RISC-V: Add mvendorid, marchid, and mimpid to /proc/cpuinfo output
[linux-2.6-block.git] / drivers / clocksource / timer-microchip-pit64b.c
CommitLineData
625022a5
CB
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * 64-bit Periodic Interval Timer driver
4 *
5 * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries
6 *
7 * Author: Claudiu Beznea <claudiu.beznea@microchip.com>
8 */
9
10#include <linux/clk.h>
11#include <linux/clockchips.h>
12#include <linux/interrupt.h>
13#include <linux/of_address.h>
14#include <linux/of_irq.h>
15#include <linux/sched_clock.h>
16#include <linux/slab.h>
17
18#define MCHP_PIT64B_CR 0x00 /* Control Register */
19#define MCHP_PIT64B_CR_START BIT(0)
20#define MCHP_PIT64B_CR_SWRST BIT(8)
21
22#define MCHP_PIT64B_MR 0x04 /* Mode Register */
23#define MCHP_PIT64B_MR_CONT BIT(0)
24#define MCHP_PIT64B_MR_ONE_SHOT (0)
25#define MCHP_PIT64B_MR_SGCLK BIT(3)
26#define MCHP_PIT64B_MR_PRES GENMASK(11, 8)
27
28#define MCHP_PIT64B_LSB_PR 0x08 /* LSB Period Register */
29
30#define MCHP_PIT64B_MSB_PR 0x0C /* MSB Period Register */
31
32#define MCHP_PIT64B_IER 0x10 /* Interrupt Enable Register */
33#define MCHP_PIT64B_IER_PERIOD BIT(0)
34
35#define MCHP_PIT64B_ISR 0x1C /* Interrupt Status Register */
36
37#define MCHP_PIT64B_TLSBR 0x20 /* Timer LSB Register */
38
39#define MCHP_PIT64B_TMSBR 0x24 /* Timer MSB Register */
40
41#define MCHP_PIT64B_PRES_MAX 0x10
42#define MCHP_PIT64B_LSBMASK GENMASK_ULL(31, 0)
43#define MCHP_PIT64B_PRES_TO_MODE(p) (MCHP_PIT64B_MR_PRES & ((p) << 8))
44#define MCHP_PIT64B_MODE_TO_PRES(m) ((MCHP_PIT64B_MR_PRES & (m)) >> 8)
389e3bff 45#define MCHP_PIT64B_DEF_FREQ 5000000UL /* 5 MHz */
625022a5
CB
46
47#define MCHP_PIT64B_NAME "pit64b"
48
49/**
50 * struct mchp_pit64b_timer - PIT64B timer data structure
51 * @base: base address of PIT64B hardware block
52 * @pclk: PIT64B's peripheral clock
53 * @gclk: PIT64B's generic clock
54 * @mode: precomputed value for mode register
55 */
56struct mchp_pit64b_timer {
57 void __iomem *base;
58 struct clk *pclk;
59 struct clk *gclk;
60 u32 mode;
61};
62
63/**
278150b2 64 * struct mchp_pit64b_clkevt - PIT64B clockevent data structure
625022a5
CB
65 * @timer: PIT64B timer
66 * @clkevt: clockevent
67 */
68struct mchp_pit64b_clkevt {
69 struct mchp_pit64b_timer timer;
70 struct clock_event_device clkevt;
71};
72
e85c1d21 73#define clkevt_to_mchp_pit64b_timer(x) \
625022a5
CB
74 ((struct mchp_pit64b_timer *)container_of(x,\
75 struct mchp_pit64b_clkevt, clkevt))
76
e85c1d21 77/**
278150b2 78 * struct mchp_pit64b_clksrc - PIT64B clocksource data structure
e85c1d21
CB
79 * @timer: PIT64B timer
80 * @clksrc: clocksource
81 */
82struct mchp_pit64b_clksrc {
83 struct mchp_pit64b_timer timer;
84 struct clocksource clksrc;
85};
86
87#define clksrc_to_mchp_pit64b_timer(x) \
88 ((struct mchp_pit64b_timer *)container_of(x,\
89 struct mchp_pit64b_clksrc, clksrc))
90
625022a5
CB
91/* Base address for clocksource timer. */
92static void __iomem *mchp_pit64b_cs_base;
93/* Default cycles for clockevent timer. */
94static u64 mchp_pit64b_ce_cycles;
95
96static inline u64 mchp_pit64b_cnt_read(void __iomem *base)
97{
98 unsigned long flags;
99 u32 low, high;
100
101 raw_local_irq_save(flags);
102
103 /*
104 * When using a 64 bit period TLSB must be read first, followed by the
105 * read of TMSB. This sequence generates an atomic read of the 64 bit
106 * timer value whatever the lapse of time between the accesses.
