Merge tag 'x86_tdx_for_6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-block.git] / drivers / clocksource / sh_cmt.c
CommitLineData
efad0117 1// SPDX-License-Identifier: GPL-2.0
3fb1b6ad
MD
2/*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
3fb1b6ad
MD
6 */
7
e7a9bcc2
LP
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
3fb1b6ad 13#include <linux/init.h>
3fb1b6ad 14#include <linux/interrupt.h>
3fb1b6ad 15#include <linux/io.h>
3f44f715 16#include <linux/iopoll.h>
e7a9bcc2 17#include <linux/ioport.h>
3fb1b6ad 18#include <linux/irq.h>
7deeab5d 19#include <linux/module.h>
1768aa2f 20#include <linux/of.h>
2d1d5172 21#include <linux/of_device.h>
e7a9bcc2 22#include <linux/platform_device.h>
615a445f 23#include <linux/pm_domain.h>
bad81383 24#include <linux/pm_runtime.h>
e7a9bcc2
LP
25#include <linux/sh_timer.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
3fb1b6ad 28
507fd01d
BG
29#ifdef CONFIG_SUPERH
30#include <asm/platform_early.h>
31#endif
32
2653caf4 33struct sh_cmt_device;
7269f933 34
2cda3ac4
LP
35/*
36 * The CMT comes in 5 different identified flavours, depending not only on the
37 * SoC but also on the particular instance. The following table lists the main
38 * characteristics of those flavours.
39 *
83c79a6d 40 * 16B 32B 32B-F 48B R-Car Gen2
2cda3ac4
LP
41 * -----------------------------------------------------------------------------
42 * Channels 2 1/4 1 6 2/8
43 * Control Width 16 16 16 16 32
44 * Counter Width 16 32 32 32/48 32/48
45 * Shared Start/Stop Y Y Y Y N
46 *
83c79a6d
MD
47 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
48 * located in the channel registers block. All other versions have a shared
49 * start/stop register located in the global space.
2cda3ac4 50 *
81b3b271
LP
51 * Channels are indexed from 0 to N-1 in the documentation. The channel index
52 * infers the start/stop bit position in the control register and the channel
53 * registers block address. Some CMT instances have a subset of channels
54 * available, in which case the index in the documentation doesn't match the
55 * "real" index as implemented in hardware. This is for instance the case with
56 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
57 * in the documentation but using start/stop bit 5 and having its registers
58 * block at 0x60.
59 *
60 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
2cda3ac4
LP
61 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
62 */
63
64enum sh_cmt_model {
65 SH_CMT_16BIT,
66 SH_CMT_32BIT,
2cda3ac4 67 SH_CMT_48BIT,
83c79a6d
MD
68 SH_CMT0_RCAR_GEN2,
69 SH_CMT1_RCAR_GEN2,
2cda3ac4
LP
70};
71
72struct sh_cmt_info {
73 enum sh_cmt_model model;
74
464eed84
MD
75 unsigned int channels_mask;
76
2cda3ac4 77 unsigned long width; /* 16 or 32 bit version of hardware block */
22627c6f
SS
78 u32 overflow_bit;
79 u32 clear_bits;
2cda3ac4
LP
80
81 /* callbacks for CMSTR and CMCSR access */
22627c6f 82 u32 (*read_control)(void __iomem *base, unsigned long offs);
2cda3ac4 83 void (*write_control)(void __iomem *base, unsigned long offs,
22627c6f 84 u32 value);
2cda3ac4
LP
85
86 /* callbacks for CMCNT and CMCOR access */
22627c6f
SS
87 u32 (*read_count)(void __iomem *base, unsigned long offs);
88 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
2cda3ac4
LP
89};
90
7269f933 91struct sh_cmt_channel {
2653caf4 92 struct sh_cmt_device *cmt;
3fb1b6ad 93
81b3b271
LP
94 unsigned int index; /* Index in the documentation */
95 unsigned int hwidx; /* Real hardware index */
96
97 void __iomem *iostart;
98 void __iomem *ioctrl;
c924d2d2 99
81b3b271 100 unsigned int timer_bit;
3fb1b6ad 101 unsigned long flags;
22627c6f
SS
102 u32 match_value;
103 u32 next_match_value;
104 u32 max_match_value;
7d0c399f 105 raw_spinlock_t lock;
3fb1b6ad 106 struct clock_event_device ced;
19bdc9d0 107 struct clocksource cs;
37e7742c 108 u64 total_cycles;
bad81383 109 bool cs_enabled;
7269f933
LP
110};
111
2653caf4 112struct sh_cmt_device {
7269f933
LP
113 struct platform_device *pdev;
114
2cda3ac4
LP
115 const struct sh_cmt_info *info;
116
7269f933 117 void __iomem *mapbase;
7269f933 118 struct clk *clk;
890f423b 119 unsigned long rate;
3f44f715 120 unsigned int reg_delay;
7269f933 121
de599c88
LP
122 raw_spinlock_t lock; /* Protect the shared start/stop register */
123
f5ec9b19
LP
124 struct sh_cmt_channel *channels;
125 unsigned int num_channels;
1768aa2f 126 unsigned int hw_channels;
81b3b271
LP
127
128 bool has_clockevent;
129 bool has_clocksource;
3fb1b6ad
MD
130};
131
d14be99b
LP
132#define SH_CMT16_CMCSR_CMF (1 << 7)
133#define SH_CMT16_CMCSR_CMIE (1 << 6)
134#define SH_CMT16_CMCSR_CKS8 (0 << 0)
135#define SH_CMT16_CMCSR_CKS32 (1 << 0)
136#define SH_CMT16_CMCSR_CKS128 (2 << 0)
137#define SH_CMT16_CMCSR_CKS512 (3 << 0)
138#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
139
140#define SH_CMT32_CMCSR_CMF (1 << 15)
141#define SH_CMT32_CMCSR_OVF (1 << 14)
