Btrfs: Introduce BTRFS_BLOCK_GROUP_RAID56_MASK to check raid56 simply
[linux-2.6-block.git] / drivers / cpufreq / arm_big_little.c
CommitLineData
8a67f0ef
VK
1/*
2 * ARM big.LITTLE Platforms CPUFreq support
3 *
4 * Copyright (C) 2013 ARM Ltd.
5 * Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
6 *
7 * Copyright (C) 2013 Linaro.
8 * Viresh Kumar <viresh.kumar@linaro.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
15 * kind, whether express or implied; without even the implied warranty
16 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include <linux/clk.h>
23#include <linux/cpu.h>
24#include <linux/cpufreq.h>
25#include <linux/cpumask.h>
26#include <linux/export.h>
39c8bbaf 27#include <linux/module.h>
e79a23c5 28#include <linux/mutex.h>
8a67f0ef 29#include <linux/of_platform.h>
e4db1c74 30#include <linux/pm_opp.h>
8a67f0ef
VK
31#include <linux/slab.h>
32#include <linux/topology.h>
33#include <linux/types.h>
e79a23c5 34#include <asm/bL_switcher.h>
8a67f0ef
VK
35
36#include "arm_big_little.h"
37
38/* Currently we support only two clusters */
e79a23c5
VK
39#define A15_CLUSTER 0
40#define A7_CLUSTER 1
8a67f0ef
VK
41#define MAX_CLUSTERS 2
42
e79a23c5 43#ifdef CONFIG_BL_SWITCHER
45cac118
NP
44static bool bL_switching_enabled;
45#define is_bL_switching_enabled() bL_switching_enabled
46#define set_switching_enabled(x) (bL_switching_enabled = (x))
e79a23c5
VK
47#else
48#define is_bL_switching_enabled() false
45cac118 49#define set_switching_enabled(x) do { } while (0)
e79a23c5
VK
50#endif
51
52#define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq)
53#define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
54
8a67f0ef
VK
55static struct cpufreq_arm_bL_ops *arm_bL_ops;
56static struct clk *clk[MAX_CLUSTERS];
e79a23c5
VK
57static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
58static atomic_t cluster_usage[MAX_CLUSTERS + 1];
59
60static unsigned int clk_big_min; /* (Big) clock frequencies */
61static unsigned int clk_little_max; /* Maximum clock frequency (Little) */
62
63static DEFINE_PER_CPU(unsigned int, physical_cluster);
64static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
65
66static struct mutex cluster_lock[MAX_CLUSTERS];
67
68static inline int raw_cpu_to_cluster(int cpu)
69{
70 return topology_physical_package_id(cpu);
71}
72
73static inline int cpu_to_cluster(int cpu)
74{
75 return is_bL_switching_enabled() ?
76 MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
77}
78
79static unsigned int find_cluster_maxfreq(int cluster)
80{
81 int j;
82 u32 max_freq = 0, cpu_freq;
83
84 for_each_online_cpu(j) {
85 cpu_freq = per_cpu(cpu_last_req_freq, j);
86
87 if ((cluster == per_cpu(physical_cluster, j)) &&
88 (max_freq < cpu_freq))
89 max_freq = cpu_freq;
90 }
91
92 pr_debug("%s: cluster: %d, max freq: %d\n", __func__, cluster,
93 max_freq);
94
95 return max_freq;
96}
97
98static unsigned int clk_get_cpu_rate(unsigned int cpu)
99{
100 u32 cur_cluster = per_cpu(physical_cluster, cpu);
101 u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
102
103 /* For switcher we use virtual A7 clock rates */
104 if (is_bL_switching_enabled())
105 rate = VIRT_FREQ(cur_cluster, rate);
106
107 pr_debug("%s: cpu: %d, cluster: %d, freq: %u\n", __func__, cpu,
108 cur_cluster, rate);
109
110 return rate;
111}
112
113static unsigned int bL_cpufreq_get_rate(unsigned int cpu)
114{
115 if (is_bL_switching_enabled()) {
116 pr_debug("%s: freq: %d\n", __func__, per_cpu(cpu_last_req_freq,
117 cpu));
118
119 return per_cpu(cpu_last_req_freq, cpu);
120 } else {
121 return clk_get_cpu_rate(cpu);
