License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[linux-block.git] / drivers / clocksource / timer-fttmr010.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
4750535b 2/*
f5bf0ee4 3 * Faraday Technology FTTMR010 timer driver
4750535b
LW
4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
5 *
6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
7 * Copyright (C) 2001-2006 Storlink, Corp.
8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
9 */
10#include <linux/interrupt.h>
11#include <linux/io.h>
12#include <linux/of.h>
13#include <linux/of_address.h>
14#include <linux/of_irq.h>
4750535b
LW
15#include <linux/clockchips.h>
16#include <linux/clocksource.h>
17#include <linux/sched_clock.h>
28e71e2f 18#include <linux/clk.h>
e7bad212 19#include <linux/slab.h>
d0d76d57 20#include <linux/bitops.h>
385c98fc 21#include <linux/delay.h>
4750535b
LW
22
23/*
24 * Register definitions for the timers
25 */
26#define TIMER1_COUNT (0x00)
27#define TIMER1_LOAD (0x04)
28#define TIMER1_MATCH1 (0x08)
29#define TIMER1_MATCH2 (0x0c)
30#define TIMER2_COUNT (0x10)
31#define TIMER2_LOAD (0x14)
32#define TIMER2_MATCH1 (0x18)
33#define TIMER2_MATCH2 (0x1c)
34#define TIMER3_COUNT (0x20)
35#define TIMER3_LOAD (0x24)
36#define TIMER3_MATCH1 (0x28)
37#define TIMER3_MATCH2 (0x2c)
38#define TIMER_CR (0x30)
39#define TIMER_INTR_STATE (0x34)
40#define TIMER_INTR_MASK (0x38)
41
d0d76d57
LW
42#define TIMER_1_CR_ENABLE BIT(0)
43#define TIMER_1_CR_CLOCK BIT(1)
44#define TIMER_1_CR_INT BIT(2)
45#define TIMER_2_CR_ENABLE BIT(3)
46#define TIMER_2_CR_CLOCK BIT(4)
47#define TIMER_2_CR_INT BIT(5)
48#define TIMER_3_CR_ENABLE BIT(6)
49#define TIMER_3_CR_CLOCK BIT(7)
50#define TIMER_3_CR_INT BIT(8)
51#define TIMER_1_CR_UPDOWN BIT(9)
52#define TIMER_2_CR_UPDOWN BIT(10)
53#define TIMER_3_CR_UPDOWN BIT(11)
4750535b 54
ec14ba1e
LW
55/*
56 * The Aspeed AST2400 moves bits around in the control register
57 * and lacks bits for setting the timer to count upwards.
58 */
59#define TIMER_1_CR_ASPEED_ENABLE BIT(0)
60#define TIMER_1_CR_ASPEED_CLOCK BIT(1)
61#define TIMER_1_CR_ASPEED_INT BIT(2)
62#define TIMER_2_CR_ASPEED_ENABLE BIT(4)
63#define TIMER_2_CR_ASPEED_CLOCK BIT(5)
64#define TIMER_2_CR_ASPEED_INT BIT(6)
65#define TIMER_3_CR_ASPEED_ENABLE BIT(8)
66#define TIMER_3_CR_ASPEED_CLOCK BIT(9)
67#define TIMER_3_CR_ASPEED_INT BIT(10)
68
d0d76d57
LW
69#define TIMER_1_INT_MATCH1 BIT(0)
70#define TIMER_1_INT_MATCH2 BIT(1)
71#define TIMER_1_INT_OVERFLOW BIT(2)
72#define TIMER_2_INT_MATCH1 BIT(3)
73#define TIMER_2_INT_MATCH2 BIT(4)
74#define TIMER_2_INT_OVERFLOW BIT(5)
75#define TIMER_3_INT_MATCH1 BIT(6)
76#define TIMER_3_INT_MATCH2 BIT(7)
77#define TIMER_3_INT_OVERFLOW BIT(8)
4750535b
LW
78#define TIMER_INT_ALL_MASK 0x1ff
79
e7bad212
LW
80struct fttmr010 {
81 void __iomem *base;
82 unsigned int tick_rate;
ec14ba1e
LW
83 bool count_down;
84 u32 t1_enable_val;
e7bad212 85 struct clock_event_device clkevt;
385c98fc
LW
86#ifdef CONFIG_ARM
87 struct delay_timer delay_timer;
88#endif
e7bad212
LW
89};
90
385c98fc
LW
91/*
92 * A local singleton used by sched_clock and delay timer reads, which are
93 * fast and stateless
94 */
e7bad212
LW
