x86/mpx: Trace entry to bounds exception paths
[linux-2.6-block.git] / drivers / clocksource / tcb_clksrc.c
CommitLineData
4d243f92
DB
1#include <linux/init.h>
2#include <linux/clocksource.h>
3#include <linux/clockchips.h>
4#include <linux/interrupt.h>
5#include <linux/irq.h>
6
7#include <linux/clk.h>
8#include <linux/err.h>
9#include <linux/ioport.h>
10#include <linux/io.h>
11#include <linux/platform_device.h>
12#include <linux/atmel_tc.h>
13
14
15/*
16 * We're configured to use a specific TC block, one that's not hooked
17 * up to external hardware, to provide a time solution:
18 *
19 * - Two channels combine to create a free-running 32 bit counter
20 * with a base rate of 5+ MHz, packaged as a clocksource (with
21 * resolution better than 200 nsec).
8e315a7b
NF
22 * - Some chips support 32 bit counter. A single channel is used for
23 * this 32 bit free-running counter. the second channel is not used.
4d243f92
DB
24 *
25 * - The third channel may be used to provide a 16-bit clockevent
26 * source, used in either periodic or oneshot mode. This runs
27 * at 32 KiHZ, and can handle delays of up to two seconds.
28 *
29 * A boot clocksource and clockevent source are also currently needed,
30 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
31 * this code can be used when init_timers() is called, well before most
32 * devices are set up. (Some low end AT91 parts, which can run uClinux,
33 * have only the timers in one TC block... they currently don't support
34 * the tclib code, because of that initialization issue.)
35 *
36 * REVISIT behavior during system suspend states... we should disable
37 * all clocks and save the power. Easily done for clockevent devices,
38 * but clocksources won't necessarily get the needed notifications.
39 * For deeper system sleep states, this will be mandatory...
40 */
41
42static void __iomem *tcaddr;
43
8e19608e 44static cycle_t tc_get_cycles(struct clocksource *cs)
4d243f92
DB
45{
46 unsigned long flags;
47 u32 lower, upper;
48
49 raw_local_irq_save(flags);
50 do {
51 upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
52 lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
53 } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
54
55 raw_local_irq_restore(flags);
56 return (upper << 16) | lower;
57}
58
8e315a7b
NF
59static cycle_t tc_get_cycles32(struct clocksource *cs)
60{
61 return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
62}
63
4d243f92
DB
64static struct clocksource clksrc = {
65 .name = "tcb_clksrc",
66 .rating = 200,
67 .read = tc_get_cycles,
68 .mask = CLOCKSOURCE_MASK(32),
4d243f92
DB
69 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
70};
71
72#ifdef CONFIG_GENERIC_CLOCKEVENTS
73
74struct tc_clkevt_device {
75 struct clock_event_device clkevt;
76 struct clk *clk;
77 void __iomem *regs;
78};
79
80static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
81{
82 return container_of(clkevt, struct tc_clkevt_device, clkevt);
83}
84
85/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
86 * because using one of the divided clocks would usually mean the
87 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
88 *
89 * A divided clock could be good for high resolution timers, since
90 * 30.5 usec resolution can seem "low".
91 */
92static u32 timer_clock;
93
94static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
95{
96 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
97 void __iomem *regs = tcd->regs;
98
99 if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
100 || tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
101 __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
102 __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
acbf6d21 103 clk_disable(tcd->clk);
4d243f92
DB
104 }
105
106 switch (m) {
107
108 /* By not making the gentime core emulate periodic mode on top
109 * of oneshot, we get lower overhead and improved accuracy.
