mlx5: avoid 64-bit division in dr_icm_pool_mr_create()
[linux-2.6-block.git] / drivers / clocksource / sh_cmt.c
CommitLineData
efad0117 1// SPDX-License-Identifier: GPL-2.0
3fb1b6ad
MD
2/*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
3fb1b6ad
MD
6 */
7
e7a9bcc2
LP
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
3fb1b6ad 13#include <linux/init.h>
3fb1b6ad 14#include <linux/interrupt.h>
3fb1b6ad 15#include <linux/io.h>
e7a9bcc2 16#include <linux/ioport.h>
3fb1b6ad 17#include <linux/irq.h>
7deeab5d 18#include <linux/module.h>
1768aa2f 19#include <linux/of.h>
2d1d5172 20#include <linux/of_device.h>
e7a9bcc2 21#include <linux/platform_device.h>
615a445f 22#include <linux/pm_domain.h>
bad81383 23#include <linux/pm_runtime.h>
e7a9bcc2
LP
24#include <linux/sh_timer.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
3fb1b6ad 27
2653caf4 28struct sh_cmt_device;
7269f933 29
2cda3ac4
LP
30/*
31 * The CMT comes in 5 different identified flavours, depending not only on the
32 * SoC but also on the particular instance. The following table lists the main
33 * characteristics of those flavours.
34 *
83c79a6d 35 * 16B 32B 32B-F 48B R-Car Gen2
2cda3ac4
LP
36 * -----------------------------------------------------------------------------
37 * Channels 2 1/4 1 6 2/8
38 * Control Width 16 16 16 16 32
39 * Counter Width 16 32 32 32/48 32/48
40 * Shared Start/Stop Y Y Y Y N
41 *
83c79a6d
MD
42 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
43 * located in the channel registers block. All other versions have a shared
44 * start/stop register located in the global space.
2cda3ac4 45 *
81b3b271
LP
46 * Channels are indexed from 0 to N-1 in the documentation. The channel index
47 * infers the start/stop bit position in the control register and the channel
48 * registers block address. Some CMT instances have a subset of channels
49 * available, in which case the index in the documentation doesn't match the
50 * "real" index as implemented in hardware. This is for instance the case with
51 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
52 * in the documentation but using start/stop bit 5 and having its registers
53 * block at 0x60.
54 *
55 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
2cda3ac4
LP
56 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
57 */
58
59enum sh_cmt_model {
60 SH_CMT_16BIT,
61 SH_CMT_32BIT,
2cda3ac4 62 SH_CMT_48BIT,
83c79a6d
MD
63 SH_CMT0_RCAR_GEN2,
64 SH_CMT1_RCAR_GEN2,
2cda3ac4
LP
65};
66
67struct sh_cmt_info {
68 enum sh_cmt_model model;
69
464eed84
MD
70 unsigned int channels_mask;
71
2cda3ac4 72 unsigned long width; /* 16 or 32 bit version of hardware block */
22627c6f
SS
73 u32 overflow_bit;
74 u32 clear_bits;
2cda3ac4
LP
75
76 /* callbacks for CMSTR and CMCSR access */
22627c6f 77 u32 (*read_control)(void __iomem *base, unsigned long offs);
2cda3ac4 78 void (*write_control)(void __iomem *base, unsigned long offs,
22627c6f 79 u32 value);
2cda3ac4
LP
80
81 /* callbacks for CMCNT and CMCOR access */
22627c6f
SS
82 u32 (*read_count)(void __iomem *base, unsigned long offs);
83 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
2cda3ac4
LP
84};
85
7269f933 86struct sh_cmt_channel {
2653caf4 87 struct sh_cmt_device *cmt;
3fb1b6ad 88
81b3b271
LP
89 unsigned int index; /* Index in the documentation */
90 unsigned int hwidx; /* Real hardware index */
91
92 void __iomem *iostart;
93 void __iomem *ioctrl;
c924d2d2 94
81b3b271 95 unsigned int timer_bit;
3fb1b6ad 96 unsigned long flags;
22627c6f
SS
97 u32 match_value;
98 u32 next_match_value;
99 u32 max_match_value;
7d0c399f 100 raw_spinlock_t lock;
3fb1b6ad 101 struct clock_event_device ced;
19bdc9d0 102 struct clocksource cs;
37e7742c 103 u64 total_cycles;
bad81383 104 bool cs_enabled;
7269f933
LP
105};
106
2653caf4 107struct sh_cmt_device {
7269f933
LP
108 struct platform_device *pdev;
109
2cda3ac4
LP
110 const struct sh_cmt_info *info;
111
7269f933 112 void __iomem *mapbase;
7269f933 113 struct clk *clk;
890f423b 114 unsigned long rate;
7269f933 115
de599c88
LP
116 raw_spinlock_t lock; /* Protect the shared start/stop register */
117
f5ec9b19
LP
118 struct sh_cmt_channel *channels;
119 unsigned int num_channels;
1768aa2f 120 unsigned int hw_channels;
81b3b271
LP
121
122 bool has_clockevent;
123 bool has_clocksource;
3fb1b6ad
MD
124};
125
d14be99b
LP
126#define SH_CMT16_CMCSR_CMF (1 << 7)
127#define SH_CMT16_CMCSR_CMIE (1 << 6)
128#define SH_CMT16_CMCSR_CKS8 (0 << 0)
129#define SH_CMT16_CMCSR_CKS32 (1 << 0)
130#define SH_CMT16_CMCSR_CKS128 (2 << 0)
131#define SH_CMT16_CMCSR_CKS512 (3 << 0)
132#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
133
134#define SH_CMT32_CMCSR_CMF (1 << 15)
135#define SH_CMT32_CMCSR_OVF (1 << 14)
136#define SH_CMT32_CMCSR_WRFLG (1 << 13)