142#define SH_CMT32_CMCSR_WRFLG (1 << 13)
143#define SH_CMT32_CMCSR_STTF (1 << 12)
144#define SH_CMT32_CMCSR_STPF (1 << 11)
145#define SH_CMT32_CMCSR_SSIE (1 << 10)
146#define SH_CMT32_CMCSR_CMS (1 << 9)
147#define SH_CMT32_CMCSR_CMM (1 << 8)
148#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
149#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
150#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
151#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
152#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
153#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
154#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
156#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
157#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
158#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
159
22627c6f 160static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
587acb3d
MD
161{
162 return ioread16(base + (offs << 1));
163}
164
22627c6f 165static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
a6a912ca
MD
166{
167 return ioread32(base + (offs << 2));
168}
169
22627c6f 170static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
587acb3d
MD
171{
172 iowrite16(value, base + (offs << 1));
173}
3fb1b6ad 174
22627c6f 175static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
a6a912ca
MD
176{
177 iowrite32(value, base + (offs << 2));
178}
179
2cda3ac4
LP
180static const struct sh_cmt_info sh_cmt_info[] = {
181 [SH_CMT_16BIT] = {
182 .model = SH_CMT_16BIT,
183 .width = 16,
d14be99b
LP
184 .overflow_bit = SH_CMT16_CMCSR_CMF,
185 .clear_bits = ~SH_CMT16_CMCSR_CMF,
2cda3ac4
LP
186 .read_control = sh_cmt_read16,
187 .write_control = sh_cmt_write16,
188 .read_count = sh_cmt_read16,
189 .write_count = sh_cmt_write16,
190 },
191 [SH_CMT_32BIT] = {
192 .model = SH_CMT_32BIT,
193 .width = 32,
d14be99b
LP
194 .overflow_bit = SH_CMT32_CMCSR_CMF,
195 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
196 .read_control = sh_cmt_read16,
197 .write_control = sh_cmt_write16,
198 .read_count = sh_cmt_read32,
199 .write_count = sh_cmt_write32,
200 },
2cda3ac4
LP
201 [SH_CMT_48BIT] = {
202 .model = SH_CMT_48BIT,
464eed84 203 .channels_mask = 0x3f,
2cda3ac4 204 .width = 32,
d14be99b
LP
205 .overflow_bit = SH_CMT32_CMCSR_CMF,
206 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
207 .read_control = sh_cmt_read32,
208 .write_control = sh_cmt_write32,
209 .read_count = sh_cmt_read32,
210 .write_count = sh_cmt_write32,
211 },
83c79a6d
MD
212 [SH_CMT0_RCAR_GEN2] = {
213 .model = SH_CMT0_RCAR_GEN2,
214 .channels_mask = 0x60,
215 .width = 32,
216 .overflow_bit = SH_CMT32_CMCSR_CMF,
217 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218 .read_control = sh_cmt_read32,
219 .write_control = sh_cmt_write32,
220 .read_count = sh_cmt_read32,
221 .write_count = sh_cmt_write32,
222 },
223 [SH_CMT1_RCAR_GEN2] = {
224 .model = SH_CMT1_RCAR_GEN2,
225 .channels_mask = 0xff,
2cda3ac4 226 .width = 32,
d14be99b
LP
227 .overflow_bit = SH_CMT32_CMCSR_CMF,
228 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
229 .read_control = sh_cmt_read32,
230 .write_control = sh_cmt_write32,
231 .read_count = sh_cmt_read32,
232 .write_count = sh_cmt_write32,
233 },
234};
235
3fb1b6ad
MD
236#define CMCSR 0 /* channel register */
237#define CMCNT 1 /* channel register */
238#define CMCOR 2 /* channel register */
239
2a97d553
GU
240#define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
241
22627c6f 242static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
1b56b96b 243{
81b3b271
LP
244 if (ch->iostart)
245 return ch->cmt->info->read_control(ch->iostart, 0);
246 else
247 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
1b56b96b
MD
248}
249
22627c6f 250static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
1b56b96b 251{
3f44f715
WS
252 u32 old_value = sh_cmt_read_cmstr(ch);
253
254 if (value != old_value) {
255 if (ch->iostart) {
256 ch->cmt->info->write_control(ch->iostart, 0, value);
257 udelay(ch->cmt->reg_delay);
258 } else {
259 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
260 udelay(ch->cmt->reg_delay);
261 }
262 }
1b56b96b
MD
263}
264
22627c6f 265static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
1b56b96b 266{
81b3b271 267 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
3fb1b6ad
MD
268}
269
22627c6f 270static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
1b56b96b 271{
3f44f715
WS
272 u32 old_value = sh_cmt_read_cmcsr(ch);
273
274 if (value != old_value) {
275 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
276 udelay(ch->cmt->reg_delay);
277 }
1b56b96b
MD
278}
279
22627c6f 280static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
1b56b96b 281{
81b3b271 282 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
1b56b96b
MD
283}
284
3f44f715 285static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