107 */
108 low = readl_relaxed(base + MCHP_PIT64B_TLSBR);
109 high = readl_relaxed(base + MCHP_PIT64B_TMSBR);
110
111 raw_local_irq_restore(flags);
112
113 return (((u64)high << 32) | low);
114}
115
116static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer,
117 u64 cycles, u32 mode, u32 irqs)
118{
119 u32 low, high;
120
121 low = cycles & MCHP_PIT64B_LSBMASK;
122 high = cycles >> 32;
123
124 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
125 writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR);
126 writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR);
127 writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR);
128 writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER);
129 writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR);
130}
131
e85c1d21
CB
132static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer)
133{
134 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
135 if (timer->mode & MCHP_PIT64B_MR_SGCLK)
136 clk_disable_unprepare(timer->gclk);
137 clk_disable_unprepare(timer->pclk);
138}
139
140static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer)
141{
142 clk_prepare_enable(timer->pclk);
143 if (timer->mode & MCHP_PIT64B_MR_SGCLK)
144 clk_prepare_enable(timer->gclk);
145}
146
147static void mchp_pit64b_clksrc_suspend(struct clocksource *cs)
148{
149 struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
150
151 mchp_pit64b_suspend(timer);
152}
153
154static void mchp_pit64b_clksrc_resume(struct clocksource *cs)
155{
156 struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
157
158 mchp_pit64b_resume(timer);
159 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
160}
161
625022a5
CB
162static u64 mchp_pit64b_clksrc_read(struct clocksource *cs)
163{
164 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
165}
166
ff10ee97 167static u64 notrace mchp_pit64b_sched_read_clk(void)
625022a5
CB
168{
169 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
170}
171
172static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev)
173{
e85c1d21 174 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
625022a5 175
2c9c4c9e
CB
176 if (!clockevent_state_detached(cedev))
177 mchp_pit64b_suspend(timer);
625022a5
CB
178
179 return 0;
180}
181
182static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev)
183{
e85c1d21 184 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
625022a5 185
2c9c4c9e
CB
186 if (clockevent_state_shutdown(cedev))
187 mchp_pit64b_resume(timer);
188
625022a5
CB
189 mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT,
190 MCHP_PIT64B_IER_PERIOD);
191
192 return 0;
193}
194
2c9c4c9e 195static int mchp_pit64b_clkevt_set_oneshot(struct clock_event_device *cedev)
625022a5 196{
e85c1d21 197 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
625022a5 198
2c9c4c9e
CB
199 if (clockevent_state_shutdown(cedev))
200 mchp_pit64b_resume(timer);
201
202 mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_ONE_SHOT,
625022a5
CB
203 MCHP_PIT64B_IER_PERIOD);
204
205 return 0;
206}
207
2c9c4c9e
CB
208static int mchp_pit64b_clkevt_set_next_event(unsigned long evt,
209 struct clock_event_device *cedev)
625022a5 210{
e85c1d21 211 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
625022a5 212
2c9c4c9e
CB
213 mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT,
214 MCHP_PIT64B_IER_PERIOD);
625022a5 215
2c9c4c9e 216 return 0;
625022a5
CB
217}
218
219static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id)
220{
221 struct mchp_pit64b_clkevt *irq_data = dev_id;
222
223 /* Need to clear the interrupt. */
224 readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR);
225
226 irq_data->clkevt.event_handler(&irq_data->clkevt);
227
228 return IRQ_HANDLED;
229}
230
231static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate,
232 u32 max_rate)
233{
234 u32 tmp;
235
236 for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) {
237 tmp = clk_rate / (*pres + 1);
238 if (tmp <= max_rate)
239 break;
240 }
241
4bf07f65 242 /* Use the biggest prescaler if we didn't match one. */
625022a5
CB
243 if (*pres == MCHP_PIT64B_PRES_MAX)
244 *pres = MCHP_PIT64B_PRES_MAX - 1;
245}
246
247/**
278150b2
CB
248 * mchp_pit64b_init_mode() - prepare PIT64B mode register value to be used at
249 * runtime; this includes prescaler and SGCLK bit
250 * @timer: pointer to pit64b timer to init
251 * @max_rate: maximum rate that timer's clock could use
625022a5
CB
252 *
253 * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to
254 * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate
255 * could be changed via clock APIs. The chosen clock (pclk or gclk) could be
256 * divided by the internal PIT64B's divider.