122 }
123}
8a67f0ef 124
e79a23c5
VK
125static unsigned int
126bL_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
8a67f0ef 127{
e79a23c5
VK
128 u32 new_rate, prev_rate;
129 int ret;
130 bool bLs = is_bL_switching_enabled();
131
132 mutex_lock(&cluster_lock[new_cluster]);
133
134 if (bLs) {
135 prev_rate = per_cpu(cpu_last_req_freq, cpu);
136 per_cpu(cpu_last_req_freq, cpu) = rate;
137 per_cpu(physical_cluster, cpu) = new_cluster;
138
139 new_rate = find_cluster_maxfreq(new_cluster);
140 new_rate = ACTUAL_FREQ(new_cluster, new_rate);
141 } else {
142 new_rate = rate;
143 }
144
145 pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d, freq: %d\n",
146 __func__, cpu, old_cluster, new_cluster, new_rate);
147
148 ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
149 if (WARN_ON(ret)) {
150 pr_err("clk_set_rate failed: %d, new cluster: %d\n", ret,
151 new_cluster);
152 if (bLs) {
153 per_cpu(cpu_last_req_freq, cpu) = prev_rate;
154 per_cpu(physical_cluster, cpu) = old_cluster;
155 }
156
157 mutex_unlock(&cluster_lock[new_cluster]);
158
159 return ret;
160 }
161
162 mutex_unlock(&cluster_lock[new_cluster]);
163
164 /* Recalc freq for old cluster when switching clusters */
165 if (old_cluster != new_cluster) {
166 pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d\n",
167 __func__, cpu, old_cluster, new_cluster);
168
169 /* Switch cluster */
170 bL_switch_request(cpu, new_cluster);
171
172 mutex_lock(&cluster_lock[old_cluster]);
8a67f0ef 173
e79a23c5
VK
174 /* Set freq of old cluster if there are cpus left on it */
175 new_rate = find_cluster_maxfreq(old_cluster);
176 new_rate = ACTUAL_FREQ(old_cluster, new_rate);
177
178 if (new_rate) {
179 pr_debug("%s: Updating rate of old cluster: %d, to freq: %d\n",
180 __func__, old_cluster, new_rate);
181
182 if (clk_set_rate(clk[old_cluster], new_rate * 1000))
183 pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
184 __func__, ret, old_cluster);
185 }
186 mutex_unlock(&cluster_lock[old_cluster]);
187 }
188
189 return 0;
8a67f0ef
VK
190}
191
8a67f0ef
VK
192/* Set clock frequency */
193static int bL_cpufreq_set_target(struct cpufreq_policy *policy,
9c0ebcf7 194 unsigned int index)
8a67f0ef 195{
e79a23c5 196 u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
d4019f0a 197 unsigned int freqs_new;
8a67f0ef 198
e79a23c5
VK
199 cur_cluster = cpu_to_cluster(cpu);
200 new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
8a67f0ef 201
d4019f0a 202 freqs_new = freq_table[cur_cluster][index].frequency;
8a67f0ef 203
e79a23c5
VK
204 if (is_bL_switching_enabled()) {
205 if ((actual_cluster == A15_CLUSTER) &&
d4019f0a 206 (freqs_new < clk_big_min)) {
e79a23c5
VK
207 new_cluster = A7_CLUSTER;
208 } else if ((actual_cluster == A7_CLUSTER) &&
d4019f0a 209 (freqs_new > clk_little_max)) {
e79a23c5
VK
210 new_cluster = A15_CLUSTER;
211 }
212 }
213
d4019f0a 214 return bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs_new);
8a67f0ef
VK
215}
216
e79a23c5
VK
217static inline u32 get_table_count(struct cpufreq_frequency_table *table)
218{
219 int count;
220
221 for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
222 ;
223
224 return count;
225}
226
227/* get the minimum frequency in the cpufreq_frequency_table */
228static inline u32 get_table_min(struct cpufreq_frequency_table *table)
229{
041526f9 230 struct cpufreq_frequency_table *pos;
e79a23c5 231 uint32_t min_freq = ~0;
041526f9
SK
232 cpufreq_for_each_entry(pos, table)
233 if (pos->frequency < min_freq)
234 min_freq = pos->frequency;
e79a23c5
VK
235 return min_freq;
236}
237