1b56b96b 286{
3f44f715
WS
287 /* Tests showed that we need to wait 3 clocks here */
288 unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
289 u32 reg;
290
291 if (ch->cmt->info->model > SH_CMT_16BIT) {
292 int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
293 !(reg & SH_CMT32_CMCSR_WRFLG),
294 1, cmcnt_delay, false, ch);
295 if (ret < 0)
296 return ret;
297 }
298
81b3b271 299 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
3f44f715
WS
300 udelay(cmcnt_delay);
301 return 0;
1b56b96b
MD
302}
303
22627c6f 304static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
1b56b96b 305{
3f44f715
WS
306 u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
307
308 if (value != old_value) {
309 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
310 udelay(ch->cmt->reg_delay);
311 }
1b56b96b
MD
312}
313
22627c6f 314static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
3fb1b6ad 315{
22627c6f
SS
316 u32 v1, v2, v3;
317 u32 o1, o2;
5b644c7a 318
2cda3ac4 319 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
3fb1b6ad
MD
320
321 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
322 do {
5b644c7a 323 o2 = o1;
7269f933
LP
324 v1 = sh_cmt_read_cmcnt(ch);
325 v2 = sh_cmt_read_cmcnt(ch);
326 v3 = sh_cmt_read_cmcnt(ch);
2cda3ac4 327 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
5b644c7a
MD
328 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
329 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
3fb1b6ad 330
5b644c7a 331 *has_wrapped = o1;
3fb1b6ad
MD
332 return v2;
333}
334
7269f933 335static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
3fb1b6ad 336{
22627c6f
SS
337 unsigned long flags;
338 u32 value;
3fb1b6ad
MD
339
340 /* start stop register shared by multiple timer channels */
de599c88 341 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
7269f933 342 value = sh_cmt_read_cmstr(ch);
3fb1b6ad
MD
343
344 if (start)
81b3b271 345 value |= 1 << ch->timer_bit;
3fb1b6ad 346 else
81b3b271 347 value &= ~(1 << ch->timer_bit);
3fb1b6ad 348
7269f933 349 sh_cmt_write_cmstr(ch, value);
de599c88 350 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
3fb1b6ad
MD
351}
352
890f423b 353static int sh_cmt_enable(struct sh_cmt_channel *ch)
3fb1b6ad 354{
3f44f715 355 int ret;
3fb1b6ad 356
7269f933 357 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
bad81383 358
9436b4ab 359 /* enable clock */
7269f933 360 ret = clk_enable(ch->cmt->clk);
3fb1b6ad 361 if (ret) {
740a9518
LP
362 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
363 ch->index);
3f7e5e24 364 goto err0;
3fb1b6ad 365 }
3fb1b6ad
MD
366
367 /* make sure channel is disabled */
7269f933 368 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad
MD
369
370 /* configure channel, periodic mode and maximum timeout */
2cda3ac4 371 if (ch->cmt->info->width == 16) {
d14be99b
LP
372 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
373 SH_CMT16_CMCSR_CKS512);
3014f474 374 } else {
68c70aae
WS
375 u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
376 SH_CMT32_CMCSR_CMTOUT_IE : 0;
377 sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
d14be99b
LP
378 SH_CMT32_CMCSR_CMR_IRQ |
379 SH_CMT32_CMCSR_CKS_RCLK8);
3014f474 380 }
3fb1b6ad 381
7269f933 382 sh_cmt_write_cmcor(ch, 0xffffffff);
3f44f715 383 ret = sh_cmt_write_cmcnt(ch, 0);
3f7e5e24 384
3f44f715 385 if (ret || sh_cmt_read_cmcnt(ch)) {
740a9518
LP
386 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
387 ch->index);
3f7e5e24
MD
388 ret = -ETIMEDOUT;
389 goto err1;
390 }
391
3fb1b6ad 392 /* enable channel */
7269f933 393 sh_cmt_start_stop_ch(ch, 1);
3fb1b6ad 394 return 0;
3f7e5e24
MD
395 err1:
396 /* stop clock */
7269f933 397 clk_disable(ch->cmt->clk);
3f7e5e24
MD
398
399 err0:
400 return ret;
3fb1b6ad
MD
401}
402
7269f933 403static void sh_cmt_disable(struct sh_cmt_channel *ch)
3fb1b6ad
MD
404{
405 /* disable channel */
7269f933 406 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad 407
be890a1a 408 /* disable interrupts in CMT block */
7269f933 409 sh_cmt_write_cmcsr(ch, 0);
be890a1a 410
9436b4ab 411 /* stop clock */
7269f933 412 clk_disable(ch->cmt->clk);
bad81383 413
7269f933 414 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
3fb1b6ad
MD
415}
416
417/* private flags */
418#define FLAG_CLOCKEVENT (1 << 0)
419#define FLAG_CLOCKSOURCE (1 << 1)
420#define FLAG_REPROGRAM (1 << 2)
421#define FLAG_SKIPEVENT (1 << 3)
422#define FLAG_IRQCONTEXT (1 << 4)
423
7269f933 424static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
3fb1b6ad
MD
425 int absolute)
426{
22627c6f
SS
427 u32 value = ch->next_match_value;
428 u32 new_match;
429 u32 delay = 0;
430 u32 now = 0;
431 u32 has_wrapped;
3fb1b6ad 432
7269f933
LP
433 now = sh_cmt_get_counter(ch, &has_wrapped);
434 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
3fb1b6ad
MD
435
436 if (has_wrapped) {
437 /* we're competing with the interrupt handler.
