Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6-block.git] / drivers / cpufreq / cpufreq_governor.c
CommitLineData
2aacdfff 1/*
2 * drivers/cpufreq/cpufreq_governor.c
3 *
4 * CPUFREQ governors common code
5 *
4471a34f
VK
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11 *
2aacdfff 12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
4471a34f
VK
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
2aacdfff 19#include <linux/export.h>
20#include <linux/kernel_stat.h>
4d5dcc42 21#include <linux/slab.h>
4471a34f
VK
22
23#include "cpufreq_governor.h"
24
8c8f77fd
RW
25static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
26
1112e9d8 27static DEFINE_MUTEX(gov_dbs_data_mutex);
2bb8d94f 28
aded387b
VK
29/* Common sysfs tunables */
30/**
31 * store_sampling_rate - update sampling rate effective immediately if needed.
32 *
33 * If new rate is smaller than the old, simply updating
34 * dbs.sampling_rate might not be appropriate. For example, if the
35 * original sampling_rate was 1 second and the requested new sampling rate is 10
36 * ms because the user needs immediate reaction from ondemand governor, but not
37 * sure if higher frequency will be required or not, then, the governor may
38 * change the sampling rate too late; up to 1 second later. Thus, if we are
39 * reducing the sampling rate, we need to make the new value effective
40 * immediately.
41 *
aded387b
VK
42 * This must be called with dbs_data->mutex held, otherwise traversing
43 * policy_dbs_list isn't safe.
44 */
0dd3c1d6 45ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
aded387b
VK
46 size_t count)
47{
0dd3c1d6 48 struct dbs_data *dbs_data = to_dbs_data(attr_set);
aded387b 49 struct policy_dbs_info *policy_dbs;
aded387b 50 int ret;
2d045036 51 ret = sscanf(buf, "%u", &dbs_data->sampling_rate);
aded387b
VK
52 if (ret != 1)
53 return -EINVAL;
54
aded387b
VK
55 /*
56 * We are operating under dbs_data->mutex and so the list and its
57 * entries can't be freed concurrently.
58 */
0dd3c1d6 59 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
26f0dbc9 60 mutex_lock(&policy_dbs->update_mutex);
aded387b
VK
61 /*
62 * On 32-bit architectures this may race with the
63 * sample_delay_ns read in dbs_update_util_handler(), but that
64 * really doesn't matter. If the read returns a value that's
65 * too big, the sample will be skipped, but the next invocation
66 * of dbs_update_util_handler() (when the update has been
78347cdb 67 * completed) will take a sample.
aded387b
VK
68 *
69 * If this runs in parallel with dbs_work_handler(), we may end
70 * up overwriting the sample_delay_ns value that it has just
78347cdb
RW
71 * written, but it will be corrected next time a sample is
72 * taken, so it shouldn't be significant.
aded387b 73 */
78347cdb 74 gov_update_sample_delay(policy_dbs, 0);
26f0dbc9 75 mutex_unlock(&policy_dbs->update_mutex);
aded387b
VK
76 }
77
78 return count;
79}
80EXPORT_SYMBOL_GPL(store_sampling_rate);
81
a33cce1c
RW
82/**
83 * gov_update_cpu_data - Update CPU load data.
a33cce1c
RW
84 * @dbs_data: Top-level governor data pointer.
85 *
86 * Update CPU load data for all CPUs in the domain governed by @dbs_data
87 * (that may be a single policy or a bunch of them if governor tunables are
88 * system-wide).
89 *
90 * Call under the @dbs_data mutex.
91 */
8c8f77fd 92void gov_update_cpu_data(struct dbs_data *dbs_data)
a33cce1c
RW
93{
94 struct policy_dbs_info *policy_dbs;
95
0dd3c1d6 96 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
a33cce1c
RW
97 unsigned int j;
98
99 for_each_cpu(j, policy_dbs->policy->cpus) {
8c8f77fd 100 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
a33cce1c 101
b4f4b4b3 102 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
a33cce1c
RW
103 dbs_data->io_is_busy);
104 if (dbs_data->ignore_nice_load)
105 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
106 }
107 }
108}
109EXPORT_SYMBOL_GPL(gov_update_cpu_data);
110
4cccf755 111unsigned int dbs_update(struct cpufreq_policy *policy)
4471a34f 112{
bc505475
RW
113 struct policy_dbs_info *policy_dbs = policy->governor_data;
114 struct dbs_data *dbs_data = policy_dbs->dbs_data;
ff4b1789 115 unsigned int ignore_nice = dbs_data->ignore_nice_load;
00bfe058 116 unsigned int max_load = 0, idle_periods = UINT_MAX;
8847e038 117 unsigned int sampling_rate, io_busy, j;
4471a34f 118
57dc3bcd
RW
119 /*
120 * Sometimes governors may use an additional multiplier to increase
121 * sample delays temporarily. Apply that multiplier to sampling_rate
122 * so as to keep the wake-up-from-idle detection logic a bit
123 * conservative.
