gpio: ich: Convert to use SPDX identifier
[linux-2.6-block.git] / drivers / clocksource / timer-fttmr010.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
4750535b 2/*
f5bf0ee4 3 * Faraday Technology FTTMR010 timer driver
4750535b
LW
4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
5 *
6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
7 * Copyright (C) 2001-2006 Storlink, Corp.
8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
9 */
10#include <linux/interrupt.h>
11#include <linux/io.h>
12#include <linux/of.h>
13#include <linux/of_address.h>
14#include <linux/of_irq.h>
4750535b
LW
15#include <linux/clockchips.h>
16#include <linux/clocksource.h>
17#include <linux/sched_clock.h>
28e71e2f 18#include <linux/clk.h>
e7bad212 19#include <linux/slab.h>
d0d76d57 20#include <linux/bitops.h>
385c98fc 21#include <linux/delay.h>
4750535b
LW
22
23/*
24 * Register definitions for the timers
25 */
26#define TIMER1_COUNT (0x00)
27#define TIMER1_LOAD (0x04)
28#define TIMER1_MATCH1 (0x08)
29#define TIMER1_MATCH2 (0x0c)
30#define TIMER2_COUNT (0x10)
31#define TIMER2_LOAD (0x14)
32#define TIMER2_MATCH1 (0x18)
33#define TIMER2_MATCH2 (0x1c)
34#define TIMER3_COUNT (0x20)
35#define TIMER3_LOAD (0x24)
36#define TIMER3_MATCH1 (0x28)
37#define TIMER3_MATCH2 (0x2c)
38#define TIMER_CR (0x30)
39#define TIMER_INTR_STATE (0x34)
40#define TIMER_INTR_MASK (0x38)
41
d0d76d57
LW
42#define TIMER_1_CR_ENABLE BIT(0)
43#define TIMER_1_CR_CLOCK BIT(1)
44#define TIMER_1_CR_INT BIT(2)
45#define TIMER_2_CR_ENABLE BIT(3)
46#define TIMER_2_CR_CLOCK BIT(4)
47#define TIMER_2_CR_INT BIT(5)
48#define TIMER_3_CR_ENABLE BIT(6)
49#define TIMER_3_CR_CLOCK BIT(7)
50#define TIMER_3_CR_INT BIT(8)
51#define TIMER_1_CR_UPDOWN BIT(9)
52#define TIMER_2_CR_UPDOWN BIT(10)
53#define TIMER_3_CR_UPDOWN BIT(11)
4750535b 54
ec14ba1e
LW
55/*
56 * The Aspeed AST2400 moves bits around in the control register
57 * and lacks bits for setting the timer to count upwards.
58 */
59#define TIMER_1_CR_ASPEED_ENABLE BIT(0)
60#define TIMER_1_CR_ASPEED_CLOCK BIT(1)
61#define TIMER_1_CR_ASPEED_INT BIT(2)
62#define TIMER_2_CR_ASPEED_ENABLE BIT(4)
63#define TIMER_2_CR_ASPEED_CLOCK BIT(5)
64#define TIMER_2_CR_ASPEED_INT BIT(6)
65#define TIMER_3_CR_ASPEED_ENABLE BIT(8)
66#define TIMER_3_CR_ASPEED_CLOCK BIT(9)
67#define TIMER_3_CR_ASPEED_INT BIT(10)
68
d0d76d57
LW
69#define TIMER_1_INT_MATCH1 BIT(0)
70#define TIMER_1_INT_MATCH2 BIT(1)
71#define TIMER_1_INT_OVERFLOW BIT(2)
72#define TIMER_2_INT_MATCH1 BIT(3)
73#define TIMER_2_INT_MATCH2 BIT(4)
74#define TIMER_2_INT_OVERFLOW BIT(5)
75#define TIMER_3_INT_MATCH1 BIT(6)
76#define TIMER_3_INT_MATCH2 BIT(7)
77#define TIMER_3_INT_OVERFLOW BIT(8)
4750535b
LW
78#define TIMER_INT_ALL_MASK 0x1ff
79
e7bad212
LW
80struct fttmr010 {
81 void __iomem *base;
82 unsigned int tick_rate;
ec14ba1e
LW
83 bool count_down;
84 u32 t1_enable_val;
e7bad212 85 struct clock_event_device clkevt;
385c98fc
LW
86#ifdef CONFIG_ARM
87 struct delay_timer delay_timer;
88#endif
e7bad212
LW
89};
90
385c98fc
LW
91/*
92 * A local singleton used by sched_clock and delay timer reads, which are
93 * fast and stateless
94 */
e7bad212
LW
95static struct fttmr010 *local_fttmr;
96
97static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