438 * -> let the interrupt handler reprogram the timer.
439 * -> interrupt number two handles the event.
440 */
7269f933 441 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
442 return;
443 }
444
445 if (absolute)
446 now = 0;
447
448 do {
449 /* reprogram the timer hardware,
450 * but don't save the new match value yet.
451 */
452 new_match = now + value + delay;
7269f933
LP
453 if (new_match > ch->max_match_value)
454 new_match = ch->max_match_value;
3fb1b6ad 455
7269f933 456 sh_cmt_write_cmcor(ch, new_match);
3fb1b6ad 457
7269f933
LP
458 now = sh_cmt_get_counter(ch, &has_wrapped);
459 if (has_wrapped && (new_match > ch->match_value)) {
3fb1b6ad
MD
460 /* we are changing to a greater match value,
461 * so this wrap must be caused by the counter
462 * matching the old value.
463 * -> first interrupt reprograms the timer.
464 * -> interrupt number two handles the event.
465 */
7269f933 466 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
467 break;
468 }
469
470 if (has_wrapped) {
471 /* we are changing to a smaller match value,
472 * so the wrap must be caused by the counter
473 * matching the new value.
474 * -> save programmed match value.
475 * -> let isr handle the event.
476 */
7269f933 477 ch->match_value = new_match;
3fb1b6ad
MD
478 break;
479 }
480
481 /* be safe: verify hardware settings */
482 if (now < new_match) {
483 /* timer value is below match value, all good.
484 * this makes sure we won't miss any match events.
485 * -> save programmed match value.
486 * -> let isr handle the event.
487 */
7269f933 488 ch->match_value = new_match;
3fb1b6ad
MD
489 break;
490 }
491
492 /* the counter has reached a value greater
493 * than our new match value. and since the
494 * has_wrapped flag isn't set we must have
495 * programmed a too close event.
496 * -> increase delay and retry.
497 */
498 if (delay)
499 delay <<= 1;
500 else
501 delay = 1;
502
503 if (!delay)
740a9518
LP
504 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
505 ch->index);
3fb1b6ad
MD
506
507 } while (delay);
508}
509
7269f933 510static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
3fb1b6ad 511{
7269f933 512 if (delta > ch->max_match_value)
740a9518
LP
513 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
514 ch->index);
3fb1b6ad 515
7269f933
LP
516 ch->next_match_value = delta;
517 sh_cmt_clock_event_program_verify(ch, 0);
65ada547
TY
518}
519
7269f933 520static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
65ada547
TY
521{
522 unsigned long flags;
523
7269f933
LP
524 raw_spin_lock_irqsave(&ch->lock, flags);
525 __sh_cmt_set_next(ch, delta);
526 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
527}
528
529static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
530{
7269f933 531 struct sh_cmt_channel *ch = dev_id;
3fb1b6ad
MD
532
533 /* clear flags */
2cda3ac4
LP
534 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
535 ch->cmt->info->clear_bits);
3fb1b6ad
MD
536
537 /* update clock source counter to begin with if enabled
538 * the wrap flag should be cleared by the timer specific
539 * isr before we end up here.
540 */
7269f933
LP
541 if (ch->flags & FLAG_CLOCKSOURCE)
542 ch->total_cycles += ch->match_value + 1;
3fb1b6ad 543
7269f933
LP
544 if (!(ch->flags & FLAG_REPROGRAM))
545 ch->next_match_value = ch->max_match_value;
3fb1b6ad 546
7269f933 547 ch->flags |= FLAG_IRQCONTEXT;
3fb1b6ad 548
7269f933
LP
549 if (ch->flags & FLAG_CLOCKEVENT) {
550 if (!(ch->flags & FLAG_SKIPEVENT)) {
051b782e 551 if (clockevent_state_oneshot(&ch->ced)) {
7269f933
LP
552 ch->next_match_value = ch->max_match_value;
553 ch->flags |= FLAG_REPROGRAM;
3fb1b6ad
MD
554 }
555
7269f933 556 ch->ced.event_handler(&ch->ced);
3fb1b6ad
MD
557 }
558 }
559
7269f933 560 ch->flags &= ~FLAG_SKIPEVENT;
3fb1b6ad 561
7269f933
LP
562 if (ch->flags & FLAG_REPROGRAM) {
563 ch->flags &= ~FLAG_REPROGRAM;
564 sh_cmt_clock_event_program_verify(ch, 1);
3fb1b6ad 565
7269f933 566 if (ch->flags & FLAG_CLOCKEVENT)
051b782e 567 if ((clockevent_state_shutdown(&ch->ced))
7269f933
LP
568 || (ch->match_value == ch->next_match_value))
569 ch->flags &= ~FLAG_REPROGRAM;
3fb1b6ad
MD
570 }
571
7269f933 572 ch->flags &= ~FLAG_IRQCONTEXT;
3fb1b6ad
MD
573
574 return IRQ_HANDLED;
575}
576
7269f933 577static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
578{
579 int ret = 0;
580 unsigned long flags;
581
8ae954ca
NS
582 if (flag & FLAG_CLOCKSOURCE)
583 pm_runtime_get_sync(&ch->cmt->pdev->dev);
584
7269f933 585 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 586
8ae954ca
NS
587 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
588 if (flag & FLAG_CLOCKEVENT)
589 pm_runtime_get_sync(&ch->cmt->pdev->dev);
890f423b 590 ret = sh_cmt_enable(ch);
8ae954ca 591 }
3fb1b6ad
MD
592
593 if (ret)
594 goto out;
7269f933 595 ch->flags |= flag;
3fb1b6ad
MD
596
597 /* setup timeout if no clockevent */
be83c3b6
PH
598 if (ch->cmt->num_channels == 1 &&