124 */
125 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
8847e038
RW
126 /*
127 * For the purpose of ondemand, waiting for disk IO is an indication
128 * that you're performance critical, and not that the system is actually
129 * idle, so do not add the iowait time to the CPU idle time then.
130 */
131 io_busy = dbs_data->io_is_busy;
4471a34f 132
dfa5bb62 133 /* Get Absolute Load */
4471a34f 134 for_each_cpu(j, policy->cpus) {
8c8f77fd 135 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
b4f4b4b3
RW
136 u64 update_time, cur_idle_time;
137 unsigned int idle_time, time_elapsed;
4471a34f
VK
138 unsigned int load;
139
b4f4b4b3 140 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
4471a34f 141
b4f4b4b3
RW
142 time_elapsed = update_time - j_cdbs->prev_update_time;
143 j_cdbs->prev_update_time = update_time;
4471a34f 144
94862a62
RW
145 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
146 j_cdbs->prev_cpu_idle = cur_idle_time;
4471a34f
VK
147
148 if (ignore_nice) {
679b8fe4
RW
149 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
150
7fb1327e 151 idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
679b8fe4 152 j_cdbs->prev_cpu_nice = cur_nice;
4471a34f
VK
153 }
154
9485e4ca
RW
155 if (unlikely(!time_elapsed)) {
156 /*
157 * That can only happen when this function is called
158 * twice in a row with a very short interval between the
159 * calls, so the previous load value can be used then.
160 */
18b46abd 161 load = j_cdbs->prev_load;
9485e4ca
RW
162 } else if (unlikely(time_elapsed > 2 * sampling_rate &&
163 j_cdbs->prev_load)) {
c8ae481b 164 /*
9485e4ca
RW
165 * If the CPU had gone completely idle and a task has
166 * just woken up on this CPU now, it would be unfair to
167 * calculate 'load' the usual way for this elapsed
168 * time-window, because it would show near-zero load,
169 * irrespective of how CPU intensive that task actually
170 * was. This is undesirable for latency-sensitive bursty
171 * workloads.
172 *
173 * To avoid this, reuse the 'load' from the previous
174 * time-window and give this task a chance to start with
175 * a reasonably high CPU frequency. However, that
176 * shouldn't be over-done, lest we get stuck at a high
177 * load (high frequency) for too long, even when the
178 * current system load has actually dropped down, so
179 * clear prev_load to guarantee that the load will be
180 * computed again next time.
181 *
182 * Detecting this situation is easy: the governor's
183 * utilization update handler would not have run during
184 * CPU-idle periods. Hence, an unusually large
185 * 'time_elapsed' (as compared to the sampling rate)
186 * indicates this scenario.
c8ae481b 187 */
9485e4ca 188 load = j_cdbs->prev_load;
c8ae481b 189 j_cdbs->prev_load = 0;
18b46abd 190 } else {
9485e4ca
RW
191 if (time_elapsed >= idle_time) {
192 load = 100 * (time_elapsed - idle_time) / time_elapsed;
193 } else {
194 /*
195 * That can happen if idle_time is returned by
196 * get_cpu_idle_time_jiffy(). In that case
197 * idle_time is roughly equal to the difference
198 * between time_elapsed and "busy time" obtained
199 * from CPU statistics. Then, the "busy time"
200 * can end up being greater than time_elapsed
201 * (for example, if jiffies_64 and the CPU
202 * statistics are updated by different CPUs),
203 * so idle_time may in fact be negative. That
204 * means, though, that the CPU was busy all
205 * the time (on the rough average) during the
206 * last sampling interval and 100 can be
207 * returned as the load.
