clocksource/drivers/sh_cmt: Support separate R-Car Gen2 CMT0/1
[linux-block.git] / drivers / clocksource / sh_cmt.c
CommitLineData
3fb1b6ad
MD
1/*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
3fb1b6ad
MD
14 */
15
e7a9bcc2
LP
16#include <linux/clk.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/delay.h>
20#include <linux/err.h>
3fb1b6ad 21#include <linux/init.h>
3fb1b6ad 22#include <linux/interrupt.h>
3fb1b6ad 23#include <linux/io.h>
e7a9bcc2 24#include <linux/ioport.h>
3fb1b6ad 25#include <linux/irq.h>
7deeab5d 26#include <linux/module.h>
1768aa2f 27#include <linux/of.h>
e7a9bcc2 28#include <linux/platform_device.h>
615a445f 29#include <linux/pm_domain.h>
bad81383 30#include <linux/pm_runtime.h>
e7a9bcc2
LP
31#include <linux/sh_timer.h>
32#include <linux/slab.h>
33#include <linux/spinlock.h>
3fb1b6ad 34
2653caf4 35struct sh_cmt_device;
7269f933 36
2cda3ac4
LP
37/*
38 * The CMT comes in 5 different identified flavours, depending not only on the
39 * SoC but also on the particular instance. The following table lists the main
40 * characteristics of those flavours.
41 *
83c79a6d 42 * 16B 32B 32B-F 48B R-Car Gen2
2cda3ac4
LP
43 * -----------------------------------------------------------------------------
44 * Channels 2 1/4 1 6 2/8
45 * Control Width 16 16 16 16 32
46 * Counter Width 16 32 32 32/48 32/48
47 * Shared Start/Stop Y Y Y Y N
48 *
83c79a6d
MD
49 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
50 * located in the channel registers block. All other versions have a shared
51 * start/stop register located in the global space.
2cda3ac4 52 *
81b3b271
LP
53 * Channels are indexed from 0 to N-1 in the documentation. The channel index
54 * infers the start/stop bit position in the control register and the channel
55 * registers block address. Some CMT instances have a subset of channels
56 * available, in which case the index in the documentation doesn't match the
57 * "real" index as implemented in hardware. This is for instance the case with
58 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
59 * in the documentation but using start/stop bit 5 and having its registers
60 * block at 0x60.
61 *
62 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
2cda3ac4
LP
63 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
64 */
65
66enum sh_cmt_model {
67 SH_CMT_16BIT,
68 SH_CMT_32BIT,
69 SH_CMT_32BIT_FAST,
70 SH_CMT_48BIT,
83c79a6d
MD
71 SH_CMT0_RCAR_GEN2,
72 SH_CMT1_RCAR_GEN2,
2cda3ac4
LP
73};
74
75struct sh_cmt_info {
76 enum sh_cmt_model model;
77
464eed84
MD
78 unsigned int channels_mask;
79
2cda3ac4
LP
80 unsigned long width; /* 16 or 32 bit version of hardware block */
81 unsigned long overflow_bit;
82 unsigned long clear_bits;
83
84 /* callbacks for CMSTR and CMCSR access */
85 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
86 void (*write_control)(void __iomem *base, unsigned long offs,
87 unsigned long value);
88
89 /* callbacks for CMCNT and CMCOR access */
90 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
91 void (*write_count)(void __iomem *base, unsigned long offs,
92 unsigned long value);
93};
94
7269f933 95struct sh_cmt_channel {
2653caf4 96 struct sh_cmt_device *cmt;
3fb1b6ad 97
81b3b271
LP
98 unsigned int index; /* Index in the documentation */
99 unsigned int hwidx; /* Real hardware index */
100
101 void __iomem *iostart;
102 void __iomem *ioctrl;
c924d2d2 103
81b3b271 104 unsigned int timer_bit;
3fb1b6ad
MD
105 unsigned long flags;
106 unsigned long match_value;
107 unsigned long next_match_value;
108 unsigned long max_match_value;
7d0c399f 109 raw_spinlock_t lock;
3fb1b6ad 110 struct clock_event_device ced;
19bdc9d0 111 struct clocksource cs;
3fb1b6ad 112 unsigned long total_cycles;
bad81383 113 bool cs_enabled;
7269f933
LP
114};
115
2653caf4 116struct sh_cmt_device {
7269f933
LP
117 struct platform_device *pdev;
118
2cda3ac4
LP
119 const struct sh_cmt_info *info;
120
7269f933 121 void __iomem *mapbase;
7269f933 122 struct clk *clk;
890f423b 123 unsigned long rate;
7269f933 124
de599c88
LP
125 raw_spinlock_t lock; /* Protect the shared start/stop register */
126
f5ec9b19
LP
127 struct sh_cmt_channel *channels;
128 unsigned int num_channels;
1768aa2f 129 unsigned int hw_channels;
81b3b271
LP
130
131 bool has_clockevent;
132 bool has_clocksource;
3fb1b6ad
MD
133};
134
d14be99b
LP
