Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/vapier...
[linux-2.6-block.git] / drivers / cpufreq / cpufreq_conservative.c
CommitLineData
b9170836
DJ
1/*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
11a80a9c 7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
b9170836
DJ
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
b9170836 16#include <linux/init.h>
b9170836 17#include <linux/cpufreq.h>
138a0128 18#include <linux/cpu.h>
b9170836
DJ
19#include <linux/jiffies.h>
20#include <linux/kernel_stat.h>
3fc54d37 21#include <linux/mutex.h>
8e677ce8
AC
22#include <linux/hrtimer.h>
23#include <linux/tick.h>
24#include <linux/ktime.h>
25#include <linux/sched.h>
26
b9170836
DJ
27/*
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
30 */
31
32#define DEF_FREQUENCY_UP_THRESHOLD (80)
b9170836 33#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
b9170836 34
18a7247d
DJ
35/*
36 * The polling frequency of this governor depends on the capability of
b9170836 37 * the processor. Default polling frequency is 1000 times the transition
18a7247d
DJ
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
b9170836 40 * rate.
8e677ce8
AC
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
b9170836
DJ
43 * All times here are in uS.
44 */
2c906b31 45#define MIN_SAMPLING_RATE_RATIO (2)
112124ab 46
cef9615a
TR
47static unsigned int min_sampling_rate;
48
112124ab 49#define LATENCY_MULTIPLIER (1000)
cef9615a 50#define MIN_LATENCY_MULTIPLIER (100)
2c906b31
AC
51#define DEF_SAMPLING_DOWN_FACTOR (1)
52#define MAX_SAMPLING_DOWN_FACTOR (10)
1c256245 53#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
b9170836 54
c4028958 55static void do_dbs_timer(struct work_struct *work);
b9170836
DJ
56
57struct cpu_dbs_info_s {
8e677ce8
AC
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
18a7247d 61 struct cpufreq_policy *cur_policy;
8e677ce8 62 struct delayed_work work;
18a7247d
DJ
63 unsigned int down_skip;
64 unsigned int requested_freq;
8e677ce8
AC
65 int cpu;
66 unsigned int enable:1;
ee88415c 67 /*
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
71 */
72 struct mutex timer_mutex;
b9170836 73};
245b2e70 74static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
b9170836
DJ
75
76static unsigned int dbs_enable; /* number of CPUs using this policy */
77
4ec223d0 78/*
326c86de 79 * dbs_mutex protects dbs_enable in governor start/stop.
4ec223d0 80 */
9acef487 81static DEFINE_MUTEX(dbs_mutex);
b9170836 82
8e677ce8 83static struct dbs_tuners {
18a7247d
DJ
84 unsigned int sampling_rate;
85 unsigned int sampling_down_factor;
86 unsigned int up_threshold;
87 unsigned int down_threshold;
88 unsigned int ignore_nice;
89 unsigned int freq_step;
8e677ce8 90} dbs_tuners_ins = {
18a7247d
DJ
91 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
94 .ignore_nice = 0,
95 .freq_step = 5,
b9170836
DJ
96};
97
8e677ce8
AC
98static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
99 cputime64_t *wall)
dac1c1a5 100{
8e677ce8
AC
101 cputime64_t idle_time;
102 cputime64_t cur_wall_time;
103 cputime64_t busy_time;
104
105 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
106 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
107 kstat_cpu(cpu).cpustat.system);
e08f5f5b 108
8e677ce8
AC
109 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
110 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
111 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
112 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
e08f5f5b 113
8e677ce8
AC
114 idle_time = cputime64_sub(cur_wall_time, busy_time);
115 if (wall)
54c9a35d 116 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
e08f5f5b 117
2feb690c 118 return (cputime64_t)jiffies_to_usecs(idle_time);
8e677ce8
AC
119}
120
121static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
122{
123 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
124
125 if (idle_time == -1ULL)
126 return get_cpu_idle_time_jiffy(cpu, wall);
127
128 return idle_time;
dac1c1a5
DJ
129}
130
a8d7c3bc
EO
131/* keep track of frequency transitions */
132static int
133dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
134 void *data)
135{
136 struct cpufreq_freqs *freq = data;
245b2e70 137 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
a8d7c3bc
EO
138 freq->cpu);
139
f407a08b
AC
140 struct cpufreq_policy *policy;
141
a8d7c3bc
EO
142 if (!this_dbs_info->enable)
143 return 0;
144
f407a08b
AC
145 policy = this_dbs_info->cur_policy;
146
147 /*
148 * we only care if our internally tracked freq moves outside