238/* get the maximum frequency in the cpufreq_frequency_table */
239static inline u32 get_table_max(struct cpufreq_frequency_table *table)
240{
041526f9 241 struct cpufreq_frequency_table *pos;
e79a23c5 242 uint32_t max_freq = 0;
041526f9
SK
243 cpufreq_for_each_entry(pos, table)
244 if (pos->frequency > max_freq)
245 max_freq = pos->frequency;
e79a23c5
VK
246 return max_freq;
247}
248
249static int merge_cluster_tables(void)
250{
251 int i, j, k = 0, count = 1;
252 struct cpufreq_frequency_table *table;
253
254 for (i = 0; i < MAX_CLUSTERS; i++)
255 count += get_table_count(freq_table[i]);
256
257 table = kzalloc(sizeof(*table) * count, GFP_KERNEL);
258 if (!table)
259 return -ENOMEM;
260
261 freq_table[MAX_CLUSTERS] = table;
262
263 /* Add in reverse order to get freqs in increasing order */
264 for (i = MAX_CLUSTERS - 1; i >= 0; i--) {
265 for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
266 j++) {
267 table[k].frequency = VIRT_FREQ(i,
268 freq_table[i][j].frequency);
269 pr_debug("%s: index: %d, freq: %d\n", __func__, k,
270 table[k].frequency);
271 k++;
272 }
273 }
274
275 table[k].driver_data = k;
276 table[k].frequency = CPUFREQ_TABLE_END;
277
278 pr_debug("%s: End, table: %p, count: %d\n", __func__, table, k);
279
280 return 0;
281}
282
283static void _put_cluster_clk_and_freq_table(struct device *cpu_dev)
284{
285 u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
286
287 if (!freq_table[cluster])
288 return;
289
290 clk_put(clk[cluster]);
291 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
493b4cd2
VK
292 if (arm_bL_ops->free_opp_table)
293 arm_bL_ops->free_opp_table(cpu_dev);
e79a23c5
VK
294 dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster);
295}
296
8a67f0ef
VK
297static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
298{
299 u32 cluster = cpu_to_cluster(cpu_dev->id);
e79a23c5
VK
300 int i;
301
302 if (atomic_dec_return(&cluster_usage[cluster]))
303 return;
304
305 if (cluster < MAX_CLUSTERS)
306 return _put_cluster_clk_and_freq_table(cpu_dev);
8a67f0ef 307
e79a23c5
VK
308 for_each_present_cpu(i) {
309 struct device *cdev = get_cpu_device(i);
310 if (!cdev) {
311 pr_err("%s: failed to get cpu%d device\n", __func__, i);
312 return;
313 }
314
315 _put_cluster_clk_and_freq_table(cdev);
8a67f0ef 316 }
e79a23c5
VK
317
318 /* free virtual table */
319 kfree(freq_table[cluster]);
8a67f0ef
VK
320}
321
e79a23c5 322static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
8a67f0ef 323{
e79a23c5 324 u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
8a67f0ef
VK
325 char name[14] = "cpu-cluster.";
326 int ret;
327
e79a23c5 328 if (freq_table[cluster])
8a67f0ef
VK
329 return 0;
330
331 ret = arm_bL_ops->init_opp_table(cpu_dev);
332 if (ret) {
333 dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n",
334 __func__, cpu_dev->id, ret);
e79a23c5 335 goto out;
8a67f0ef
VK
336 }
337
5d4879cd 338 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
8a67f0ef
VK
339 if (ret) {
340 dev_err(cpu_dev, "%s: failed to init cpufreq table, cpu: %d, err: %d\n",
341 __func__, cpu_dev->id, ret);
493b4cd2 342 goto free_opp_table;
8a67f0ef
VK
343 }
344
345 name[12] = cluster + '0';
076dec90 346 clk[cluster] = clk_get(cpu_dev, name);
8a67f0ef
VK
347 if (!IS_ERR(clk[cluster])) {
348 dev_dbg(cpu_dev, "%s: clk: %p & freq table: %p, cluster: %d\n",
349 __func__, clk[cluster], freq_table[cluster],
350 cluster);
351 return 0;
352 }
353
354 dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
355 __func__, cpu_dev->id, cluster);
356 ret = PTR_ERR(clk[cluster]);
