jiffies_total - jiffies_hi;
215 dbs_info->freq_lo = freq_lo;
216 dbs_info->freq_lo_jiffies = jiffies_lo;
217 dbs_info->freq_hi_jiffies = jiffies_hi;
218 return freq_hi;
219}
220
5a75c828 221static void ondemand_powersave_bias_init_cpu(int cpu)
222{
384be2b1 223 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
5a75c828 224 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
225 dbs_info->freq_lo = 0;
226}
227
05ca0350
AS
228static void ondemand_powersave_bias_init(void)
229{
230 int i;
231 for_each_online_cpu(i) {
5a75c828 232 ondemand_powersave_bias_init_cpu(i);
05ca0350
AS
233 }
234}
235
1da177e4 236/************************** sysfs interface ************************/
0e625ac1 237
0e625ac1
TR
238static ssize_t show_sampling_rate_min(struct kobject *kobj,
239 struct attribute *attr, char *buf)
1da177e4 240{
cef9615a 241 return sprintf(buf, "%u\n", min_sampling_rate);
1da177e4
LT
242}
243
6dad2a29 244define_one_global_ro(sampling_rate_min);
1da177e4
LT
245
246/* cpufreq_ondemand Governor Tunables */
247#define show_one(file_name, object) \
248static ssize_t show_##file_name \
0e625ac1 249(struct kobject *kobj, struct attribute *attr, char *buf) \
1da177e4
LT
250{ \
251 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
252}
253show_one(sampling_rate, sampling_rate);
19379b11 254show_one(io_is_busy, io_is_busy);
1da177e4 255show_one(up_threshold, up_threshold);
3f78a9f7 256show_one(sampling_down_factor, sampling_down_factor);
001893cd 257show_one(ignore_nice_load, ignore_nice);
05ca0350 258show_one(powersave_bias, powersave_bias);
1da177e4 259
0e625ac1
TR
260static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
261 const char *buf, size_t count)
1da177e4
LT
262{
263 unsigned int input;
264 int ret;
ffac80e9 265 ret = sscanf(buf, "%u", &input);
5a75c828 266 if (ret != 1)
267 return -EINVAL;
cef9615a 268 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
1da177e4
LT
269 return count;
270}
271
19379b11
AV
272static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
273 const char *buf, size_t count)
274{
275 unsigned int input;
276 int ret;
277
278 ret = sscanf(buf, "%u", &input);
279 if (ret != 1)
280 return -EINVAL;
19379b11 281 dbs_tuners_ins.io_is_busy = !!input;
19379b11
AV
282 return count;
283}
284
0e625ac1
TR
285static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
286 const char *buf, size_t count)
1da177e4
LT
287{
288 unsigned int input;
289 int ret;
ffac80e9 290 ret = sscanf(buf, "%u", &input);
1da177e4 291
32ee8c3e 292 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 293 input < MIN_FREQUENCY_UP_THRESHOLD) {
1da177e4
LT
294 return -EINVAL;
295 }
1da177e4 296 dbs_tuners_ins.up_threshold = input;
1da177e4
LT
297 return count;
298}
299
3f78a9f7
DN
300static ssize_t store_sampling_down_factor(struct kobject *a,
301 struct attribute *b, const char *buf, size_t count)
302{
303 unsigned int input, j;
304 int ret;
305 ret = sscanf(buf, "%u", &input);
306
307 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
308 return -EINVAL;
3f78a9f7
DN
309 dbs_tuners_ins.sampling_down_factor = input;
310
311 /* Reset down sampling multiplier in case it was active */
312 for_each_online_cpu(j) {
313 struct cpu_dbs_info_s *dbs_info;
314 dbs_info = &per_cpu(od_cpu_dbs_info, j);
315 dbs_info->rate_mult = 1;
316 }
3f78a9f7
DN
317 return count;
318}
319