149 * the 'valid' ranges of freqency available to us otherwise
150 * we do not change it
151 */
152 if (this_dbs_info->requested_freq > policy->max
153 || this_dbs_info->requested_freq < policy->min)
154 this_dbs_info->requested_freq = freq->new;
a8d7c3bc
EO
155
156 return 0;
157}
158
159static struct notifier_block dbs_cpufreq_notifier_block = {
160 .notifier_call = dbs_cpufreq_notifier
161};
162
b9170836 163/************************** sysfs interface ************************/
49b015ce
TR
164static ssize_t show_sampling_rate_min(struct kobject *kobj,
165 struct attribute *attr, char *buf)
b9170836 166{
cef9615a 167 return sprintf(buf, "%u\n", min_sampling_rate);
b9170836
DJ
168}
169
6dad2a29 170define_one_global_ro(sampling_rate_min);
b9170836
DJ
171
172/* cpufreq_conservative Governor Tunables */
173#define show_one(file_name, object) \
174static ssize_t show_##file_name \
49b015ce 175(struct kobject *kobj, struct attribute *attr, char *buf) \
b9170836
DJ
176{ \
177 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
178}
179show_one(sampling_rate, sampling_rate);
180show_one(sampling_down_factor, sampling_down_factor);
181show_one(up_threshold, up_threshold);
182show_one(down_threshold, down_threshold);
001893cd 183show_one(ignore_nice_load, ignore_nice);
b9170836
DJ
184show_one(freq_step, freq_step);
185
49b015ce
TR
186static ssize_t store_sampling_down_factor(struct kobject *a,
187 struct attribute *b,
188 const char *buf, size_t count)
b9170836
DJ
189{
190 unsigned int input;
191 int ret;
9acef487 192 ret = sscanf(buf, "%u", &input);
8e677ce8 193
2c906b31 194 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
b9170836
DJ
195 return -EINVAL;
196
b9170836 197 dbs_tuners_ins.sampling_down_factor = input;
b9170836
DJ
198 return count;
199}
200
49b015ce
TR
201static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
202 const char *buf, size_t count)
b9170836
DJ
203{
204 unsigned int input;
205 int ret;
9acef487 206 ret = sscanf(buf, "%u", &input);
b9170836 207
8e677ce8 208 if (ret != 1)
b9170836 209 return -EINVAL;
8e677ce8 210
cef9615a 211 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
b9170836
DJ
212 return count;
213}
214
49b015ce
TR
215static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
216 const char *buf, size_t count)
b9170836
DJ
217{
218 unsigned int input;
219 int ret;
9acef487 220 ret = sscanf(buf, "%u", &input);
b9170836 221
9acef487 222 if (ret != 1 || input > 100 ||
326c86de 223 input <= dbs_tuners_ins.down_threshold)
b9170836 224 return -EINVAL;
b9170836
DJ
225
226 dbs_tuners_ins.up_threshold = input;
b9170836
DJ
227 return count;
228}
229
49b015ce
TR
230static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
231 const char *buf, size_t count)
b9170836
DJ
232{
233 unsigned int input;
234 int ret;
9acef487 235 ret = sscanf(buf, "%u", &input);
b9170836 236
8e677ce8
AC
237 /* cannot be lower than 11 otherwise freq will not fall */
238 if (ret != 1 || input < 11 || input > 100 ||
326c86de 239 input >= dbs_tuners_ins.up_threshold)
b9170836 240 return -EINVAL;
b9170836
DJ
241
242 dbs_tuners_ins.down_threshold = input;
b9170836
DJ
243 return count;
244}
245
49b015ce
TR
246static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
247 const char *buf, size_t count)
b9170836
DJ
248{
249 unsigned int input;
250 int ret;
251
252 unsigned int j;
18a7247d
DJ
253
254 ret = sscanf(buf, "%u", &input);
255 if (ret != 1)
b9170836
DJ
256 return -EINVAL;
257
18a7247d 258 if (input > 1)
b9170836 259 input = 1;
18a7247d 260
326c86de 261 if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
b9170836 262 return count;
326c86de 263
b9170836
DJ
264 dbs_tuners_ins.ignore_nice = input;
265
8e677ce8 266 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 267 for_each_online_cpu(j) {
8e677ce8 268 struct cpu_dbs_info_s *dbs_info;
245b2e70 269 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
8e677ce8
AC
270 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
271 &dbs_info->prev_cpu_wall);
272 if (dbs_tuners_ins.ignore_nice)
273 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
b9170836 274 }
b9170836
DJ
275 return count;
276}
277
49b015ce
TR
278static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
279 const char *buf, size_t count)
b9170836
DJ
280{
281 unsigned int input;
282 int ret;
18a7247d 283 ret = sscanf(buf, "%u", &input);
b9170836 284
18a7247d 285 if (ret != 1)
b9170836
DJ
286 return -EINVAL;
287
18a7247d 288 if (input > 100)
b9170836 289 input = 100;
18a7247d 290
b9170836
DJ
