cpufreq: governor: Move io_is_busy to struct dbs_data
[linux-2.6-block.git] / drivers / cpufreq / cpufreq_governor.c
CommitLineData
2aacdfff 1/*
2 * drivers/cpufreq/cpufreq_governor.c
3 *
4 * CPUFREQ governors common code
5 *
4471a34f
VK
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11 *
2aacdfff 12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
4471a34f
VK
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
2aacdfff 19#include <linux/export.h>
20#include <linux/kernel_stat.h>
4d5dcc42 21#include <linux/slab.h>
4471a34f
VK
22
23#include "cpufreq_governor.h"
24
2bb8d94f
RW
25DEFINE_MUTEX(dbs_data_mutex);
26EXPORT_SYMBOL_GPL(dbs_data_mutex);
27
aded387b
VK
28/* Common sysfs tunables */
29/**
30 * store_sampling_rate - update sampling rate effective immediately if needed.
31 *
32 * If new rate is smaller than the old, simply updating
33 * dbs.sampling_rate might not be appropriate. For example, if the
34 * original sampling_rate was 1 second and the requested new sampling rate is 10
35 * ms because the user needs immediate reaction from ondemand governor, but not
36 * sure if higher frequency will be required or not, then, the governor may
37 * change the sampling rate too late; up to 1 second later. Thus, if we are
38 * reducing the sampling rate, we need to make the new value effective
39 * immediately.
40 *
aded387b
VK
41 * This must be called with dbs_data->mutex held, otherwise traversing
42 * policy_dbs_list isn't safe.
43 */
44ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
45 size_t count)
46{
47 struct policy_dbs_info *policy_dbs;
48 unsigned int rate;
49 int ret;
50 ret = sscanf(buf, "%u", &rate);
51 if (ret != 1)
52 return -EINVAL;
53
54 dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
55
56 /*
57 * We are operating under dbs_data->mutex and so the list and its
58 * entries can't be freed concurrently.
59 */
60 list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
61 mutex_lock(&policy_dbs->timer_mutex);
62 /*
63 * On 32-bit architectures this may race with the
64 * sample_delay_ns read in dbs_update_util_handler(), but that
65 * really doesn't matter. If the read returns a value that's
66 * too big, the sample will be skipped, but the next invocation
67 * of dbs_update_util_handler() (when the update has been
78347cdb 68 * completed) will take a sample.
aded387b
VK
69 *
70 * If this runs in parallel with dbs_work_handler(), we may end
71 * up overwriting the sample_delay_ns value that it has just
78347cdb
RW
72 * written, but it will be corrected next time a sample is
73 * taken, so it shouldn't be significant.
aded387b 74 */
78347cdb 75 gov_update_sample_delay(policy_dbs, 0);
aded387b
VK
76 mutex_unlock(&policy_dbs->timer_mutex);
77 }
78
79 return count;
80}
81EXPORT_SYMBOL_GPL(store_sampling_rate);
82
c4435630 83static inline struct dbs_data *to_dbs_data(struct kobject *kobj)
4d5dcc42 84{
c4435630 85 return container_of(kobj, struct dbs_data, kobj);
4d5dcc42
VK
86}
87
c4435630
VK
88static inline struct governor_attr *to_gov_attr(struct attribute *attr)
89{
90 return container_of(attr, struct governor_attr, attr);
91}
92
93static ssize_t governor_show(struct kobject *kobj, struct attribute *attr,
94 char *buf)
95{
96 struct dbs_data *dbs_data = to_dbs_data(kobj);
97 struct governor_attr *gattr = to_gov_attr(attr);
98 int ret = -EIO;
99
100 if (gattr->show)
101 ret = gattr->show(dbs_data, buf);
102
103 return ret;
104}
105
106static ssize_t governor_store(struct kobject *kobj, struct attribute *attr,
107 const char *buf, size_t count)
108{
109 struct dbs_data *dbs_data = to_dbs_data(kobj);
110 struct governor_attr *gattr = to_gov_attr(attr);
111 int ret = -EIO;
112
113 mutex_lock(&dbs_data->mutex);
114
574ef14d 115 if (dbs_data->usage_count && gattr->store)
c4435630
VK
116 ret = gattr->store(dbs_data, buf, count);
117
118 mutex_unlock(&dbs_data->mutex);
119
120 return ret;
121}
122
123/*
124 * Sysfs Ops for accessing governor attributes.
