treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 201
[linux-2.6-block.git] / drivers / clocksource / sh_cmt.c
CommitLineData
efad0117 1// SPDX-License-Identifier: GPL-2.0
3fb1b6ad
MD
2/*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
3fb1b6ad
MD
6 */
7
e7a9bcc2
LP
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
3fb1b6ad 13#include <linux/init.h>
3fb1b6ad 14#include <linux/interrupt.h>
3fb1b6ad 15#include <linux/io.h>
e7a9bcc2 16#include <linux/ioport.h>
3fb1b6ad 17#include <linux/irq.h>
7deeab5d 18#include <linux/module.h>
1768aa2f 19#include <linux/of.h>
2d1d5172 20#include <linux/of_device.h>
e7a9bcc2 21#include <linux/platform_device.h>
615a445f 22#include <linux/pm_domain.h>
bad81383 23#include <linux/pm_runtime.h>
e7a9bcc2
LP
24#include <linux/sh_timer.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
3fb1b6ad 27
2653caf4 28struct sh_cmt_device;
7269f933 29
2cda3ac4
LP
30/*
31 * The CMT comes in 5 different identified flavours, depending not only on the
32 * SoC but also on the particular instance. The following table lists the main
33 * characteristics of those flavours.
34 *
83c79a6d 35 * 16B 32B 32B-F 48B R-Car Gen2
2cda3ac4
LP
36 * -----------------------------------------------------------------------------
37 * Channels 2 1/4 1 6 2/8
38 * Control Width 16 16 16 16 32
39 * Counter Width 16 32 32 32/48 32/48
40 * Shared Start/Stop Y Y Y Y N
41 *
83c79a6d
MD
42 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
43 * located in the channel registers block. All other versions have a shared
44 * start/stop register located in the global space.
2cda3ac4 45 *
81b3b271
LP
46 * Channels are indexed from 0 to N-1 in the documentation. The channel index
47 * infers the start/stop bit position in the control register and the channel
48 * registers block address. Some CMT instances have a subset of channels
49 * available, in which case the index in the documentation doesn't match the
50 * "real" index as implemented in hardware. This is for instance the case with
51 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
52 * in the documentation but using start/stop bit 5 and having its registers
53 * block at 0x60.
54 *
55 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
2cda3ac4
LP
56 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
57 */
58
59enum sh_cmt_model {
60 SH_CMT_16BIT,
61 SH_CMT_32BIT,
2cda3ac4 62 SH_CMT_48BIT,
83c79a6d
MD
63 SH_CMT0_RCAR_GEN2,
64 SH_CMT1_RCAR_GEN2,
2cda3ac4
LP
65};
66
67struct sh_cmt_info {
68 enum sh_cmt_model model;
69
464eed84
MD
70 unsigned int channels_mask;
71
2cda3ac4 72 unsigned long width; /* 16 or 32 bit version of hardware block */
22627c6f
SS
73 u32 overflow_bit;
74 u32 clear_bits;
2cda3ac4
LP
75
76 /* callbacks for CMSTR and CMCSR access */
22627c6f 77 u32 (*read_control)(void __iomem *base, unsigned long offs);
2cda3ac4 78 void (*write_control)(void __iomem *base, unsigned long offs,
22627c6f 79 u32 value);
2cda3ac4
LP
80
81 /* callbacks for CMCNT and CMCOR access */
22627c6f
SS
82 u32 (*read_count)(void __iomem *base, unsigned long offs);
83 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
2cda3ac4
LP
84};
85
7269f933 86struct sh_cmt_channel {
2653caf4 87 struct sh_cmt_device *cmt;
3fb1b6ad 88
81b3b271
LP
89 unsigned int index; /* Index in the documentation */
90 unsigned int hwidx; /* Real hardware index */
91
92 void __iomem *iostart;
93 void __iomem *ioctrl;
c924d2d2 94
81b3b271 95 unsigned int timer_bit;
3fb1b6ad 96 unsigned long flags;
22627c6f
SS
97 u32 match_value;
98 u32 next_match_value;
99 u32 max_match_value;
7d0c399f 100 raw_spinlock_t lock;
3fb1b6ad 101 struct clock_event_device ced;
19bdc9d0 102 struct clocksource cs;
37e7742c 103 u64 total_cycles;
bad81383 104 bool cs_enabled;
7269f933
LP
105};
106
2653caf4 107struct sh_cmt_device {
7269f933
LP
108 struct platform_device *pdev;
109
2cda3ac4
LP
110 const struct sh_cmt_info *info;
111
7269f933 112 void __iomem *mapbase;
7269f933 113 struct clk *clk;
890f423b 114 unsigned long rate;
7269f933 115
de599c88
LP
116 raw_spinlock_t lock; /* Protect the shared start/stop register */
117
f5ec9b19
LP
118 struct sh_cmt_channel *channels;
119 unsigned int num_channels;
1768aa2f 120 unsigned int hw_channels;
81b3b271
LP
121
122 bool has_clockevent;
123 bool has_clocksource;
3fb1b6ad
MD
124};
125
d14be99b
LP
126#define SH_CMT16_CMCSR_CMF (1 << 7)
127#define SH_CMT16_CMCSR_CMIE (1 << 6)
128#define SH_CMT16_CMCSR_CKS8 (0 << 0)
129#define SH_CMT16_CMCSR_CKS32 (1 << 0)
130#define SH_CMT16_CMCSR_CKS128 (2 << 0)
131#define SH_CMT16_CMCSR_CKS512 (3 << 0)
132#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
133
134#define SH_CMT32_CMCSR_CMF (1 << 15)
135#define SH_CMT32_CMCSR_OVF (1 << 14)
136#define SH_CMT32_CMCSR_WRFLG (1 << 13)
137#define SH_CMT32_CMCSR_STTF (1 << 12)
