Merge tag 'nios2-v5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/lftan...
[linux-2.6-block.git] / drivers / cpufreq / cpufreq_governor.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
2aacdfff 2/*
3 * drivers/cpufreq/cpufreq_governor.c
4 *
5 * CPUFREQ governors common code
6 *
4471a34f
VK
7 * Copyright (C) 2001 Russell King
8 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
9 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
10 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
11 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
2aacdfff 12 */
13
4471a34f
VK
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
2aacdfff 16#include <linux/export.h>
17#include <linux/kernel_stat.h>
4d5dcc42 18#include <linux/slab.h>
4471a34f
VK
19
20#include "cpufreq_governor.h"
21
56026645
RW
22#define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL (2 * TICK_NSEC / NSEC_PER_USEC)
23
8c8f77fd
RW
24static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
25
1112e9d8 26static DEFINE_MUTEX(gov_dbs_data_mutex);
2bb8d94f 27
aded387b
VK
28/* Common sysfs tunables */
29/**
30 * store_sampling_rate - update sampling rate effective immediately if needed.
31 *
32 * If new rate is smaller than the old, simply updating
33 * dbs.sampling_rate might not be appropriate. For example, if the
34 * original sampling_rate was 1 second and the requested new sampling rate is 10
35 * ms because the user needs immediate reaction from ondemand governor, but not
36 * sure if higher frequency will be required or not, then, the governor may
37 * change the sampling rate too late; up to 1 second later. Thus, if we are
38 * reducing the sampling rate, we need to make the new value effective
39 * immediately.
40 *
aded387b
VK
41 * This must be called with dbs_data->mutex held, otherwise traversing
42 * policy_dbs_list isn't safe.
43 */
0dd3c1d6 44ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
aded387b
VK
45 size_t count)
46{
0dd3c1d6 47 struct dbs_data *dbs_data = to_dbs_data(attr_set);
aded387b 48 struct policy_dbs_info *policy_dbs;
56026645 49 unsigned int sampling_interval;
aded387b 50 int ret;
56026645
RW
51
52 ret = sscanf(buf, "%u", &sampling_interval);
53 if (ret != 1 || sampling_interval < CPUFREQ_DBS_MIN_SAMPLING_INTERVAL)
aded387b
VK
54 return -EINVAL;
55
56026645
RW
56 dbs_data->sampling_rate = sampling_interval;
57
aded387b
VK
58 /*
59 * We are operating under dbs_data->mutex and so the list and its
60 * entries can't be freed concurrently.
61 */
0dd3c1d6 62 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
26f0dbc9 63 mutex_lock(&policy_dbs->update_mutex);
aded387b
VK
64 /*
65 * On 32-bit architectures this may race with the
66 * sample_delay_ns read in dbs_update_util_handler(), but that
67 * really doesn't matter. If the read returns a value that's
68 * too big, the sample will be skipped, but the next invocation
69 * of dbs_update_util_handler() (when the update has been
78347cdb 70 * completed) will take a sample.
aded387b
VK
71 *
72 * If this runs in parallel with dbs_work_handler(), we may end
73 * up overwriting the sample_delay_ns value that it has just
78347cdb
RW
74 * written, but it will be corrected next time a sample is
75 * taken, so it shouldn't be significant.
aded387b 76 */
78347cdb 77 gov_update_sample_delay(policy_dbs, 0);
26f0dbc9 78 mutex_unlock(&policy_dbs->update_mutex);
aded387b
VK
79 }
80
81 return count;
82}
83EXPORT_SYMBOL_GPL(store_sampling_rate);
84
a33cce1c
RW
85/**
86 * gov_update_cpu_data - Update CPU load data.
a33cce1c
RW
87 * @dbs_data: Top-level governor data pointer.
88 *
89 * Update CPU load data for all CPUs in the domain governed by @dbs_data
90 * (that may be a single policy or a bunch of them if governor tunables are
91 * system-wide).
92 *
93 * Call under the @dbs_data mutex.