125 *
126 * All show/store invocations for governor specific sysfs attributes, will first
127 * call the below show/store callbacks and the attribute specific callback will
128 * be called from within it.
129 */
130static const struct sysfs_ops governor_sysfs_ops = {
131 .show = governor_show,
132 .store = governor_store,
133};
134
4cccf755 135unsigned int dbs_update(struct cpufreq_policy *policy)
4471a34f 136{
ea59ee0d 137 struct dbs_governor *gov = dbs_governor_of(policy);
bc505475
RW
138 struct policy_dbs_info *policy_dbs = policy->governor_data;
139 struct dbs_data *dbs_data = policy_dbs->dbs_data;
ff4b1789 140 unsigned int ignore_nice = dbs_data->ignore_nice_load;
4471a34f 141 unsigned int max_load = 0;
8847e038 142 unsigned int sampling_rate, io_busy, j;
4471a34f 143
57dc3bcd
RW
144 /*
145 * Sometimes governors may use an additional multiplier to increase
146 * sample delays temporarily. Apply that multiplier to sampling_rate
147 * so as to keep the wake-up-from-idle detection logic a bit
148 * conservative.
149 */
150 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
8847e038
RW
151 /*
152 * For the purpose of ondemand, waiting for disk IO is an indication
153 * that you're performance critical, and not that the system is actually
154 * idle, so do not add the iowait time to the CPU idle time then.
155 */
156 io_busy = dbs_data->io_is_busy;
4471a34f 157
dfa5bb62 158 /* Get Absolute Load */
4471a34f 159 for_each_cpu(j, policy->cpus) {
875b8508 160 struct cpu_dbs_info *j_cdbs;
9366d840
SK
161 u64 cur_wall_time, cur_idle_time;
162 unsigned int idle_time, wall_time;
4471a34f
VK
163 unsigned int load;
164
ea59ee0d 165 j_cdbs = gov->get_cpu_cdbs(j);
4471a34f 166
9366d840 167 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
4471a34f 168
57eb832f 169 wall_time = cur_wall_time - j_cdbs->prev_cpu_wall;
4471a34f
VK
170 j_cdbs->prev_cpu_wall = cur_wall_time;
171
57eb832f
RW
172 if (cur_idle_time <= j_cdbs->prev_cpu_idle) {
173 idle_time = 0;
174 } else {
175 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
176 j_cdbs->prev_cpu_idle = cur_idle_time;
177 }
4471a34f
VK
178
179 if (ignore_nice) {
679b8fe4
RW
180 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
181
182 idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
183 j_cdbs->prev_cpu_nice = cur_nice;
4471a34f
VK
184 }
185
4471a34f
VK
186 if (unlikely(!wall_time || wall_time < idle_time))
187 continue;
188
18b46abd
SB
189 /*
190 * If the CPU had gone completely idle, and a task just woke up
191 * on this CPU now, it would be unfair to calculate 'load' the
192 * usual way for this elapsed time-window, because it will show
193 * near-zero load, irrespective of how CPU intensive that task
194 * actually is. This is undesirable for latency-sensitive bursty
195 * workloads.
196 *
197 * To avoid this, we reuse the 'load' from the previous
198 * time-window and give this task a chance to start with a
199 * reasonably high CPU frequency. (However, we shouldn't over-do
200 * this copy, lest we get stuck at a high load (high frequency)
201 * for too long, even when the current system load has actually
202 * dropped down. So we perform the copy only once, upon the
203 * first wake-up from idle.)
204 *
9be4fd2c
RW
205 * Detecting this situation is easy: the governor's utilization
206 * update handler would not have run during CPU-idle periods.
207 * Hence, an unusually large 'wall_time' (as compared to the
208 * sampling rate) indicates this scenario.
c8ae481b
VK
209 *
210 * prev_load can be zero in two cases and we must recalculate it
211 * for both cases:
212 * - during long idle intervals
213 * - explicitly set to zero
18b46abd 214 */
c8ae481b
VK
215 if (unlikely(wall_time > (2 * sampling_rate) &&
216 j_cdbs->prev_load)) {
18b46abd 217 load = j_cdbs->prev_load;
c8ae481b
VK
218
219 /*
220 * Perform a destructive copy, to ensure that we copy
221 * the previous load only once, upon the first wake-up
222 * from idle.
