Merge tag 'overflow-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux-block.git] / drivers / clocksource / sh_cmt.c
CommitLineData
efad0117 1// SPDX-License-Identifier: GPL-2.0
3fb1b6ad
MD
2/*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
3fb1b6ad
MD
6 */
7
e7a9bcc2
LP
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
3fb1b6ad 13#include <linux/init.h>
3fb1b6ad 14#include <linux/interrupt.h>
3fb1b6ad 15#include <linux/io.h>
e7a9bcc2 16#include <linux/ioport.h>
3fb1b6ad 17#include <linux/irq.h>
7deeab5d 18#include <linux/module.h>
1768aa2f 19#include <linux/of.h>
2d1d5172 20#include <linux/of_device.h>
e7a9bcc2 21#include <linux/platform_device.h>
615a445f 22#include <linux/pm_domain.h>
bad81383 23#include <linux/pm_runtime.h>
e7a9bcc2
LP
24#include <linux/sh_timer.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
3fb1b6ad 27
507fd01d
BG
28#ifdef CONFIG_SUPERH
29#include <asm/platform_early.h>
30#endif
31
2653caf4 32struct sh_cmt_device;
7269f933 33
2cda3ac4
LP
34/*
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
38 *
83c79a6d 39 * 16B 32B 32B-F 48B R-Car Gen2
2cda3ac4
LP
40 * -----------------------------------------------------------------------------
41 * Channels 2 1/4 1 6 2/8
42 * Control Width 16 16 16 16 32
43 * Counter Width 16 32 32 32/48 32/48
44 * Shared Start/Stop Y Y Y Y N
45 *
83c79a6d
MD
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
2cda3ac4 49 *
81b3b271
LP
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
57 * block at 0x60.
58 *
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
2cda3ac4
LP
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61 */
62
63enum sh_cmt_model {
64 SH_CMT_16BIT,
65 SH_CMT_32BIT,
2cda3ac4 66 SH_CMT_48BIT,
83c79a6d
MD
67 SH_CMT0_RCAR_GEN2,
68 SH_CMT1_RCAR_GEN2,
2cda3ac4
LP
69};
70
71struct sh_cmt_info {
72 enum sh_cmt_model model;
73
464eed84
MD
74 unsigned int channels_mask;
75
2cda3ac4 76 unsigned long width; /* 16 or 32 bit version of hardware block */
22627c6f
SS
77 u32 overflow_bit;
78 u32 clear_bits;
2cda3ac4
LP
79
80 /* callbacks for CMSTR and CMCSR access */
22627c6f 81 u32 (*read_control)(void __iomem *base, unsigned long offs);
2cda3ac4 82 void (*write_control)(void __iomem *base, unsigned long offs,
22627c6f 83 u32 value);
2cda3ac4
LP
84
85 /* callbacks for CMCNT and CMCOR access */
22627c6f
SS
86 u32 (*read_count)(void __iomem *base, unsigned long offs);
87 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
2cda3ac4
LP
88};
89
7269f933 90struct sh_cmt_channel {
2653caf4 91 struct sh_cmt_device *cmt;
3fb1b6ad 92
81b3b271
LP
93 unsigned int index; /* Index in the documentation */
94 unsigned int hwidx; /* Real hardware index */
95
96 void __iomem *iostart;
97 void __iomem *ioctrl;
c924d2d2 98
81b3b271 99 unsigned int timer_bit;
3fb1b6ad 100 unsigned long flags;
22627c6f
SS
101 u32 match_value;
102 u32 next_match_value;
103 u32 max_match_value;
7d0c399f 104 raw_spinlock_t lock;
3fb1b6ad 105 struct clock_event_device ced;
19bdc9d0 106 struct clocksource cs;
37e7742c 107 u64 total_cycles;
bad81383 108 bool cs_enabled;
7269f933
LP
109};
110
2653caf4 111struct sh_cmt_device {
7269f933
LP
112 struct platform_device *pdev;
113
2cda3ac4
LP
114 const struct sh_cmt_info *info;
115
7269f933 116 void __iomem *mapbase;
7269f933 117 struct clk *clk;
890f423b 118 unsigned long rate;
7269f933 119
de599c88
LP
120 raw_spinlock_t lock; /* Protect the shared start/stop register */
121
f5ec9b19
LP
122 struct sh_cmt_channel *channels;
123 unsigned int num_channels;
1768aa2f 124 unsigned int hw_channels;
81b3b271
LP
125
126 bool has_clockevent;
127 bool has_clocksource;
3fb1b6ad
MD
128};
129
d14be99b
LP
130#define SH_CMT16_CMCSR_CMF (1 << 7)
131#define SH_CMT16_CMCSR_CMIE (1 << 6)
132#define SH_CMT16_CMCSR_CKS8 (0 << 0)
133#define SH_CMT16_CMCSR_CKS32 (1 << 0)
134#define SH_CMT16_CMCSR_CKS128 (2 << 0)
135#define SH_CMT16_CMCSR_CKS512 (3 << 0)
136#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
137
138#define SH_CMT32_CMCSR_CMF (1 << 15)
139#define SH_CMT32_CMCSR_OVF (1 << 14)
140#define SH_CMT32_CMCSR_WRFLG (1 << 13)
141#define SH_CMT32_CMCSR_STTF (1 << 12)
142#define SH_CMT32_CMCSR_STPF (1 << 11)
143#define SH_CMT32_CMCSR_SSIE (1 << 10)
144#define SH_CMT32_CMCSR_CMS (1 << 9)
145#define SH_CMT32_CMCSR_CMM (1 << 8)
146#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
147#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
148#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
149#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