137#define SH_CMT32_CMCSR_STTF (1 << 12)
138#define SH_CMT32_CMCSR_STPF (1 << 11)
139#define SH_CMT32_CMCSR_SSIE (1 << 10)
140#define SH_CMT32_CMCSR_CMS (1 << 9)
141#define SH_CMT32_CMCSR_CMM (1 << 8)
142#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
143#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
144#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
145#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
146#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
147#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
148#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
149#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
150#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
151#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
152#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
153
22627c6f 154static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
587acb3d
MD
155{
156 return ioread16(base + (offs << 1));
157}
158
22627c6f 159static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
a6a912ca
MD
160{
161 return ioread32(base + (offs << 2));
162}
163
22627c6f 164static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
587acb3d
MD
165{
166 iowrite16(value, base + (offs << 1));
167}
3fb1b6ad 168
22627c6f 169static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
a6a912ca
MD
170{
171 iowrite32(value, base + (offs << 2));
172}
173
2cda3ac4
LP
174static const struct sh_cmt_info sh_cmt_info[] = {
175 [SH_CMT_16BIT] = {
176 .model = SH_CMT_16BIT,
177 .width = 16,
d14be99b
LP
178 .overflow_bit = SH_CMT16_CMCSR_CMF,
179 .clear_bits = ~SH_CMT16_CMCSR_CMF,
2cda3ac4
LP
180 .read_control = sh_cmt_read16,
181 .write_control = sh_cmt_write16,
182 .read_count = sh_cmt_read16,
183 .write_count = sh_cmt_write16,
184 },
185 [SH_CMT_32BIT] = {
186 .model = SH_CMT_32BIT,
187 .width = 32,
d14be99b
LP
188 .overflow_bit = SH_CMT32_CMCSR_CMF,
189 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
190 .read_control = sh_cmt_read16,
191 .write_control = sh_cmt_write16,
192 .read_count = sh_cmt_read32,
193 .write_count = sh_cmt_write32,
194 },
2cda3ac4
LP
195 [SH_CMT_48BIT] = {
196 .model = SH_CMT_48BIT,
464eed84 197 .channels_mask = 0x3f,
2cda3ac4 198 .width = 32,
d14be99b
LP
199 .overflow_bit = SH_CMT32_CMCSR_CMF,
200 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
201 .read_control = sh_cmt_read32,
202 .write_control = sh_cmt_write32,
203 .read_count = sh_cmt_read32,
204 .write_count = sh_cmt_write32,
205 },
83c79a6d
MD
206 [SH_CMT0_RCAR_GEN2] = {
207 .model = SH_CMT0_RCAR_GEN2,
208 .channels_mask = 0x60,
209 .width = 32,
210 .overflow_bit = SH_CMT32_CMCSR_CMF,
211 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
212 .read_control = sh_cmt_read32,
213 .write_control = sh_cmt_write32,
214 .read_count = sh_cmt_read32,
215 .write_count = sh_cmt_write32,
216 },
217 [SH_CMT1_RCAR_GEN2] = {
218 .model = SH_CMT1_RCAR_GEN2,
219 .channels_mask = 0xff,
2cda3ac4 220 .width = 32,
d14be99b
LP
221 .overflow_bit = SH_CMT32_CMCSR_CMF,
222 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
223 .read_control = sh_cmt_read32,
224 .write_control = sh_cmt_write32,
225 .read_count = sh_cmt_read32,
226 .write_count = sh_cmt_write32,
227 },
228};
229
3fb1b6ad
MD
230#define CMCSR 0 /* channel register */
231#define CMCNT 1 /* channel register */
232#define CMCOR 2 /* channel register */
233
22627c6f 234static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
1b56b96b 235{
81b3b271
LP
236 if (ch->iostart)
237 return ch->cmt->info->read_control(ch->iostart, 0);
238 else
239 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
1b56b96b
MD
240}
241
22627c6f 242static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
1b56b96b 243{
81b3b271
LP
244 if (ch->iostart)
245 ch->cmt->info->write_control(ch->iostart, 0, value);
246 else
247 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
1b56b96b
MD
248}
249
22627c6f 250static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
1b56b96b 251{
81b3b271 252 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
3fb1b6ad
MD
253}
254
22627c6f 255static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
1b56b96b 256{
81b3b271 257 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
1b56b96b
MD
258}
259
22627c6f 260static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
1b56b96b 261{
81b3b271 262 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
1b56b96b
MD
263}
264
22627c6f 265static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
1b56b96b 266{
81b3b271 267 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
1b56b96b
MD
268}
269
22627c6f 270static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
1b56b96b 271{
