mfd: kempld-core: Constify variables that point to const structure
[linux-2.6-block.git] / drivers / clocksource / tcb_clksrc.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
4d243f92
DB
2#include <linux/init.h>
3#include <linux/clocksource.h>
4#include <linux/clockchips.h>
5#include <linux/interrupt.h>
6#include <linux/irq.h>
7
8#include <linux/clk.h>
9#include <linux/err.h>
10#include <linux/ioport.h>
11#include <linux/io.h>
12#include <linux/platform_device.h>
2a515e5d 13#include <linux/syscore_ops.h>
4d243f92
DB
14#include <linux/atmel_tc.h>
15
16
17/*
18 * We're configured to use a specific TC block, one that's not hooked
19 * up to external hardware, to provide a time solution:
20 *
21 * - Two channels combine to create a free-running 32 bit counter
22 * with a base rate of 5+ MHz, packaged as a clocksource (with
23 * resolution better than 200 nsec).
8e315a7b
NF
24 * - Some chips support 32 bit counter. A single channel is used for
25 * this 32 bit free-running counter. the second channel is not used.
4d243f92
DB
26 *
27 * - The third channel may be used to provide a 16-bit clockevent
28 * source, used in either periodic or oneshot mode. This runs
29 * at 32 KiHZ, and can handle delays of up to two seconds.
30 *
31 * A boot clocksource and clockevent source are also currently needed,
32 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
33 * this code can be used when init_timers() is called, well before most
34 * devices are set up. (Some low end AT91 parts, which can run uClinux,
35 * have only the timers in one TC block... they currently don't support
36 * the tclib code, because of that initialization issue.)
37 *
38 * REVISIT behavior during system suspend states... we should disable
39 * all clocks and save the power. Easily done for clockevent devices,
40 * but clocksources won't necessarily get the needed notifications.
41 * For deeper system sleep states, this will be mandatory...
42 */
43
44static void __iomem *tcaddr;
2a515e5d
AB
45static struct
46{
47 u32 cmr;
48 u32 imr;
49 u32 rc;
50 bool clken;
51} tcb_cache[3];
52static u32 bmr_cache;
4d243f92 53
a5a1d1c2 54static u64 tc_get_cycles(struct clocksource *cs)
4d243f92
DB
55{
56 unsigned long flags;
57 u32 lower, upper;
58
59 raw_local_irq_save(flags);
60 do {
6ec8be25
AB
61 upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
62 lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
63 } while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
4d243f92
DB
64
65 raw_local_irq_restore(flags);
66 return (upper << 16) | lower;
67}
68
7b9f1d16
DE
69static u64 tc_get_cycles32(struct clocksource *cs)
70{
6ec8be25 71 return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
7b9f1d16
DE
72}
73
2a515e5d
AB
74void tc_clksrc_suspend(struct clocksource *cs)
75{
76 int i;
77
78 for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
79 tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
80 tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
81 tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
82 tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
83 ATMEL_TC_CLKSTA);
84 }
85
86 bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
87}
88
89void tc_clksrc_resume(struct clocksource *cs)
90{
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
94 /* Restore registers for the channel, RA and RB are not used */
95 writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
96 writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
97 writel(0, tcaddr + ATMEL_TC_REG(i, RA));
98 writel(0, tcaddr + ATMEL_TC_REG(i, RB));
99 /* Disable all the interrupts */
100 writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
101 /* Reenable interrupts that were enabled before suspending */
102 writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
103 /* Start the clock if it was used */
104 if (tcb_cache[i].clken)
105 writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
106 }
107
108 /* Dual channel, chain channels */
109 writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
110 /* Finally, trigger all the channels*/
111 writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
112}
113
4d243f92
DB
114static struct clocksource clksrc = {
115 .name = "tcb_clksrc",
116 .rating = 200,
117 .read = tc_get_cycles,
118 .mask = CLOCKSOURCE_MASK(32),
4d243f92 119 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
2a515e5d
AB
120 .suspend = tc_clksrc_suspend,
121 .resume = tc_clksrc_resume,
4d243f92
DB
122};
123
124#ifdef CONFIG_GENERIC_CLOCKEVENTS
125
126struct tc_clkevt_device {
127 struct clock_event_device clkevt;
128 struct clk *clk;
129 void __iomem *regs;
130};
131
132static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
133{
134 return container_of(clkevt, struct tc_clkevt_device, clkevt);
135}
136
137/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
138 * because using one of the divided clocks would usually mean the
139 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
140 *
141 * A divided clock could be good for high resolution timers, since
142 * 30.5 usec resolution can seem "low".