135#define SH_CMT16_CMCSR_CMF (1 << 7)
136#define SH_CMT16_CMCSR_CMIE (1 << 6)
137#define SH_CMT16_CMCSR_CKS8 (0 << 0)
138#define SH_CMT16_CMCSR_CKS32 (1 << 0)
139#define SH_CMT16_CMCSR_CKS128 (2 << 0)
140#define SH_CMT16_CMCSR_CKS512 (3 << 0)
141#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
142
143#define SH_CMT32_CMCSR_CMF (1 << 15)
144#define SH_CMT32_CMCSR_OVF (1 << 14)
145#define SH_CMT32_CMCSR_WRFLG (1 << 13)
146#define SH_CMT32_CMCSR_STTF (1 << 12)
147#define SH_CMT32_CMCSR_STPF (1 << 11)
148#define SH_CMT32_CMCSR_SSIE (1 << 10)
149#define SH_CMT32_CMCSR_CMS (1 << 9)
150#define SH_CMT32_CMCSR_CMM (1 << 8)
151#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
152#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
153#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
154#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
155#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
156#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
157#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
158#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
159#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
160#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
161#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
162
a6a912ca 163static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
587acb3d
MD
164{
165 return ioread16(base + (offs << 1));
166}
167
a6a912ca
MD
168static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
169{
170 return ioread32(base + (offs << 2));
171}
172
173static void sh_cmt_write16(void __iomem *base, unsigned long offs,
174 unsigned long value)
587acb3d
MD
175{
176 iowrite16(value, base + (offs << 1));
177}
3fb1b6ad 178
a6a912ca
MD
179static void sh_cmt_write32(void __iomem *base, unsigned long offs,
180 unsigned long value)
181{
182 iowrite32(value, base + (offs << 2));
183}
184
2cda3ac4
LP
185static const struct sh_cmt_info sh_cmt_info[] = {
186 [SH_CMT_16BIT] = {
187 .model = SH_CMT_16BIT,
188 .width = 16,
d14be99b
LP
189 .overflow_bit = SH_CMT16_CMCSR_CMF,
190 .clear_bits = ~SH_CMT16_CMCSR_CMF,
2cda3ac4
LP
191 .read_control = sh_cmt_read16,
192 .write_control = sh_cmt_write16,
193 .read_count = sh_cmt_read16,
194 .write_count = sh_cmt_write16,
195 },
196 [SH_CMT_32BIT] = {
197 .model = SH_CMT_32BIT,
198 .width = 32,
d14be99b
LP
199 .overflow_bit = SH_CMT32_CMCSR_CMF,
200 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
201 .read_control = sh_cmt_read16,
202 .write_control = sh_cmt_write16,
203 .read_count = sh_cmt_read32,
204 .write_count = sh_cmt_write32,
205 },
206 [SH_CMT_32BIT_FAST] = {
207 .model = SH_CMT_32BIT_FAST,
208 .width = 32,
d14be99b
LP
209 .overflow_bit = SH_CMT32_CMCSR_CMF,
210 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
211 .read_control = sh_cmt_read16,
212 .write_control = sh_cmt_write16,
213 .read_count = sh_cmt_read32,
214 .write_count = sh_cmt_write32,
215 },
216 [SH_CMT_48BIT] = {
217 .model = SH_CMT_48BIT,
464eed84 218 .channels_mask = 0x3f,
2cda3ac4 219 .width = 32,
d14be99b
LP
220 .overflow_bit = SH_CMT32_CMCSR_CMF,
221 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
222 .read_control = sh_cmt_read32,
223 .write_control = sh_cmt_write32,
224 .read_count = sh_cmt_read32,
225 .write_count = sh_cmt_write32,
226 },
83c79a6d
MD
227 [SH_CMT0_RCAR_GEN2] = {
228 .model = SH_CMT0_RCAR_GEN2,
229 .channels_mask = 0x60,
230 .width = 32,
231 .overflow_bit = SH_CMT32_CMCSR_CMF,
232 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
233 .read_control = sh_cmt_read32,
234 .write_control = sh_cmt_write32,
235 .read_count = sh_cmt_read32,
236 .write_count = sh_cmt_write32,
237 },
238 [SH_CMT1_RCAR_GEN2] = {
239 .model = SH_CMT1_RCAR_GEN2,
240 .channels_mask = 0xff,
2cda3ac4 241 .width = 32,
d14be99b
LP
242 .overflow_bit = SH_CMT32_CMCSR_CMF,
243 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
244 .read_control = sh_cmt_read32,
245 .write_control = sh_cmt_write32,
246 .read_count = sh_cmt_read32,
247 .write_count = sh_cmt_write32,
248 },
249};
250
3fb1b6ad
MD
251#define CMCSR 0 /* channel register */
252#define CMCNT 1 /* channel register */
253#define CMCOR 2 /* channel register */
254
7269f933 255static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
1b56b96b 256{
81b3b271
LP
257 if (ch->iostart)