81b3b271 272 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
1b56b96b
MD
273}
274
22627c6f 275static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
3fb1b6ad 276{
22627c6f
SS
277 u32 v1, v2, v3;
278 u32 o1, o2;
5b644c7a 279
2cda3ac4 280 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
3fb1b6ad
MD
281
282 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
283 do {
5b644c7a 284 o2 = o1;
7269f933
LP
285 v1 = sh_cmt_read_cmcnt(ch);
286 v2 = sh_cmt_read_cmcnt(ch);
287 v3 = sh_cmt_read_cmcnt(ch);
2cda3ac4 288 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
5b644c7a
MD
289 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
290 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
3fb1b6ad 291
5b644c7a 292 *has_wrapped = o1;
3fb1b6ad
MD
293 return v2;
294}
295
7269f933 296static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
3fb1b6ad 297{
22627c6f
SS
298 unsigned long flags;
299 u32 value;
3fb1b6ad
MD
300
301 /* start stop register shared by multiple timer channels */
de599c88 302 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
7269f933 303 value = sh_cmt_read_cmstr(ch);
3fb1b6ad
MD
304
305 if (start)
81b3b271 306 value |= 1 << ch->timer_bit;
3fb1b6ad 307 else
81b3b271 308 value &= ~(1 << ch->timer_bit);
3fb1b6ad 309
7269f933 310 sh_cmt_write_cmstr(ch, value);
de599c88 311 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
3fb1b6ad
MD
312}
313
890f423b 314static int sh_cmt_enable(struct sh_cmt_channel *ch)
3fb1b6ad 315{
3f7e5e24 316 int k, ret;
3fb1b6ad 317
7269f933
LP
318 pm_runtime_get_sync(&ch->cmt->pdev->dev);
319 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
bad81383 320
9436b4ab 321 /* enable clock */
7269f933 322 ret = clk_enable(ch->cmt->clk);
3fb1b6ad 323 if (ret) {
740a9518
LP
324 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
325 ch->index);
3f7e5e24 326 goto err0;
3fb1b6ad 327 }
3fb1b6ad
MD
328
329 /* make sure channel is disabled */
7269f933 330 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad
MD
331
332 /* configure channel, periodic mode and maximum timeout */
2cda3ac4 333 if (ch->cmt->info->width == 16) {
d14be99b
LP
334 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
335 SH_CMT16_CMCSR_CKS512);
3014f474 336 } else {
d14be99b
LP
337 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
338 SH_CMT32_CMCSR_CMTOUT_IE |
339 SH_CMT32_CMCSR_CMR_IRQ |
340 SH_CMT32_CMCSR_CKS_RCLK8);
3014f474 341 }
3fb1b6ad 342
7269f933
LP
343 sh_cmt_write_cmcor(ch, 0xffffffff);
344 sh_cmt_write_cmcnt(ch, 0);
3fb1b6ad 345
3f7e5e24
MD
346 /*
347 * According to the sh73a0 user's manual, as CMCNT can be operated
348 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
349 * modifying CMCNT register; two RCLK cycles are necessary before
350 * this register is either read or any modification of the value
351 * it holds is reflected in the LSI's actual operation.
352 *
353 * While at it, we're supposed to clear out the CMCNT as of this
354 * moment, so make sure it's processed properly here. This will
355 * take RCLKx2 at maximum.
356 */
357 for (k = 0; k < 100; k++) {
7269f933 358 if (!sh_cmt_read_cmcnt(ch))
3f7e5e24
MD
359 break;
360 udelay(1);
361 }
362
7269f933 363 if (sh_cmt_read_cmcnt(ch)) {
740a9518
LP
364 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
365 ch->index);
3f7e5e24
MD
366 ret = -ETIMEDOUT;
367 goto err1;
368 }
369
3fb1b6ad 370 /* enable channel */
7269f933 371 sh_cmt_start_stop_ch(ch, 1);
3fb1b6ad 372 return 0;
3f7e5e24
MD
373 err1:
374 /* stop clock */
7269f933 375 clk_disable(ch->cmt->clk);
3f7e5e24
MD
376
377 err0:
378 return ret;
3fb1b6ad
MD
379}
380
7269f933 381static void sh_cmt_disable(struct sh_cmt_channel *ch)
3fb1b6ad
MD
382{
383 /* disable channel */
7269f933 384 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad 385
be890a1a 386 /* disable interrupts in CMT block */
7269f933 387 sh_cmt_write_cmcsr(ch, 0);
be890a1a 388
9436b4ab 389 /* stop clock */
7269f933 390 clk_disable(ch->cmt->clk);
bad81383 391
7269f933
LP
392 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
393 pm_runtime_put(&ch->cmt->pdev->dev);
3fb1b6ad
MD
394}
395
396/* private flags */
397#define FLAG_CLOCKEVENT (1 << 0)
398#define FLAG_CLOCKSOURCE (1 << 1)
399#define FLAG_REPROGRAM (1 << 2)
400#define FLAG_SKIPEVENT (1 << 3)
401#define FLAG_IRQCONTEXT (1 << 4)
402
7269f933 403static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
3fb1b6ad
MD
404 int absolute)
405{
22627c6f
SS
406 u32 value = ch->next_match_value;
407 u32 new_match;
408 u32 delay = 0;
409 u32 now = 0;
410 u32 has_wrapped;
3fb1b6ad 411
7269f933
LP
412 now = sh_cmt_get_counter(ch, &has_wrapped);
413 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
3fb1b6ad
MD
414
415 if (has_wrapped) {
416 /* we're competing with the interrupt handler.