143 */
144static u32 timer_clock;
145
cf4541c1 146static int tc_shutdown(struct clock_event_device *d)
4d243f92
DB
147{
148 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
149 void __iomem *regs = tcd->regs;
150
6ec8be25
AB
151 writel(0xff, regs + ATMEL_TC_REG(2, IDR));
152 writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
f02b4b72
AB
153 if (!clockevent_state_detached(d))
154 clk_disable(tcd->clk);
4d243f92 155
cf4541c1
VK
156 return 0;
157}
4d243f92 158
cf4541c1
VK
159static int tc_set_oneshot(struct clock_event_device *d)
160{
161 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
162 void __iomem *regs = tcd->regs;
4d243f92 163
cf4541c1
VK
164 if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
165 tc_shutdown(d);
4d243f92 166
cf4541c1 167 clk_enable(tcd->clk);
4d243f92 168
cf4541c1 169 /* slow clock, count up to RC, then irq and stop */
6ec8be25 170 writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
cf4541c1 171 ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
6ec8be25 172 writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
4d243f92 173
cf4541c1
VK
174 /* set_next_event() configures and starts the timer */
175 return 0;
176}
4d243f92 177
cf4541c1
VK
178static int tc_set_periodic(struct clock_event_device *d)
179{
180 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
181 void __iomem *regs = tcd->regs;
4d243f92 182
cf4541c1
VK
183 if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
184 tc_shutdown(d);
4d243f92 185
cf4541c1
VK
186 /* By not making the gentime core emulate periodic mode on top
187 * of oneshot, we get lower overhead and improved accuracy.
188 */
189 clk_enable(tcd->clk);
190
191 /* slow clock, count up to RC, then irq and restart */
6ec8be25 192 writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
cf4541c1 193 regs + ATMEL_TC_REG(2, CMR));
6ec8be25 194 writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
cf4541c1
VK
195
196 /* Enable clock and interrupts on RC compare */
6ec8be25 197 writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
cf4541c1
VK
198
199 /* go go gadget! */
6ec8be25 200 writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
cf4541c1
VK
201 ATMEL_TC_REG(2, CCR));
202 return 0;
4d243f92
DB
203}
204
205static int tc_next_event(unsigned long delta, struct clock_event_device *d)
206{
6ec8be25 207 writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
4d243f92
DB
208
209 /* go go gadget! */
6ec8be25 210 writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
4d243f92
DB
211 tcaddr + ATMEL_TC_REG(2, CCR));
212 return 0;
213}
214
215static struct tc_clkevt_device clkevt = {
216 .clkevt = {
cf4541c1
VK
217 .name = "tc_clkevt",
218 .features = CLOCK_EVT_FEAT_PERIODIC |
219 CLOCK_EVT_FEAT_ONESHOT,
4d243f92 220 /* Should be lower than at91rm9200's system timer */
cf4541c1
VK
221 .rating = 125,
222 .set_next_event = tc_next_event,
223 .set_state_shutdown = tc_shutdown,
224 .set_state_periodic = tc_set_periodic,
225 .set_state_oneshot = tc_set_oneshot,
4d243f92
DB
226 },
227};
228
229static irqreturn_t ch2_irq(int irq, void *handle)
230{
231 struct tc_clkevt_device *dev = handle;
232 unsigned int sr;
233
6ec8be25 234 sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
4d243f92
DB
235 if (sr & ATMEL_TC_CPCS) {
236 dev->clkevt.event_handler(&dev->clkevt);
237 return IRQ_HANDLED;
238 }
239
240 return IRQ_NONE;
241}
242
5b3c11da 243static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
4d243f92 244{
5b3c11da 245 int ret;
4d243f92
DB
246 struct clk *t2_clk = tc->clk[2];
247 int irq = tc->irq[2];
248
7d8d05d1
BB
249 ret = clk_prepare_enable(tc->slow_clk);
250 if (ret)
251 return ret;
252
5b3c11da
BB
253 /* try to enable t2 clk to avoid future errors in mode change */
254 ret = clk_prepare_enable(t2_clk);
7d8d05d1
BB
255 if (ret) {
256 clk_disable_unprepare(tc->slow_clk);
5b3c11da 257 return ret;
7d8d05d1
BB
258 }
259
acbf6d21 260 clk_disable(t2_clk);
5b3c11da 261
4d243f92
DB
262 clkevt.regs = tc->regs;
263 clkevt.clk = t2_clk;
4d243f92
DB
264
265 timer_clock = clk32k_divisor_idx;
266
320ab2b0 267 clkevt.clkevt.cpumask = cpumask_of(0);
4d243f92 268
d07a1ecd
GP
269 ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
270 if (ret) {
eed9fb9d 271 clk_unprepare(t2_clk);
7d8d05d1 272 clk_disable_unprepare(tc->slow_clk);
5b3c11da 273 return ret;
d07a1ecd 274 }
5b3c11da 275
77cc982f 276 clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
1817dc03 277
5b3c11da 278 return ret;
4d243f92
DB
279}
280
281#else /* !CONFIG_GENERIC_CLOCKEVENTS */
282
5b3c11da 283static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
4d243f92
DB
284{
285 /* NOTHING */
5b3c11da 286 return 0;
4d243f92
DB
287}
288
289#endif
290
8e315a7b
NF