5d4879cd 357 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
8a67f0ef 358
493b4cd2
VK
359free_opp_table:
360 if (arm_bL_ops->free_opp_table)
361 arm_bL_ops->free_opp_table(cpu_dev);
e79a23c5 362out:
8a67f0ef
VK
363 dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
364 cluster);
365 return ret;
366}
367
e79a23c5
VK
368static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
369{
370 u32 cluster = cpu_to_cluster(cpu_dev->id);
371 int i, ret;
372
373 if (atomic_inc_return(&cluster_usage[cluster]) != 1)
374 return 0;
375
376 if (cluster < MAX_CLUSTERS) {
377 ret = _get_cluster_clk_and_freq_table(cpu_dev);
378 if (ret)
379 atomic_dec(&cluster_usage[cluster]);
380 return ret;
381 }
382
383 /*
384 * Get data for all clusters and fill virtual cluster with a merge of
385 * both
386 */
387 for_each_present_cpu(i) {
388 struct device *cdev = get_cpu_device(i);
389 if (!cdev) {
390 pr_err("%s: failed to get cpu%d device\n", __func__, i);
391 return -ENODEV;
392 }
393
394 ret = _get_cluster_clk_and_freq_table(cdev);
395 if (ret)
396 goto put_clusters;
397 }
398
399 ret = merge_cluster_tables();
400 if (ret)
401 goto put_clusters;
402
403 /* Assuming 2 cluster, set clk_big_min and clk_little_max */
404 clk_big_min = get_table_min(freq_table[0]);
405 clk_little_max = VIRT_FREQ(1, get_table_max(freq_table[1]));
406
407 pr_debug("%s: cluster: %d, clk_big_min: %d, clk_little_max: %d\n",
408 __func__, cluster, clk_big_min, clk_little_max);
409
410 return 0;
411
412put_clusters:
413 for_each_present_cpu(i) {
414 struct device *cdev = get_cpu_device(i);
415 if (!cdev) {
416 pr_err("%s: failed to get cpu%d device\n", __func__, i);
417 return -ENODEV;
418 }
419
420 _put_cluster_clk_and_freq_table(cdev);
421 }
422
423 atomic_dec(&cluster_usage[cluster]);
424
425 return ret;
426}
427
8a67f0ef
VK
428/* Per-CPU initialization */
429static int bL_cpufreq_init(struct cpufreq_policy *policy)
430{
431 u32 cur_cluster = cpu_to_cluster(policy->cpu);
432 struct device *cpu_dev;
433 int ret;
434
435 cpu_dev = get_cpu_device(policy->cpu);
436 if (!cpu_dev) {
437 pr_err("%s: failed to get cpu%d device\n", __func__,
438 policy->cpu);
439 return -ENODEV;
440 }
441
442 ret = get_cluster_clk_and_freq_table(cpu_dev);
443 if (ret)
444 return ret;
445
39b10ebe 446 ret = cpufreq_table_validate_and_show(policy, freq_table[cur_cluster]);
8a67f0ef
VK
447 if (ret) {
448 dev_err(cpu_dev, "CPU %d, cluster: %d invalid freq table\n",
449 policy->cpu, cur_cluster);
450 put_cluster_clk_and_freq_table(cpu_dev);
451 return ret;
452 }
453
e79a23c5 454 if (cur_cluster < MAX_CLUSTERS) {
8f3ba3d3 455 int cpu;
456
e79a23c5
VK
457 cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu));
458
8f3ba3d3 459 for_each_cpu(cpu, policy->cpus)
460 per_cpu(physical_cluster, cpu) = cur_cluster;
e79a23c5
VK
461 } else {
462 /* Assumption: during init, we are always running on A15 */
463 per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
464 }
465
8a67f0ef
VK
466 if (arm_bL_ops->get_transition_latency)
467 policy->cpuinfo.transition_latency =
468 arm_bL_ops->get_transition_latency(cpu_dev);
469 else
470 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
471
e79a23c5
VK
472 if (is_bL_switching_enabled())
473 per_cpu(cpu_last_req_freq, policy->cpu) = clk_get_cpu_rate(policy->cpu);
8a67f0ef 474
2b80f313 475 dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
8a67f0ef
VK
476 return 0;
477}
478
479static int bL_cpufreq_exit(struct cpufreq_policy *policy)
480{
481 struct device *cpu_dev;
482
483 cpu_dev = get_cpu_device(policy->cpu);
484 if (!cpu_dev) {