208 */
209 load = (int)idle_time < 0 ? 100 : 0;
210 }
18b46abd 211 j_cdbs->prev_load = load;
18b46abd 212 }
4471a34f 213
00bfe058
SK
214 if (time_elapsed > 2 * sampling_rate) {
215 unsigned int periods = time_elapsed / sampling_rate;
216
217 if (periods < idle_periods)
218 idle_periods = periods;
219 }
220
4471a34f
VK
221 if (load > max_load)
222 max_load = load;
223 }
00bfe058
SK
224
225 policy_dbs->idle_periods = idle_periods;
226
4cccf755 227 return max_load;
4471a34f 228}
4cccf755 229EXPORT_SYMBOL_GPL(dbs_update);
4471a34f 230
70f43e5e 231static void dbs_work_handler(struct work_struct *work)
43e0ee36 232{
e40e7b25 233 struct policy_dbs_info *policy_dbs;
3a91b069 234 struct cpufreq_policy *policy;
ea59ee0d 235 struct dbs_governor *gov;
43e0ee36 236
e40e7b25
RW
237 policy_dbs = container_of(work, struct policy_dbs_info, work);
238 policy = policy_dbs->policy;
ea59ee0d 239 gov = dbs_governor_of(policy);
3a91b069 240
70f43e5e 241 /*
9be4fd2c
RW
242 * Make sure cpufreq_governor_limits() isn't evaluating load or the
243 * ondemand governor isn't updating the sampling rate in parallel.
70f43e5e 244 */
26f0dbc9
VK
245 mutex_lock(&policy_dbs->update_mutex);
246 gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
247 mutex_unlock(&policy_dbs->update_mutex);
70f43e5e 248
e4db2813
RW
249 /* Allow the utilization update handler to queue up more work. */
250 atomic_set(&policy_dbs->work_count, 0);
9be4fd2c 251 /*
e4db2813
RW
252 * If the update below is reordered with respect to the sample delay
253 * modification, the utilization update handler may end up using a stale
254 * sample delay value.
9be4fd2c 255 */
e4db2813
RW
256 smp_wmb();
257 policy_dbs->work_in_progress = false;
9be4fd2c
RW
258}
259
260static void dbs_irq_work(struct irq_work *irq_work)
261{
e40e7b25 262 struct policy_dbs_info *policy_dbs;
70f43e5e 263
e40e7b25 264 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
539a4c42 265 schedule_work_on(smp_processor_id(), &policy_dbs->work);
70f43e5e
VK
266}
267
9be4fd2c 268static void dbs_update_util_handler(struct update_util_data *data, u64 time,
58919e83 269 unsigned int flags)
9be4fd2c
RW
270{
271 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
e40e7b25 272 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
27de3482 273 u64 delta_ns, lst;
70f43e5e 274
674e7541
VK
275 if (!cpufreq_can_do_remote_dvfs(policy_dbs->policy))
276 return;
277
70f43e5e 278 /*
9be4fd2c
RW
279 * The work may not be allowed to be queued up right now.
280 * Possible reasons:
281 * - Work has already been queued up or is in progress.
9be4fd2c 282 * - It is too early (too little time from the previous sample).
70f43e5e 283 */
e4db2813
RW
284 if (policy_dbs->work_in_progress)
285 return;
286
287 /*
288 * If the reads below are reordered before the check above, the value
289 * of sample_delay_ns used in the computation may be stale.
290 */
291 smp_rmb();
27de3482
RW
292 lst = READ_ONCE(policy_dbs->last_sample_time);
293 delta_ns = time - lst;
e4db2813
RW
294 if ((s64)delta_ns < policy_dbs->sample_delay_ns)
295 return;
296
297 /*
298 * If the policy is not shared, the irq_work may be queued up right away
299 * at this point. Otherwise, we need to ensure that only one of the
300 * CPUs sharing the policy will do that.
301 */
27de3482
RW
302 if (policy_dbs->is_shared) {
303 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
304 return;
305
306 /*
307 * If another CPU updated last_sample_time in the meantime, we
308 * shouldn't be here, so clear the work counter and bail out.