258 return ch->cmt->info->read_control(ch->iostart, 0);
259 else
260 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
1b56b96b
MD
261}
262
81b3b271
LP
263static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
264 unsigned long value)
1b56b96b 265{
81b3b271
LP
266 if (ch->iostart)
267 ch->cmt->info->write_control(ch->iostart, 0, value);
268 else
269 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
1b56b96b
MD
270}
271
81b3b271 272static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
1b56b96b 273{
81b3b271 274 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
3fb1b6ad
MD
275}
276
81b3b271 277static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
1b56b96b
MD
278 unsigned long value)
279{
81b3b271 280 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
1b56b96b
MD
281}
282
81b3b271 283static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
1b56b96b 284{
81b3b271 285 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
1b56b96b
MD
286}
287
7269f933 288static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
1b56b96b
MD
289 unsigned long value)
290{
81b3b271 291 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
1b56b96b
MD
292}
293
7269f933 294static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
1b56b96b
MD
295 unsigned long value)
296{
81b3b271 297 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
1b56b96b
MD
298}
299
7269f933 300static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
3fb1b6ad
MD
301 int *has_wrapped)
302{
303 unsigned long v1, v2, v3;
5b644c7a
MD
304 int o1, o2;
305
2cda3ac4 306 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
3fb1b6ad
MD
307
308 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
309 do {
5b644c7a 310 o2 = o1;
7269f933
LP
311 v1 = sh_cmt_read_cmcnt(ch);
312 v2 = sh_cmt_read_cmcnt(ch);
313 v3 = sh_cmt_read_cmcnt(ch);
2cda3ac4 314 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
5b644c7a
MD
315 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
316 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
3fb1b6ad 317
5b644c7a 318 *has_wrapped = o1;
3fb1b6ad
MD
319 return v2;
320}
321
7269f933 322static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
3fb1b6ad 323{
3fb1b6ad
MD
324 unsigned long flags, value;
325
326 /* start stop register shared by multiple timer channels */
de599c88 327 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
7269f933 328 value = sh_cmt_read_cmstr(ch);
3fb1b6ad
MD
329
330 if (start)
81b3b271 331 value |= 1 << ch->timer_bit;
3fb1b6ad 332 else
81b3b271 333 value &= ~(1 << ch->timer_bit);
3fb1b6ad 334
7269f933 335 sh_cmt_write_cmstr(ch, value);
de599c88 336 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
3fb1b6ad
MD
337}
338
890f423b 339static int sh_cmt_enable(struct sh_cmt_channel *ch)
3fb1b6ad 340{
3f7e5e24 341 int k, ret;
3fb1b6ad 342
7269f933
LP
343 pm_runtime_get_sync(&ch->cmt->pdev->dev);
344 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
bad81383 345
9436b4ab 346 /* enable clock */
7269f933 347 ret = clk_enable(ch->cmt->clk);
3fb1b6ad 348 if (ret) {
740a9518
LP
349 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
350 ch->index);
3f7e5e24 351 goto err0;
3fb1b6ad 352 }
3fb1b6ad
MD
353
354 /* make sure channel is disabled */
7269f933 355 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad
MD
356
357 /* configure channel, periodic mode and maximum timeout */
2cda3ac4 358 if (ch->cmt->info->width == 16) {
d14be99b
LP
359 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
360 SH_CMT16_CMCSR_CKS512);
3014f474 361 } else {
d14be99b
LP
362 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
363 SH_CMT32_CMCSR_CMTOUT_IE |
364 SH_CMT32_CMCSR_CMR_IRQ |
365 SH_CMT32_CMCSR_CKS_RCLK8);
3014f474 366 }
3fb1b6ad 367
7269f933
LP
368 sh_cmt_write_cmcor(ch, 0xffffffff);
369 sh_cmt_write_cmcnt(ch, 0);
3fb1b6ad 370
3f7e5e24
MD
371 /*
372 * According to the sh73a0 user's manual, as CMCNT can be operated
373 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
374 * modifying CMCNT register; two RCLK cycles are necessary before
375 * this register is either read or any modification of the value
376 * it holds is reflected in the LSI's actual operation.
377 *
378 * While at it, we're supposed to clear out the CMCNT as of this
379 * moment, so make sure it's processed properly here. This will
380 * take RCLKx2 at maximum.