485 pr_err("%s: failed to get cpu%d device\n", __func__,
486 policy->cpu);
487 return -ENODEV;
488 }
489
490 put_cluster_clk_and_freq_table(cpu_dev);
491 dev_dbg(cpu_dev, "%s: Exited, cpu: %d\n", __func__, policy->cpu);
492
493 return 0;
494}
495
8a67f0ef
VK
496static struct cpufreq_driver bL_cpufreq_driver = {
497 .name = "arm-big-little",
0b981e70 498 .flags = CPUFREQ_STICKY |
ae6b4271
VK
499 CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
500 CPUFREQ_NEED_INITIAL_FREQ_CHECK,
3c75a150 501 .verify = cpufreq_generic_frequency_table_verify,
9c0ebcf7 502 .target_index = bL_cpufreq_set_target,
e79a23c5 503 .get = bL_cpufreq_get_rate,
8a67f0ef
VK
504 .init = bL_cpufreq_init,
505 .exit = bL_cpufreq_exit,
3c75a150 506 .attr = cpufreq_generic_attr,
8a67f0ef
VK
507};
508
45cac118
NP
509static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb,
510 unsigned long action, void *_arg)
511{
512 pr_debug("%s: action: %ld\n", __func__, action);
513
514 switch (action) {
515 case BL_NOTIFY_PRE_ENABLE:
516 case BL_NOTIFY_PRE_DISABLE:
517 cpufreq_unregister_driver(&bL_cpufreq_driver);
518 break;
519
520 case BL_NOTIFY_POST_ENABLE:
521 set_switching_enabled(true);
522 cpufreq_register_driver(&bL_cpufreq_driver);
523 break;
524
525 case BL_NOTIFY_POST_DISABLE:
526 set_switching_enabled(false);
527 cpufreq_register_driver(&bL_cpufreq_driver);
528 break;
529
530 default:
531 return NOTIFY_DONE;
532 }
533
534 return NOTIFY_OK;
535}
536
537static struct notifier_block bL_switcher_notifier = {
538 .notifier_call = bL_cpufreq_switcher_notifier,
539};
540
8a67f0ef
VK
541int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops)
542{
e79a23c5 543 int ret, i;
8a67f0ef
VK
544
545 if (arm_bL_ops) {
546 pr_debug("%s: Already registered: %s, exiting\n", __func__,
547 arm_bL_ops->name);
548 return -EBUSY;
549 }
550
551 if (!ops || !strlen(ops->name) || !ops->init_opp_table) {
552 pr_err("%s: Invalid arm_bL_ops, exiting\n", __func__);
553 return -ENODEV;
554 }
555
556 arm_bL_ops = ops;
557
45cac118
NP
558 ret = bL_switcher_get_enabled();
559 set_switching_enabled(ret);
560
e79a23c5
VK
561 for (i = 0; i < MAX_CLUSTERS; i++)
562 mutex_init(&cluster_lock[i]);
563
8a67f0ef
VK
564 ret = cpufreq_register_driver(&bL_cpufreq_driver);
565 if (ret) {
566 pr_info("%s: Failed registering platform driver: %s, err: %d\n",
567 __func__, ops->name, ret);
568 arm_bL_ops = NULL;
569 } else {
45cac118
NP
570 ret = bL_switcher_register_notifier(&bL_switcher_notifier);
571 if (ret) {
572 cpufreq_unregister_driver(&bL_cpufreq_driver);
573 arm_bL_ops = NULL;
574 } else {
575 pr_info("%s: Registered platform driver: %s\n",
576 __func__, ops->name);
577 }
8a67f0ef
VK
578 }
579
45cac118 580 bL_switcher_put_enabled();
8a67f0ef
VK
581 return ret;
582}
583EXPORT_SYMBOL_GPL(bL_cpufreq_register);
584
585void bL_cpufreq_unregister(struct cpufreq_arm_bL_ops *ops)
586{
587 if (arm_bL_ops != ops) {
588 pr_err("%s: Registered with: %s, can't unregister, exiting\n",
589 __func__, arm_bL_ops->name);
590 return;
591 }
592
45cac118
NP
593 bL_switcher_get_enabled();
594 bL_switcher_unregister_notifier(&bL_switcher_notifier);
8a67f0ef 595 cpufreq_unregister_driver(&bL_cpufreq_driver);
45cac118 596 bL_switcher_put_enabled();
8a67f0ef
VK
597 pr_info("%s: Un-registered platform driver: %s\n", __func__,
598 arm_bL_ops->name);
599 arm_bL_ops = NULL;
600}
601EXPORT_SYMBOL_GPL(bL_cpufreq_unregister);
39c8bbaf
UKK
602
603MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
604MODULE_DESCRIPTION("Generic ARM big LITTLE cpufreq driver");
605MODULE_LICENSE("GPL v2");