150#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
151#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
152#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
153#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
154#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
156#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
157
22627c6f 158static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
587acb3d
MD
159{
160 return ioread16(base + (offs << 1));
161}
162
22627c6f 163static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
a6a912ca
MD
164{
165 return ioread32(base + (offs << 2));
166}
167
22627c6f 168static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
587acb3d
MD
169{
170 iowrite16(value, base + (offs << 1));
171}
3fb1b6ad 172
22627c6f 173static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
a6a912ca
MD
174{
175 iowrite32(value, base + (offs << 2));
176}
177
2cda3ac4
LP
178static const struct sh_cmt_info sh_cmt_info[] = {
179 [SH_CMT_16BIT] = {
180 .model = SH_CMT_16BIT,
181 .width = 16,
d14be99b
LP
182 .overflow_bit = SH_CMT16_CMCSR_CMF,
183 .clear_bits = ~SH_CMT16_CMCSR_CMF,
2cda3ac4
LP
184 .read_control = sh_cmt_read16,
185 .write_control = sh_cmt_write16,
186 .read_count = sh_cmt_read16,
187 .write_count = sh_cmt_write16,
188 },
189 [SH_CMT_32BIT] = {
190 .model = SH_CMT_32BIT,
191 .width = 32,
d14be99b
LP
192 .overflow_bit = SH_CMT32_CMCSR_CMF,
193 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
194 .read_control = sh_cmt_read16,
195 .write_control = sh_cmt_write16,
196 .read_count = sh_cmt_read32,
197 .write_count = sh_cmt_write32,
198 },
2cda3ac4
LP
199 [SH_CMT_48BIT] = {
200 .model = SH_CMT_48BIT,
464eed84 201 .channels_mask = 0x3f,
2cda3ac4 202 .width = 32,
d14be99b
LP
203 .overflow_bit = SH_CMT32_CMCSR_CMF,
204 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
205 .read_control = sh_cmt_read32,
206 .write_control = sh_cmt_write32,
207 .read_count = sh_cmt_read32,
208 .write_count = sh_cmt_write32,
209 },
83c79a6d
MD
210 [SH_CMT0_RCAR_GEN2] = {
211 .model = SH_CMT0_RCAR_GEN2,
212 .channels_mask = 0x60,
213 .width = 32,
214 .overflow_bit = SH_CMT32_CMCSR_CMF,
215 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 .read_control = sh_cmt_read32,
217 .write_control = sh_cmt_write32,
218 .read_count = sh_cmt_read32,
219 .write_count = sh_cmt_write32,
220 },
221 [SH_CMT1_RCAR_GEN2] = {
222 .model = SH_CMT1_RCAR_GEN2,
223 .channels_mask = 0xff,
2cda3ac4 224 .width = 32,
d14be99b
LP
225 .overflow_bit = SH_CMT32_CMCSR_CMF,
226 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
227 .read_control = sh_cmt_read32,
228 .write_control = sh_cmt_write32,
229 .read_count = sh_cmt_read32,
230 .write_count = sh_cmt_write32,
231 },
232};
233
3fb1b6ad
MD
234#define CMCSR 0 /* channel register */
235#define CMCNT 1 /* channel register */
236#define CMCOR 2 /* channel register */
237
2a97d553
GU
238#define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
239
22627c6f 240static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
1b56b96b 241{
81b3b271
LP
242 if (ch->iostart)
243 return ch->cmt->info->read_control(ch->iostart, 0);
244 else
245 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
1b56b96b
MD
246}
247
22627c6f 248static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
1b56b96b 249{
81b3b271
LP
250 if (ch->iostart)
251 ch->cmt->info->write_control(ch->iostart, 0, value);
252 else
253 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
1b56b96b
MD
254}
255
22627c6f 256static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
1b56b96b 257{
81b3b271 258 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
3fb1b6ad
MD
259}
260
22627c6f 261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
1b56b96b 262{
81b3b271 263 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
1b56b96b
MD
264}
265
22627c6f 266static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
1b56b96b 267{
81b3b271 268 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
1b56b96b
MD
269}
270
22627c6f 271static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
1b56b96b 272{
81b3b271 273 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
1b56b96b
MD
274}
275
22627c6f 276static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
1b56b96b 277{
81b3b271 278 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
1b56b96b
MD
279}
280
22627c6f 281static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
3fb1b6ad 282{
22627c6f
SS
283 u32 v1, v2, v3;
284 u32 o1, o2;
5b644c7a 285