381 */
382 for (k = 0; k < 100; k++) {
7269f933 383 if (!sh_cmt_read_cmcnt(ch))
3f7e5e24
MD
384 break;
385 udelay(1);
386 }
387
7269f933 388 if (sh_cmt_read_cmcnt(ch)) {
740a9518
LP
389 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
390 ch->index);
3f7e5e24
MD
391 ret = -ETIMEDOUT;
392 goto err1;
393 }
394
3fb1b6ad 395 /* enable channel */
7269f933 396 sh_cmt_start_stop_ch(ch, 1);
3fb1b6ad 397 return 0;
3f7e5e24
MD
398 err1:
399 /* stop clock */
7269f933 400 clk_disable(ch->cmt->clk);
3f7e5e24
MD
401
402 err0:
403 return ret;
3fb1b6ad
MD
404}
405
7269f933 406static void sh_cmt_disable(struct sh_cmt_channel *ch)
3fb1b6ad
MD
407{
408 /* disable channel */
7269f933 409 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad 410
be890a1a 411 /* disable interrupts in CMT block */
7269f933 412 sh_cmt_write_cmcsr(ch, 0);
be890a1a 413
9436b4ab 414 /* stop clock */
7269f933 415 clk_disable(ch->cmt->clk);
bad81383 416
7269f933
LP
417 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
418 pm_runtime_put(&ch->cmt->pdev->dev);
3fb1b6ad
MD
419}
420
421/* private flags */
422#define FLAG_CLOCKEVENT (1 << 0)
423#define FLAG_CLOCKSOURCE (1 << 1)
424#define FLAG_REPROGRAM (1 << 2)
425#define FLAG_SKIPEVENT (1 << 3)
426#define FLAG_IRQCONTEXT (1 << 4)
427
7269f933 428static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
3fb1b6ad
MD
429 int absolute)
430{
431 unsigned long new_match;
7269f933 432 unsigned long value = ch->next_match_value;
3fb1b6ad
MD
433 unsigned long delay = 0;
434 unsigned long now = 0;
435 int has_wrapped;
436
7269f933
LP
437 now = sh_cmt_get_counter(ch, &has_wrapped);
438 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
3fb1b6ad
MD
439
440 if (has_wrapped) {
441 /* we're competing with the interrupt handler.
442 * -> let the interrupt handler reprogram the timer.
443 * -> interrupt number two handles the event.
444 */
7269f933 445 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
446 return;
447 }
448
449 if (absolute)
450 now = 0;
451
452 do {
453 /* reprogram the timer hardware,
454 * but don't save the new match value yet.
455 */
456 new_match = now + value + delay;
7269f933
LP
457 if (new_match > ch->max_match_value)
458 new_match = ch->max_match_value;
3fb1b6ad 459
7269f933 460 sh_cmt_write_cmcor(ch, new_match);
3fb1b6ad 461
7269f933
LP
462 now = sh_cmt_get_counter(ch, &has_wrapped);
463 if (has_wrapped && (new_match > ch->match_value)) {
3fb1b6ad
MD
464 /* we are changing to a greater match value,
465 * so this wrap must be caused by the counter
466 * matching the old value.
467 * -> first interrupt reprograms the timer.
468 * -> interrupt number two handles the event.
469 */
7269f933 470 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
471 break;
472 }
473
474 if (has_wrapped) {
475 /* we are changing to a smaller match value,
476 * so the wrap must be caused by the counter
477 * matching the new value.
478 * -> save programmed match value.
479 * -> let isr handle the event.
480 */
7269f933 481 ch->match_value = new_match;
3fb1b6ad
MD
482 break;
483 }
484
485 /* be safe: verify hardware settings */
486 if (now < new_match) {
487 /* timer value is below match value, all good.
488 * this makes sure we won't miss any match events.
489 * -> save programmed match value.
490 * -> let isr handle the event.
491 */
7269f933 492 ch->match_value = new_match;
3fb1b6ad
MD
493 break;
494 }
495
496 /* the counter has reached a value greater
497 * than our new match value. and since the
498 * has_wrapped flag isn't set we must have
499 * programmed a too close event.
500 * -> increase delay and retry.
501 */
502 if (delay)
503 delay <<= 1;
504 else
505 delay = 1;
506
507 if (!delay)
740a9518
LP
508 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
509 ch->index);
3fb1b6ad
MD
510
511 } while (delay);
512}
513
7269f933 514static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
3fb1b6ad 515{
7269f933 516 if (delta > ch->max_match_value)
740a9518
LP
517 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
518 ch->index);
3fb1b6ad 519
7269f933
LP
520 ch->next_match_value = delta;
521 sh_cmt_clock_event_program_verify(ch, 0);
65ada547
TY
522}
523
7269f933 524static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
65ada547
TY
525{
526 unsigned long flags;
527
7269f933
LP
528 raw_spin_lock_irqsave(&ch->lock, flags);
529 __sh_cmt_set_next(ch, delta);
530 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
531}
532
533static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
534{
7269f933 535 struct sh_cmt_channel *ch = dev_id;
3fb1b6ad
MD
536
537 /* clear flags */
2cda3ac4
LP
538 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
539 ch->cmt->info->clear_bits);
3fb1b6ad
MD
540
541 /* update clock source counter to begin with if enabled
542 * the wrap flag should be cleared by the timer specific
543 * isr before we end up here.