223 */
224 j_cdbs->prev_load = 0;
18b46abd
SB
225 } else {
226 load = 100 * (wall_time - idle_time) / wall_time;
227 j_cdbs->prev_load = load;
18b46abd 228 }
4471a34f 229
4471a34f
VK
230 if (load > max_load)
231 max_load = load;
232 }
4cccf755 233 return max_load;
4471a34f 234}
4cccf755 235EXPORT_SYMBOL_GPL(dbs_update);
4471a34f 236
e40e7b25 237void gov_set_update_util(struct policy_dbs_info *policy_dbs,
9be4fd2c 238 unsigned int delay_us)
4471a34f 239{
e40e7b25 240 struct cpufreq_policy *policy = policy_dbs->policy;
ea59ee0d 241 struct dbs_governor *gov = dbs_governor_of(policy);
70f43e5e 242 int cpu;
031299b3 243
e40e7b25
RW
244 gov_update_sample_delay(policy_dbs, delay_us);
245 policy_dbs->last_sample_time = 0;
9be4fd2c 246
70f43e5e 247 for_each_cpu(cpu, policy->cpus) {
ea59ee0d 248 struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
9be4fd2c
RW
249
250 cpufreq_set_update_util_data(cpu, &cdbs->update_util);
031299b3
VK
251 }
252}
9be4fd2c 253EXPORT_SYMBOL_GPL(gov_set_update_util);
031299b3 254
9be4fd2c 255static inline void gov_clear_update_util(struct cpufreq_policy *policy)
031299b3 256{
031299b3 257 int i;
58ddcead 258
9be4fd2c
RW
259 for_each_cpu(i, policy->cpus)
260 cpufreq_set_update_util_data(i, NULL);
261
262 synchronize_rcu();
4471a34f
VK
263}
264
581c214b 265static void gov_cancel_work(struct cpufreq_policy *policy)
70f43e5e 266{
581c214b
VK
267 struct policy_dbs_info *policy_dbs = policy->governor_data;
268
e40e7b25
RW
269 gov_clear_update_util(policy_dbs->policy);
270 irq_work_sync(&policy_dbs->irq_work);
271 cancel_work_sync(&policy_dbs->work);
686cc637 272 atomic_set(&policy_dbs->work_count, 0);
e4db2813 273 policy_dbs->work_in_progress = false;
70f43e5e 274}
43e0ee36 275
70f43e5e 276static void dbs_work_handler(struct work_struct *work)
43e0ee36 277{
e40e7b25 278 struct policy_dbs_info *policy_dbs;
3a91b069 279 struct cpufreq_policy *policy;
ea59ee0d 280 struct dbs_governor *gov;
43e0ee36 281
e40e7b25
RW
282 policy_dbs = container_of(work, struct policy_dbs_info, work);
283 policy = policy_dbs->policy;
ea59ee0d 284 gov = dbs_governor_of(policy);
3a91b069 285
70f43e5e 286 /*
9be4fd2c
RW
287 * Make sure cpufreq_governor_limits() isn't evaluating load or the
288 * ondemand governor isn't updating the sampling rate in parallel.
70f43e5e 289 */
e40e7b25 290 mutex_lock(&policy_dbs->timer_mutex);
07aa4402 291 gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy));
e40e7b25 292 mutex_unlock(&policy_dbs->timer_mutex);
70f43e5e 293
e4db2813
RW
294 /* Allow the utilization update handler to queue up more work. */
295 atomic_set(&policy_dbs->work_count, 0);
9be4fd2c 296 /*
e4db2813
RW
297 * If the update below is reordered with respect to the sample delay
298 * modification, the utilization update handler may end up using a stale
299 * sample delay value.
9be4fd2c 300 */
e4db2813
RW
301 smp_wmb();
302 policy_dbs->work_in_progress = false;
9be4fd2c
RW
303}
304
305static void dbs_irq_work(struct irq_work *irq_work)
306{
e40e7b25 307 struct policy_dbs_info *policy_dbs;
70f43e5e 308
e40e7b25
RW
309 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
310 schedule_work(&policy_dbs->work);
70f43e5e
VK
311}
312
9be4fd2c
RW
313static void dbs_update_util_handler(struct update_util_data *data, u64 time,
314 unsigned long util, unsigned long max)
315{
316 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
e40e7b25 317 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
e4db2813 318 u64 delta_ns;
70f43e5e
VK
319
320 /*
9be4fd2c
RW
321 * The work may not be allowed to be queued up right now.