0e625ac1
TR
320static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
321 const char *buf, size_t count)
3d5ee9e5
DJ
322{
323 unsigned int input;
324 int ret;
325
326 unsigned int j;
32ee8c3e 327
ffac80e9 328 ret = sscanf(buf, "%u", &input);
2b03f891 329 if (ret != 1)
3d5ee9e5
DJ
330 return -EINVAL;
331
2b03f891 332 if (input > 1)
3d5ee9e5 333 input = 1;
32ee8c3e 334
2b03f891 335 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3d5ee9e5
DJ
336 return count;
337 }
338 dbs_tuners_ins.ignore_nice = input;
339
ccb2fe20 340 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 341 for_each_online_cpu(j) {
ccb2fe20 342 struct cpu_dbs_info_s *dbs_info;
245b2e70 343 dbs_info = &per_cpu(od_cpu_dbs_info, j);
3430502d 344 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
345 &dbs_info->prev_cpu_wall);
1ca3abdb 346 if (dbs_tuners_ins.ignore_nice)
3292beb3 347 dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
1ca3abdb 348
3d5ee9e5 349 }
3d5ee9e5
DJ
350 return count;
351}
352
0e625ac1
TR
353static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
354 const char *buf, size_t count)
05ca0350
AS
355{
356 unsigned int input;
357 int ret;
358 ret = sscanf(buf, "%u", &input);
359
360 if (ret != 1)
361 return -EINVAL;
362
363 if (input > 1000)
364 input = 1000;
365
05ca0350
AS
366 dbs_tuners_ins.powersave_bias = input;
367 ondemand_powersave_bias_init();
05ca0350
AS
368 return count;
369}
370
6dad2a29 371define_one_global_rw(sampling_rate);
07d77759 372define_one_global_rw(io_is_busy);
6dad2a29 373define_one_global_rw(up_threshold);
3f78a9f7 374define_one_global_rw(sampling_down_factor);
6dad2a29
BP
375define_one_global_rw(ignore_nice_load);
376define_one_global_rw(powersave_bias);
1da177e4 377
2b03f891 378static struct attribute *dbs_attributes[] = {
1da177e4
LT
379 &sampling_rate_min.attr,
380 &sampling_rate.attr,
1da177e4 381 &up_threshold.attr,
3f78a9f7 382 &sampling_down_factor.attr,
001893cd 383 &ignore_nice_load.attr,
05ca0350 384 &powersave_bias.attr,
19379b11 385 &io_is_busy.attr,
1da177e4
LT
386 NULL
387};
388
389static struct attribute_group dbs_attr_group = {
390 .attrs = dbs_attributes,
391 .name = "ondemand",
392};
393
394/************************** sysfs end ************************/
395
00e299ff
MC
396static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
397{
398 if (dbs_tuners_ins.powersave_bias)
399 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
400 else if (p->cur == p->max)
401 return;
402
403 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
404 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
405}
406
2f8a835c 407static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
1da177e4 408{
c43aa3bd 409 unsigned int max_load_freq;
1da177e4
LT
410
411 struct cpufreq_policy *policy;
412 unsigned int j;
413
05ca0350 414 this_dbs_info->freq_lo = 0;
1da177e4 415 policy = this_dbs_info->cur_policy;
ea487615 416
32ee8c3e 417 /*
c29f1403
DJ
418 * Every sampling_rate, we check, if current idle time is less
419 * than 20% (default), then we try to increase frequency
ccb2fe20 420 * Every sampling_rate, we look for a the lowest
c29f1403
DJ
421 * frequency which can sustain the load while keeping idle time over
422 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 423 *
32ee8c3e
DJ
424 * Any frequency increase takes it to the maximum frequency.