544 */
7269f933
LP
545 if (ch->flags & FLAG_CLOCKSOURCE)
546 ch->total_cycles += ch->match_value + 1;
3fb1b6ad 547
7269f933
LP
548 if (!(ch->flags & FLAG_REPROGRAM))
549 ch->next_match_value = ch->max_match_value;
3fb1b6ad 550
7269f933 551 ch->flags |= FLAG_IRQCONTEXT;
3fb1b6ad 552
7269f933
LP
553 if (ch->flags & FLAG_CLOCKEVENT) {
554 if (!(ch->flags & FLAG_SKIPEVENT)) {
051b782e 555 if (clockevent_state_oneshot(&ch->ced)) {
7269f933
LP
556 ch->next_match_value = ch->max_match_value;
557 ch->flags |= FLAG_REPROGRAM;
3fb1b6ad
MD
558 }
559
7269f933 560 ch->ced.event_handler(&ch->ced);
3fb1b6ad
MD
561 }
562 }
563
7269f933 564 ch->flags &= ~FLAG_SKIPEVENT;
3fb1b6ad 565
7269f933
LP
566 if (ch->flags & FLAG_REPROGRAM) {
567 ch->flags &= ~FLAG_REPROGRAM;
568 sh_cmt_clock_event_program_verify(ch, 1);
3fb1b6ad 569
7269f933 570 if (ch->flags & FLAG_CLOCKEVENT)
051b782e 571 if ((clockevent_state_shutdown(&ch->ced))
7269f933
LP
572 || (ch->match_value == ch->next_match_value))
573 ch->flags &= ~FLAG_REPROGRAM;
3fb1b6ad
MD
574 }
575
7269f933 576 ch->flags &= ~FLAG_IRQCONTEXT;
3fb1b6ad
MD
577
578 return IRQ_HANDLED;
579}
580
7269f933 581static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
582{
583 int ret = 0;
584 unsigned long flags;
585
7269f933 586 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 587
7269f933 588 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
890f423b 589 ret = sh_cmt_enable(ch);
3fb1b6ad
MD
590
591 if (ret)
592 goto out;
7269f933 593 ch->flags |= flag;
3fb1b6ad
MD
594
595 /* setup timeout if no clockevent */
7269f933
LP
596 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
597 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 598 out:
7269f933 599 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
600
601 return ret;
602}
603
7269f933 604static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
605{
606 unsigned long flags;
607 unsigned long f;
608
7269f933 609 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 610
7269f933
LP
611 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
612 ch->flags &= ~flag;
3fb1b6ad 613
7269f933
LP
614 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
615 sh_cmt_disable(ch);
3fb1b6ad
MD
616
617 /* adjust the timeout to maximum if only clocksource left */
7269f933
LP
618 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
619 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 620
7269f933 621 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
622}
623
7269f933 624static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
19bdc9d0 625{
7269f933 626 return container_of(cs, struct sh_cmt_channel, cs);
19bdc9d0
MD
627}
628
a5a1d1c2 629static u64 sh_cmt_clocksource_read(struct clocksource *cs)
19bdc9d0 630{
7269f933 631 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0
MD
632 unsigned long flags, raw;
633 unsigned long value;
634 int has_wrapped;
635
7269f933
LP
636 raw_spin_lock_irqsave(&ch->lock, flags);
637 value = ch->total_cycles;
638 raw = sh_cmt_get_counter(ch, &has_wrapped);
19bdc9d0
MD
639
640 if (unlikely(has_wrapped))
7269f933
LP
641 raw += ch->match_value + 1;
642 raw_spin_unlock_irqrestore(&ch->lock, flags);
19bdc9d0
MD
643
644 return value + raw;
645}
646
647static int sh_cmt_clocksource_enable(struct clocksource *cs)
648{
3593f5fe 649 int ret;
7269f933 650 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0 651
7269f933 652 WARN_ON(ch->cs_enabled);
bad81383 653
7269f933 654 ch->total_cycles = 0;
19bdc9d0 655
7269f933 656 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
890f423b 657 if (!ret)
7269f933 658 ch->cs_enabled = true;
890f423b 659
3593f5fe 660 return ret;
19bdc9d0
MD
661}
662
663static void sh_cmt_clocksource_disable(struct clocksource *cs)
664{
7269f933 665 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
bad81383 666
7269f933 667 WARN_ON(!ch->cs_enabled);
bad81383 668
7269f933
LP
669 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
670 ch->cs_enabled = false;
19bdc9d0
MD
671}
672
9bb5ec88
RW
673static void sh_cmt_clocksource_suspend(struct clocksource *cs)
674{
7269f933 675 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 676
54d46b7f
GU
677 if (!ch->cs_enabled)
678 return;
679
7269f933
LP
680 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
681 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
9bb5ec88
RW
682}
683
c8162884
MD
684static void sh_cmt_clocksource_resume(struct clocksource *cs)
685{
7269f933 686 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 687
54d46b7f
GU
688 if (!ch->cs_enabled)
689 return;
690
7269f933
LP
691 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
692 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
c8162884
MD
693}
694
7269f933 695static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
fb28a659 696 const char *name)
19bdc9d0 697{
7269f933 698 struct clocksource *cs = &ch->cs;
19bdc9d0
MD
699
700 cs->name = name;
fb28a659 701 cs->rating = 125;
19bdc9d0
MD
702 cs->read = sh_cmt_clocksource_read;
703 cs->enable = sh_cmt_clocksource_enable;
704 cs->disable = sh_cmt_clocksource_disable;
9bb5ec88 705 cs->suspend = sh_cmt_clocksource_suspend;
c8162884 706 cs->resume = sh_cmt_clocksource_resume;
19bdc9d0
MD
707 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
708 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
f4d7c356 709
740a9518
LP
710 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
711 ch->index);
f4d7c356 712
890f423b 713 clocksource_register_hz(cs, ch->cmt->rate);
19bdc9d0
MD
714 return 0;
715}