94 */
8c8f77fd 95void gov_update_cpu_data(struct dbs_data *dbs_data)
a33cce1c
RW
96{
97 struct policy_dbs_info *policy_dbs;
98
0dd3c1d6 99 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
a33cce1c
RW
100 unsigned int j;
101
102 for_each_cpu(j, policy_dbs->policy->cpus) {
8c8f77fd 103 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
a33cce1c 104
b4f4b4b3 105 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
a33cce1c
RW
106 dbs_data->io_is_busy);
107 if (dbs_data->ignore_nice_load)
108 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
109 }
110 }
111}
112EXPORT_SYMBOL_GPL(gov_update_cpu_data);
113
4cccf755 114unsigned int dbs_update(struct cpufreq_policy *policy)
4471a34f 115{
bc505475
RW
116 struct policy_dbs_info *policy_dbs = policy->governor_data;
117 struct dbs_data *dbs_data = policy_dbs->dbs_data;
ff4b1789 118 unsigned int ignore_nice = dbs_data->ignore_nice_load;
00bfe058 119 unsigned int max_load = 0, idle_periods = UINT_MAX;
8847e038 120 unsigned int sampling_rate, io_busy, j;
4471a34f 121
57dc3bcd
RW
122 /*
123 * Sometimes governors may use an additional multiplier to increase
124 * sample delays temporarily. Apply that multiplier to sampling_rate
125 * so as to keep the wake-up-from-idle detection logic a bit
126 * conservative.
127 */
128 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
8847e038
RW
129 /*
130 * For the purpose of ondemand, waiting for disk IO is an indication
131 * that you're performance critical, and not that the system is actually
132 * idle, so do not add the iowait time to the CPU idle time then.
133 */
134 io_busy = dbs_data->io_is_busy;
4471a34f 135
dfa5bb62 136 /* Get Absolute Load */
4471a34f 137 for_each_cpu(j, policy->cpus) {
8c8f77fd 138 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
b4f4b4b3
RW
139 u64 update_time, cur_idle_time;
140 unsigned int idle_time, time_elapsed;
4471a34f
VK
141 unsigned int load;
142
b4f4b4b3 143 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
4471a34f 144
b4f4b4b3
RW
145 time_elapsed = update_time - j_cdbs->prev_update_time;
146 j_cdbs->prev_update_time = update_time;
4471a34f 147
94862a62
RW
148 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
149 j_cdbs->prev_cpu_idle = cur_idle_time;
4471a34f
VK
150
151 if (ignore_nice) {
679b8fe4
RW
152 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
153
7fb1327e 154 idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
679b8fe4 155 j_cdbs->prev_cpu_nice = cur_nice;
4471a34f
VK
156 }
157
9485e4ca
RW
158 if (unlikely(!time_elapsed)) {
159 /*
160 * That can only happen when this function is called
161 * twice in a row with a very short interval between the
162 * calls, so the previous load value can be used then.
163 */
18b46abd 164 load = j_cdbs->prev_load;
75920196 165 } else if (unlikely((int)idle_time > 2 * sampling_rate &&
9485e4ca 166 j_cdbs->prev_load)) {
c8ae481b 167 /*
9485e4ca
RW
168 * If the CPU had gone completely idle and a task has
169 * just woken up on this CPU now, it would be unfair to
170 * calculate 'load' the usual way for this elapsed
171 * time-window, because it would show near-zero load,
172 * irrespective of how CPU intensive that task actually
173 * was. This is undesirable for latency-sensitive bursty
174 * workloads.
175 *
176 * To avoid this, reuse the 'load' from the previous
177 * time-window and give this task a chance to start with
178 * a reasonably high CPU frequency. However, that
179 * shouldn't be over-done, lest we get stuck at a high
180 * load (high frequency) for too long, even when the
181 * current system load has actually dropped down, so
182 * clear prev_load to guarantee that the load will be
183 * computed again next time.