2cda3ac4 286 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
3fb1b6ad
MD
287
288 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
289 do {
5b644c7a 290 o2 = o1;
7269f933
LP
291 v1 = sh_cmt_read_cmcnt(ch);
292 v2 = sh_cmt_read_cmcnt(ch);
293 v3 = sh_cmt_read_cmcnt(ch);
2cda3ac4 294 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
5b644c7a
MD
295 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
296 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
3fb1b6ad 297
5b644c7a 298 *has_wrapped = o1;
3fb1b6ad
MD
299 return v2;
300}
301
7269f933 302static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
3fb1b6ad 303{
22627c6f
SS
304 unsigned long flags;
305 u32 value;
3fb1b6ad
MD
306
307 /* start stop register shared by multiple timer channels */
de599c88 308 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
7269f933 309 value = sh_cmt_read_cmstr(ch);
3fb1b6ad
MD
310
311 if (start)
81b3b271 312 value |= 1 << ch->timer_bit;
3fb1b6ad 313 else
81b3b271 314 value &= ~(1 << ch->timer_bit);
3fb1b6ad 315
7269f933 316 sh_cmt_write_cmstr(ch, value);
de599c88 317 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
3fb1b6ad
MD
318}
319
890f423b 320static int sh_cmt_enable(struct sh_cmt_channel *ch)
3fb1b6ad 321{
3f7e5e24 322 int k, ret;
3fb1b6ad 323
7269f933 324 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
bad81383 325
9436b4ab 326 /* enable clock */
7269f933 327 ret = clk_enable(ch->cmt->clk);
3fb1b6ad 328 if (ret) {
740a9518
LP
329 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
330 ch->index);
3f7e5e24 331 goto err0;
3fb1b6ad 332 }
3fb1b6ad
MD
333
334 /* make sure channel is disabled */
7269f933 335 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad
MD
336
337 /* configure channel, periodic mode and maximum timeout */
2cda3ac4 338 if (ch->cmt->info->width == 16) {
d14be99b
LP
339 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
340 SH_CMT16_CMCSR_CKS512);
3014f474 341 } else {
68c70aae
WS
342 u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
343 SH_CMT32_CMCSR_CMTOUT_IE : 0;
344 sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
d14be99b
LP
345 SH_CMT32_CMCSR_CMR_IRQ |
346 SH_CMT32_CMCSR_CKS_RCLK8);
3014f474 347 }
3fb1b6ad 348
7269f933
LP
349 sh_cmt_write_cmcor(ch, 0xffffffff);
350 sh_cmt_write_cmcnt(ch, 0);
3fb1b6ad 351
3f7e5e24
MD
352 /*
353 * According to the sh73a0 user's manual, as CMCNT can be operated
ad7794d4 354 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
3f7e5e24
MD
355 * modifying CMCNT register; two RCLK cycles are necessary before
356 * this register is either read or any modification of the value
357 * it holds is reflected in the LSI's actual operation.
358 *
359 * While at it, we're supposed to clear out the CMCNT as of this
360 * moment, so make sure it's processed properly here. This will
361 * take RCLKx2 at maximum.
362 */
363 for (k = 0; k < 100; k++) {
7269f933 364 if (!sh_cmt_read_cmcnt(ch))
3f7e5e24
MD
365 break;
366 udelay(1);
367 }
368
7269f933 369 if (sh_cmt_read_cmcnt(ch)) {
740a9518
LP
370 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
371 ch->index);
3f7e5e24
MD
372 ret = -ETIMEDOUT;
373 goto err1;
374 }
375
3fb1b6ad 376 /* enable channel */
7269f933 377 sh_cmt_start_stop_ch(ch, 1);
3fb1b6ad 378 return 0;
3f7e5e24
MD
379 err1:
380 /* stop clock */
7269f933 381 clk_disable(ch->cmt->clk);
3f7e5e24
MD
382
383 err0:
384 return ret;
3fb1b6ad
MD
385}
386
7269f933 387static void sh_cmt_disable(struct sh_cmt_channel *ch)
3fb1b6ad
MD
388{
389 /* disable channel */
7269f933 390 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad 391
be890a1a 392 /* disable interrupts in CMT block */
7269f933 393 sh_cmt_write_cmcsr(ch, 0);
be890a1a 394
9436b4ab 395 /* stop clock */
7269f933 396 clk_disable(ch->cmt->clk);
bad81383 397
7269f933 398 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
3fb1b6ad
MD
399}
400
401/* private flags */
402#define FLAG_CLOCKEVENT (1 << 0)
403#define FLAG_CLOCKSOURCE (1 << 1)
404#define FLAG_REPROGRAM (1 << 2)
405#define FLAG_SKIPEVENT (1 << 3)
406#define FLAG_IRQCONTEXT (1 << 4)
407
7269f933 408static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
3fb1b6ad
MD
409 int absolute)
410{
22627c6f
SS
411 u32 value = ch->next_match_value;
412 u32 new_match;
413 u32 delay = 0;
414 u32 now = 0;
415 u32 has_wrapped;
3fb1b6ad 416
7269f933
LP
417 now = sh_cmt_get_counter(ch, &has_wrapped);
418 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
3fb1b6ad
MD
419
420 if (has_wrapped) {
421 /* we're competing with the interrupt handler.