95static struct fttmr010 *local_fttmr;
96
97static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
98{
99 return container_of(evt, struct fttmr010, clkevt);
100}
4750535b 101
c4779902 102static unsigned long fttmr010_read_current_timer_up(void)
4750535b 103{
b589da8b 104 return readl(local_fttmr->base + TIMER2_COUNT);
4750535b
LW
105}
106
c4779902 107static unsigned long fttmr010_read_current_timer_down(void)
740e237a
LW
108{
109 return ~readl(local_fttmr->base + TIMER2_COUNT);
110}
111
c4779902 112static u64 notrace fttmr010_read_sched_clock_up(void)
385c98fc 113{
c4779902 114 return fttmr010_read_current_timer_up();
385c98fc
LW
115}
116
c4779902 117static u64 notrace fttmr010_read_sched_clock_down(void)
385c98fc 118{
c4779902 119 return fttmr010_read_current_timer_down();
385c98fc
LW
120}
121
f5bf0ee4 122static int fttmr010_timer_set_next_event(unsigned long cycles,
4750535b
LW
123 struct clock_event_device *evt)
124{
e7bad212 125 struct fttmr010 *fttmr010 = to_fttmr010(evt);
4750535b
LW
126 u32 cr;
127
ec14ba1e
LW
128 /* Stop */
129 cr = readl(fttmr010->base + TIMER_CR);
130 cr &= ~fttmr010->t1_enable_val;
131 writel(cr, fttmr010->base + TIMER_CR);
132
133 /* Setup the match register forward/backward in time */
e7bad212 134 cr = readl(fttmr010->base + TIMER1_COUNT);
ec14ba1e
LW
135 if (fttmr010->count_down)
136 cr -= cycles;
137 else
138 cr += cycles;
139 writel(cr, fttmr010->base + TIMER1_MATCH1);
140
141 /* Start */
142 cr = readl(fttmr010->base + TIMER_CR);
143 cr |= fttmr010->t1_enable_val;
144 writel(cr, fttmr010->base + TIMER_CR);
4750535b
LW
145
146 return 0;
147}
148
f5bf0ee4 149static int fttmr010_timer_shutdown(struct clock_event_device *evt)
4750535b 150{
e7bad212
LW
151 struct fttmr010 *fttmr010 = to_fttmr010(evt);
152 u32 cr;
153
ec14ba1e 154 /* Stop */
e7bad212 155 cr = readl(fttmr010->base + TIMER_CR);
ec14ba1e 156 cr &= ~fttmr010->t1_enable_val;
e7bad212
LW
157 writel(cr, fttmr010->base + TIMER_CR);
158
159 return 0;
160}
161
162static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
163{
164 struct fttmr010 *fttmr010 = to_fttmr010(evt);
4750535b
LW
165 u32 cr;
166
ec14ba1e 167 /* Stop */
e7bad212 168 cr = readl(fttmr010->base + TIMER_CR);
ec14ba1e 169 cr &= ~fttmr010->t1_enable_val;
e7bad212 170 writel(cr, fttmr010->base + TIMER_CR);
4750535b 171
ec14ba1e 172 /* Setup counter start from 0 or ~0 */
e7bad212 173 writel(0, fttmr010->base + TIMER1_COUNT);
ec14ba1e
LW
174 if (fttmr010->count_down)
175 writel(~0, fttmr010->base + TIMER1_LOAD);
176 else
177 writel(0, fttmr010->base + TIMER1_LOAD);
4750535b 178
e7bad212
LW
179 /* Enable interrupt */
180 cr = readl(fttmr010->base + TIMER_INTR_MASK);
4750535b
LW
181 cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
182 cr |= TIMER_1_INT_MATCH1;
e7bad212 183 writel(cr, fttmr010->base + TIMER_INTR_MASK);
4750535b 184
4750535b
LW
185 return 0;
186}
187
f5bf0ee4 188static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
4750535b 189{
e7bad212
LW
190 struct fttmr010 *fttmr010 = to_fttmr010(evt);
191 u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
4750535b
LW
192 u32 cr;
193
ec14ba1e 194 /* Stop */
e7bad212 195 cr = readl(fttmr010->base + TIMER_CR);