110 */
111 case CLOCK_EVT_MODE_PERIODIC:
acbf6d21 112 clk_enable(tcd->clk);
4d243f92
DB
113
114 /* slow clock, count up to RC, then irq and restart */
115 __raw_writel(timer_clock
116 | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
117 regs + ATMEL_TC_REG(2, CMR));
118 __raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
119
120 /* Enable clock and interrupts on RC compare */
121 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
122
123 /* go go gadget! */
124 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
125 regs + ATMEL_TC_REG(2, CCR));
126 break;
127
128 case CLOCK_EVT_MODE_ONESHOT:
acbf6d21 129 clk_enable(tcd->clk);
4d243f92
DB
130
131 /* slow clock, count up to RC, then irq and stop */
132 __raw_writel(timer_clock | ATMEL_TC_CPCSTOP
133 | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
134 regs + ATMEL_TC_REG(2, CMR));
135 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
136
137 /* set_next_event() configures and starts the timer */
138 break;
139
140 default:
141 break;
142 }
143}
144
145static int tc_next_event(unsigned long delta, struct clock_event_device *d)
146{
147 __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
148
149 /* go go gadget! */
150 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
151 tcaddr + ATMEL_TC_REG(2, CCR));
152 return 0;
153}
154
155static struct tc_clkevt_device clkevt = {
156 .clkevt = {
157 .name = "tc_clkevt",
158 .features = CLOCK_EVT_FEAT_PERIODIC
159 | CLOCK_EVT_FEAT_ONESHOT,
4d243f92
DB
160 /* Should be lower than at91rm9200's system timer */
161 .rating = 125,
4d243f92
DB
162 .set_next_event = tc_next_event,
163 .set_mode = tc_mode,
164 },
165};
166
167static irqreturn_t ch2_irq(int irq, void *handle)
168{
169 struct tc_clkevt_device *dev = handle;
170 unsigned int sr;
171
172 sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
173 if (sr & ATMEL_TC_CPCS) {
174 dev->clkevt.event_handler(&dev->clkevt);
175 return IRQ_HANDLED;
176 }
177
178 return IRQ_NONE;
179}
180
5b3c11da 181static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
4d243f92 182{
5b3c11da 183 int ret;
4d243f92
DB
184 struct clk *t2_clk = tc->clk[2];
185 int irq = tc->irq[2];
186
5b3c11da
BB
187 /* try to enable t2 clk to avoid future errors in mode change */
188 ret = clk_prepare_enable(t2_clk);
189 if (ret)
190 return ret;
acbf6d21 191 clk_disable(t2_clk);
5b3c11da 192
4d243f92
DB
193 clkevt.regs = tc->regs;
194 clkevt.clk = t2_clk;
4d243f92
DB
195
196 timer_clock = clk32k_divisor_idx;
197
320ab2b0 198 clkevt.clkevt.cpumask = cpumask_of(0);
4d243f92 199
d07a1ecd
GP
200 ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
201 if (ret) {
202 clk_disable_unprepare(t2_clk);
5b3c11da 203 return ret;
d07a1ecd 204 }
5b3c11da 205
77cc982f 206 clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
1817dc03 207
5b3c11da 208 return ret;
4d243f92
DB
209}
210
211#else /* !CONFIG_GENERIC_CLOCKEVENTS */
212
5b3c11da 213static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
4d243f92
DB
214{
215 /* NOTHING */
5b3c11da 216 return 0;
4d243f92
DB
217}
218
219#endif
220
8e315a7b
NF
221static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
222{
223 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
224 __raw_writel(mck_divisor_idx /* likely divide-by-8 */
225 | ATMEL_TC_WAVE
226 | ATMEL_TC_WAVESEL_UP /* free-run */
227 | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
228 | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
229 tcaddr + ATMEL_TC_REG(0, CMR));
230 __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
231 __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
232 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
233 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
234
235 /* channel 1: waveform mode, input TIOA0 */
236 __raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */
237 | ATMEL_TC_WAVE
238 | ATMEL_TC_WAVESEL_UP, /* free-run */
239 tcaddr + ATMEL_TC_REG(1, CMR));
240 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
241 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
242
243 /* chain channel 0 to channel 1*/
244 __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
245 /* then reset all the timers */
246 __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
247}
248
249static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
250{
251 /* channel 0: waveform mode, input mclk/8 */
252 __raw_writel(mck_divisor_idx /* likely divide-by-8 */
253 | ATMEL_TC_WAVE
254 | ATMEL_TC_WAVESEL_UP, /* free-run */
255 tcaddr + ATMEL_TC_REG(0, CMR));
256 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
257 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
258
259 /* then reset all the timers */
260 __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
261}
262
4d243f92
DB
263static int __init tcb_clksrc_init(void)
264{
265 static char bootinfo[] __initdata
266 = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
267
268 struct platform_device *pdev;
269 struct atmel_tc *tc;
3ee08aea 270 struct clk *t0_clk;
4d243f92
DB
271 u32 rate, divided_rate = 0;
272 int best_divisor_idx = -1;
273 int clk32k_divisor_idx = -1;
274 int i;
0e746ec5 275 int ret;
4d243f92 276
4930d247 277 tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK);
4d243f92
DB
278 if (!tc) {
279 pr_debug("can't alloc TC for clocksource\n");
280 return -ENODEV;
281 }
282 tcaddr = tc->regs;
283 pdev = tc->pdev;
284
285 t0_clk = tc->clk[0];
0e746ec5
BB
286 ret = clk_prepare_enable(t0_clk);
287 if (ret) {
288 pr_debug("can't enable T0 clk\n");
289 goto err_free_tc;
290 }
4d243f92
DB
291
292 /* How fast will we be counting? Pick something over 5 MHz. */
293 rate = (u32) clk_get_rate(t0_clk);
294 for (i = 0; i < 5; i++) {
295 unsigned divisor = atmel_tc_divisors[i];
296 unsigned tmp;
297
298 /* remember 32 KiHz clock for later */
299 if (!divisor) {
300 clk32k_divisor_idx = i;
301 continue;
302 }
303
304 tmp = rate / divisor;
305 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
306 if (best_divisor_idx > 0) {
307 if (tmp < 5 * 1000 * 1000)
308 continue;
309 }
310 divided_rate = tmp;
311 best_divisor_idx = i;
312 }
313
4d243f92
DB
314
315 printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
316 divided_rate / 1000000,
317 ((divided_rate + 500000) % 1000000) / 1000);
318
8e315a7b
NF
319 if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
320 /* use apropriate function to read 32 bit counter */
321 clksrc.read = tc_get_cycles32;
322 /* setup ony channel 0 */
323 tcb_setup_single_chan(tc, best_divisor_idx);
324 } else {
325 /* tclib will give us three clocks no matter what the
326 * underlying platform supports.
327 */
0e746ec5
BB
328 ret = clk_prepare_enable(tc->clk[1]);
329 if (ret) {
330 pr_debug("can't enable T1 clk\n");
331 goto err_disable_t0;
332 }
8e315a7b
NF
333 /* setup both channel 0 & 1 */
334 tcb_setup_dual_chan(tc, best_divisor_idx);
335 }
4d243f92
DB
336
337 /* and away we go! */
5b3c11da
BB
338 ret = clocksource_register_hz(&clksrc, divided_rate);
339 if (ret)
340 goto err_disable_t1;
4d243f92
DB
341
342 /* channel 2: periodic and oneshot timer support */
5b3c11da
BB
343 ret = setup_clkevents(tc, clk32k_divisor_idx);
344 if (ret)
345 goto err_unregister_clksrc;
4d243f92
DB
346
347 return 0;
0e746ec5 348
5b3c11da
BB
349err_unregister_clksrc:
350 clocksource_unregister(&clksrc);
351
352err_disable_t1:
353 if (!tc->tcb_config || tc->tcb_config->counter_width != 32)
354 clk_disable_unprepare(tc->clk[1]);
355
0e746ec5
BB
356err_disable_t0:
357 clk_disable_unprepare(t0_clk);
358
359err_free_tc:
360 atmel_tc_free(tc);
361 return ret;
4d243f92
DB
362}
363arch_initcall(tcb_clksrc_init);