599 flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
7269f933 600 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 601 out:
7269f933 602 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
603
604 return ret;
605}
606
7269f933 607static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
608{
609 unsigned long flags;
610 unsigned long f;
611
7269f933 612 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 613
7269f933
LP
614 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
615 ch->flags &= ~flag;
3fb1b6ad 616
8ae954ca 617 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
7269f933 618 sh_cmt_disable(ch);
8ae954ca
NS
619 if (flag & FLAG_CLOCKEVENT)
620 pm_runtime_put(&ch->cmt->pdev->dev);
621 }
3fb1b6ad
MD
622
623 /* adjust the timeout to maximum if only clocksource left */
7269f933
LP
624 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
625 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 626
7269f933 627 raw_spin_unlock_irqrestore(&ch->lock, flags);
8ae954ca
NS
628
629 if (flag & FLAG_CLOCKSOURCE)
630 pm_runtime_put(&ch->cmt->pdev->dev);
3fb1b6ad
MD
631}
632
7269f933 633static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
19bdc9d0 634{
7269f933 635 return container_of(cs, struct sh_cmt_channel, cs);
19bdc9d0
MD
636}
637
a5a1d1c2 638static u64 sh_cmt_clocksource_read(struct clocksource *cs)
19bdc9d0 639{
7269f933 640 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
22627c6f 641 u32 has_wrapped;
19bdc9d0 642
be83c3b6
PH
643 if (ch->cmt->num_channels == 1) {
644 unsigned long flags;
645 u64 value;
646 u32 raw;
19bdc9d0 647
be83c3b6
PH
648 raw_spin_lock_irqsave(&ch->lock, flags);
649 value = ch->total_cycles;
650 raw = sh_cmt_get_counter(ch, &has_wrapped);
651
652 if (unlikely(has_wrapped))
653 raw += ch->match_value + 1;
654 raw_spin_unlock_irqrestore(&ch->lock, flags);
655
656 return value + raw;
657 }
19bdc9d0 658
be83c3b6 659 return sh_cmt_get_counter(ch, &has_wrapped);
19bdc9d0
MD
660}
661
662static int sh_cmt_clocksource_enable(struct clocksource *cs)
663{
3593f5fe 664 int ret;
7269f933 665 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0 666
7269f933 667 WARN_ON(ch->cs_enabled);
bad81383 668
7269f933 669 ch->total_cycles = 0;
19bdc9d0 670
7269f933 671 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
890f423b 672 if (!ret)
7269f933 673 ch->cs_enabled = true;
890f423b 674
3593f5fe 675 return ret;
19bdc9d0
MD
676}
677
678static void sh_cmt_clocksource_disable(struct clocksource *cs)
679{
7269f933 680 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
bad81383 681
7269f933 682 WARN_ON(!ch->cs_enabled);
bad81383 683
7269f933
LP
684 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
685 ch->cs_enabled = false;
19bdc9d0
MD
686}
687
9bb5ec88
RW
688static void sh_cmt_clocksource_suspend(struct clocksource *cs)
689{
7269f933 690 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 691
54d46b7f
GU
692 if (!ch->cs_enabled)
693 return;
694
7269f933 695 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
fc519890 696 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
9bb5ec88
RW
697}
698
c8162884
MD
699static void sh_cmt_clocksource_resume(struct clocksource *cs)
700{
7269f933 701 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 702
54d46b7f
GU
703 if (!ch->cs_enabled)
704 return;
705
fc519890 706 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
7269f933 707 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
c8162884
MD
708}
709
7269f933 710static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
fb28a659 711 const char *name)
19bdc9d0 712{
7269f933 713 struct clocksource *cs = &ch->cs;
19bdc9d0
MD
714
715 cs->name = name;
fb28a659 716 cs->rating = 125;
19bdc9d0
MD
717 cs->read = sh_cmt_clocksource_read;
718 cs->enable = sh_cmt_clocksource_enable;
719 cs->disable = sh_cmt_clocksource_disable;
9bb5ec88 720 cs->suspend = sh_cmt_clocksource_suspend;
c8162884 721 cs->resume = sh_cmt_clocksource_resume;
be83c3b6 722 cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
19bdc9d0 723 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
f4d7c356 724
740a9518
LP
725 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
726 ch->index);
f4d7c356 727
890f423b 728 clocksource_register_hz(cs, ch->cmt->rate);
19bdc9d0
MD
729 return 0;
730}
731
7269f933 732static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
3fb1b6ad 733{
7269f933 734 return container_of(ced, struct sh_cmt_channel, ced);
3fb1b6ad
MD
735}
736
7269f933 737static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
3fb1b6ad 738{
7269f933 739 sh_cmt_start(ch, FLAG_CLOCKEVENT);
3fb1b6ad 740
3fb1b6ad 741 if (periodic)
890f423b 742 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
3fb1b6ad 743 else
7269f933 744 sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad
MD
745}
746
051b782e
VK
747static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