98{
99 return container_of(evt, struct fttmr010, clkevt);
100}
4750535b 101
c4779902 102static unsigned long fttmr010_read_current_timer_up(void)
4750535b 103{
b589da8b 104 return readl(local_fttmr->base + TIMER2_COUNT);
4750535b
LW
105}
106
c4779902 107static unsigned long fttmr010_read_current_timer_down(void)
740e237a
LW
108{
109 return ~readl(local_fttmr->base + TIMER2_COUNT);
110}
111
c4779902 112static u64 notrace fttmr010_read_sched_clock_up(void)
385c98fc 113{
c4779902 114 return fttmr010_read_current_timer_up();
385c98fc
LW
115}
116
c4779902 117static u64 notrace fttmr010_read_sched_clock_down(void)
385c98fc 118{
c4779902 119 return fttmr010_read_current_timer_down();
385c98fc
LW
120}
121
f5bf0ee4 122static int fttmr010_timer_set_next_event(unsigned long cycles,
4750535b
LW
123 struct clock_event_device *evt)
124{
e7bad212 125 struct fttmr010 *fttmr010 = to_fttmr010(evt);
4750535b
LW
126 u32 cr;
127
ec14ba1e
LW
128 /* Stop */
129 cr = readl(fttmr010->base + TIMER_CR);
130 cr &= ~fttmr010->t1_enable_val;
131 writel(cr, fttmr010->base + TIMER_CR);
132
4451d3f5
TR
133 if (fttmr010->count_down) {
134 /*
135 * ASPEED Timer Controller will load TIMER1_LOAD register
136 * into TIMER1_COUNT register when the timer is re-enabled.
137 */
138 writel(cycles, fttmr010->base + TIMER1_LOAD);
139 } else {
140 /* Setup the match register forward in time */
141 cr = readl(fttmr010->base + TIMER1_COUNT);
142 writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
143 }
ec14ba1e
LW
144
145 /* Start */
146 cr = readl(fttmr010->base + TIMER_CR);
147 cr |= fttmr010->t1_enable_val;
148 writel(cr, fttmr010->base + TIMER_CR);
4750535b
LW
149
150 return 0;
151}
152
f5bf0ee4 153static int fttmr010_timer_shutdown(struct clock_event_device *evt)
4750535b 154{
e7bad212
LW
155 struct fttmr010 *fttmr010 = to_fttmr010(evt);
156 u32 cr;
157
ec14ba1e 158 /* Stop */
e7bad212 159 cr = readl(fttmr010->base + TIMER_CR);
ec14ba1e 160 cr &= ~fttmr010->t1_enable_val;
e7bad212
LW
161 writel(cr, fttmr010->base + TIMER_CR);
162
163 return 0;
164}
165
166static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
167{
168 struct fttmr010 *fttmr010 = to_fttmr010(evt);
4750535b
LW
169 u32 cr;
170
ec14ba1e 171 /* Stop */
e7bad212 172 cr = readl(fttmr010->base + TIMER_CR);
ec14ba1e 173 cr &= ~fttmr010->t1_enable_val;
e7bad212 174 writel(cr, fttmr010->base + TIMER_CR);
4750535b 175
ec14ba1e 176 /* Setup counter start from 0 or ~0 */
e7bad212 177 writel(0, fttmr010->base + TIMER1_COUNT);
ec14ba1e
LW
178 if (fttmr010->count_down)
179 writel(~0, fttmr010->base + TIMER1_LOAD);
180 else
181 writel(0, fttmr010->base + TIMER1_LOAD);
4750535b 182
e7bad212
LW
183 /* Enable interrupt */
184 cr = readl(fttmr010->base + TIMER_INTR_MASK);
4750535b
LW
185 cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
186 cr |= TIMER_1_INT_MATCH1;
e7bad212 187 writel(cr, fttmr010->base + TIMER_INTR_MASK);
4750535b 188
4750535b
LW
189 return 0;
190}
191
f5bf0ee4 192static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
4750535b 193{
e7bad212
LW
194 struct fttmr010 *fttmr010 = to_fttmr010(evt);
195 u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
4750535b
LW
196 u32 cr;
197