422 * -> let the interrupt handler reprogram the timer.
423 * -> interrupt number two handles the event.
424 */
7269f933 425 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
426 return;
427 }
428
429 if (absolute)
430 now = 0;
431
432 do {
433 /* reprogram the timer hardware,
434 * but don't save the new match value yet.
435 */
436 new_match = now + value + delay;
7269f933
LP
437 if (new_match > ch->max_match_value)
438 new_match = ch->max_match_value;
3fb1b6ad 439
7269f933 440 sh_cmt_write_cmcor(ch, new_match);
3fb1b6ad 441
7269f933
LP
442 now = sh_cmt_get_counter(ch, &has_wrapped);
443 if (has_wrapped && (new_match > ch->match_value)) {
3fb1b6ad
MD
444 /* we are changing to a greater match value,
445 * so this wrap must be caused by the counter
446 * matching the old value.
447 * -> first interrupt reprograms the timer.
448 * -> interrupt number two handles the event.
449 */
7269f933 450 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
451 break;
452 }
453
454 if (has_wrapped) {
455 /* we are changing to a smaller match value,
456 * so the wrap must be caused by the counter
457 * matching the new value.
458 * -> save programmed match value.
459 * -> let isr handle the event.
460 */
7269f933 461 ch->match_value = new_match;
3fb1b6ad
MD
462 break;
463 }
464
465 /* be safe: verify hardware settings */
466 if (now < new_match) {
467 /* timer value is below match value, all good.
468 * this makes sure we won't miss any match events.
469 * -> save programmed match value.
470 * -> let isr handle the event.
471 */
7269f933 472 ch->match_value = new_match;
3fb1b6ad
MD
473 break;
474 }
475
476 /* the counter has reached a value greater
477 * than our new match value. and since the
478 * has_wrapped flag isn't set we must have
479 * programmed a too close event.
480 * -> increase delay and retry.
481 */
482 if (delay)
483 delay <<= 1;
484 else
485 delay = 1;
486
487 if (!delay)
740a9518
LP
488 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
489 ch->index);
3fb1b6ad
MD
490
491 } while (delay);
492}
493
7269f933 494static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
3fb1b6ad 495{
7269f933 496 if (delta > ch->max_match_value)
740a9518
LP
497 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
498 ch->index);
3fb1b6ad 499
7269f933
LP
500 ch->next_match_value = delta;
501 sh_cmt_clock_event_program_verify(ch, 0);
65ada547
TY
502}
503
7269f933 504static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
65ada547
TY
505{
506 unsigned long flags;
507
7269f933
LP
508 raw_spin_lock_irqsave(&ch->lock, flags);
509 __sh_cmt_set_next(ch, delta);
510 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
511}
512
513static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
514{
7269f933 515 struct sh_cmt_channel *ch = dev_id;
3fb1b6ad
MD
516
517 /* clear flags */
2cda3ac4
LP
518 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
519 ch->cmt->info->clear_bits);
3fb1b6ad
MD
520
521 /* update clock source counter to begin with if enabled
522 * the wrap flag should be cleared by the timer specific
523 * isr before we end up here.
524 */
7269f933
LP
525 if (ch->flags & FLAG_CLOCKSOURCE)
526 ch->total_cycles += ch->match_value + 1;
3fb1b6ad 527
7269f933
LP
528 if (!(ch->flags & FLAG_REPROGRAM))
529 ch->next_match_value = ch->max_match_value;
3fb1b6ad 530
7269f933 531 ch->flags |= FLAG_IRQCONTEXT;
3fb1b6ad 532
7269f933
LP
533 if (ch->flags & FLAG_CLOCKEVENT) {
534 if (!(ch->flags & FLAG_SKIPEVENT)) {
051b782e 535 if (clockevent_state_oneshot(&ch->ced)) {
7269f933
LP
536 ch->next_match_value = ch->max_match_value;
537 ch->flags |= FLAG_REPROGRAM;
3fb1b6ad
MD
538 }
539
7269f933 540 ch->ced.event_handler(&ch->ced);
3fb1b6ad
MD
541 }
542 }
543
7269f933 544 ch->flags &= ~FLAG_SKIPEVENT;
3fb1b6ad 545
7269f933
LP
546 if (ch->flags & FLAG_REPROGRAM) {
547 ch->flags &= ~FLAG_REPROGRAM;
548 sh_cmt_clock_event_program_verify(ch, 1);
3fb1b6ad 549
7269f933 550 if (ch->flags & FLAG_CLOCKEVENT)
051b782e 551 if ((clockevent_state_shutdown(&ch->ced))
7269f933
LP
552 || (ch->match_value == ch->next_match_value))
553 ch->flags &= ~FLAG_REPROGRAM;
3fb1b6ad
MD
554 }
555
7269f933 556 ch->flags &= ~FLAG_IRQCONTEXT;
3fb1b6ad
MD
557
558 return IRQ_HANDLED;
559}
560
7269f933 561static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
562{
563 int ret = 0;
564 unsigned long flags;
565
8ae954ca
NS
566 if (flag & FLAG_CLOCKSOURCE)
567 pm_runtime_get_sync(&ch->cmt->pdev->dev);
568
7269f933 569 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 570
8ae954ca
NS
571 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
572 if (flag & FLAG_CLOCKEVENT)
573 pm_runtime_get_sync(&ch->cmt->pdev->dev);
890f423b 574 ret = sh_cmt_enable(ch);
8ae954ca 575 }
3fb1b6ad
MD
576
577 if (ret)
578 goto out;
7269f933 579 ch->flags |= flag;
3fb1b6ad
MD
580
581 /* setup timeout if no clockevent */