417 * -> let the interrupt handler reprogram the timer.
418 * -> interrupt number two handles the event.
419 */
7269f933 420 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
421 return;
422 }
423
424 if (absolute)
425 now = 0;
426
427 do {
428 /* reprogram the timer hardware,
429 * but don't save the new match value yet.
430 */
431 new_match = now + value + delay;
7269f933
LP
432 if (new_match > ch->max_match_value)
433 new_match = ch->max_match_value;
3fb1b6ad 434
7269f933 435 sh_cmt_write_cmcor(ch, new_match);
3fb1b6ad 436
7269f933
LP
437 now = sh_cmt_get_counter(ch, &has_wrapped);
438 if (has_wrapped && (new_match > ch->match_value)) {
3fb1b6ad
MD
439 /* we are changing to a greater match value,
440 * so this wrap must be caused by the counter
441 * matching the old value.
442 * -> first interrupt reprograms the timer.
443 * -> interrupt number two handles the event.
444 */
7269f933 445 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
446 break;
447 }
448
449 if (has_wrapped) {
450 /* we are changing to a smaller match value,
451 * so the wrap must be caused by the counter
452 * matching the new value.
453 * -> save programmed match value.
454 * -> let isr handle the event.
455 */
7269f933 456 ch->match_value = new_match;
3fb1b6ad
MD
457 break;
458 }
459
460 /* be safe: verify hardware settings */
461 if (now < new_match) {
462 /* timer value is below match value, all good.
463 * this makes sure we won't miss any match events.
464 * -> save programmed match value.
465 * -> let isr handle the event.
466 */
7269f933 467 ch->match_value = new_match;
3fb1b6ad
MD
468 break;
469 }
470
471 /* the counter has reached a value greater
472 * than our new match value. and since the
473 * has_wrapped flag isn't set we must have
474 * programmed a too close event.
475 * -> increase delay and retry.
476 */
477 if (delay)
478 delay <<= 1;
479 else
480 delay = 1;
481
482 if (!delay)
740a9518
LP
483 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
484 ch->index);
3fb1b6ad
MD
485
486 } while (delay);
487}
488
7269f933 489static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
3fb1b6ad 490{
7269f933 491 if (delta > ch->max_match_value)
740a9518
LP
492 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
493 ch->index);
3fb1b6ad 494
7269f933
LP
495 ch->next_match_value = delta;
496 sh_cmt_clock_event_program_verify(ch, 0);
65ada547
TY
497}
498
7269f933 499static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
65ada547
TY
500{
501 unsigned long flags;
502
7269f933
LP
503 raw_spin_lock_irqsave(&ch->lock, flags);
504 __sh_cmt_set_next(ch, delta);
505 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
506}
507
508static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
509{
7269f933 510 struct sh_cmt_channel *ch = dev_id;
3fb1b6ad
MD
511
512 /* clear flags */
2cda3ac4
LP
513 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
514 ch->cmt->info->clear_bits);
3fb1b6ad
MD
515
516 /* update clock source counter to begin with if enabled
517 * the wrap flag should be cleared by the timer specific
518 * isr before we end up here.