748{
749 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
750
751 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
752 return 0;
753}
754
755static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
756 int periodic)
3fb1b6ad 757{
7269f933 758 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
759
760 /* deal with old setting first */
051b782e 761 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
7269f933 762 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad 763
051b782e
VK
764 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
765 ch->index, periodic ? "periodic" : "oneshot");
766 sh_cmt_clock_event_start(ch, periodic);
767 return 0;
768}
769
770static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
771{
772 return sh_cmt_clock_event_set_state(ced, 0);
773}
774
775static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
776{
777 return sh_cmt_clock_event_set_state(ced, 1);
3fb1b6ad
MD
778}
779
780static int sh_cmt_clock_event_next(unsigned long delta,
781 struct clock_event_device *ced)
782{
7269f933 783 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad 784
051b782e 785 BUG_ON(!clockevent_state_oneshot(ced));
7269f933
LP
786 if (likely(ch->flags & FLAG_IRQCONTEXT))
787 ch->next_match_value = delta - 1;
3fb1b6ad 788 else
7269f933 789 sh_cmt_set_next(ch, delta - 1);
3fb1b6ad
MD
790
791 return 0;
792}
793
9bb5ec88
RW
794static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
795{
7269f933 796 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 797
fc519890 798 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
7269f933 799 clk_unprepare(ch->cmt->clk);
9bb5ec88
RW
800}
801
802static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
803{
7269f933 804 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 805
7269f933 806 clk_prepare(ch->cmt->clk);
fc519890 807 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
9bb5ec88
RW
808}
809
bfa76bb1
LP
810static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
811 const char *name)
3fb1b6ad 812{
7269f933 813 struct clock_event_device *ced = &ch->ced;
bfa76bb1
LP
814 int irq;
815 int ret;
816
31e912f5 817 irq = platform_get_irq(ch->cmt->pdev, ch->index);
9f475d08 818 if (irq < 0)
bfa76bb1 819 return irq;
bfa76bb1
LP
820
821 ret = request_irq(irq, sh_cmt_interrupt,
822 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
823 dev_name(&ch->cmt->pdev->dev), ch);
824 if (ret) {
825 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
826 ch->index, irq);
827 return ret;
828 }
3fb1b6ad 829
3fb1b6ad
MD
830 ced->name = name;
831 ced->features = CLOCK_EVT_FEAT_PERIODIC;
832 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
b7fcbb0f 833 ced->rating = 125;
f1ebe1e4 834 ced->cpumask = cpu_possible_mask;
3fb1b6ad 835 ced->set_next_event = sh_cmt_clock_event_next;
051b782e
VK
836 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
837 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
838 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
9bb5ec88
RW
839 ced->suspend = sh_cmt_clock_event_suspend;
840 ced->resume = sh_cmt_clock_event_resume;
3fb1b6ad 841
890f423b
NS
842 /* TODO: calculate good shift from rate and counter bit width */
843 ced->shift = 32;
844 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
845 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
bb2e94ac 846 ced->max_delta_ticks = ch->max_match_value;
890f423b 847 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
bb2e94ac 848 ced->min_delta_ticks = 0x1f;
890f423b 849
740a9518
LP
850 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
851 ch->index);
3fb1b6ad 852 clockevents_register_device(ced);
bfa76bb1
LP
853
854 return 0;
3fb1b6ad
MD
855}
856
1d053e1d 857static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
fb28a659 858 bool clockevent, bool clocksource)
3fb1b6ad 859{
bfa76bb1
LP
860 int ret;
861
81b3b271
LP
862 if (clockevent) {
863 ch->cmt->has_clockevent = true;
bfa76bb1
LP
864 ret = sh_cmt_register_clockevent(ch, name);
865 if (ret < 0)
866 return ret;
81b3b271 867 }
3fb1b6ad 868
81b3b271
LP
869 if (clocksource) {
870 ch->cmt->has_clocksource = true;
fb28a659 871 sh_cmt_register_clocksource(ch, name);
81b3b271 872 }
19bdc9d0 873
3fb1b6ad
MD
874 return 0;
875}
876
740a9518 877static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
81b3b271
LP
878 unsigned int hwidx, bool clockevent,
879 bool clocksource, struct sh_cmt_device *cmt)
b882e7b1 880{
2a97d553 881 u32 value;
b882e7b1
LP
882 int ret;
883
81b3b271
LP
884 /* Skip unused channels. */
885 if (!clockevent && !clocksource)
886 return 0;
887
b882e7b1 888 ch->cmt = cmt;
740a9518 889 ch->index = index;
81b3b271 890 ch->hwidx = hwidx;
83c79a6d 891 ch->timer_bit = hwidx;
81b3b271
LP
892
893 /*
894 * Compute the address of the channel control register block. For the
895 * timers with a per-channel start/stop register, compute its address
896 * as well.