322 * Possible reasons:
323 * - Work has already been queued up or is in progress.
9be4fd2c 324 * - It is too early (too little time from the previous sample).
70f43e5e 325 */
e4db2813
RW
326 if (policy_dbs->work_in_progress)
327 return;
328
329 /*
330 * If the reads below are reordered before the check above, the value
331 * of sample_delay_ns used in the computation may be stale.
332 */
333 smp_rmb();
334 delta_ns = time - policy_dbs->last_sample_time;
335 if ((s64)delta_ns < policy_dbs->sample_delay_ns)
336 return;
337
338 /*
339 * If the policy is not shared, the irq_work may be queued up right away
340 * at this point. Otherwise, we need to ensure that only one of the
341 * CPUs sharing the policy will do that.
342 */
343 if (policy_dbs->is_shared &&
344 !atomic_add_unless(&policy_dbs->work_count, 1, 1))
345 return;
346
347 policy_dbs->last_sample_time = time;
348 policy_dbs->work_in_progress = true;
349 irq_work_queue(&policy_dbs->irq_work);
43e0ee36 350}
4447266b 351
bc505475
RW
352static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
353 struct dbs_governor *gov)
44152cb8 354{
e40e7b25 355 struct policy_dbs_info *policy_dbs;
44152cb8
VK
356 int j;
357
358 /* Allocate memory for the common information for policy->cpus */
e40e7b25
RW
359 policy_dbs = kzalloc(sizeof(*policy_dbs), GFP_KERNEL);
360 if (!policy_dbs)
bc505475 361 return NULL;
44152cb8 362
581c214b 363 policy_dbs->policy = policy;
e40e7b25 364 mutex_init(&policy_dbs->timer_mutex);
686cc637 365 atomic_set(&policy_dbs->work_count, 0);
e40e7b25
RW
366 init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
367 INIT_WORK(&policy_dbs->work, dbs_work_handler);
cea6a9e7
RW
368
369 /* Set policy_dbs for all CPUs, online+offline */
370 for_each_cpu(j, policy->related_cpus) {
371 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
372
373 j_cdbs->policy_dbs = policy_dbs;
374 j_cdbs->update_util.func = dbs_update_util_handler;
375 }
bc505475 376 return policy_dbs;
44152cb8
VK
377}
378
e40e7b25 379static void free_policy_dbs_info(struct cpufreq_policy *policy,
7bdad34d 380 struct dbs_governor *gov)
44152cb8 381{
7bdad34d 382 struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
e40e7b25 383 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
44152cb8
VK
384 int j;
385
e40e7b25 386 mutex_destroy(&policy_dbs->timer_mutex);
5e4500d8 387
cea6a9e7
RW
388 for_each_cpu(j, policy->related_cpus) {
389 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
44152cb8 390
cea6a9e7
RW
391 j_cdbs->policy_dbs = NULL;
392 j_cdbs->update_util.func = NULL;
393 }
e40e7b25 394 kfree(policy_dbs);
44152cb8
VK
395}
396
906a6e5a 397static int cpufreq_governor_init(struct cpufreq_policy *policy)
4471a34f 398{
ea59ee0d 399 struct dbs_governor *gov = dbs_governor_of(policy);
7bdad34d 400 struct dbs_data *dbs_data = gov->gdbs_data;
bc505475 401 struct policy_dbs_info *policy_dbs;
714a2d9c
VK
402 unsigned int latency;
403 int ret;
4471a34f 404
a72c4959
VK
405 /* State should be equivalent to EXIT */
406 if (policy->governor_data)
407 return -EBUSY;
408
bc505475
RW
409 policy_dbs = alloc_policy_dbs_info(policy, gov);
410 if (!policy_dbs)
411 return -ENOMEM;
44152cb8 412
bc505475
RW
413 if (dbs_data) {
414 if (WARN_ON(have_governor_per_policy())) {
415 ret = -EINVAL;
416 goto free_policy_dbs_info;
417 }
bc505475
RW
418 policy_dbs->dbs_data = dbs_data;
419 policy->governor_data = policy_dbs;
c54df071
VK
420