716
7269f933 717static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
3fb1b6ad 718{
7269f933 719 return container_of(ced, struct sh_cmt_channel, ced);
3fb1b6ad
MD
720}
721
7269f933 722static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
3fb1b6ad 723{
7269f933 724 sh_cmt_start(ch, FLAG_CLOCKEVENT);
3fb1b6ad 725
3fb1b6ad 726 if (periodic)
890f423b 727 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
3fb1b6ad 728 else
7269f933 729 sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad
MD
730}
731
051b782e
VK
732static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
733{
734 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
735
736 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
737 return 0;
738}
739
740static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
741 int periodic)
3fb1b6ad 742{
7269f933 743 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
744
745 /* deal with old setting first */
051b782e 746 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
7269f933 747 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad 748
051b782e
VK
749 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
750 ch->index, periodic ? "periodic" : "oneshot");
751 sh_cmt_clock_event_start(ch, periodic);
752 return 0;
753}
754
755static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
756{
757 return sh_cmt_clock_event_set_state(ced, 0);
758}
759
760static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
761{
762 return sh_cmt_clock_event_set_state(ced, 1);
3fb1b6ad
MD
763}
764
765static int sh_cmt_clock_event_next(unsigned long delta,
766 struct clock_event_device *ced)
767{
7269f933 768 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad 769
051b782e 770 BUG_ON(!clockevent_state_oneshot(ced));
7269f933
LP
771 if (likely(ch->flags & FLAG_IRQCONTEXT))
772 ch->next_match_value = delta - 1;
3fb1b6ad 773 else
7269f933 774 sh_cmt_set_next(ch, delta - 1);
3fb1b6ad
MD
775
776 return 0;
777}
778
9bb5ec88
RW
779static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
780{
7269f933 781 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 782
7269f933
LP
783 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
784 clk_unprepare(ch->cmt->clk);
9bb5ec88
RW
785}
786
787static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
788{
7269f933 789 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 790
7269f933
LP
791 clk_prepare(ch->cmt->clk);
792 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
9bb5ec88
RW
793}
794
bfa76bb1
LP
795static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
796 const char *name)
3fb1b6ad 797{
7269f933 798 struct clock_event_device *ced = &ch->ced;
bfa76bb1
LP
799 int irq;
800 int ret;
801
31e912f5 802 irq = platform_get_irq(ch->cmt->pdev, ch->index);
bfa76bb1
LP
803 if (irq < 0) {
804 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
805 ch->index);
806 return irq;
807 }
808
809 ret = request_irq(irq, sh_cmt_interrupt,
810 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
811 dev_name(&ch->cmt->pdev->dev), ch);
812 if (ret) {
813 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
814 ch->index, irq);
815 return ret;
816 }
3fb1b6ad 817
3fb1b6ad
MD
818 ced->name = name;
819 ced->features = CLOCK_EVT_FEAT_PERIODIC;
820 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
b7fcbb0f 821 ced->rating = 125;
f1ebe1e4 822 ced->cpumask = cpu_possible_mask;
3fb1b6ad 823 ced->set_next_event = sh_cmt_clock_event_next;
051b782e
VK
824 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
825 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
826 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
9bb5ec88
RW
827 ced->suspend = sh_cmt_clock_event_suspend;
828 ced->resume = sh_cmt_clock_event_resume;
3fb1b6ad 829
890f423b
NS
830 /* TODO: calculate good shift from rate and counter bit width */
831 ced->shift = 32;
832 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
833 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
bb2e94ac 834 ced->max_delta_ticks = ch->max_match_value;
890f423b 835 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
bb2e94ac 836 ced->min_delta_ticks = 0x1f;
890f423b 837
740a9518
LP
838 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
839 ch->index);
3fb1b6ad 840 clockevents_register_device(ced);
bfa76bb1
LP
841
842 return 0;
3fb1b6ad
MD
843}
844
1d053e1d 845static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
fb28a659 846 bool clockevent, bool clocksource)
3fb1b6ad 847{
bfa76bb1
LP
848 int ret;
849
81b3b271
LP
850 if (clockevent) {
851 ch->cmt->has_clockevent = true;
bfa76bb1
LP
852 ret = sh_cmt_register_clockevent(ch, name);
853 if (ret < 0)
854 return ret;
81b3b271 855 }
3fb1b6ad 856
81b3b271
LP
857 if (clocksource) {
858 ch->cmt->has_clocksource = true;
fb28a659 859 sh_cmt_register_clocksource(ch, name);
81b3b271 860 }
19bdc9d0 861
3fb1b6ad
MD
862 return 0;
863}
864
740a9518 865static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
81b3b271
LP
866 unsigned int hwidx, bool clockevent,
867 bool clocksource, struct sh_cmt_device *cmt)
b882e7b1 868{
b882e7b1
LP
869 int ret;
870
81b3b271
LP
871 /* Skip unused channels. */
872 if (!clockevent && !clocksource)
873 return 0;
874
b882e7b1 875 ch->cmt = cmt;
740a9518 876 ch->index = index;
81b3b271 877 ch->hwidx = hwidx;
83c79a6d 878 ch->timer_bit = hwidx;
81b3b271
LP
879
880 /*
881 * Compute the address of the channel control register block. For the
882 * timers with a per-channel start/stop register, compute its address
883 * as well.