519 */
7269f933
LP
520 if (ch->flags & FLAG_CLOCKSOURCE)
521 ch->total_cycles += ch->match_value + 1;
3fb1b6ad 522
7269f933
LP
523 if (!(ch->flags & FLAG_REPROGRAM))
524 ch->next_match_value = ch->max_match_value;
3fb1b6ad 525
7269f933 526 ch->flags |= FLAG_IRQCONTEXT;
3fb1b6ad 527
7269f933
LP
528 if (ch->flags & FLAG_CLOCKEVENT) {
529 if (!(ch->flags & FLAG_SKIPEVENT)) {
051b782e 530 if (clockevent_state_oneshot(&ch->ced)) {
7269f933
LP
531 ch->next_match_value = ch->max_match_value;
532 ch->flags |= FLAG_REPROGRAM;
3fb1b6ad
MD
533 }
534
7269f933 535 ch->ced.event_handler(&ch->ced);
3fb1b6ad
MD
536 }
537 }
538
7269f933 539 ch->flags &= ~FLAG_SKIPEVENT;
3fb1b6ad 540
7269f933
LP
541 if (ch->flags & FLAG_REPROGRAM) {
542 ch->flags &= ~FLAG_REPROGRAM;
543 sh_cmt_clock_event_program_verify(ch, 1);
3fb1b6ad 544
7269f933 545 if (ch->flags & FLAG_CLOCKEVENT)
051b782e 546 if ((clockevent_state_shutdown(&ch->ced))
7269f933
LP
547 || (ch->match_value == ch->next_match_value))
548 ch->flags &= ~FLAG_REPROGRAM;
3fb1b6ad
MD
549 }
550
7269f933 551 ch->flags &= ~FLAG_IRQCONTEXT;
3fb1b6ad
MD
552
553 return IRQ_HANDLED;
554}
555
7269f933 556static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
557{
558 int ret = 0;
559 unsigned long flags;
560
7269f933 561 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 562
7269f933 563 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
890f423b 564 ret = sh_cmt_enable(ch);
3fb1b6ad
MD
565
566 if (ret)
567 goto out;
7269f933 568 ch->flags |= flag;
3fb1b6ad
MD
569
570 /* setup timeout if no clockevent */
7269f933
LP
571 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
572 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 573 out:
7269f933 574 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
575
576 return ret;
577}
578
7269f933 579static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
580{
581 unsigned long flags;
582 unsigned long f;
583
7269f933 584 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 585
7269f933
LP
586 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
587 ch->flags &= ~flag;
3fb1b6ad 588
7269f933
LP
589 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
590 sh_cmt_disable(ch);
3fb1b6ad
MD
591
592 /* adjust the timeout to maximum if only clocksource left */
7269f933
LP
593 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
594 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 595
7269f933 596 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
597}
598
7269f933 599static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
19bdc9d0 600{
7269f933 601 return container_of(cs, struct sh_cmt_channel, cs);
19bdc9d0
MD
602}
603
a5a1d1c2 604static u64 sh_cmt_clocksource_read(struct clocksource *cs)
19bdc9d0 605{
7269f933 606 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
22627c6f 607 unsigned long flags;
22627c6f 608 u32 has_wrapped;
37e7742c 609 u64 value;
22627c6f 610 u32 raw;
19bdc9d0 611
7269f933
LP
612 raw_spin_lock_irqsave(&ch->lock, flags);
613 value = ch->total_cycles;
614 raw = sh_cmt_get_counter(ch, &has_wrapped);
19bdc9d0
MD
615
616 if (unlikely(has_wrapped))
7269f933
LP
617 raw += ch->match_value + 1;
618 raw_spin_unlock_irqrestore(&ch->lock, flags);
19bdc9d0
MD
619
620 return value + raw;
621}
622
623static int sh_cmt_clocksource_enable(struct clocksource *cs)
624{
3593f5fe 625 int ret;
7269f933 626 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0 627
7269f933 628 WARN_ON(ch->cs_enabled);
bad81383 629
7269f933 630 ch->total_cycles = 0;
19bdc9d0 631
7269f933 632 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
890f423b 633 if (!ret)
7269f933 634 ch->cs_enabled = true;
890f423b 635
3593f5fe 636 return ret;
19bdc9d0
MD
637}
638
639static void sh_cmt_clocksource_disable(struct clocksource *cs)
640{
7269f933 641 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
bad81383 642
7269f933 643 WARN_ON(!ch->cs_enabled);
bad81383 644
7269f933
LP
645 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
646 ch->cs_enabled = false;
19bdc9d0
MD
647}
648
9bb5ec88
RW
649static void sh_cmt_clocksource_suspend(struct clocksource *cs)
650{
7269f933 651 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 652
54d46b7f
GU
653 if (!ch->cs_enabled)
654 return;
655
7269f933
LP
656 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
9bb5ec88
RW
658}
659
c8162884
MD
660static void sh_cmt_clocksource_resume(struct clocksource *cs)
661{
7269f933 662 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 663
54d46b7f
GU
664 if (!ch->cs_enabled)
665 return;
666
7269f933
LP
667 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
668 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
c8162884
MD
669}
670
7269f933 671static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
fb28a659 672 const char *name)
19bdc9d0 673{
7269f933 674 struct clocksource *cs = &ch->cs;
19bdc9d0
MD
675
676 cs->name = name;
fb28a659 677 cs->rating = 125;
19bdc9d0
MD
678 cs->read = sh_cmt_clocksource_read;
679 cs->enable = sh_cmt_clocksource_enable;
680 cs->disable = sh_cmt_clocksource_disable;
9bb5ec88 681 cs->suspend = sh_cmt_clocksource_suspend;
c8162884 682 cs->resume = sh_cmt_clocksource_resume;
37e7742c 683 cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
19bdc9d0 684 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
f4d7c356 685
740a9518
LP
686 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
687 ch->index);
f4d7c356 688
890f423b 689 clocksource_register_hz(cs, ch->cmt->rate);