7269f933
LP
582 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
583 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 584 out:
7269f933 585 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
586
587 return ret;
588}
589
7269f933 590static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
591{
592 unsigned long flags;
593 unsigned long f;
594
7269f933 595 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 596
7269f933
LP
597 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
598 ch->flags &= ~flag;
3fb1b6ad 599
8ae954ca 600 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
7269f933 601 sh_cmt_disable(ch);
8ae954ca
NS
602 if (flag & FLAG_CLOCKEVENT)
603 pm_runtime_put(&ch->cmt->pdev->dev);
604 }
3fb1b6ad
MD
605
606 /* adjust the timeout to maximum if only clocksource left */
7269f933
LP
607 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
608 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 609
7269f933 610 raw_spin_unlock_irqrestore(&ch->lock, flags);
8ae954ca
NS
611
612 if (flag & FLAG_CLOCKSOURCE)
613 pm_runtime_put(&ch->cmt->pdev->dev);
3fb1b6ad
MD
614}
615
7269f933 616static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
19bdc9d0 617{
7269f933 618 return container_of(cs, struct sh_cmt_channel, cs);
19bdc9d0
MD
619}
620
a5a1d1c2 621static u64 sh_cmt_clocksource_read(struct clocksource *cs)
19bdc9d0 622{
7269f933 623 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
22627c6f 624 unsigned long flags;
22627c6f 625 u32 has_wrapped;
37e7742c 626 u64 value;
22627c6f 627 u32 raw;
19bdc9d0 628
7269f933
LP
629 raw_spin_lock_irqsave(&ch->lock, flags);
630 value = ch->total_cycles;
631 raw = sh_cmt_get_counter(ch, &has_wrapped);
19bdc9d0
MD
632
633 if (unlikely(has_wrapped))
7269f933
LP
634 raw += ch->match_value + 1;
635 raw_spin_unlock_irqrestore(&ch->lock, flags);
19bdc9d0
MD
636
637 return value + raw;
638}
639
640static int sh_cmt_clocksource_enable(struct clocksource *cs)
641{
3593f5fe 642 int ret;
7269f933 643 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0 644
7269f933 645 WARN_ON(ch->cs_enabled);
bad81383 646
7269f933 647 ch->total_cycles = 0;
19bdc9d0 648
7269f933 649 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
890f423b 650 if (!ret)
7269f933 651 ch->cs_enabled = true;
890f423b 652
3593f5fe 653 return ret;
19bdc9d0
MD
654}
655
656static void sh_cmt_clocksource_disable(struct clocksource *cs)
657{
7269f933 658 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
bad81383 659
7269f933 660 WARN_ON(!ch->cs_enabled);
bad81383 661
7269f933
LP
662 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
663 ch->cs_enabled = false;
19bdc9d0
MD
664}
665
9bb5ec88
RW
666static void sh_cmt_clocksource_suspend(struct clocksource *cs)
667{
7269f933 668 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 669
54d46b7f
GU
670 if (!ch->cs_enabled)
671 return;
672
7269f933 673 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
fc519890 674 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
9bb5ec88
RW
675}
676
c8162884
MD
677static void sh_cmt_clocksource_resume(struct clocksource *cs)
678{
7269f933 679 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 680
54d46b7f
GU
681 if (!ch->cs_enabled)
682 return;
683
fc519890 684 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
7269f933 685 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
c8162884
MD
686}
687
7269f933 688static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
fb28a659 689 const char *name)
19bdc9d0 690{
7269f933 691 struct clocksource *cs = &ch->cs;
19bdc9d0
MD
692
693 cs->name = name;
fb28a659 694 cs->rating = 125;
19bdc9d0
MD
695 cs->read = sh_cmt_clocksource_read;
696 cs->enable = sh_cmt_clocksource_enable;
697 cs->disable = sh_cmt_clocksource_disable;
9bb5ec88 698 cs->suspend = sh_cmt_clocksource_suspend;
c8162884 699 cs->resume = sh_cmt_clocksource_resume;
37e7742c 700 cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
19bdc9d0 701 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
f4d7c356 702
740a9518
LP
703 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
704 ch->index);
f4d7c356 705
890f423b 706 clocksource_register_hz(cs, ch->cmt->rate);
19bdc9d0
MD
707 return 0;
708}
709
7269f933 710static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
3fb1b6ad 711{
7269f933 712 return container_of(ced, struct sh_cmt_channel, ced);
3fb1b6ad
MD
713}
714
7269f933 715static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
3fb1b6ad 716{
7269f933 717 sh_cmt_start(ch, FLAG_CLOCKEVENT);
3fb1b6ad 718
3fb1b6ad 719 if (periodic)
890f423b 720 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
3fb1b6ad 721 else
7269f933 722 sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad
MD
723}
724
051b782e
VK
725static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
726{
727 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