291 /* no need to test here if freq_step is zero as the user might actually
292 * want this, they would be crazy though :) */
b9170836 293 dbs_tuners_ins.freq_step = input;
b9170836
DJ
294 return count;
295}
296
6dad2a29
BP
297define_one_global_rw(sampling_rate);
298define_one_global_rw(sampling_down_factor);
299define_one_global_rw(up_threshold);
300define_one_global_rw(down_threshold);
301define_one_global_rw(ignore_nice_load);
302define_one_global_rw(freq_step);
b9170836 303
9acef487 304static struct attribute *dbs_attributes[] = {
b9170836
DJ
305 &sampling_rate_min.attr,
306 &sampling_rate.attr,
307 &sampling_down_factor.attr,
308 &up_threshold.attr,
309 &down_threshold.attr,
001893cd 310 &ignore_nice_load.attr,
b9170836
DJ
311 &freq_step.attr,
312 NULL
313};
314
315static struct attribute_group dbs_attr_group = {
316 .attrs = dbs_attributes,
317 .name = "conservative",
318};
319
320/************************** sysfs end ************************/
321
8e677ce8 322static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
b9170836 323{
8e677ce8 324 unsigned int load = 0;
fd187aaf 325 unsigned int max_load = 0;
f068c04b 326 unsigned int freq_target;
b9170836 327
8e677ce8
AC
328 struct cpufreq_policy *policy;
329 unsigned int j;
b9170836 330
08a28e2e
AC
331 policy = this_dbs_info->cur_policy;
332
18a7247d 333 /*
8e677ce8
AC
334 * Every sampling_rate, we check, if current idle time is less
335 * than 20% (default), then we try to increase frequency
336 * Every sampling_rate*sampling_down_factor, we check, if current
337 * idle time is more than 80%, then we try to decrease frequency
b9170836 338 *
18a7247d
DJ
339 * Any frequency increase takes it to the maximum frequency.
340 * Frequency reduction happens at minimum steps of
8e677ce8 341 * 5% (default) of maximum frequency
b9170836
DJ
342 */
343
8e677ce8
AC
344 /* Get Absolute Load */
345 for_each_cpu(j, policy->cpus) {
346 struct cpu_dbs_info_s *j_dbs_info;
347 cputime64_t cur_wall_time, cur_idle_time;
348 unsigned int idle_time, wall_time;
b9170836 349
245b2e70 350 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
8e677ce8
AC
351
352 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
353
354 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
355 j_dbs_info->prev_cpu_wall);
356 j_dbs_info->prev_cpu_wall = cur_wall_time;
08a28e2e 357
8e677ce8
AC
358 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
359 j_dbs_info->prev_cpu_idle);
360 j_dbs_info->prev_cpu_idle = cur_idle_time;
b9170836 361
8e677ce8
AC
362 if (dbs_tuners_ins.ignore_nice) {
363 cputime64_t cur_nice;
364 unsigned long cur_nice_jiffies;
365
366 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
367 j_dbs_info->prev_cpu_nice);
368 /*
369 * Assumption: nice time between sampling periods will
370 * be less than 2^32 jiffies for 32 bit sys
371 */
372 cur_nice_jiffies = (unsigned long)
373 cputime64_to_jiffies64(cur_nice);
374
375 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
376 idle_time += jiffies_to_usecs(cur_nice_jiffies);
377 }
378
379 if (unlikely(!wall_time || wall_time < idle_time))
380 continue;
381
382 load = 100 * (wall_time - idle_time) / wall_time;
fd187aaf
DB
383
384 if (load > max_load)
385 max_load = load;
8e677ce8
AC
386 }
387
388 /*
389 * break out if we 'cannot' reduce the speed as the user might
390 * want freq_step to be zero
391 */
392 if (dbs_tuners_ins.freq_step == 0)
393 return;
b9170836 394
8e677ce8 395 /* Check for frequency increase */
fd187aaf 396 if (max_load > dbs_tuners_ins.up_threshold) {
a159b827 397 this_dbs_info->down_skip = 0;
790d76fa 398
b9170836 399 /* if we are already at full speed then break out early */
a159b827 400 if (this_dbs_info->requested_freq == policy->max)
b9170836 401 return;
18a7247d 402
f068c04b 403 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836
DJ
404
405 /* max freq cannot be less than 100. But who knows.... */
f068c04b
DJ
406 if (unlikely(freq_target == 0))
407 freq_target = 5;
18a7247d 408
f068c04b 409 this_dbs_info->requested_freq += freq_target;
a159b827
AC
410 if (this_dbs_info->requested_freq > policy->max)
411 this_dbs_info->requested_freq = policy->max;
b9170836 412
a159b827 413 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
b9170836 414 CPUFREQ_RELATION_H);
b9170836
DJ
415 return;
416 }
417
8e677ce8
AC
418 /*
419 * The optimal frequency is the frequency that is the lowest that
420 * can support the current CPU usage without triggering the up
421 * policy. To be safe, we focus 10 points under the threshold.