ec14ba1e 196 cr &= ~fttmr010->t1_enable_val;
e7bad212 197 writel(cr, fttmr010->base + TIMER_CR);
4750535b 198
ec14ba1e
LW
199 /* Setup timer to fire at 1/HZ intervals. */
200 if (fttmr010->count_down) {
201 writel(period, fttmr010->base + TIMER1_LOAD);
202 writel(0, fttmr010->base + TIMER1_MATCH1);
203 } else {
204 cr = 0xffffffff - (period - 1);
205 writel(cr, fttmr010->base + TIMER1_COUNT);
206 writel(cr, fttmr010->base + TIMER1_LOAD);
207
208 /* Enable interrupt on overflow */
209 cr = readl(fttmr010->base + TIMER_INTR_MASK);
210 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
211 cr |= TIMER_1_INT_OVERFLOW;
212 writel(cr, fttmr010->base + TIMER_INTR_MASK);
213 }
4750535b
LW
214
215 /* Start the timer */
e7bad212 216 cr = readl(fttmr010->base + TIMER_CR);
ec14ba1e 217 cr |= fttmr010->t1_enable_val;
e7bad212 218 writel(cr, fttmr010->base + TIMER_CR);
4750535b
LW
219
220 return 0;
221}
222
4750535b
LW
223/*
224 * IRQ handler for the timer
225 */
f5bf0ee4 226static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
4750535b 227{
e7bad212 228 struct clock_event_device *evt = dev_id;
4750535b
LW
229
230 evt->event_handler(evt);
231 return IRQ_HANDLED;
232}
233
ef89718a 234static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
4750535b 235{
e7bad212 236 struct fttmr010 *fttmr010;
4750535b 237 int irq;
dd98442e
LW
238 struct clk *clk;
239 int ret;
ec14ba1e 240 u32 val;
dd98442e
LW
241
242 /*
243 * These implementations require a clock reference.
244 * FIXME: we currently only support clocking using PCLK
245 * and using EXTCLK is not supported in the driver.
246 */
247 clk = of_clk_get_by_name(np, "PCLK");
248 if (IS_ERR(clk)) {
249 pr_err("could not get PCLK\n");
250 return PTR_ERR(clk);
251 }
252 ret = clk_prepare_enable(clk);
253 if (ret) {
254 pr_err("failed to enable PCLK\n");
255 return ret;
256 }
4750535b 257
e7bad212
LW
258 fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
259 if (!fttmr010) {
260 ret = -ENOMEM;
261 goto out_disable_clock;
262 }
263 fttmr010->tick_rate = clk_get_rate(clk);
264
265 fttmr010->base = of_iomap(np, 0);
266 if (!fttmr010->base) {
4750535b 267 pr_err("Can't remap registers");
e7bad212
LW
268 ret = -ENXIO;
269 goto out_free;
4750535b
LW
270 }
271 /* IRQ for timer 1 */
272 irq = irq_of_parse_and_map(np, 0);
273 if (irq <= 0) {
274 pr_err("Can't parse IRQ");
e7bad212
LW
275 ret = -EINVAL;
276 goto out_unmap;
4750535b
LW
277 }
278
ec14ba1e
LW
279 /*
280 * The Aspeed AST2400 moves bits around in the control register,
281 * otherwise it works the same.
282 */
ef89718a 283 if (is_aspeed) {
ec14ba1e
LW
284 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
285 TIMER_1_CR_ASPEED_INT;
286 /* Downward not available */
287 fttmr010->count_down = true;
288 } else {
289 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
290 }
291
4750535b
LW
292 /*
293 * Reset the interrupt mask and status
294 */
e7bad212
LW
295 writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
296 writel(0, fttmr010->base + TIMER_INTR_STATE);
ec14ba1e
LW
297
298 /*
299 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
300 * where everything just counts down.