425 * Frequency reduction happens at minimum steps of
426 * 5% (default) of current frequency
1da177e4
LT
427 */
428
c43aa3bd 429 /* Get Absolute Load - in terms of freq */
430 max_load_freq = 0;
431
835481d9 432 for_each_cpu(j, policy->cpus) {
1da177e4 433 struct cpu_dbs_info_s *j_dbs_info;
6b8fcd90
AV
434 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
435 unsigned int idle_time, wall_time, iowait_time;
c43aa3bd 436 unsigned int load, load_freq;
437 int freq_avg;
1da177e4 438
245b2e70 439 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
3430502d 440
441 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
6b8fcd90 442 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
3430502d 443
64861634
MS
444 wall_time = (unsigned int)
445 (cur_wall_time - j_dbs_info->prev_cpu_wall);
c43aa3bd 446 j_dbs_info->prev_cpu_wall = cur_wall_time;
447
64861634
MS
448 idle_time = (unsigned int)
449 (cur_idle_time - j_dbs_info->prev_cpu_idle);
c43aa3bd 450 j_dbs_info->prev_cpu_idle = cur_idle_time;
1da177e4 451
64861634
MS
452 iowait_time = (unsigned int)
453 (cur_iowait_time - j_dbs_info->prev_cpu_iowait);
6b8fcd90
AV
454 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
455
1ca3abdb 456 if (dbs_tuners_ins.ignore_nice) {
3292beb3 457 u64 cur_nice;
1ca3abdb
VP
458 unsigned long cur_nice_jiffies;
459
3292beb3
GC
460 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
461 j_dbs_info->prev_cpu_nice;
1ca3abdb
VP
462 /*
463 * Assumption: nice time between sampling periods will
464 * be less than 2^32 jiffies for 32 bit sys
465 */
466 cur_nice_jiffies = (unsigned long)
467 cputime64_to_jiffies64(cur_nice);
468
3292beb3 469 j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
1ca3abdb
VP
470 idle_time += jiffies_to_usecs(cur_nice_jiffies);
471 }
472
6b8fcd90
AV
473 /*
474 * For the purpose of ondemand, waiting for disk IO is an
475 * indication that you're performance critical, and not that
476 * the system is actually idle. So subtract the iowait time
477 * from the cpu idle time.
478 */
479
19379b11 480 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
6b8fcd90
AV
481 idle_time -= iowait_time;
482
3430502d 483 if (unlikely(!wall_time || wall_time < idle_time))
c43aa3bd 484 continue;
c43aa3bd 485
486 load = 100 * (wall_time - idle_time) / wall_time;
487
488 freq_avg = __cpufreq_driver_getavg(policy, j);
489 if (freq_avg <= 0)
490 freq_avg = policy->cur;
491
492 load_freq = load * freq_avg;
493 if (load_freq > max_load_freq)
494 max_load_freq = load_freq;
1da177e4
LT
495 }
496
ccb2fe20 497 /* Check for frequency increase */
c43aa3bd 498 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
3f78a9f7
DN
499 /* If switching to max speed, apply sampling_down_factor */
500 if (policy->cur < policy->max)
501 this_dbs_info->rate_mult =
502 dbs_tuners_ins.sampling_down_factor;
00e299ff 503 dbs_freq_increase(policy, policy->max);
1da177e4
LT
504 return;
505 }
506
507 /* Check for frequency decrease */
c29f1403
DJ
508 /* if we cannot reduce the frequency anymore, break out early */
509 if (policy->cur == policy->min)
510 return;
1da177e4 511
c29f1403
DJ
512 /*
513 * The optimal frequency is the frequency that is the lowest that
514 * can support the current CPU usage without triggering the up
515 * policy. To be safe, we focus 10 points under the threshold.
516 */
e9d95bf7 517 if (max_load_freq <
518 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
519 policy->cur) {
c43aa3bd 520 unsigned int freq_next;
e9d95bf7 521 freq_next = max_load_freq /
522 (dbs_tuners_ins.up_threshold -
523 dbs_tuners_ins.down_differential);
dfde5d62 524
3f78a9f7
DN
525 /* No longer fully busy, reset rate_mult */
526 this_dbs_info->rate_mult = 1;
527
1dbf5888
NC
528 if (freq_next < policy->min)
529 freq_next = policy->min;
530
05ca0350
AS
531 if (!dbs_tuners_ins.powersave_bias) {
532 __cpufreq_driver_target(policy, freq_next,
533 CPUFREQ_RELATION_L);
534 } else {