184 *
75920196
CY
185 * Detecting this situation is easy: an unusually large
186 * 'idle_time' (as compared to the sampling rate)
9485e4ca 187 * indicates this scenario.
c8ae481b 188 */
9485e4ca 189 load = j_cdbs->prev_load;
c8ae481b 190 j_cdbs->prev_load = 0;
18b46abd 191 } else {
9485e4ca
RW
192 if (time_elapsed >= idle_time) {
193 load = 100 * (time_elapsed - idle_time) / time_elapsed;
194 } else {
195 /*
196 * That can happen if idle_time is returned by
197 * get_cpu_idle_time_jiffy(). In that case
198 * idle_time is roughly equal to the difference
199 * between time_elapsed and "busy time" obtained
200 * from CPU statistics. Then, the "busy time"
201 * can end up being greater than time_elapsed
202 * (for example, if jiffies_64 and the CPU
203 * statistics are updated by different CPUs),
204 * so idle_time may in fact be negative. That
205 * means, though, that the CPU was busy all
206 * the time (on the rough average) during the
207 * last sampling interval and 100 can be
208 * returned as the load.
209 */
210 load = (int)idle_time < 0 ? 100 : 0;
211 }
18b46abd 212 j_cdbs->prev_load = load;
18b46abd 213 }
4471a34f 214
75920196
CY
215 if (unlikely((int)idle_time > 2 * sampling_rate)) {
216 unsigned int periods = idle_time / sampling_rate;
00bfe058
SK
217
218 if (periods < idle_periods)
219 idle_periods = periods;
220 }
221
4471a34f
VK
222 if (load > max_load)
223 max_load = load;
224 }
00bfe058
SK
225
226 policy_dbs->idle_periods = idle_periods;
227
4cccf755 228 return max_load;
4471a34f 229}
4cccf755 230EXPORT_SYMBOL_GPL(dbs_update);
4471a34f 231
70f43e5e 232static void dbs_work_handler(struct work_struct *work)
43e0ee36 233{
e40e7b25 234 struct policy_dbs_info *policy_dbs;
3a91b069 235 struct cpufreq_policy *policy;
ea59ee0d 236 struct dbs_governor *gov;
43e0ee36 237
e40e7b25
RW
238 policy_dbs = container_of(work, struct policy_dbs_info, work);
239 policy = policy_dbs->policy;
ea59ee0d 240 gov = dbs_governor_of(policy);
3a91b069 241
70f43e5e 242 /*
9be4fd2c
RW
243 * Make sure cpufreq_governor_limits() isn't evaluating load or the
244 * ondemand governor isn't updating the sampling rate in parallel.
70f43e5e 245 */
26f0dbc9
VK
246 mutex_lock(&policy_dbs->update_mutex);
247 gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
248 mutex_unlock(&policy_dbs->update_mutex);
70f43e5e 249
e4db2813
RW
250 /* Allow the utilization update handler to queue up more work. */
251 atomic_set(&policy_dbs->work_count, 0);
9be4fd2c 252 /*
e4db2813
RW
253 * If the update below is reordered with respect to the sample delay
254 * modification, the utilization update handler may end up using a stale
255 * sample delay value.
9be4fd2c 256 */
e4db2813
RW
257 smp_wmb();
258 policy_dbs->work_in_progress = false;
9be4fd2c
RW
259}
260
261static void dbs_irq_work(struct irq_work *irq_work)
262{
e40e7b25 263 struct policy_dbs_info *policy_dbs;
70f43e5e 264
e40e7b25 265 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
539a4c42 266 schedule_work_on(smp_processor_id(), &policy_dbs->work);
70f43e5e
VK
267}
268
9be4fd2c 269static void dbs_update_util_handler(struct update_util_data *data, u64 time,
58919e83 270 unsigned int flags)
9be4fd2c
RW
271{
272 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
e40e7b25 273 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
27de3482 274 u64 delta_ns, lst;
70f43e5e 275
03639978 276 if (!cpufreq_this_cpu_can_update(policy_dbs->policy))
674e7541
VK
277 return;
278
70f43e5e 279 /*
9be4fd2c
RW
280 * The work may not be allowed to be queued up right now.