19bdc9d0
MD
690 return 0;
691}
692
7269f933 693static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
3fb1b6ad 694{
7269f933 695 return container_of(ced, struct sh_cmt_channel, ced);
3fb1b6ad
MD
696}
697
7269f933 698static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
3fb1b6ad 699{
7269f933 700 sh_cmt_start(ch, FLAG_CLOCKEVENT);
3fb1b6ad 701
3fb1b6ad 702 if (periodic)
890f423b 703 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
3fb1b6ad 704 else
7269f933 705 sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad
MD
706}
707
051b782e
VK
708static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
709{
710 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
711
712 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
713 return 0;
714}
715
716static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
717 int periodic)
3fb1b6ad 718{
7269f933 719 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
720
721 /* deal with old setting first */
051b782e 722 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
7269f933 723 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad 724
051b782e
VK
725 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
726 ch->index, periodic ? "periodic" : "oneshot");
727 sh_cmt_clock_event_start(ch, periodic);
728 return 0;
729}
730
731static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
732{
733 return sh_cmt_clock_event_set_state(ced, 0);
734}
735
736static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
737{
738 return sh_cmt_clock_event_set_state(ced, 1);
3fb1b6ad
MD
739}
740
741static int sh_cmt_clock_event_next(unsigned long delta,
742 struct clock_event_device *ced)
743{
7269f933 744 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad 745
051b782e 746 BUG_ON(!clockevent_state_oneshot(ced));
7269f933
LP
747 if (likely(ch->flags & FLAG_IRQCONTEXT))
748 ch->next_match_value = delta - 1;
3fb1b6ad 749 else
7269f933 750 sh_cmt_set_next(ch, delta - 1);
3fb1b6ad
MD
751
752 return 0;
753}
754
9bb5ec88
RW
755static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
756{
7269f933 757 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 758
7269f933
LP
759 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
760 clk_unprepare(ch->cmt->clk);
9bb5ec88
RW
761}
762
763static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
764{
7269f933 765 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 766
7269f933
LP
767 clk_prepare(ch->cmt->clk);
768 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
9bb5ec88
RW
769}
770
bfa76bb1
LP
771static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
772 const char *name)
3fb1b6ad 773{
7269f933 774 struct clock_event_device *ced = &ch->ced;
bfa76bb1
LP
775 int irq;
776 int ret;
777
31e912f5 778 irq = platform_get_irq(ch->cmt->pdev, ch->index);
9f475d08 779 if (irq < 0)
bfa76bb1 780 return irq;
bfa76bb1
LP
781
782 ret = request_irq(irq, sh_cmt_interrupt,
783 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
784 dev_name(&ch->cmt->pdev->dev), ch);
785 if (ret) {
786 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
787 ch->index, irq);
788 return ret;
789 }
3fb1b6ad 790
3fb1b6ad
MD
791 ced->name = name;
792 ced->features = CLOCK_EVT_FEAT_PERIODIC;
793 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
b7fcbb0f 794 ced->rating = 125;
f1ebe1e4 795 ced->cpumask = cpu_possible_mask;
3fb1b6ad 796 ced->set_next_event = sh_cmt_clock_event_next;
051b782e
VK
797 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
798 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
799 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
9bb5ec88
RW
800 ced->suspend = sh_cmt_clock_event_suspend;
801 ced->resume = sh_cmt_clock_event_resume;
3fb1b6ad 802
890f423b
NS
803 /* TODO: calculate good shift from rate and counter bit width */
804 ced->shift = 32;
805 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
806 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
bb2e94ac 807 ced->max_delta_ticks = ch->max_match_value;
890f423b 808 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
bb2e94ac 809 ced->min_delta_ticks = 0x1f;
890f423b 810
740a9518
LP
811 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
812 ch->index);
3fb1b6ad 813 clockevents_register_device(ced);
bfa76bb1
LP
814
815 return 0;
3fb1b6ad
MD
816}
817
1d053e1d 818static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
fb28a659 819 bool clockevent, bool clocksource)
3fb1b6ad 820{
bfa76bb1
LP
821 int ret;
822
81b3b271
LP
823 if (clockevent) {
824 ch->cmt->has_clockevent = true;
bfa76bb1
LP
825 ret = sh_cmt_register_clockevent(ch, name);
826 if (ret < 0)
827 return ret;
81b3b271 828 }
3fb1b6ad 829
81b3b271
LP
830 if (clocksource) {
831 ch->cmt->has_clocksource = true;
fb28a659 832 sh_cmt_register_clocksource(ch, name);
81b3b271 833 }
19bdc9d0 834
3fb1b6ad
MD
835 return 0;
836}
837
740a9518 838static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
81b3b271
LP
839 unsigned int hwidx, bool clockevent,
840 bool clocksource, struct sh_cmt_device *cmt)
b882e7b1 841{
b882e7b1
LP
842 int ret;
843
81b3b271
LP
844 /* Skip unused channels. */
845 if (!clockevent && !clocksource)
846 return 0;
847
b882e7b1 848 ch->cmt = cmt;
740a9518 849 ch->index = index;
81b3b271 850 ch->hwidx = hwidx;
83c79a6d 851 ch->timer_bit = hwidx;
81b3b271
LP
852
853 /*
854 * Compute the address of the channel control register block. For the
855 * timers with a per-channel start/stop register, compute its address
856 * as well.