81b3b271 897 */
31e912f5
LP
898 switch (cmt->info->model) {
899 case SH_CMT_16BIT:
900 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
901 break;
902 case SH_CMT_32BIT:
903 case SH_CMT_48BIT:
904 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
905 break;
83c79a6d
MD
906 case SH_CMT0_RCAR_GEN2:
907 case SH_CMT1_RCAR_GEN2:
31e912f5
LP
908 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
909 ch->ioctrl = ch->iostart + 0x10;
83c79a6d 910 ch->timer_bit = 0;
2a97d553
GU
911
912 /* Enable the clock supply to the channel */
913 value = ioread32(cmt->mapbase + CMCLKE);
914 value |= BIT(hwidx);
915 iowrite32(value, cmt->mapbase + CMCLKE);
31e912f5 916 break;
81b3b271
LP
917 }
918
2cda3ac4 919 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
b882e7b1
LP
920 ch->max_match_value = ~0;
921 else
2cda3ac4 922 ch->max_match_value = (1 << cmt->info->width) - 1;
b882e7b1
LP
923
924 ch->match_value = ch->max_match_value;
925 raw_spin_lock_init(&ch->lock);
926
1d053e1d 927 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
81b3b271 928 clockevent, clocksource);
b882e7b1 929 if (ret) {
740a9518
LP
930 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
931 ch->index);
b882e7b1
LP
932 return ret;
933 }
934 ch->cs_enabled = false;
935
b882e7b1
LP
936 return 0;
937}
938
81b3b271 939static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
3fb1b6ad 940{
81b3b271 941 struct resource *mem;
3fb1b6ad 942
81b3b271
LP
943 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
944 if (!mem) {
945 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
946 return -ENXIO;
947 }
3fb1b6ad 948
4bdc0d67 949 cmt->mapbase = ioremap(mem->start, resource_size(mem));
81b3b271
LP
950 if (cmt->mapbase == NULL) {
951 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
952 return -ENXIO;
3fb1b6ad
MD
953 }
954
81b3b271
LP
955 return 0;
956}
957
1768aa2f
LP
958static const struct platform_device_id sh_cmt_id_table[] = {
959 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
960 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1768aa2f
LP
961 { }
962};
963MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
964
965static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
19d60845
MD
966 {
967 /* deprecated, preserved for backward compatibility */
968 .compatible = "renesas,cmt-48",
969 .data = &sh_cmt_info[SH_CMT_48BIT]
970 },
8d50e947
GU
971 {
972 /* deprecated, preserved for backward compatibility */
973 .compatible = "renesas,cmt-48-gen2",
974 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
8c1afba2
MD
975 },
976 {
977 .compatible = "renesas,r8a7740-cmt1",
978 .data = &sh_cmt_info[SH_CMT_48BIT]
979 },
980 {
981 .compatible = "renesas,sh73a0-cmt1",
982 .data = &sh_cmt_info[SH_CMT_48BIT]
8d50e947 983 },
eceb4c49
SS
984 {
985 .compatible = "renesas,rcar-gen2-cmt0",
986 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
987 },
988 {
989 .compatible = "renesas,rcar-gen2-cmt1",
990 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
991 },
ac142a7f
SS
992 {
993 .compatible = "renesas,rcar-gen3-cmt0",
994 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
995 },
996 {
997 .compatible = "renesas,rcar-gen3-cmt1",
998 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
999 },
aa84506e
WS
1000 {
1001 .compatible = "renesas,rcar-gen4-cmt0",
1002 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1003 },
1004 {
1005 .compatible = "renesas,rcar-gen4-cmt1",
1006 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1007 },
1768aa2f
LP
1008 { }
1009};
1010MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1011
81b3b271
LP
1012static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1013{
3f44f715
WS
1014 unsigned int mask, i;
1015 unsigned long rate;
81b3b271
LP
1016 int ret;
1017
81b3b271 1018 cmt->pdev = pdev;
de599c88 1019 raw_spin_lock_init(&cmt->lock);
81b3b271 1020
1768aa2f 1021 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2d1d5172 1022 cmt->info = of_device_get_match_data(&pdev->dev);
d1d28597 1023 cmt->hw_channels = cmt->info->channels_mask;
1768aa2f
LP
1024 } else if (pdev->dev.platform_data) {
1025 struct sh_timer_config *cfg = pdev->dev.platform_data;
1026 const struct platform_device_id *id = pdev->id_entry;
1027
1028 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1029 cmt->hw_channels = cfg->channels_mask;
1030 } else {
81b3b271
LP
1031 dev_err(&cmt->pdev->dev, "missing platform data\n");
1032 return -ENXIO;
1033 }
1034
81b3b271 1035 /* Get hold of clock. */
31e912f5 1036 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
2653caf4
LP
1037 if (IS_ERR(cmt->clk)) {
1038 dev_err(&cmt->pdev->dev, "cannot get clock\n");
81b3b271 1039 return PTR_ERR(cmt->clk);
3fb1b6ad
MD
1040 }
1041
2653caf4 1042 ret = clk_prepare(cmt->clk);
57dee992 1043 if (ret < 0)
81b3b271 1044 goto err_clk_put;
57dee992 1045
890f423b
NS
1046 /* Determine clock rate. */
1047 ret = clk_enable(cmt->clk);
1048 if (ret < 0)
1049 goto err_clk_unprepare;
1050
3f44f715
WS
1051 rate = clk_get_rate(cmt->clk);
1052 if (!rate) {
1053 ret = -EINVAL;
1054 goto err_clk_disable;
1055 }
1056
1057 /* We shall wait 2 input clks after register writes */
1058 if (cmt->info->model >= SH_CMT_48BIT)
1059 cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1060 cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
890f423b 1061
31e912f5
LP
1062 /* Map the memory resource(s). */
1063 ret = sh_cmt_map_memory(cmt);
81b3b271 1064 if (ret < 0)
2a97d553 1065 goto err_clk_disable;
81b3b271
LP
1066
1067 /* Allocate and setup the channels. */
1768aa2f 1068 cmt->num_channels = hweight8(cmt->hw_channels);
6396bb22 1069 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
81b3b271 1070 GFP_KERNEL);
f5ec9b19
LP
1071 if (cmt->channels == NULL) {
1072 ret = -ENOMEM;
81b3b271 1073 goto err_unmap;
f5ec9b19
LP
1074 }
1075
31e912f5
LP
1076 /*
1077 * Use the first channel as a clock event device and the second channel
1078 * as a clock source. If only one channel is available use it for both.