728
729 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
730 return 0;
731}
732
733static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
734 int periodic)
3fb1b6ad 735{
7269f933 736 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
737
738 /* deal with old setting first */
051b782e 739 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
7269f933 740 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad 741
051b782e
VK
742 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
743 ch->index, periodic ? "periodic" : "oneshot");
744 sh_cmt_clock_event_start(ch, periodic);
745 return 0;
746}
747
748static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
749{
750 return sh_cmt_clock_event_set_state(ced, 0);
751}
752
753static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
754{
755 return sh_cmt_clock_event_set_state(ced, 1);
3fb1b6ad
MD
756}
757
758static int sh_cmt_clock_event_next(unsigned long delta,
759 struct clock_event_device *ced)
760{
7269f933 761 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad 762
051b782e 763 BUG_ON(!clockevent_state_oneshot(ced));
7269f933
LP
764 if (likely(ch->flags & FLAG_IRQCONTEXT))
765 ch->next_match_value = delta - 1;
3fb1b6ad 766 else
7269f933 767 sh_cmt_set_next(ch, delta - 1);
3fb1b6ad
MD
768
769 return 0;
770}
771
9bb5ec88
RW
772static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
773{
7269f933 774 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 775
fc519890 776 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
7269f933 777 clk_unprepare(ch->cmt->clk);
9bb5ec88
RW
778}
779
780static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
781{
7269f933 782 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 783
7269f933 784 clk_prepare(ch->cmt->clk);
fc519890 785 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
9bb5ec88
RW
786}
787
bfa76bb1
LP
788static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
789 const char *name)
3fb1b6ad 790{
7269f933 791 struct clock_event_device *ced = &ch->ced;
bfa76bb1
LP
792 int irq;
793 int ret;
794
31e912f5 795 irq = platform_get_irq(ch->cmt->pdev, ch->index);
9f475d08 796 if (irq < 0)
bfa76bb1 797 return irq;
bfa76bb1
LP
798
799 ret = request_irq(irq, sh_cmt_interrupt,
800 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
801 dev_name(&ch->cmt->pdev->dev), ch);
802 if (ret) {
803 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
804 ch->index, irq);
805 return ret;
806 }
3fb1b6ad 807
3fb1b6ad
MD
808 ced->name = name;
809 ced->features = CLOCK_EVT_FEAT_PERIODIC;
810 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
b7fcbb0f 811 ced->rating = 125;
f1ebe1e4 812 ced->cpumask = cpu_possible_mask;
3fb1b6ad 813 ced->set_next_event = sh_cmt_clock_event_next;
051b782e
VK
814 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
815 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
816 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
9bb5ec88
RW
817 ced->suspend = sh_cmt_clock_event_suspend;
818 ced->resume = sh_cmt_clock_event_resume;
3fb1b6ad 819
890f423b
NS
820 /* TODO: calculate good shift from rate and counter bit width */
821 ced->shift = 32;
822 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
823 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
bb2e94ac 824 ced->max_delta_ticks = ch->max_match_value;
890f423b 825 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
bb2e94ac 826 ced->min_delta_ticks = 0x1f;
890f423b 827
740a9518
LP
828 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
829 ch->index);
3fb1b6ad 830 clockevents_register_device(ced);
bfa76bb1
LP
831
832 return 0;
3fb1b6ad
MD
833}
834
1d053e1d 835static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
fb28a659 836 bool clockevent, bool clocksource)
3fb1b6ad 837{
bfa76bb1
LP
838 int ret;
839
81b3b271
LP
840 if (clockevent) {
841 ch->cmt->has_clockevent = true;
bfa76bb1
LP
842 ret = sh_cmt_register_clockevent(ch, name);
843 if (ret < 0)
844 return ret;
81b3b271 845 }
3fb1b6ad 846
81b3b271
LP
847 if (clocksource) {
848 ch->cmt->has_clocksource = true;
fb28a659 849 sh_cmt_register_clocksource(ch, name);
81b3b271 850 }
19bdc9d0 851
3fb1b6ad
MD
852 return 0;
853}
854
740a9518 855static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
81b3b271
LP
856 unsigned int hwidx, bool clockevent,
857 bool clocksource, struct sh_cmt_device *cmt)
b882e7b1 858{
2a97d553 859 u32 value;
b882e7b1
LP
860 int ret;
861
81b3b271
LP
862 /* Skip unused channels. */
863 if (!clockevent && !clocksource)
864 return 0;
865
b882e7b1 866 ch->cmt = cmt;
740a9518 867 ch->index = index;
81b3b271 868 ch->hwidx = hwidx;
83c79a6d 869 ch->timer_bit = hwidx;
81b3b271
LP
870
871 /*
872 * Compute the address of the channel control register block. For the
873 * timers with a per-channel start/stop register, compute its address
874 * as well.