257 *
258 * This function, first tries to use GCLK by requesting the desired rate from
259 * PMC and then using the internal PIT64B prescaler, if any, to reach the
260 * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware)
261 * then the function falls back on using PCLK as clock source for PIT64B timer
262 * choosing the highest prescaler in case it doesn't locate one to match the
263 * requested frequency.
264 *
265 * Below is presented the PIT64B block in relation with PMC:
266 *
267 * PIT64B
268 * PMC +------------------------------------+
269 * +----+ | +-----+ |
270 * | |-->gclk -->|-->| | +---------+ +-----+ |
271 * | | | | MUX |--->| Divider |->|timer| |
272 * | |-->pclk -->|-->| | +---------+ +-----+ |
273 * +----+ | +-----+ |
274 * | ^ |
275 * | sel |
276 * +------------------------------------+
277 *
278 * Where:
279 * - gclk rate <= pclk rate/3
280 * - gclk rate could be requested from PMC
281 * - pclk rate is fixed (cannot be requested from PMC)
282 */
283static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer,
284 unsigned long max_rate)
285{
286 unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX;
287 long gclk_round = 0;
288 u32 pres, best_pres = 0;
289
290 pclk_rate = clk_get_rate(timer->pclk);
291 if (!pclk_rate)
292 return -EINVAL;
293
b9c60a74
CB
294 timer->mode = 0;
295
625022a5
CB
296 /* Try using GCLK. */
297 gclk_round = clk_round_rate(timer->gclk, max_rate);
298 if (gclk_round < 0)
299 goto pclk;
300
301 if (pclk_rate / gclk_round < 3)
302 goto pclk;
303
304 mchp_pit64b_pres_compute(&pres, gclk_round, max_rate);
305 best_diff = abs(gclk_round / (pres + 1) - max_rate);
306 best_pres = pres;
307
308 if (!best_diff) {
309 timer->mode |= MCHP_PIT64B_MR_SGCLK;
05852445 310 clk_set_rate(timer->gclk, gclk_round);
625022a5
CB
311 goto done;
312 }
313
314pclk:
315 /* Check if requested rate could be obtained using PCLK. */
316 mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate);
317 diff = abs(pclk_rate / (pres + 1) - max_rate);
318
319 if (best_diff > diff) {
320 /* Use PCLK. */
321 best_pres = pres;
322 } else {
323 /* Use GCLK. */
324 timer->mode |= MCHP_PIT64B_MR_SGCLK;
325 clk_set_rate(timer->gclk, gclk_round);
326 }
327
328done:
329 timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres);
330
331 pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n",
332 timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres,
333 timer->mode & MCHP_PIT64B_MR_SGCLK ?