281 * Possible reasons:
282 * - Work has already been queued up or is in progress.
9be4fd2c 283 * - It is too early (too little time from the previous sample).
70f43e5e 284 */
e4db2813
RW
285 if (policy_dbs->work_in_progress)
286 return;
287
288 /*
289 * If the reads below are reordered before the check above, the value
290 * of sample_delay_ns used in the computation may be stale.
291 */
292 smp_rmb();
27de3482
RW
293 lst = READ_ONCE(policy_dbs->last_sample_time);
294 delta_ns = time - lst;
e4db2813
RW
295 if ((s64)delta_ns < policy_dbs->sample_delay_ns)
296 return;
297
298 /*
299 * If the policy is not shared, the irq_work may be queued up right away
300 * at this point. Otherwise, we need to ensure that only one of the
301 * CPUs sharing the policy will do that.
302 */
27de3482
RW
303 if (policy_dbs->is_shared) {
304 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
305 return;
306
307 /*
308 * If another CPU updated last_sample_time in the meantime, we
309 * shouldn't be here, so clear the work counter and bail out.
310 */
311 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
312 atomic_set(&policy_dbs->work_count, 0);
313 return;
314 }
315 }
e4db2813
RW
316
317 policy_dbs->last_sample_time = time;
318 policy_dbs->work_in_progress = true;
319 irq_work_queue(&policy_dbs->irq_work);
43e0ee36 320}
4447266b 321
0bed612b
RW
322static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
323 unsigned int delay_us)
324{
325 struct cpufreq_policy *policy = policy_dbs->policy;
326 int cpu;
327
328 gov_update_sample_delay(policy_dbs, delay_us);
329 policy_dbs->last_sample_time = 0;
330
331 for_each_cpu(cpu, policy->cpus) {
332 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
333
334 cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
335 dbs_update_util_handler);
336 }
337}
338
339static inline void gov_clear_update_util(struct cpufreq_policy *policy)
340{
341 int i;
342
343 for_each_cpu(i, policy->cpus)
344 cpufreq_remove_update_util_hook(i);
345
cc69b389 346 synchronize_rcu();
0bed612b
RW
347}
348
bc505475
RW
349static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
350 struct dbs_governor *gov)
44152cb8 351{
e40e7b25 352 struct policy_dbs_info *policy_dbs;
44152cb8
VK
353 int j;
354
7d5a9956
RW
355 /* Allocate memory for per-policy governor data. */
356 policy_dbs = gov->alloc();
e40e7b25 357 if (!policy_dbs)
bc505475 358 return NULL;
44152cb8 359
581c214b 360 policy_dbs->policy = policy;
26f0dbc9 361 mutex_init(&policy_dbs->update_mutex);
686cc637 362 atomic_set(&policy_dbs->work_count, 0);
e40e7b25
RW
363 init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
364 INIT_WORK(&policy_dbs->work, dbs_work_handler);
cea6a9e7
RW
365
366 /* Set policy_dbs for all CPUs, online+offline */
367 for_each_cpu(j, policy->related_cpus) {
8c8f77fd 368 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
cea6a9e7
RW
369
370 j_cdbs->policy_dbs = policy_dbs;
cea6a9e7 371 }
bc505475 372 return policy_dbs;
44152cb8
VK
373}
374
8c8f77fd 375static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
7bdad34d 376 struct dbs_governor *gov)
44152cb8 377{
44152cb8
VK
378 int j;
379
26f0dbc9 380 mutex_destroy(&policy_dbs->update_mutex);
5e4500d8 381
8c8f77fd
RW
382 for_each_cpu(j, policy_dbs->policy->related_cpus) {