421 mutex_lock(&dbs_data->mutex);
422 dbs_data->usage_count++;
423 list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
424 mutex_unlock(&dbs_data->mutex);
425
714a2d9c
VK
426 return 0;
427 }
4d5dcc42 428
714a2d9c 429 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
bc505475
RW
430 if (!dbs_data) {
431 ret = -ENOMEM;
432 goto free_policy_dbs_info;
433 }
44152cb8 434
c54df071 435 INIT_LIST_HEAD(&dbs_data->policy_dbs_list);
c4435630 436 mutex_init(&dbs_data->mutex);
4d5dcc42 437
7bdad34d 438 ret = gov->init(dbs_data, !policy->governor->initialized);
714a2d9c 439 if (ret)
e40e7b25 440 goto free_policy_dbs_info;
4d5dcc42 441
714a2d9c
VK
442 /* policy latency is in ns. Convert it to us first */
443 latency = policy->cpuinfo.transition_latency / 1000;
444 if (latency == 0)
445 latency = 1;
4d5dcc42 446
714a2d9c
VK
447 /* Bring kernel and HW constraints together */
448 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
449 MIN_LATENCY_MULTIPLIER * latency);
ff4b1789
VK
450 dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
451 LATENCY_MULTIPLIER * latency);
2361be23 452
8eec1020 453 if (!have_governor_per_policy())
7bdad34d 454 gov->gdbs_data = dbs_data;
4d5dcc42 455
bc505475 456 policy->governor_data = policy_dbs;
e4b133cc 457
c54df071
VK
458 policy_dbs->dbs_data = dbs_data;
459 dbs_data->usage_count = 1;
460 list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
461
c4435630
VK
462 gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
463 ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type,
464 get_governor_parent_kobj(policy),
465 "%s", gov->gov.name);
fafd5e8a
RW
466 if (!ret)
467 return 0;
4d5dcc42 468
fafd5e8a 469 /* Failure, so roll back. */
c4435630 470 pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret);
4d5dcc42 471
e4b133cc
VK
472 policy->governor_data = NULL;
473
8eec1020 474 if (!have_governor_per_policy())
7bdad34d
RW
475 gov->gdbs_data = NULL;
476 gov->exit(dbs_data, !policy->governor->initialized);
bc505475
RW
477 kfree(dbs_data);
478
e40e7b25
RW
479free_policy_dbs_info:
480 free_policy_dbs_info(policy, gov);
714a2d9c
VK
481 return ret;
482}
4d5dcc42 483
5da3dd1e 484static int cpufreq_governor_exit(struct cpufreq_policy *policy)
714a2d9c 485{
ea59ee0d 486 struct dbs_governor *gov = dbs_governor_of(policy);
bc505475
RW
487 struct policy_dbs_info *policy_dbs = policy->governor_data;
488 struct dbs_data *dbs_data = policy_dbs->dbs_data;
c54df071 489 int count;
a72c4959 490
c54df071
VK
491 mutex_lock(&dbs_data->mutex);
492 list_del(&policy_dbs->list);
493 count = --dbs_data->usage_count;
494 mutex_unlock(&dbs_data->mutex);
495
496 if (!count) {
c4435630 497 kobject_put(&dbs_data->kobj);
2361be23 498
e4b133cc
VK
499 policy->governor_data = NULL;
500
8eec1020 501 if (!have_governor_per_policy())
7bdad34d 502 gov->gdbs_data = NULL;
4471a34f 503
7bdad34d 504 gov->exit(dbs_data, policy->governor->initialized == 1);
c4435630 505 mutex_destroy(&dbs_data->mutex);
714a2d9c 506 kfree(dbs_data);
e4b133cc
VK
507 } else {
508 policy->governor_data = NULL;
4d5dcc42 509 }
44152cb8 510
e40e7b25 511 free_policy_dbs_info(policy, gov);
a72c4959 512 return 0;
714a2d9c 513}
4d5dcc42 514
5da3dd1e 515static int cpufreq_governor_start(struct cpufreq_policy *policy)
714a2d9c 516{
ea59ee0d 517 struct dbs_governor *gov = dbs_governor_of(policy);
bc505475
RW
518 struct policy_dbs_info *policy_dbs = policy->governor_data;