334 gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1));
335
336 return 0;
337}
338
339static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer,
340 u32 clk_rate)
341{
e85c1d21 342 struct mchp_pit64b_clksrc *cs;
625022a5
CB
343 int ret;
344
e85c1d21
CB
345 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
346 if (!cs)
347 return -ENOMEM;
348
b02180e8 349 mchp_pit64b_resume(timer);
625022a5
CB
350 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
351
352 mchp_pit64b_cs_base = timer->base;
353
e85c1d21
CB
354 cs->timer.base = timer->base;
355 cs->timer.pclk = timer->pclk;
356 cs->timer.gclk = timer->gclk;
357 cs->timer.mode = timer->mode;
358 cs->clksrc.name = MCHP_PIT64B_NAME;
359 cs->clksrc.mask = CLOCKSOURCE_MASK(64);
360 cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS;
361 cs->clksrc.rating = 210;
362 cs->clksrc.read = mchp_pit64b_clksrc_read;
363 cs->clksrc.suspend = mchp_pit64b_clksrc_suspend;
364 cs->clksrc.resume = mchp_pit64b_clksrc_resume;
365
366 ret = clocksource_register_hz(&cs->clksrc, clk_rate);
625022a5
CB
367 if (ret) {
368 pr_debug("clksrc: Failed to register PIT64B clocksource!\n");
369
370 /* Stop timer. */
b02180e8 371 mchp_pit64b_suspend(timer);
e85c1d21 372 kfree(cs);
625022a5
CB
373
374 return ret;
375 }
376
377 sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate);
378
379 return 0;
380}
381
382static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer,
383 u32 clk_rate, u32 irq)
384{
385 struct mchp_pit64b_clkevt *ce;
386 int ret;
387
388 ce = kzalloc(sizeof(*ce), GFP_KERNEL);
389 if (!ce)
390 return -ENOMEM;
391
392 mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ);
393
394 ce->timer.base = timer->base;
395 ce->timer.pclk = timer->pclk;
396 ce->timer.gclk = timer->gclk;
397 ce->timer.mode = timer->mode;
398 ce->clkevt.name = MCHP_PIT64B_NAME;
399 ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
400 ce->clkevt.rating = 150;
401 ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown;
402 ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic;
2c9c4c9e 403 ce->clkevt.set_state_oneshot = mchp_pit64b_clkevt_set_oneshot;
625022a5 404 ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event;
625022a5
CB
405 ce->clkevt.cpumask = cpumask_of(0);
406 ce->clkevt.irq = irq;
407
408 ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER,
409 "pit64b_tick", ce);
410 if (ret) {
411 pr_debug("clkevt: Failed to setup PIT64B IRQ\n");
412 kfree(ce);
413 return ret;
414 }
415
416 clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX);
417
418 return 0;
419}
420
421static int __init mchp_pit64b_dt_init_timer(struct device_node *node,
422 bool clkevt)
423{
b9c60a74 424 struct mchp_pit64b_timer timer;
625022a5
CB
425 unsigned long clk_rate;
426 u32 irq = 0;
427 int ret;
428
429 /* Parse DT node. */
430 timer.pclk = of_clk_get_by_name(node, "pclk");
431 if (IS_ERR(timer.pclk))
432 return PTR_ERR(timer.pclk);
433
434 timer.gclk = of_clk_get_by_name(node, "gclk");
435 if (IS_ERR(timer.gclk))
436 return PTR_ERR(timer.gclk);
437
438 timer.base = of_iomap(node, 0);
439 if (!timer.base)
440 return -ENXIO;
441
442 if (clkevt) {
443 irq = irq_of_parse_and_map(node, 0);
444 if (!irq) {
445 ret = -ENODEV;
446 goto io_unmap;
447 }
448 }
449
450 /* Initialize mode (prescaler + SGCK bit). To be used at runtime. */
389e3bff 451 ret = mchp_pit64b_init_mode(&timer, MCHP_PIT64B_DEF_FREQ);
625022a5
CB
452 if (ret)
453 goto irq_unmap;
454
b02180e8 455 if (timer.mode & MCHP_PIT64B_MR_SGCLK)
625022a5 456 clk_rate = clk_get_rate(timer.gclk);
b02180e8 457 else
625022a5 458 clk_rate = clk_get_rate(timer.pclk);
625022a5
CB
459 clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1);
460
461 if (clkevt)
462 ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq);
463 else
464 ret = mchp_pit64b_init_clksrc(&timer, clk_rate);
465
466 if (ret)
b02180e8 467 goto irq_unmap;
625022a5
CB
468
469 return 0;
470
625022a5
CB
471irq_unmap:
472 irq_dispose_mapping(irq);
473io_unmap:
474 iounmap(timer.base);
475
476 return ret;
477}
478
479static int __init mchp_pit64b_dt_init(struct device_node *node)
480{
481 static int inits;
482
483 switch (inits++) {
484 case 0:
485 /* 1st request, register clockevent. */
486 return mchp_pit64b_dt_init_timer(node, true);
487 case 1:
488 /* 2nd request, register clocksource. */
489 return mchp_pit64b_dt_init_timer(node, false);
490 }
491
492 /* The rest, don't care. */
493 return -EINVAL;
494}
495
496TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);