81b3b271 884 */
31e912f5
LP
885 switch (cmt->info->model) {
886 case SH_CMT_16BIT:
887 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
888 break;
889 case SH_CMT_32BIT:
890 case SH_CMT_48BIT:
891 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
892 break;
893 case SH_CMT_32BIT_FAST:
894 /*
895 * The 32-bit "fast" timer has a single channel at hwidx 5 but
896 * is located at offset 0x40 instead of 0x60 for some reason.
897 */
898 ch->ioctrl = cmt->mapbase + 0x40;
899 break;
83c79a6d
MD
900 case SH_CMT0_RCAR_GEN2:
901 case SH_CMT1_RCAR_GEN2:
31e912f5
LP
902 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
903 ch->ioctrl = ch->iostart + 0x10;
83c79a6d 904 ch->timer_bit = 0;
31e912f5 905 break;
81b3b271
LP
906 }
907
2cda3ac4 908 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
b882e7b1
LP
909 ch->max_match_value = ~0;
910 else
2cda3ac4 911 ch->max_match_value = (1 << cmt->info->width) - 1;
b882e7b1
LP
912
913 ch->match_value = ch->max_match_value;
914 raw_spin_lock_init(&ch->lock);
915
1d053e1d 916 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
81b3b271 917 clockevent, clocksource);
b882e7b1 918 if (ret) {
740a9518
LP
919 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
920 ch->index);
b882e7b1
LP
921 return ret;
922 }
923 ch->cs_enabled = false;
924
b882e7b1
LP
925 return 0;
926}
927
81b3b271 928static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
3fb1b6ad 929{
81b3b271 930 struct resource *mem;
3fb1b6ad 931
81b3b271
LP
932 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
933 if (!mem) {
934 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
935 return -ENXIO;
936 }
3fb1b6ad 937
81b3b271
LP
938 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
939 if (cmt->mapbase == NULL) {
940 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
941 return -ENXIO;
3fb1b6ad
MD
942 }
943
81b3b271
LP
944 return 0;
945}
946
1768aa2f
LP
947static const struct platform_device_id sh_cmt_id_table[] = {
948 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
949 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1768aa2f
LP
950 { }
951};
952MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
953
954static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
955 { .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
956 { .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
957 { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
83c79a6d
MD
958 { .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] },
959 { .compatible = "renesas,rcar-gen2-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] },
960 { .compatible = "renesas,rcar-gen2-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] },
1768aa2f
LP
961 { }
962};
963MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
964
965static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
966{
967 struct device_node *np = cmt->pdev->dev.of_node;
968
969 return of_property_read_u32(np, "renesas,channels-mask",
970 &cmt->hw_channels);
971}
972
81b3b271
LP
973static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
974{
31e912f5
LP
975 unsigned int mask;
976 unsigned int i;
81b3b271
LP
977 int ret;
978
81b3b271 979 cmt->pdev = pdev;
de599c88 980 raw_spin_lock_init(&cmt->lock);
81b3b271 981
1768aa2f
LP
982 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
983 const struct of_device_id *id;
984
985 id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
986 cmt->info = id->data;
987
464eed84
MD
988 /* prefer in-driver channel configuration over DT */
989 if (cmt->info->channels_mask) {
990 cmt->hw_channels = cmt->info->channels_mask;
991 } else {
992 ret = sh_cmt_parse_dt(cmt);
993 if (ret < 0)
994 return ret;
995 }
1768aa2f
LP
996 } else if (pdev->dev.platform_data) {
997 struct sh_timer_config *cfg = pdev->dev.platform_data;
998 const struct platform_device_id *id = pdev->id_entry;
999
1000 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1001 cmt->hw_channels = cfg->channels_mask;
1002 } else {
81b3b271
LP
1003 dev_err(&cmt->pdev->dev, "missing platform data\n");
1004 return -ENXIO;
1005 }
1006
81b3b271 1007 /* Get hold of clock. */
31e912f5 1008 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
2653caf4
LP
1009 if (IS_ERR(cmt->clk)) {
1010 dev_err(&cmt->pdev->dev, "cannot get clock\n");
81b3b271 1011 return PTR_ERR(cmt->clk);
3fb1b6ad
MD
1012 }
1013
2653caf4 1014 ret = clk_prepare(cmt->clk);
57dee992 1015 if (ret < 0)
81b3b271 1016 goto err_clk_put;
57dee992 1017
890f423b
NS
1018 /* Determine clock rate. */
1019 ret = clk_enable(cmt->clk);
1020 if (ret < 0)
1021 goto err_clk_unprepare;
1022
1023 if (cmt->info->width == 16)
1024 cmt->rate = clk_get_rate(cmt->clk) / 512;
1025 else
1026 cmt->rate = clk_get_rate(cmt->clk) / 8;
1027
1028 clk_disable(cmt->clk);
1029
31e912f5
LP
1030 /* Map the memory resource(s). */
1031 ret = sh_cmt_map_memory(cmt);
81b3b271
LP
1032 if (ret < 0)
1033 goto err_clk_unprepare;
1034
1035 /* Allocate and setup the channels. */
1768aa2f 1036 cmt->num_channels = hweight8(cmt->hw_channels);
81b3b271
LP
1037 cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1038 GFP_KERNEL);
f5ec9b19
LP
1039 if (cmt->channels == NULL) {
1040 ret = -ENOMEM;
81b3b271 1041 goto err_unmap;
f5ec9b19
LP
1042 }
1043
31e912f5
LP
1044 /*
1045 * Use the first channel as a clock event device and the second channel
1046 * as a clock source. If only one channel is available use it for both.