309 */
310 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
311 atomic_set(&policy_dbs->work_count, 0);
312 return;
313 }
314 }
e4db2813
RW
315
316 policy_dbs->last_sample_time = time;
317 policy_dbs->work_in_progress = true;
318 irq_work_queue(&policy_dbs->irq_work);
43e0ee36 319}
4447266b 320
0bed612b
RW
321static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
322 unsigned int delay_us)
323{
324 struct cpufreq_policy *policy = policy_dbs->policy;
325 int cpu;
326
327 gov_update_sample_delay(policy_dbs, delay_us);
328 policy_dbs->last_sample_time = 0;
329
330 for_each_cpu(cpu, policy->cpus) {
331 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
332
333 cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
334 dbs_update_util_handler);
335 }
336}
337
338static inline void gov_clear_update_util(struct cpufreq_policy *policy)
339{
340 int i;
341
342 for_each_cpu(i, policy->cpus)
343 cpufreq_remove_update_util_hook(i);
344
345 synchronize_sched();
346}
347
bc505475
RW
348static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
349 struct dbs_governor *gov)
44152cb8 350{
e40e7b25 351 struct policy_dbs_info *policy_dbs;
44152cb8
VK
352 int j;
353
7d5a9956
RW
354 /* Allocate memory for per-policy governor data. */
355 policy_dbs = gov->alloc();
e40e7b25 356 if (!policy_dbs)
bc505475 357 return NULL;
44152cb8 358
581c214b 359 policy_dbs->policy = policy;
26f0dbc9 360 mutex_init(&policy_dbs->update_mutex);
686cc637 361 atomic_set(&policy_dbs->work_count, 0);
e40e7b25
RW
362 init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
363 INIT_WORK(&policy_dbs->work, dbs_work_handler);
cea6a9e7
RW
364
365 /* Set policy_dbs for all CPUs, online+offline */
366 for_each_cpu(j, policy->related_cpus) {
8c8f77fd 367 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
cea6a9e7
RW
368
369 j_cdbs->policy_dbs = policy_dbs;
cea6a9e7 370 }
bc505475 371 return policy_dbs;
44152cb8
VK
372}
373
8c8f77fd 374static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
7bdad34d 375 struct dbs_governor *gov)
44152cb8 376{
44152cb8
VK
377 int j;
378
26f0dbc9 379 mutex_destroy(&policy_dbs->update_mutex);
5e4500d8 380
8c8f77fd
RW
381 for_each_cpu(j, policy_dbs->policy->related_cpus) {
382 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
44152cb8 383
cea6a9e7
RW
384 j_cdbs->policy_dbs = NULL;
385 j_cdbs->update_util.func = NULL;
386 }
7d5a9956 387 gov->free(policy_dbs);
44152cb8
VK
388}
389
e788892b 390int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
4471a34f 391{
ea59ee0d 392 struct dbs_governor *gov = dbs_governor_of(policy);
1112e9d8 393 struct dbs_data *dbs_data;
bc505475 394 struct policy_dbs_info *policy_dbs;
1112e9d8 395 int ret = 0;
4471a34f 396
a72c4959
VK
397 /* State should be equivalent to EXIT */
398 if (policy->governor_data)
399 return -EBUSY;
400
bc505475
RW
401 policy_dbs = alloc_policy_dbs_info(policy, gov);
402 if (!policy_dbs)
403 return -ENOMEM;
44152cb8 404
1112e9d8
RW
405 /* Protect gov->gdbs_data against concurrent updates. */
406 mutex_lock(&gov_dbs_data_mutex);
407
408 dbs_data = gov->gdbs_data;
bc505475
RW
409 if (dbs_data) {
410 if (WARN_ON(have_governor_per_policy())) {
411 ret = -EINVAL;
412 goto free_policy_dbs_info;
413 }
bc505475
RW
414 policy_dbs->dbs_data = dbs_data;
415 policy->governor_data = policy_dbs;
c54df071 416
0dd3c1d6 417 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
1112e9d8 418 goto out;
714a2d9c 419 }
4d5dcc42 420
714a2d9c 421 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
bc505475
RW
422 if (!dbs_data) {
423 ret = -ENOMEM;
424 goto free_policy_dbs_info;
425 }
44152cb8 426
0dd3c1d6 427 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
4d5dcc42 428
9a15fb2c 429 ret = gov->init(dbs_data);
714a2d9c 430 if (ret)
e40e7b25 431 goto free_policy_dbs_info;
4d5dcc42 432
aa7519af 433 dbs_data->sampling_rate = cpufreq_policy_transition_delay_us(policy);
2361be23 434
8eec1020 435 if (!have_governor_per_policy())
7bdad34d 436 gov->gdbs_data = dbs_data;
4d5dcc42 437
c54df071 438 policy_dbs->dbs_data = dbs_data;
0dd3c1d6 439 policy->governor_data = policy_dbs;
c54df071 440