ec14ba1e 198 /* Stop */
e7bad212 199 cr = readl(fttmr010->base + TIMER_CR);
ec14ba1e 200 cr &= ~fttmr010->t1_enable_val;
e7bad212 201 writel(cr, fttmr010->base + TIMER_CR);
4750535b 202
ec14ba1e
LW
203 /* Setup timer to fire at 1/HZ intervals. */
204 if (fttmr010->count_down) {
205 writel(period, fttmr010->base + TIMER1_LOAD);
206 writel(0, fttmr010->base + TIMER1_MATCH1);
207 } else {
208 cr = 0xffffffff - (period - 1);
209 writel(cr, fttmr010->base + TIMER1_COUNT);
210 writel(cr, fttmr010->base + TIMER1_LOAD);
211
212 /* Enable interrupt on overflow */
213 cr = readl(fttmr010->base + TIMER_INTR_MASK);
214 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
215 cr |= TIMER_1_INT_OVERFLOW;
216 writel(cr, fttmr010->base + TIMER_INTR_MASK);
217 }
4750535b
LW
218
219 /* Start the timer */
e7bad212 220 cr = readl(fttmr010->base + TIMER_CR);
ec14ba1e 221 cr |= fttmr010->t1_enable_val;
e7bad212 222 writel(cr, fttmr010->base + TIMER_CR);
4750535b
LW
223
224 return 0;
225}
226
4750535b
LW
227/*
228 * IRQ handler for the timer
229 */
f5bf0ee4 230static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
4750535b 231{
e7bad212 232 struct clock_event_device *evt = dev_id;
4750535b
LW
233
234 evt->event_handler(evt);
235 return IRQ_HANDLED;
236}
237
ef89718a 238static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
4750535b 239{
e7bad212 240 struct fttmr010 *fttmr010;
4750535b 241 int irq;
dd98442e
LW
242 struct clk *clk;
243 int ret;
ec14ba1e 244 u32 val;
dd98442e
LW
245
246 /*
247 * These implementations require a clock reference.
248 * FIXME: we currently only support clocking using PCLK
249 * and using EXTCLK is not supported in the driver.
250 */
251 clk = of_clk_get_by_name(np, "PCLK");
252 if (IS_ERR(clk)) {
253 pr_err("could not get PCLK\n");
254 return PTR_ERR(clk);
255 }
256 ret = clk_prepare_enable(clk);
257 if (ret) {
258 pr_err("failed to enable PCLK\n");
259 return ret;
260 }
4750535b 261
e7bad212
LW
262 fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
263 if (!fttmr010) {
264 ret = -ENOMEM;
265 goto out_disable_clock;
266 }
267 fttmr010->tick_rate = clk_get_rate(clk);
268
269 fttmr010->base = of_iomap(np, 0);
270 if (!fttmr010->base) {
1893428b 271 pr_err("Can't remap registers\n");
e7bad212
LW
272 ret = -ENXIO;
273 goto out_free;
4750535b
LW
274 }
275 /* IRQ for timer 1 */
276 irq = irq_of_parse_and_map(np, 0);
277 if (irq <= 0) {
1893428b 278 pr_err("Can't parse IRQ\n");
e7bad212
LW
279 ret = -EINVAL;
280 goto out_unmap;
4750535b
LW
281 }
282
ec14ba1e
LW
283 /*
284 * The Aspeed AST2400 moves bits around in the control register,
285 * otherwise it works the same.
286 */
ef89718a 287 if (is_aspeed) {
ec14ba1e
LW
288 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
289 TIMER_1_CR_ASPEED_INT;
290 /* Downward not available */
291 fttmr010->count_down = true;
292 } else {
293 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
294 }
295
4750535b
LW
296 /*
297 * Reset the interrupt mask and status
298 */
e7bad212
LW
299 writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
300 writel(0, fttmr010->base + TIMER_INTR_STATE);
ec14ba1e
LW
301
302 /*
303 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
304 * where everything just counts down.