81b3b271 857 */
31e912f5
LP
858 switch (cmt->info->model) {
859 case SH_CMT_16BIT:
860 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
861 break;
862 case SH_CMT_32BIT:
863 case SH_CMT_48BIT:
864 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
865 break;
83c79a6d
MD
866 case SH_CMT0_RCAR_GEN2:
867 case SH_CMT1_RCAR_GEN2:
31e912f5
LP
868 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
869 ch->ioctrl = ch->iostart + 0x10;
83c79a6d 870 ch->timer_bit = 0;
31e912f5 871 break;
81b3b271
LP
872 }
873
2cda3ac4 874 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
b882e7b1
LP
875 ch->max_match_value = ~0;
876 else
2cda3ac4 877 ch->max_match_value = (1 << cmt->info->width) - 1;
b882e7b1
LP
878
879 ch->match_value = ch->max_match_value;
880 raw_spin_lock_init(&ch->lock);
881
1d053e1d 882 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
81b3b271 883 clockevent, clocksource);
b882e7b1 884 if (ret) {
740a9518
LP
885 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
886 ch->index);
b882e7b1
LP
887 return ret;
888 }
889 ch->cs_enabled = false;
890
b882e7b1
LP
891 return 0;
892}
893
81b3b271 894static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
3fb1b6ad 895{
81b3b271 896 struct resource *mem;
3fb1b6ad 897
81b3b271
LP
898 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
899 if (!mem) {
900 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
901 return -ENXIO;
902 }
3fb1b6ad 903
81b3b271
LP
904 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
905 if (cmt->mapbase == NULL) {
906 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
907 return -ENXIO;
3fb1b6ad
MD
908 }
909
81b3b271
LP
910 return 0;
911}
912
1768aa2f
LP
913static const struct platform_device_id sh_cmt_id_table[] = {
914 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
915 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1768aa2f
LP
916 { }
917};
918MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
919
920static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
19d60845
MD
921 {
922 /* deprecated, preserved for backward compatibility */
923 .compatible = "renesas,cmt-48",
924 .data = &sh_cmt_info[SH_CMT_48BIT]
925 },
8d50e947
GU
926 {
927 /* deprecated, preserved for backward compatibility */
928 .compatible = "renesas,cmt-48-gen2",
929 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
8c1afba2
MD
930 },
931 {
932 .compatible = "renesas,r8a7740-cmt1",
933 .data = &sh_cmt_info[SH_CMT_48BIT]
934 },
935 {
936 .compatible = "renesas,sh73a0-cmt1",
937 .data = &sh_cmt_info[SH_CMT_48BIT]
8d50e947 938 },
eceb4c49
SS
939 {
940 .compatible = "renesas,rcar-gen2-cmt0",
941 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
942 },
943 {
944 .compatible = "renesas,rcar-gen2-cmt1",
945 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
946 },
ac142a7f
SS
947 {
948 .compatible = "renesas,rcar-gen3-cmt0",
949 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
950 },
951 {
952 .compatible = "renesas,rcar-gen3-cmt1",
953 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
954 },
1768aa2f
LP
955 { }
956};
957MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
958
81b3b271
LP
959static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
960{
31e912f5
LP
961 unsigned int mask;
962 unsigned int i;
81b3b271
LP
963 int ret;
964
81b3b271 965 cmt->pdev = pdev;
de599c88 966 raw_spin_lock_init(&cmt->lock);
81b3b271 967
1768aa2f 968 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2d1d5172 969 cmt->info = of_device_get_match_data(&pdev->dev);
d1d28597 970 cmt->hw_channels = cmt->info->channels_mask;
1768aa2f
LP
971 } else if (pdev->dev.platform_data) {
972 struct sh_timer_config *cfg = pdev->dev.platform_data;
973 const struct platform_device_id *id = pdev->id_entry;
974
975 cmt->info = (const struct sh_cmt_info *)id->driver_data;
976 cmt->hw_channels = cfg->channels_mask;
977 } else {
81b3b271
LP
978 dev_err(&cmt->pdev->dev, "missing platform data\n");
979 return -ENXIO;
980 }
981
81b3b271 982 /* Get hold of clock. */
31e912f5 983 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
2653caf4
LP
984 if (IS_ERR(cmt->clk)) {
985 dev_err(&cmt->pdev->dev, "cannot get clock\n");
81b3b271 986 return PTR_ERR(cmt->clk);
3fb1b6ad
MD
987 }
988
2653caf4 989 ret = clk_prepare(cmt->clk);
57dee992 990 if (ret < 0)
81b3b271 991 goto err_clk_put;
57dee992 992
890f423b
NS
993 /* Determine clock rate. */
994 ret = clk_enable(cmt->clk);
995 if (ret < 0)
996 goto err_clk_unprepare;
997
998 if (cmt->info->width == 16)
999 cmt->rate = clk_get_rate(cmt->clk) / 512;
1000 else
1001 cmt->rate = clk_get_rate(cmt->clk) / 8;
1002
1003 clk_disable(cmt->clk);
1004
31e912f5
LP
1005 /* Map the memory resource(s). */
1006 ret = sh_cmt_map_memory(cmt);
81b3b271
LP
1007 if (ret < 0)
1008 goto err_clk_unprepare;
1009
1010 /* Allocate and setup the channels. */
1768aa2f 1011 cmt->num_channels = hweight8(cmt->hw_channels);
6396bb22 1012 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
81b3b271 1013 GFP_KERNEL);
f5ec9b19
LP
1014 if (cmt->channels == NULL) {
1015 ret = -ENOMEM;
81b3b271 1016 goto err_unmap;
f5ec9b19
LP
1017 }
1018
31e912f5
LP
1019 /*
1020 * Use the first channel as a clock event device and the second channel
1021 * as a clock source. If only one channel is available use it for both.