422 */
fd187aaf 423 if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
f068c04b 424 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836 425
f068c04b 426 this_dbs_info->requested_freq -= freq_target;
a159b827
AC
427 if (this_dbs_info->requested_freq < policy->min)
428 this_dbs_info->requested_freq = policy->min;
b9170836 429
8e677ce8
AC
430 /*
431 * if we cannot reduce the frequency anymore, break out early
432 */
433 if (policy->cur == policy->min)
434 return;
435
a159b827 436 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
2c906b31 437 CPUFREQ_RELATION_H);
b9170836
DJ
438 return;
439 }
440}
441
c4028958 442static void do_dbs_timer(struct work_struct *work)
18a7247d 443{
8e677ce8
AC
444 struct cpu_dbs_info_s *dbs_info =
445 container_of(work, struct cpu_dbs_info_s, work.work);
446 unsigned int cpu = dbs_info->cpu;
447
448 /* We want all CPUs to do sampling nearly on same jiffy */
449 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
450
451 delay -= jiffies % delay;
452
ee88415c 453 mutex_lock(&dbs_info->timer_mutex);
8e677ce8
AC
454
455 dbs_check_cpu(dbs_info);
456
57df5573 457 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
ee88415c 458 mutex_unlock(&dbs_info->timer_mutex);
18a7247d 459}
b9170836 460
8e677ce8 461static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
b9170836 462{
8e677ce8
AC
463 /* We want all CPUs to do sampling nearly on same jiffy */
464 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
465 delay -= jiffies % delay;
466
467 dbs_info->enable = 1;
468 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
57df5573 469 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
b9170836
DJ
470}
471
8e677ce8 472static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
b9170836 473{
8e677ce8 474 dbs_info->enable = 0;
b253d2b2 475 cancel_delayed_work_sync(&dbs_info->work);
b9170836
DJ
476}
477
478static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
479 unsigned int event)
480{
481 unsigned int cpu = policy->cpu;
482 struct cpu_dbs_info_s *this_dbs_info;
483 unsigned int j;
914f7c31 484 int rc;
b9170836 485
245b2e70 486 this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
b9170836
DJ
487
488 switch (event) {
489 case CPUFREQ_GOV_START:
18a7247d 490 if ((!cpu_online(cpu)) || (!policy->cur))
b9170836
DJ
491 return -EINVAL;
492
3fc54d37 493 mutex_lock(&dbs_mutex);
914f7c31 494
835481d9 495 for_each_cpu(j, policy->cpus) {
b9170836 496 struct cpu_dbs_info_s *j_dbs_info;
245b2e70 497 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
b9170836 498 j_dbs_info->cur_policy = policy;
18a7247d 499
8e677ce8
AC
500 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
501 &j_dbs_info->prev_cpu_wall);
502 if (dbs_tuners_ins.ignore_nice) {
503 j_dbs_info->prev_cpu_nice =
504 kstat_cpu(j).cpustat.nice;
505 }
b9170836 506 }
a159b827
AC
507 this_dbs_info->down_skip = 0;
508 this_dbs_info->requested_freq = policy->cur;
914f7c31 509
ee88415c 510 mutex_init(&this_dbs_info->timer_mutex);
b9170836
DJ
511 dbs_enable++;
512 /*
513 * Start the timerschedule work, when this governor
514 * is used for first time
515 */
516 if (dbs_enable == 1) {
517 unsigned int latency;
518 /* policy latency is in nS. Convert it to uS first */
2c906b31
AC
519 latency = policy->cpuinfo.transition_latency / 1000;