305 */
ef89718a 306 if (is_aspeed)
ec14ba1e
LW
307 val = TIMER_2_CR_ASPEED_ENABLE;
308 else {
309 val = TIMER_2_CR_ENABLE;
310 if (!fttmr010->count_down)
311 val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
312 }
313 writel(val, fttmr010->base + TIMER_CR);
4750535b
LW
314
315 /*
316 * Setup free-running clocksource timer (interrupts
317 * disabled.)
318 */
e7bad212 319 local_fttmr = fttmr010;
b589da8b 320 writel(0, fttmr010->base + TIMER2_COUNT);
b589da8b
LW
321 writel(0, fttmr010->base + TIMER2_MATCH1);
322 writel(0, fttmr010->base + TIMER2_MATCH2);
ec14ba1e
LW
323
324 if (fttmr010->count_down) {
325 writel(~0, fttmr010->base + TIMER2_LOAD);
326 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
327 "FTTMR010-TIMER2",
328 fttmr010->tick_rate,
329 300, 32, clocksource_mmio_readl_down);
740e237a
LW
330 sched_clock_register(fttmr010_read_sched_clock_down, 32,
331 fttmr010->tick_rate);
ec14ba1e
LW
332 } else {
333 writel(0, fttmr010->base + TIMER2_LOAD);
334 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
335 "FTTMR010-TIMER2",
336 fttmr010->tick_rate,
337 300, 32, clocksource_mmio_readl_up);
740e237a
LW
338 sched_clock_register(fttmr010_read_sched_clock_up, 32,
339 fttmr010->tick_rate);
ec14ba1e 340 }
4750535b
LW
341
342 /*
e7bad212 343 * Setup clockevent timer (interrupt-driven) on timer 1.
4750535b 344 */
e7bad212
LW
345 writel(0, fttmr010->base + TIMER1_COUNT);
346 writel(0, fttmr010->base + TIMER1_LOAD);
347 writel(0, fttmr010->base + TIMER1_MATCH1);
348 writel(0, fttmr010->base + TIMER1_MATCH2);
349 ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
350 "FTTMR010-TIMER1", &fttmr010->clkevt);
351 if (ret) {
352 pr_err("FTTMR010-TIMER1 no IRQ\n");
353 goto out_unmap;
354 }
355
356 fttmr010->clkevt.name = "FTTMR010-TIMER1";
357 /* Reasonably fast and accurate clock event */
358 fttmr010->clkevt.rating = 300;
359 fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
360 CLOCK_EVT_FEAT_ONESHOT;
361 fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
362 fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
363 fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
364 fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
365 fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
366 fttmr010->clkevt.cpumask = cpumask_of(0);
367 fttmr010->clkevt.irq = irq;
368 clockevents_config_and_register(&fttmr010->clkevt,
369 fttmr010->tick_rate,
4750535b
LW
370 1, 0xffffffff);
371
385c98fc
LW
372#ifdef CONFIG_ARM
373 /* Also use this timer for delays */
374 if (fttmr010->count_down)
375 fttmr010->delay_timer.read_current_timer =
376 fttmr010_read_current_timer_down;
377 else
378 fttmr010->delay_timer.read_current_timer =
379 fttmr010_read_current_timer_up;
380 fttmr010->delay_timer.freq = fttmr010->tick_rate;
381 register_current_timer_delay(&fttmr010->delay_timer);
382#endif
383
4750535b 384 return 0;
e7bad212
LW
385
386out_unmap:
387 iounmap(fttmr010->base);
388out_free:
389 kfree(fttmr010);
390out_disable_clock:
391 clk_disable_unprepare(clk);
392
393 return ret;
4750535b 394}
ef89718a
DL
395
396static __init int aspeed_timer_init(struct device_node *np)
397{
398 return fttmr010_common_init(np, true);
399}
400
401static __init int fttmr010_timer_init(struct device_node *np)
402{
403 return fttmr010_common_init(np, false);
404}
405
17273395
DL
406TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
407TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
408TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
409TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
410TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);