535 int freq = powersave_bias_target(policy, freq_next,
536 CPUFREQ_RELATION_L);
537 __cpufreq_driver_target(policy, freq,
538 CPUFREQ_RELATION_L);
539 }
ccb2fe20 540 }
1da177e4
LT
541}
542
c4028958 543static void do_dbs_timer(struct work_struct *work)
32ee8c3e 544{
529af7a1
VP
545 struct cpu_dbs_info_s *dbs_info =
546 container_of(work, struct cpu_dbs_info_s, work.work);
547 unsigned int cpu = dbs_info->cpu;
548 int sample_type = dbs_info->sample_type;
549
5cb2c3bd 550 int delay;
a665df9d 551
5a75c828 552 mutex_lock(&dbs_info->timer_mutex);
56463b78 553
05ca0350 554 /* Common NORMAL_SAMPLE setup */
c4028958 555 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
05ca0350 556 if (!dbs_tuners_ins.powersave_bias ||
c4028958 557 sample_type == DBS_NORMAL_SAMPLE) {
05ca0350 558 dbs_check_cpu(dbs_info);
05ca0350
AS
559 if (dbs_info->freq_lo) {
560 /* Setup timer for SUB_SAMPLE */
c4028958 561 dbs_info->sample_type = DBS_SUB_SAMPLE;
05ca0350 562 delay = dbs_info->freq_hi_jiffies;
5cb2c3bd
VG
563 } else {
564 /* We want all CPUs to do sampling nearly on
565 * same jiffy
566 */
567 delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
568 * dbs_info->rate_mult);
569
570 if (num_online_cpus() > 1)
571 delay -= jiffies % delay;
05ca0350
AS
572 }
573 } else {
574 __cpufreq_driver_target(dbs_info->cur_policy,
2b03f891 575 dbs_info->freq_lo, CPUFREQ_RELATION_H);
5cb2c3bd 576 delay = dbs_info->freq_lo_jiffies;
05ca0350 577 }
57df5573 578 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
5a75c828 579 mutex_unlock(&dbs_info->timer_mutex);
32ee8c3e 580}
1da177e4 581
529af7a1 582static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
1da177e4 583{
1ce28d6b
AS
584 /* We want all CPUs to do sampling nearly on same jiffy */
585 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
a665df9d
JF
586
587 if (num_online_cpus() > 1)
588 delay -= jiffies % delay;
2f8a835c 589
c4028958 590 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
28287033 591 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
57df5573 592 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
1da177e4
LT
593}
594
2cd7cbdf 595static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
1da177e4 596{
b14893a6 597 cancel_delayed_work_sync(&dbs_info->work);
1da177e4
LT
598}
599
19379b11
AV
600/*
601 * Not all CPUs want IO time to be accounted as busy; this dependson how
602 * efficient idling at a higher frequency/voltage is.
603 * Pavel Machek says this is not so for various generations of AMD and old
604 * Intel systems.
605 * Mike Chan (androidlcom) calis this is also not true for ARM.
606 * Because of this, whitelist specific known (series) of CPUs by default, and
607 * leave all others up to the user.
608 */
609static int should_io_be_busy(void)
610{
611#if defined(CONFIG_X86)
612 /*
613 * For Intel, Core 2 (model 15) andl later have an efficient idle.
614 */
615 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
616 boot_cpu_data.x86 == 6 &&
617 boot_cpu_data.x86_model >= 15)
618 return 1;
619#endif
620 return 0;
621}
622
1da177e4
LT
623static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
624 unsigned int event)
625{
626 unsigned int cpu = policy->cpu;
627 struct cpu_dbs_info_s *this_dbs_info;
628 unsigned int j;
914f7c31 629 int rc;
1da177e4 630
245b2e70 631 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
1da177e4
LT
632
633 switch (event) {
634 case CPUFREQ_GOV_START:
ffac80e9 635 if ((!cpu_online(cpu)) || (!policy->cur))
1da177e4
LT
636 return -EINVAL;
637
3fc54d37 638 mutex_lock(&dbs_mutex);
914f7c31 639
5a75c828 640 dbs_enable++;
835481d9 641 for_each_cpu(j, policy->cpus) {
1da177e4 642 struct cpu_dbs_info_s *j_dbs_info;
245b2e70 643 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
1da177e4 644 j_dbs_info->cur_policy = policy;
32ee8c3e 645
3430502d 646 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
647 &j_dbs_info->prev_cpu_wall);