520 if (latency == 0)
521 latency = 1;
b9170836 522
49b015ce
TR
523 rc = sysfs_create_group(cpufreq_global_kobject,
524 &dbs_attr_group);
525 if (rc) {
526 mutex_unlock(&dbs_mutex);
527 return rc;
528 }
529
cef9615a
TR
530 /*
531 * conservative does not implement micro like ondemand
532 * governor, thus we are bound to jiffes/HZ
533 */
534 min_sampling_rate =
535 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
536 /* Bring kernel and HW constraints together */
537 min_sampling_rate = max(min_sampling_rate,
538 MIN_LATENCY_MULTIPLIER * latency);
539 dbs_tuners_ins.sampling_rate =
540 max(min_sampling_rate,
541 latency * LATENCY_MULTIPLIER);
b9170836 542
a8d7c3bc
EO
543 cpufreq_register_notifier(
544 &dbs_cpufreq_notifier_block,
545 CPUFREQ_TRANSITION_NOTIFIER);
b9170836 546 }
3fc54d37 547 mutex_unlock(&dbs_mutex);
8e677ce8 548
7d26e2d5 549 dbs_timer_init(this_dbs_info);
550
b9170836
DJ
551 break;
552
553 case CPUFREQ_GOV_STOP:
8e677ce8 554 dbs_timer_exit(this_dbs_info);
7d26e2d5 555
556 mutex_lock(&dbs_mutex);
b9170836 557 dbs_enable--;
ee88415c 558 mutex_destroy(&this_dbs_info->timer_mutex);
8e677ce8 559
b9170836
DJ
560 /*
561 * Stop the timerschedule work, when this governor
562 * is used for first time
563 */
8e677ce8 564 if (dbs_enable == 0)
a8d7c3bc
EO
565 cpufreq_unregister_notifier(
566 &dbs_cpufreq_notifier_block,
567 CPUFREQ_TRANSITION_NOTIFIER);
a8d7c3bc 568
3fc54d37 569 mutex_unlock(&dbs_mutex);
49b015ce
TR
570 if (!dbs_enable)
571 sysfs_remove_group(cpufreq_global_kobject,
572 &dbs_attr_group);
b9170836
DJ
573
574 break;
575
576 case CPUFREQ_GOV_LIMITS:
ee88415c 577 mutex_lock(&this_dbs_info->timer_mutex);
b9170836
DJ
578 if (policy->max < this_dbs_info->cur_policy->cur)
579 __cpufreq_driver_target(
580 this_dbs_info->cur_policy,
18a7247d 581 policy->max, CPUFREQ_RELATION_H);
b9170836
DJ
582 else if (policy->min > this_dbs_info->cur_policy->cur)
583 __cpufreq_driver_target(
584 this_dbs_info->cur_policy,
18a7247d 585 policy->min, CPUFREQ_RELATION_L);
ee88415c 586 mutex_unlock(&this_dbs_info->timer_mutex);
8e677ce8 587
b9170836
DJ
588 break;
589 }
590 return 0;
591}
592
c4d14bc0
SW
593#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
594static
595#endif
1c256245
TR
596struct cpufreq_governor cpufreq_gov_conservative = {
597 .name = "conservative",
598 .governor = cpufreq_governor_dbs,
599 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
600 .owner = THIS_MODULE,
b9170836
DJ
601};
602
603static int __init cpufreq_gov_dbs_init(void)
604{
57df5573 605 return cpufreq_register_governor(&cpufreq_gov_conservative);
b9170836
DJ
606}
607
608static void __exit cpufreq_gov_dbs_exit(void)
609{
1c256245 610 cpufreq_unregister_governor(&cpufreq_gov_conservative);
b9170836
DJ
611}
612
613
11a80a9c 614MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
9acef487 615MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
b9170836
DJ
616 "Low Latency Frequency Transition capable processors "
617 "optimised for use in a battery environment");
9acef487 618MODULE_LICENSE("GPL");
b9170836 619
6915719b
JW
620#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
621fs_initcall(cpufreq_gov_dbs_init);
622#else
b9170836 623module_init(cpufreq_gov_dbs_init);
6915719b 624#endif
b9170836 625module_exit(cpufreq_gov_dbs_exit);