1022 */
1768aa2f 1023 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
31e912f5
LP
1024 unsigned int hwidx = ffs(mask) - 1;
1025 bool clocksource = i == 1 || cmt->num_channels == 1;
1026 bool clockevent = i == 0;
1027
1028 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1029 clockevent, clocksource, cmt);
81b3b271
LP
1030 if (ret < 0)
1031 goto err_unmap;
f5ec9b19 1032
31e912f5 1033 mask &= ~(1 << hwidx);
81b3b271 1034 }
da64c2a8 1035
2653caf4 1036 platform_set_drvdata(pdev, cmt);
adccc69e 1037
da64c2a8 1038 return 0;
81b3b271
LP
1039
1040err_unmap:
f5ec9b19 1041 kfree(cmt->channels);
31e912f5 1042 iounmap(cmt->mapbase);
81b3b271 1043err_clk_unprepare:
2653caf4 1044 clk_unprepare(cmt->clk);
81b3b271 1045err_clk_put:
2653caf4 1046 clk_put(cmt->clk);
3fb1b6ad
MD
1047 return ret;
1048}
1049
1850514b 1050static int sh_cmt_probe(struct platform_device *pdev)
3fb1b6ad 1051{
2653caf4 1052 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
3fb1b6ad
MD
1053 int ret;
1054
9bb5ec88 1055 if (!is_early_platform_device(pdev)) {
bad81383
RW
1056 pm_runtime_set_active(&pdev->dev);
1057 pm_runtime_enable(&pdev->dev);
9bb5ec88 1058 }
615a445f 1059
2653caf4 1060 if (cmt) {
214a607a 1061 dev_info(&pdev->dev, "kept as earlytimer\n");
bad81383 1062 goto out;
e475eedb
MD
1063 }
1064
b262bc74 1065 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
0178f41d 1066 if (cmt == NULL)
3fb1b6ad 1067 return -ENOMEM;
3fb1b6ad 1068
2653caf4 1069 ret = sh_cmt_setup(cmt, pdev);
3fb1b6ad 1070 if (ret) {
2653caf4 1071 kfree(cmt);
bad81383
RW
1072 pm_runtime_idle(&pdev->dev);
1073 return ret;
3fb1b6ad 1074 }
bad81383
RW
1075 if (is_early_platform_device(pdev))
1076 return 0;
1077
1078 out:
81b3b271 1079 if (cmt->has_clockevent || cmt->has_clocksource)
bad81383
RW
1080 pm_runtime_irq_safe(&pdev->dev);
1081 else
1082 pm_runtime_idle(&pdev->dev);
1083
1084 return 0;
3fb1b6ad
MD
1085}
1086
1850514b 1087static int sh_cmt_remove(struct platform_device *pdev)
3fb1b6ad
MD
1088{
1089 return -EBUSY; /* cannot unregister clockevent and clocksource */
1090}
1091
1092static struct platform_driver sh_cmt_device_driver = {
1093 .probe = sh_cmt_probe,
1850514b 1094 .remove = sh_cmt_remove,
3fb1b6ad
MD
1095 .driver = {
1096 .name = "sh_cmt",
1768aa2f 1097 .of_match_table = of_match_ptr(sh_cmt_of_table),
81b3b271
LP
1098 },
1099 .id_table = sh_cmt_id_table,
3fb1b6ad
MD
1100};
1101
1102static int __init sh_cmt_init(void)
1103{
1104 return platform_driver_register(&sh_cmt_device_driver);
1105}
1106
1107static void __exit sh_cmt_exit(void)
1108{
1109 platform_driver_unregister(&sh_cmt_device_driver);
1110}
1111
e475eedb 1112early_platform_init("earlytimer", &sh_cmt_device_driver);
e903a031 1113subsys_initcall(sh_cmt_init);
3fb1b6ad
MD
1114module_exit(sh_cmt_exit);
1115
1116MODULE_AUTHOR("Magnus Damm");
1117MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1118MODULE_LICENSE("GPL v2");