383 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
44152cb8 384
cea6a9e7
RW
385 j_cdbs->policy_dbs = NULL;
386 j_cdbs->update_util.func = NULL;
387 }
7d5a9956 388 gov->free(policy_dbs);
44152cb8
VK
389}
390
e788892b 391int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
4471a34f 392{
ea59ee0d 393 struct dbs_governor *gov = dbs_governor_of(policy);
1112e9d8 394 struct dbs_data *dbs_data;
bc505475 395 struct policy_dbs_info *policy_dbs;
1112e9d8 396 int ret = 0;
4471a34f 397
a72c4959
VK
398 /* State should be equivalent to EXIT */
399 if (policy->governor_data)
400 return -EBUSY;
401
bc505475
RW
402 policy_dbs = alloc_policy_dbs_info(policy, gov);
403 if (!policy_dbs)
404 return -ENOMEM;
44152cb8 405
1112e9d8
RW
406 /* Protect gov->gdbs_data against concurrent updates. */
407 mutex_lock(&gov_dbs_data_mutex);
408
409 dbs_data = gov->gdbs_data;
bc505475
RW
410 if (dbs_data) {
411 if (WARN_ON(have_governor_per_policy())) {
412 ret = -EINVAL;
413 goto free_policy_dbs_info;
414 }
bc505475
RW
415 policy_dbs->dbs_data = dbs_data;
416 policy->governor_data = policy_dbs;
c54df071 417
0dd3c1d6 418 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
1112e9d8 419 goto out;
714a2d9c 420 }
4d5dcc42 421
714a2d9c 422 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
bc505475
RW
423 if (!dbs_data) {
424 ret = -ENOMEM;
425 goto free_policy_dbs_info;
426 }
44152cb8 427
0dd3c1d6 428 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
4d5dcc42 429
9a15fb2c 430 ret = gov->init(dbs_data);
714a2d9c 431 if (ret)
e40e7b25 432 goto free_policy_dbs_info;
4d5dcc42 433
56026645
RW
434 /*
435 * The sampling interval should not be less than the transition latency
436 * of the CPU and it also cannot be too small for dbs_update() to work
437 * correctly.
438 */
439 dbs_data->sampling_rate = max_t(unsigned int,
440 CPUFREQ_DBS_MIN_SAMPLING_INTERVAL,
441 cpufreq_policy_transition_delay_us(policy));
2361be23 442
8eec1020 443 if (!have_governor_per_policy())
7bdad34d 444 gov->gdbs_data = dbs_data;
4d5dcc42 445
c54df071 446 policy_dbs->dbs_data = dbs_data;
0dd3c1d6 447 policy->governor_data = policy_dbs;
c54df071 448
c4435630 449 gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
0dd3c1d6 450 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
c4435630
VK
451 get_governor_parent_kobj(policy),
452 "%s", gov->gov.name);
fafd5e8a 453 if (!ret)
1112e9d8 454 goto out;
4d5dcc42 455
fafd5e8a 456 /* Failure, so roll back. */
666f4ccc 457 pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
4d5dcc42 458
4ebe36c9
VK
459 kobject_put(&dbs_data->attr_set.kobj);
460
e4b133cc
VK
461 policy->governor_data = NULL;
462
8eec1020 463 if (!have_governor_per_policy())
7bdad34d 464 gov->gdbs_data = NULL;
9a15fb2c 465 gov->exit(dbs_data);
bc505475
RW
466 kfree(dbs_data);
467
e40e7b25 468free_policy_dbs_info:
8c8f77fd 469 free_policy_dbs_info(policy_dbs, gov);
1112e9d8
RW
470
471out:
472 mutex_unlock(&gov_dbs_data_mutex);
714a2d9c
VK
473 return ret;
474}
e788892b 475EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
4d5dcc42 476
e788892b 477void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
714a2d9c 478{
ea59ee0d 479 struct dbs_governor *gov = dbs_governor_of(policy);
bc505475
RW
480 struct policy_dbs_info *policy_dbs = policy->governor_data;