81b3b271 875 */
31e912f5
LP
876 switch (cmt->info->model) {
877 case SH_CMT_16BIT:
878 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
879 break;
880 case SH_CMT_32BIT:
881 case SH_CMT_48BIT:
882 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
883 break;
83c79a6d
MD
884 case SH_CMT0_RCAR_GEN2:
885 case SH_CMT1_RCAR_GEN2:
31e912f5
LP
886 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
887 ch->ioctrl = ch->iostart + 0x10;
83c79a6d 888 ch->timer_bit = 0;
2a97d553
GU
889
890 /* Enable the clock supply to the channel */
891 value = ioread32(cmt->mapbase + CMCLKE);
892 value |= BIT(hwidx);
893 iowrite32(value, cmt->mapbase + CMCLKE);
31e912f5 894 break;
81b3b271
LP
895 }
896
2cda3ac4 897 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
b882e7b1
LP
898 ch->max_match_value = ~0;
899 else
2cda3ac4 900 ch->max_match_value = (1 << cmt->info->width) - 1;
b882e7b1
LP
901
902 ch->match_value = ch->max_match_value;
903 raw_spin_lock_init(&ch->lock);
904
1d053e1d 905 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
81b3b271 906 clockevent, clocksource);
b882e7b1 907 if (ret) {
740a9518
LP
908 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
909 ch->index);
b882e7b1
LP
910 return ret;
911 }
912 ch->cs_enabled = false;
913
b882e7b1
LP
914 return 0;
915}
916
81b3b271 917static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
3fb1b6ad 918{
81b3b271 919 struct resource *mem;
3fb1b6ad 920
81b3b271
LP
921 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
922 if (!mem) {
923 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
924 return -ENXIO;
925 }
3fb1b6ad 926
4bdc0d67 927 cmt->mapbase = ioremap(mem->start, resource_size(mem));
81b3b271
LP
928 if (cmt->mapbase == NULL) {
929 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
930 return -ENXIO;
3fb1b6ad
MD
931 }
932
81b3b271
LP
933 return 0;
934}
935
1768aa2f
LP
936static const struct platform_device_id sh_cmt_id_table[] = {
937 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
938 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1768aa2f
LP
939 { }
940};
941MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
942
943static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
19d60845
MD
944 {
945 /* deprecated, preserved for backward compatibility */
946 .compatible = "renesas,cmt-48",
947 .data = &sh_cmt_info[SH_CMT_48BIT]
948 },
8d50e947
GU
949 {
950 /* deprecated, preserved for backward compatibility */
951 .compatible = "renesas,cmt-48-gen2",
952 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
8c1afba2
MD
953 },
954 {
955 .compatible = "renesas,r8a7740-cmt1",
956 .data = &sh_cmt_info[SH_CMT_48BIT]
957 },
958 {
959 .compatible = "renesas,sh73a0-cmt1",
960 .data = &sh_cmt_info[SH_CMT_48BIT]
8d50e947 961 },
eceb4c49
SS
962 {
963 .compatible = "renesas,rcar-gen2-cmt0",
964 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
965 },
966 {
967 .compatible = "renesas,rcar-gen2-cmt1",
968 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
969 },
ac142a7f
SS
970 {
971 .compatible = "renesas,rcar-gen3-cmt0",
972 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
973 },
974 {
975 .compatible = "renesas,rcar-gen3-cmt1",
976 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
977 },
1768aa2f
LP
978 { }
979};
980MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
981
81b3b271
LP
982static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
983{
31e912f5
LP
984 unsigned int mask;
985 unsigned int i;
81b3b271
LP
986 int ret;
987
81b3b271 988 cmt->pdev = pdev;
de599c88 989 raw_spin_lock_init(&cmt->lock);
81b3b271 990
1768aa2f 991 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2d1d5172 992 cmt->info = of_device_get_match_data(&pdev->dev);
d1d28597 993 cmt->hw_channels = cmt->info->channels_mask;
1768aa2f
LP
994 } else if (pdev->dev.platform_data) {
995 struct sh_timer_config *cfg = pdev->dev.platform_data;
996 const struct platform_device_id *id = pdev->id_entry;
997
998 cmt->info = (const struct sh_cmt_info *)id->driver_data;
999 cmt->hw_channels = cfg->channels_mask;
1000 } else {
81b3b271
LP
1001 dev_err(&cmt->pdev->dev, "missing platform data\n");
1002 return -ENXIO;
1003 }
1004
81b3b271 1005 /* Get hold of clock. */
31e912f5 1006 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
2653caf4
LP
1007 if (IS_ERR(cmt->clk)) {
1008 dev_err(&cmt->pdev->dev, "cannot get clock\n");
81b3b271 1009 return PTR_ERR(cmt->clk);
3fb1b6ad
MD
1010 }
1011
2653caf4 1012 ret = clk_prepare(cmt->clk);
57dee992 1013 if (ret < 0)
81b3b271 1014 goto err_clk_put;
57dee992 1015
890f423b
NS
1016 /* Determine clock rate. */
1017 ret = clk_enable(cmt->clk);
1018 if (ret < 0)
1019 goto err_clk_unprepare;
1020
1021 if (cmt->info->width == 16)
1022 cmt->rate = clk_get_rate(cmt->clk) / 512;
1023 else
1024 cmt->rate = clk_get_rate(cmt->clk) / 8;
1025
31e912f5
LP
1026 /* Map the memory resource(s). */
1027 ret = sh_cmt_map_memory(cmt);
81b3b271 1028 if (ret < 0)
2a97d553 1029 goto err_clk_disable;
81b3b271
LP
1030
1031 /* Allocate and setup the channels. */
1768aa2f 1032 cmt->num_channels = hweight8(cmt->hw_channels);
6396bb22 1033 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
81b3b271 1034 GFP_KERNEL);
f5ec9b19
LP
1035 if (cmt->channels == NULL) {
1036 ret = -ENOMEM;
81b3b271 1037 goto err_unmap;
f5ec9b19
LP
1038 }
1039
31e912f5
LP
1040 /*
1041 * Use the first channel as a clock event device and the second channel
1042 * as a clock source. If only one channel is available use it for both.