291static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
292{
293 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
6ec8be25 294 writel(mck_divisor_idx /* likely divide-by-8 */
8e315a7b
NF
295 | ATMEL_TC_WAVE
296 | ATMEL_TC_WAVESEL_UP /* free-run */
297 | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
298 | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
299 tcaddr + ATMEL_TC_REG(0, CMR));
6ec8be25
AB
300 writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
301 writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
302 writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
303 writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
8e315a7b
NF
304
305 /* channel 1: waveform mode, input TIOA0 */
6ec8be25 306 writel(ATMEL_TC_XC1 /* input: TIOA0 */
8e315a7b
NF
307 | ATMEL_TC_WAVE
308 | ATMEL_TC_WAVESEL_UP, /* free-run */
309 tcaddr + ATMEL_TC_REG(1, CMR));
6ec8be25
AB
310 writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
311 writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
8e315a7b
NF
312
313 /* chain channel 0 to channel 1*/
6ec8be25 314 writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
8e315a7b 315 /* then reset all the timers */
6ec8be25 316 writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
8e315a7b
NF
317}
318
319static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
320{
321 /* channel 0: waveform mode, input mclk/8 */
6ec8be25 322 writel(mck_divisor_idx /* likely divide-by-8 */
8e315a7b
NF
323 | ATMEL_TC_WAVE
324 | ATMEL_TC_WAVESEL_UP, /* free-run */
325 tcaddr + ATMEL_TC_REG(0, CMR));
6ec8be25
AB
326 writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
327 writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
8e315a7b
NF
328
329 /* then reset all the timers */
6ec8be25 330 writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
8e315a7b
NF
331}
332
4d243f92
DB
333static int __init tcb_clksrc_init(void)
334{
335 static char bootinfo[] __initdata
336 = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
337
338 struct platform_device *pdev;
339 struct atmel_tc *tc;
3ee08aea 340 struct clk *t0_clk;
4d243f92
DB
341 u32 rate, divided_rate = 0;
342 int best_divisor_idx = -1;
343 int clk32k_divisor_idx = -1;
344 int i;
0e746ec5 345 int ret;
4d243f92 346
4930d247 347 tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK);
4d243f92
DB
348 if (!tc) {
349 pr_debug("can't alloc TC for clocksource\n");
350 return -ENODEV;
351 }
352 tcaddr = tc->regs;
353 pdev = tc->pdev;
354
355 t0_clk = tc->clk[0];
0e746ec5
BB
356 ret = clk_prepare_enable(t0_clk);
357 if (ret) {
358 pr_debug("can't enable T0 clk\n");
359 goto err_free_tc;
360 }
4d243f92
DB
361
362 /* How fast will we be counting? Pick something over 5 MHz. */
363 rate = (u32) clk_get_rate(t0_clk);
364 for (i = 0; i < 5; i++) {
365 unsigned divisor = atmel_tc_divisors[i];
366 unsigned tmp;
367
368 /* remember 32 KiHz clock for later */
369 if (!divisor) {
370 clk32k_divisor_idx = i;
371 continue;
372 }
373
374 tmp = rate / divisor;
375 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
376 if (best_divisor_idx > 0) {
377 if (tmp < 5 * 1000 * 1000)
378 continue;
379 }
380 divided_rate = tmp;
381 best_divisor_idx = i;
382 }
383
4d243f92
DB
384
385 printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
386 divided_rate / 1000000,
542f8246 387 ((divided_rate % 1000000) + 500) / 1000);
4d243f92 388
8e315a7b
NF
389 if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
390 /* use apropriate function to read 32 bit counter */
391 clksrc.read = tc_get_cycles32;
392 /* setup ony channel 0 */
393 tcb_setup_single_chan(tc, best_divisor_idx);
394 } else {
395 /* tclib will give us three clocks no matter what the
396 * underlying platform supports.
397 */
0e746ec5
BB
398 ret = clk_prepare_enable(tc->clk[1]);
399 if (ret) {
400 pr_debug("can't enable T1 clk\n");
401 goto err_disable_t0;
402 }
8e315a7b
NF
403 /* setup both channel 0 & 1 */
404 tcb_setup_dual_chan(tc, best_divisor_idx);
405 }
4d243f92
DB
406
407 /* and away we go! */
5b3c11da
BB
408 ret = clocksource_register_hz(&clksrc, divided_rate);
409 if (ret)
410 goto err_disable_t1;
4d243f92
DB
411
412 /* channel 2: periodic and oneshot timer support */
5b3c11da
BB
413 ret = setup_clkevents(tc, clk32k_divisor_idx);
414 if (ret)
415 goto err_unregister_clksrc;
4d243f92
DB
416
417 return 0;
0e746ec5 418
5b3c11da
BB
419err_unregister_clksrc:
420 clocksource_unregister(&clksrc);
421
422err_disable_t1:
423 if (!tc->tcb_config || tc->tcb_config->counter_width != 32)
424 clk_disable_unprepare(tc->clk[1]);
425
0e746ec5
BB
426err_disable_t0:
427 clk_disable_unprepare(t0_clk);
428
429err_free_tc:
430 atmel_tc_free(tc);
431 return ret;
4d243f92
DB
432}
433arch_initcall(tcb_clksrc_init);