c4435630 441 gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
0dd3c1d6 442 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
c4435630
VK
443 get_governor_parent_kobj(policy),
444 "%s", gov->gov.name);
fafd5e8a 445 if (!ret)
1112e9d8 446 goto out;
4d5dcc42 447
fafd5e8a 448 /* Failure, so roll back. */
666f4ccc 449 pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
4d5dcc42 450
e4b133cc
VK
451 policy->governor_data = NULL;
452
8eec1020 453 if (!have_governor_per_policy())
7bdad34d 454 gov->gdbs_data = NULL;
9a15fb2c 455 gov->exit(dbs_data);
bc505475
RW
456 kfree(dbs_data);
457
e40e7b25 458free_policy_dbs_info:
8c8f77fd 459 free_policy_dbs_info(policy_dbs, gov);
1112e9d8
RW
460
461out:
462 mutex_unlock(&gov_dbs_data_mutex);
714a2d9c
VK
463 return ret;
464}
e788892b 465EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
4d5dcc42 466
e788892b 467void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
714a2d9c 468{
ea59ee0d 469 struct dbs_governor *gov = dbs_governor_of(policy);
bc505475
RW
470 struct policy_dbs_info *policy_dbs = policy->governor_data;
471 struct dbs_data *dbs_data = policy_dbs->dbs_data;
0dd3c1d6 472 unsigned int count;
a72c4959 473
1112e9d8
RW
474 /* Protect gov->gdbs_data against concurrent updates. */
475 mutex_lock(&gov_dbs_data_mutex);
476
0dd3c1d6 477 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
2361be23 478
0dd3c1d6 479 policy->governor_data = NULL;
e4b133cc 480
0dd3c1d6 481 if (!count) {
8eec1020 482 if (!have_governor_per_policy())
7bdad34d 483 gov->gdbs_data = NULL;
4471a34f 484
9a15fb2c 485 gov->exit(dbs_data);
714a2d9c 486 kfree(dbs_data);
4d5dcc42 487 }
44152cb8 488
8c8f77fd 489 free_policy_dbs_info(policy_dbs, gov);
1112e9d8
RW
490
491 mutex_unlock(&gov_dbs_data_mutex);
714a2d9c 492}
e788892b 493EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
4d5dcc42 494
e788892b 495int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
714a2d9c 496{
ea59ee0d 497 struct dbs_governor *gov = dbs_governor_of(policy);
bc505475
RW
498 struct policy_dbs_info *policy_dbs = policy->governor_data;
499 struct dbs_data *dbs_data = policy_dbs->dbs_data;
702c9e54 500 unsigned int sampling_rate, ignore_nice, j;
8847e038 501 unsigned int io_busy;
714a2d9c
VK
502
503 if (!policy->cur)
504 return -EINVAL;
505
e4db2813 506 policy_dbs->is_shared = policy_is_shared(policy);
57dc3bcd 507 policy_dbs->rate_mult = 1;
e4db2813 508
ff4b1789
VK
509 sampling_rate = dbs_data->sampling_rate;
510 ignore_nice = dbs_data->ignore_nice_load;
8847e038 511 io_busy = dbs_data->io_is_busy;
4471a34f 512
714a2d9c 513 for_each_cpu(j, policy->cpus) {
8c8f77fd 514 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
4471a34f 515
b4f4b4b3 516 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
ba1ca654
RW
517 /*
518 * Make the first invocation of dbs_update() compute the load.
519 */
520 j_cdbs->prev_load = 0;
18b46abd 521
714a2d9c
VK
522 if (ignore_nice)
523 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
714a2d9c 524 }
2abfa876 525
702c9e54 526 gov->start(policy);
4471a34f 527
e40e7b25 528 gov_set_update_util(policy_dbs, sampling_rate);
714a2d9c
VK
529 return 0;
530}
e788892b 531EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
714a2d9c 532
e788892b 533void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
714a2d9c 534{
f6709b8a
RW
535 struct policy_dbs_info *policy_dbs = policy->governor_data;
536
537 gov_clear_update_util(policy_dbs->policy);
538 irq_work_sync(&policy_dbs->irq_work);
539 cancel_work_sync(&policy_dbs->work);
540 atomic_set(&policy_dbs->work_count, 0);
541 policy_dbs->work_in_progress = false;
714a2d9c 542}
e788892b 543EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
4471a34f 544
e788892b 545void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
714a2d9c 546{
bc505475 547 struct policy_dbs_info *policy_dbs = policy->governor_data;
8eeed095 548
26f0dbc9 549 mutex_lock(&policy_dbs->update_mutex);
bf2be2de 550 cpufreq_policy_apply_limits(policy);
4cccf755
RW
551 gov_update_sample_delay(policy_dbs, 0);
552
26f0dbc9 553 mutex_unlock(&policy_dbs->update_mutex);
4471a34f 554}
e788892b 555EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);