1043 */
1768aa2f 1044 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
31e912f5
LP
1045 unsigned int hwidx = ffs(mask) - 1;
1046 bool clocksource = i == 1 || cmt->num_channels == 1;
1047 bool clockevent = i == 0;
1048
1049 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1050 clockevent, clocksource, cmt);
81b3b271
LP
1051 if (ret < 0)
1052 goto err_unmap;
f5ec9b19 1053
31e912f5 1054 mask &= ~(1 << hwidx);
81b3b271 1055 }
da64c2a8 1056
2a97d553
GU
1057 clk_disable(cmt->clk);
1058
2653caf4 1059 platform_set_drvdata(pdev, cmt);
adccc69e 1060
da64c2a8 1061 return 0;
81b3b271
LP
1062
1063err_unmap:
f5ec9b19 1064 kfree(cmt->channels);
31e912f5 1065 iounmap(cmt->mapbase);
2a97d553
GU
1066err_clk_disable:
1067 clk_disable(cmt->clk);
81b3b271 1068err_clk_unprepare:
2653caf4 1069 clk_unprepare(cmt->clk);
81b3b271 1070err_clk_put:
2653caf4 1071 clk_put(cmt->clk);
3fb1b6ad
MD
1072 return ret;
1073}
1074
1850514b 1075static int sh_cmt_probe(struct platform_device *pdev)
3fb1b6ad 1076{
2653caf4 1077 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
3fb1b6ad
MD
1078 int ret;
1079
201e9109 1080 if (!is_sh_early_platform_device(pdev)) {
bad81383
RW
1081 pm_runtime_set_active(&pdev->dev);
1082 pm_runtime_enable(&pdev->dev);
9bb5ec88 1083 }
615a445f 1084
2653caf4 1085 if (cmt) {
214a607a 1086 dev_info(&pdev->dev, "kept as earlytimer\n");
bad81383 1087 goto out;
e475eedb
MD
1088 }
1089
b262bc74 1090 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
0178f41d 1091 if (cmt == NULL)
3fb1b6ad 1092 return -ENOMEM;
3fb1b6ad 1093
2653caf4 1094 ret = sh_cmt_setup(cmt, pdev);
3fb1b6ad 1095 if (ret) {
2653caf4 1096 kfree(cmt);
bad81383
RW
1097 pm_runtime_idle(&pdev->dev);
1098 return ret;
3fb1b6ad 1099 }
201e9109 1100 if (is_sh_early_platform_device(pdev))
bad81383
RW
1101 return 0;
1102
1103 out:
81b3b271 1104 if (cmt->has_clockevent || cmt->has_clocksource)
bad81383
RW
1105 pm_runtime_irq_safe(&pdev->dev);
1106 else
1107 pm_runtime_idle(&pdev->dev);
1108
1109 return 0;
3fb1b6ad
MD
1110}
1111
1850514b 1112static int sh_cmt_remove(struct platform_device *pdev)
3fb1b6ad
MD
1113{
1114 return -EBUSY; /* cannot unregister clockevent and clocksource */
1115}
1116
1117static struct platform_driver sh_cmt_device_driver = {
1118 .probe = sh_cmt_probe,
1850514b 1119 .remove = sh_cmt_remove,
3fb1b6ad
MD
1120 .driver = {
1121 .name = "sh_cmt",
1768aa2f 1122 .of_match_table = of_match_ptr(sh_cmt_of_table),
81b3b271
LP
1123 },
1124 .id_table = sh_cmt_id_table,
3fb1b6ad
MD
1125};
1126
1127static int __init sh_cmt_init(void)
1128{
1129 return platform_driver_register(&sh_cmt_device_driver);
1130}
1131
1132static void __exit sh_cmt_exit(void)
1133{
1134 platform_driver_unregister(&sh_cmt_device_driver);
1135}
1136
507fd01d 1137#ifdef CONFIG_SUPERH
201e9109 1138sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
507fd01d
BG
1139#endif
1140
e903a031 1141subsys_initcall(sh_cmt_init);
3fb1b6ad
MD
1142module_exit(sh_cmt_exit);
1143
1144MODULE_AUTHOR("Magnus Damm");
1145MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1146MODULE_LICENSE("GPL v2");