1047 */
1768aa2f 1048 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
31e912f5
LP
1049 unsigned int hwidx = ffs(mask) - 1;
1050 bool clocksource = i == 1 || cmt->num_channels == 1;
1051 bool clockevent = i == 0;
1052
1053 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1054 clockevent, clocksource, cmt);
81b3b271
LP
1055 if (ret < 0)
1056 goto err_unmap;
f5ec9b19 1057
31e912f5 1058 mask &= ~(1 << hwidx);
81b3b271 1059 }
da64c2a8 1060
2653caf4 1061 platform_set_drvdata(pdev, cmt);
adccc69e 1062
da64c2a8 1063 return 0;
81b3b271
LP
1064
1065err_unmap:
f5ec9b19 1066 kfree(cmt->channels);
31e912f5 1067 iounmap(cmt->mapbase);
81b3b271 1068err_clk_unprepare:
2653caf4 1069 clk_unprepare(cmt->clk);
81b3b271 1070err_clk_put:
2653caf4 1071 clk_put(cmt->clk);
3fb1b6ad
MD
1072 return ret;
1073}
1074
1850514b 1075static int sh_cmt_probe(struct platform_device *pdev)
3fb1b6ad 1076{
2653caf4 1077 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
3fb1b6ad
MD
1078 int ret;
1079
9bb5ec88 1080 if (!is_early_platform_device(pdev)) {
bad81383
RW
1081 pm_runtime_set_active(&pdev->dev);
1082 pm_runtime_enable(&pdev->dev);
9bb5ec88 1083 }
615a445f 1084
2653caf4 1085 if (cmt) {
214a607a 1086 dev_info(&pdev->dev, "kept as earlytimer\n");
bad81383 1087 goto out;
e475eedb
MD
1088 }
1089
b262bc74 1090 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
0178f41d 1091 if (cmt == NULL)
3fb1b6ad 1092 return -ENOMEM;
3fb1b6ad 1093
2653caf4 1094 ret = sh_cmt_setup(cmt, pdev);
3fb1b6ad 1095 if (ret) {
2653caf4 1096 kfree(cmt);
bad81383
RW
1097 pm_runtime_idle(&pdev->dev);
1098 return ret;
3fb1b6ad 1099 }
bad81383
RW
1100 if (is_early_platform_device(pdev))
1101 return 0;
1102
1103 out:
81b3b271 1104 if (cmt->has_clockevent || cmt->has_clocksource)
bad81383
RW
1105 pm_runtime_irq_safe(&pdev->dev);
1106 else
1107 pm_runtime_idle(&pdev->dev);
1108
1109 return 0;
3fb1b6ad
MD
1110}
1111
1850514b 1112static int sh_cmt_remove(struct platform_device *pdev)
3fb1b6ad
MD
1113{
1114 return -EBUSY; /* cannot unregister clockevent and clocksource */
1115}
1116
1117static struct platform_driver sh_cmt_device_driver = {
1118 .probe = sh_cmt_probe,
1850514b 1119 .remove = sh_cmt_remove,
3fb1b6ad
MD
1120 .driver = {
1121 .name = "sh_cmt",
1768aa2f 1122 .of_match_table = of_match_ptr(sh_cmt_of_table),
81b3b271
LP
1123 },
1124 .id_table = sh_cmt_id_table,
3fb1b6ad
MD
1125};
1126
1127static int __init sh_cmt_init(void)
1128{
1129 return platform_driver_register(&sh_cmt_device_driver);
1130}
1131
1132static void __exit sh_cmt_exit(void)
1133{
1134 platform_driver_unregister(&sh_cmt_device_driver);
1135}
1136
e475eedb 1137early_platform_init("earlytimer", &sh_cmt_device_driver);
e903a031 1138subsys_initcall(sh_cmt_init);
3fb1b6ad
MD
1139module_exit(sh_cmt_exit);
1140
1141MODULE_AUTHOR("Magnus Damm");
1142MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1143MODULE_LICENSE("GPL v2");