519 struct dbs_data *dbs_data = policy_dbs->dbs_data;
714a2d9c 520 unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
8847e038 521 unsigned int io_busy;
714a2d9c
VK
522
523 if (!policy->cur)
524 return -EINVAL;
525
e4db2813 526 policy_dbs->is_shared = policy_is_shared(policy);
57dc3bcd 527 policy_dbs->rate_mult = 1;
e4db2813 528
ff4b1789
VK
529 sampling_rate = dbs_data->sampling_rate;
530 ignore_nice = dbs_data->ignore_nice_load;
8847e038 531 io_busy = dbs_data->io_is_busy;
4471a34f 532
714a2d9c 533 for_each_cpu(j, policy->cpus) {
7bdad34d 534 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
714a2d9c 535 unsigned int prev_load;
4471a34f 536
57eb832f 537 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
4471a34f 538
57eb832f
RW
539 prev_load = j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle;
540 j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall;
18b46abd 541
714a2d9c
VK
542 if (ignore_nice)
543 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
714a2d9c 544 }
2abfa876 545
7bdad34d 546 if (gov->governor == GOV_CONSERVATIVE) {
714a2d9c 547 struct cs_cpu_dbs_info_s *cs_dbs_info =
7bdad34d 548 gov->get_cpu_dbs_info_s(cpu);
4471a34f 549
714a2d9c 550 cs_dbs_info->down_skip = 0;
714a2d9c
VK
551 cs_dbs_info->requested_freq = policy->cur;
552 } else {
7bdad34d
RW
553 struct od_ops *od_ops = gov->gov_ops;
554 struct od_cpu_dbs_info_s *od_dbs_info = gov->get_cpu_dbs_info_s(cpu);
4471a34f 555
714a2d9c
VK
556 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
557 od_ops->powersave_bias_init_cpu(cpu);
558 }
4471a34f 559
e40e7b25 560 gov_set_update_util(policy_dbs, sampling_rate);
714a2d9c
VK
561 return 0;
562}
563
5da3dd1e 564static int cpufreq_governor_stop(struct cpufreq_policy *policy)
714a2d9c 565{
581c214b 566 gov_cancel_work(policy);
3a91b069 567
a72c4959 568 return 0;
714a2d9c 569}
4471a34f 570
5da3dd1e 571static int cpufreq_governor_limits(struct cpufreq_policy *policy)
714a2d9c 572{
bc505475 573 struct policy_dbs_info *policy_dbs = policy->governor_data;
8eeed095 574
e9751894 575 mutex_lock(&policy_dbs->timer_mutex);
4cccf755 576
e9751894
RW
577 if (policy->max < policy->cur)
578 __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
579 else if (policy->min > policy->cur)
580 __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
4cccf755
RW
581
582 gov_update_sample_delay(policy_dbs, 0);
583
e9751894 584 mutex_unlock(&policy_dbs->timer_mutex);
a72c4959
VK
585
586 return 0;
714a2d9c 587}
4471a34f 588
906a6e5a 589int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
714a2d9c 590{
5da3dd1e 591 int ret = -EINVAL;
714a2d9c 592
732b6d61 593 /* Lock governor to block concurrent initialization of governor */
2bb8d94f 594 mutex_lock(&dbs_data_mutex);
732b6d61 595
5da3dd1e 596 if (event == CPUFREQ_GOV_POLICY_INIT) {
906a6e5a 597 ret = cpufreq_governor_init(policy);
5da3dd1e
RW
598 } else if (policy->governor_data) {
599 switch (event) {
600 case CPUFREQ_GOV_POLICY_EXIT:
601 ret = cpufreq_governor_exit(policy);
602 break;
603 case CPUFREQ_GOV_START:
604 ret = cpufreq_governor_start(policy);
605 break;
606 case CPUFREQ_GOV_STOP:
607 ret = cpufreq_governor_stop(policy);
608 break;
609 case CPUFREQ_GOV_LIMITS:
610 ret = cpufreq_governor_limits(policy);
611 break;
612 }
4471a34f 613 }
714a2d9c 614
2bb8d94f 615 mutex_unlock(&dbs_data_mutex);
714a2d9c 616 return ret;
4471a34f
VK
617}
618EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);