1079 */
1768aa2f 1080 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
31e912f5
LP
1081 unsigned int hwidx = ffs(mask) - 1;
1082 bool clocksource = i == 1 || cmt->num_channels == 1;
1083 bool clockevent = i == 0;
1084
1085 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1086 clockevent, clocksource, cmt);
81b3b271
LP
1087 if (ret < 0)
1088 goto err_unmap;
f5ec9b19 1089
31e912f5 1090 mask &= ~(1 << hwidx);
81b3b271 1091 }
da64c2a8 1092
2a97d553
GU
1093 clk_disable(cmt->clk);
1094
2653caf4 1095 platform_set_drvdata(pdev, cmt);
adccc69e 1096
da64c2a8 1097 return 0;
81b3b271
LP
1098
1099err_unmap:
f5ec9b19 1100 kfree(cmt->channels);
31e912f5 1101 iounmap(cmt->mapbase);
2a97d553
GU
1102err_clk_disable:
1103 clk_disable(cmt->clk);
81b3b271 1104err_clk_unprepare:
2653caf4 1105 clk_unprepare(cmt->clk);
81b3b271 1106err_clk_put:
2653caf4 1107 clk_put(cmt->clk);
3fb1b6ad
MD
1108 return ret;
1109}
1110
1850514b 1111static int sh_cmt_probe(struct platform_device *pdev)
3fb1b6ad 1112{
2653caf4 1113 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
3fb1b6ad
MD
1114 int ret;
1115
201e9109 1116 if (!is_sh_early_platform_device(pdev)) {
bad81383
RW
1117 pm_runtime_set_active(&pdev->dev);
1118 pm_runtime_enable(&pdev->dev);
9bb5ec88 1119 }
615a445f 1120
2653caf4 1121 if (cmt) {
214a607a 1122 dev_info(&pdev->dev, "kept as earlytimer\n");
bad81383 1123 goto out;
e475eedb
MD
1124 }
1125
b262bc74 1126 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
0178f41d 1127 if (cmt == NULL)
3fb1b6ad 1128 return -ENOMEM;
3fb1b6ad 1129
2653caf4 1130 ret = sh_cmt_setup(cmt, pdev);
3fb1b6ad 1131 if (ret) {
2653caf4 1132 kfree(cmt);
bad81383
RW
1133 pm_runtime_idle(&pdev->dev);
1134 return ret;
3fb1b6ad 1135 }
201e9109 1136 if (is_sh_early_platform_device(pdev))
bad81383
RW
1137 return 0;
1138
1139 out:
81b3b271 1140 if (cmt->has_clockevent || cmt->has_clocksource)
bad81383
RW
1141 pm_runtime_irq_safe(&pdev->dev);
1142 else
1143 pm_runtime_idle(&pdev->dev);
1144
1145 return 0;
3fb1b6ad
MD
1146}
1147
3fb1b6ad
MD
1148static struct platform_driver sh_cmt_device_driver = {
1149 .probe = sh_cmt_probe,
3fb1b6ad
MD
1150 .driver = {
1151 .name = "sh_cmt",
1768aa2f 1152 .of_match_table = of_match_ptr(sh_cmt_of_table),
c3daa475 1153 .suppress_bind_attrs = true,
81b3b271
LP
1154 },
1155 .id_table = sh_cmt_id_table,
3fb1b6ad
MD
1156};
1157
1158static int __init sh_cmt_init(void)
1159{
1160 return platform_driver_register(&sh_cmt_device_driver);
1161}
1162
1163static void __exit sh_cmt_exit(void)
1164{
1165 platform_driver_unregister(&sh_cmt_device_driver);
1166}
1167
507fd01d 1168#ifdef CONFIG_SUPERH
201e9109 1169sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
507fd01d
BG
1170#endif
1171
e903a031 1172subsys_initcall(sh_cmt_init);
3fb1b6ad
MD
1173module_exit(sh_cmt_exit);
1174
1175MODULE_AUTHOR("Magnus Damm");
1176MODULE_DESCRIPTION("SuperH CMT Timer Driver");