301 */
ef89718a 302 if (is_aspeed)
ec14ba1e
LW
303 val = TIMER_2_CR_ASPEED_ENABLE;
304 else {
305 val = TIMER_2_CR_ENABLE;
306 if (!fttmr010->count_down)
307 val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
308 }
309 writel(val, fttmr010->base + TIMER_CR);
4750535b
LW
310
311 /*
312 * Setup free-running clocksource timer (interrupts
313 * disabled.)
314 */
e7bad212 315 local_fttmr = fttmr010;
b589da8b 316 writel(0, fttmr010->base + TIMER2_COUNT);
b589da8b
LW
317 writel(0, fttmr010->base + TIMER2_MATCH1);
318 writel(0, fttmr010->base + TIMER2_MATCH2);
ec14ba1e
LW
319
320 if (fttmr010->count_down) {
321 writel(~0, fttmr010->base + TIMER2_LOAD);
322 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
323 "FTTMR010-TIMER2",
324 fttmr010->tick_rate,
325 300, 32, clocksource_mmio_readl_down);
740e237a
LW
326 sched_clock_register(fttmr010_read_sched_clock_down, 32,
327 fttmr010->tick_rate);
ec14ba1e
LW
328 } else {
329 writel(0, fttmr010->base + TIMER2_LOAD);
330 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
331 "FTTMR010-TIMER2",
332 fttmr010->tick_rate,
333 300, 32, clocksource_mmio_readl_up);
740e237a
LW
334 sched_clock_register(fttmr010_read_sched_clock_up, 32,
335 fttmr010->tick_rate);
ec14ba1e 336 }
4750535b
LW
337
338 /*
e7bad212 339 * Setup clockevent timer (interrupt-driven) on timer 1.
4750535b 340 */
e7bad212
LW
341 writel(0, fttmr010->base + TIMER1_COUNT);
342 writel(0, fttmr010->base + TIMER1_LOAD);
343 writel(0, fttmr010->base + TIMER1_MATCH1);
344 writel(0, fttmr010->base + TIMER1_MATCH2);
345 ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
346 "FTTMR010-TIMER1", &fttmr010->clkevt);
347 if (ret) {
348 pr_err("FTTMR010-TIMER1 no IRQ\n");
349 goto out_unmap;
350 }
351
352 fttmr010->clkevt.name = "FTTMR010-TIMER1";
353 /* Reasonably fast and accurate clock event */
354 fttmr010->clkevt.rating = 300;
355 fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
356 CLOCK_EVT_FEAT_ONESHOT;
357 fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
358 fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
359 fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
360 fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
361 fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
362 fttmr010->clkevt.cpumask = cpumask_of(0);
363 fttmr010->clkevt.irq = irq;
364 clockevents_config_and_register(&fttmr010->clkevt,
365 fttmr010->tick_rate,
4750535b
LW
366 1, 0xffffffff);
367
385c98fc
LW
368#ifdef CONFIG_ARM
369 /* Also use this timer for delays */
370 if (fttmr010->count_down)
371 fttmr010->delay_timer.read_current_timer =
372 fttmr010_read_current_timer_down;
373 else
374 fttmr010->delay_timer.read_current_timer =
375 fttmr010_read_current_timer_up;
376 fttmr010->delay_timer.freq = fttmr010->tick_rate;
377 register_current_timer_delay(&fttmr010->delay_timer);
378#endif
379
4750535b 380 return 0;
e7bad212
LW
381
382out_unmap:
383 iounmap(fttmr010->base);
384out_free:
385 kfree(fttmr010);
386out_disable_clock:
387 clk_disable_unprepare(clk);
388
389 return ret;
4750535b 390}
ef89718a
DL
391
392static __init int aspeed_timer_init(struct device_node *np)
393{
394 return fttmr010_common_init(np, true);
395}
396
397static __init int fttmr010_timer_init(struct device_node *np)
398{
399 return fttmr010_common_init(np, false);
400}
401
17273395
DL
402TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
403TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
404TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
405TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
406TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);