481 struct dbs_data *dbs_data = policy_dbs->dbs_data;
0dd3c1d6 482 unsigned int count;
a72c4959 483
1112e9d8
RW
484 /* Protect gov->gdbs_data against concurrent updates. */
485 mutex_lock(&gov_dbs_data_mutex);
486
0dd3c1d6 487 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
2361be23 488
0dd3c1d6 489 policy->governor_data = NULL;
e4b133cc 490
0dd3c1d6 491 if (!count) {
8eec1020 492 if (!have_governor_per_policy())
7bdad34d 493 gov->gdbs_data = NULL;
4471a34f 494
9a15fb2c 495 gov->exit(dbs_data);
714a2d9c 496 kfree(dbs_data);
4d5dcc42 497 }
44152cb8 498
8c8f77fd 499 free_policy_dbs_info(policy_dbs, gov);
1112e9d8
RW
500
501 mutex_unlock(&gov_dbs_data_mutex);
714a2d9c 502}
e788892b 503EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
4d5dcc42 504
e788892b 505int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
714a2d9c 506{
ea59ee0d 507 struct dbs_governor *gov = dbs_governor_of(policy);
bc505475
RW
508 struct policy_dbs_info *policy_dbs = policy->governor_data;
509 struct dbs_data *dbs_data = policy_dbs->dbs_data;
702c9e54 510 unsigned int sampling_rate, ignore_nice, j;
8847e038 511 unsigned int io_busy;
714a2d9c
VK
512
513 if (!policy->cur)
514 return -EINVAL;
515
e4db2813 516 policy_dbs->is_shared = policy_is_shared(policy);
57dc3bcd 517 policy_dbs->rate_mult = 1;
e4db2813 518
ff4b1789
VK
519 sampling_rate = dbs_data->sampling_rate;
520 ignore_nice = dbs_data->ignore_nice_load;
8847e038 521 io_busy = dbs_data->io_is_busy;
4471a34f 522
714a2d9c 523 for_each_cpu(j, policy->cpus) {
8c8f77fd 524 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
4471a34f 525
b4f4b4b3 526 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
ba1ca654
RW
527 /*
528 * Make the first invocation of dbs_update() compute the load.
529 */
530 j_cdbs->prev_load = 0;
18b46abd 531
714a2d9c
VK
532 if (ignore_nice)
533 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
714a2d9c 534 }
2abfa876 535
702c9e54 536 gov->start(policy);
4471a34f 537
e40e7b25 538 gov_set_update_util(policy_dbs, sampling_rate);
714a2d9c
VK
539 return 0;
540}
e788892b 541EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
714a2d9c 542
e788892b 543void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
714a2d9c 544{
f6709b8a
RW
545 struct policy_dbs_info *policy_dbs = policy->governor_data;
546
547 gov_clear_update_util(policy_dbs->policy);
548 irq_work_sync(&policy_dbs->irq_work);
549 cancel_work_sync(&policy_dbs->work);
550 atomic_set(&policy_dbs->work_count, 0);
551 policy_dbs->work_in_progress = false;
714a2d9c 552}
e788892b 553EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
4471a34f 554
e788892b 555void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
714a2d9c 556{
2a3eb51e
HW
557 struct policy_dbs_info *policy_dbs;
558
559 /* Protect gov->gdbs_data against cpufreq_dbs_governor_exit() */
560 mutex_lock(&gov_dbs_data_mutex);
561 policy_dbs = policy->governor_data;
562 if (!policy_dbs)
563 goto out;
8eeed095 564
26f0dbc9 565 mutex_lock(&policy_dbs->update_mutex);
bf2be2de 566 cpufreq_policy_apply_limits(policy);
4cccf755 567 gov_update_sample_delay(policy_dbs, 0);
26f0dbc9 568 mutex_unlock(&policy_dbs->update_mutex);
2a3eb51e
HW
569
570out:
571 mutex_unlock(&gov_dbs_data_mutex);
4471a34f 572}
e788892b 573EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);