3292beb3 648 if (dbs_tuners_ins.ignore_nice)
1ca3abdb 649 j_dbs_info->prev_cpu_nice =
3292beb3 650 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
1da177e4 651 }
529af7a1 652 this_dbs_info->cpu = cpu;
3f78a9f7 653 this_dbs_info->rate_mult = 1;
5a75c828 654 ondemand_powersave_bias_init_cpu(cpu);
1da177e4
LT
655 /*
656 * Start the timerschedule work, when this governor
657 * is used for first time
658 */
659 if (dbs_enable == 1) {
660 unsigned int latency;
0e625ac1
TR
661
662 rc = sysfs_create_group(cpufreq_global_kobject,
663 &dbs_attr_group);
664 if (rc) {
665 mutex_unlock(&dbs_mutex);
666 return rc;
667 }
668
1da177e4 669 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
670 latency = policy->cpuinfo.transition_latency / 1000;
671 if (latency == 0)
672 latency = 1;
cef9615a
TR
673 /* Bring kernel and HW constraints together */
674 min_sampling_rate = max(min_sampling_rate,
675 MIN_LATENCY_MULTIPLIER * latency);
676 dbs_tuners_ins.sampling_rate =
677 max(min_sampling_rate,
678 latency * LATENCY_MULTIPLIER);
19379b11 679 dbs_tuners_ins.io_is_busy = should_io_be_busy();
1da177e4 680 }
3fc54d37 681 mutex_unlock(&dbs_mutex);
7d26e2d5 682
0e625ac1 683 mutex_init(&this_dbs_info->timer_mutex);
7d26e2d5 684 dbs_timer_init(this_dbs_info);
1da177e4
LT
685 break;
686
687 case CPUFREQ_GOV_STOP:
2cd7cbdf 688 dbs_timer_exit(this_dbs_info);
7d26e2d5 689
690 mutex_lock(&dbs_mutex);
5a75c828 691 mutex_destroy(&this_dbs_info->timer_mutex);
1da177e4 692 dbs_enable--;
3fc54d37 693 mutex_unlock(&dbs_mutex);
0e625ac1
TR
694 if (!dbs_enable)
695 sysfs_remove_group(cpufreq_global_kobject,
696 &dbs_attr_group);
1da177e4
LT
697
698 break;
699
700 case CPUFREQ_GOV_LIMITS:
5a75c828 701 mutex_lock(&this_dbs_info->timer_mutex);
1da177e4 702 if (policy->max < this_dbs_info->cur_policy->cur)
ffac80e9 703 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 704 policy->max, CPUFREQ_RELATION_H);
1da177e4 705 else if (policy->min > this_dbs_info->cur_policy->cur)
ffac80e9 706 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 707 policy->min, CPUFREQ_RELATION_L);
5a75c828 708 mutex_unlock(&this_dbs_info->timer_mutex);
1da177e4
LT
709 break;
710 }
711 return 0;
712}
713
1da177e4
LT
714static int __init cpufreq_gov_dbs_init(void)
715{
4f6e6b9f
AR
716 u64 idle_time;
717 int cpu = get_cpu();
80800913 718
21f2e3c8 719 idle_time = get_cpu_idle_time_us(cpu, NULL);
4f6e6b9f 720 put_cpu();
80800913 721 if (idle_time != -1ULL) {
722 /* Idle micro accounting is supported. Use finer thresholds */
723 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
724 dbs_tuners_ins.down_differential =
725 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
cef9615a 726 /*
bd74b32b 727 * In nohz/micro accounting case we set the minimum frequency
cef9615a
TR
728 * not depending on HZ, but fixed (very low). The deferred
729 * timer might skip some samples if idle/sleeping as needed.
730 */
731 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
732 } else {
733 /* For correct statistics, we need 10 ticks for each measure */
734 min_sampling_rate =
735 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
80800913 736 }
888a794c 737
57df5573 738 return cpufreq_register_governor(&cpufreq_gov_ondemand);
1da177e4
LT
739}
740
741static void __exit cpufreq_gov_dbs_exit(void)
742{
1c256245 743 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
1da177e4
LT
744}
745
746
ffac80e9
VP
747MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
748MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
749MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
2b03f891 750 "Low Latency Frequency Transition capable processors");
ffac80e9 751MODULE_LICENSE("GPL");
1da177e4 752
6915719b
JW
753#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
754fs_initcall(cpufreq_gov_dbs_init);
755#else
1da177e4 756module_init(cpufreq_gov_dbs_init);
6915719b 757#endif
1da177e4 758module_exit(cpufreq_gov_dbs_exit);