138#define SH_CMT32_CMCSR_STPF (1 << 11)
139#define SH_CMT32_CMCSR_SSIE (1 << 10)
140#define SH_CMT32_CMCSR_CMS (1 << 9)
141#define SH_CMT32_CMCSR_CMM (1 << 8)
142#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
143#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
144#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
145#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
146#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
147#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
148#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
149#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
150#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
151#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
152#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
153
22627c6f 154static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
587acb3d
MD
155{
156 return ioread16(base + (offs << 1));
157}
158
22627c6f 159static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
a6a912ca
MD
160{
161 return ioread32(base + (offs << 2));
162}
163
22627c6f 164static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
587acb3d
MD
165{
166 iowrite16(value, base + (offs << 1));
167}
3fb1b6ad 168
22627c6f 169static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
a6a912ca
MD
170{
171 iowrite32(value, base + (offs << 2));
172}
173
2cda3ac4
LP
174static const struct sh_cmt_info sh_cmt_info[] = {
175 [SH_CMT_16BIT] = {
176 .model = SH_CMT_16BIT,
177 .width = 16,
d14be99b
LP
178 .overflow_bit = SH_CMT16_CMCSR_CMF,
179 .clear_bits = ~SH_CMT16_CMCSR_CMF,
2cda3ac4
LP
180 .read_control = sh_cmt_read16,
181 .write_control = sh_cmt_write16,
182 .read_count = sh_cmt_read16,
183 .write_count = sh_cmt_write16,
184 },
185 [SH_CMT_32BIT] = {
186 .model = SH_CMT_32BIT,
187 .width = 32,
d14be99b
LP
188 .overflow_bit = SH_CMT32_CMCSR_CMF,
189 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
190 .read_control = sh_cmt_read16,
191 .write_control = sh_cmt_write16,
192 .read_count = sh_cmt_read32,
193 .write_count = sh_cmt_write32,
194 },
2cda3ac4
LP
195 [SH_CMT_48BIT] = {
196 .model = SH_CMT_48BIT,
464eed84 197 .channels_mask = 0x3f,
2cda3ac4 198 .width = 32,
d14be99b
LP
199 .overflow_bit = SH_CMT32_CMCSR_CMF,
200 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
201 .read_control = sh_cmt_read32,
202 .write_control = sh_cmt_write32,
203 .read_count = sh_cmt_read32,
204 .write_count = sh_cmt_write32,
205 },
83c79a6d
MD
206 [SH_CMT0_RCAR_GEN2] = {
207 .model = SH_CMT0_RCAR_GEN2,
208 .channels_mask = 0x60,
209 .width = 32,
210 .overflow_bit = SH_CMT32_CMCSR_CMF,
211 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
212 .read_control = sh_cmt_read32,
213 .write_control = sh_cmt_write32,
214 .read_count = sh_cmt_read32,
215 .write_count = sh_cmt_write32,
216 },
217 [SH_CMT1_RCAR_GEN2] = {
218 .model = SH_CMT1_RCAR_GEN2,
219 .channels_mask = 0xff,
2cda3ac4 220 .width = 32,
d14be99b
LP
221 .overflow_bit = SH_CMT32_CMCSR_CMF,
222 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
223 .read_control = sh_cmt_read32,
224 .write_control = sh_cmt_write32,
225 .read_count = sh_cmt_read32,
226 .write_count = sh_cmt_write32,
227 },
228};
229
3fb1b6ad
MD
230#define CMCSR 0 /* channel register */
231#define CMCNT 1 /* channel register */
232#define CMCOR 2 /* channel register */
233
22627c6f 234static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
1b56b96b 235{
81b3b271
LP
236 if (ch->iostart)
237 return ch->cmt->info->read_control(ch->iostart, 0);
238 else
239 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
1b56b96b
MD
240}
241
22627c6f 242static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
1b56b96b 243{
81b3b271
LP
244 if (ch->iostart)
245 ch->cmt->info->write_control(ch->iostart, 0, value);
246 else
247 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
1b56b96b
MD
248}
249
22627c6f 250static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
1b56b96b 251{
81b3b271 252 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
3fb1b6ad
MD
253}
254
22627c6f 255static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
1b56b96b 256{
81b3b271 257 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
1b56b96b
MD
258}
259
22627c6f 260static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
1b56b96b 261{
81b3b271 262 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
1b56b96b
MD
263}
264
22627c6f 265static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
1b56b96b 266{
81b3b271 267 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
1b56b96b
MD
268}
269
22627c6f 270static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
1b56b96b 271{
81b3b271 272 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
1b56b96b
MD
273}
274
22627c6f 275static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
3fb1b6ad 276{
22627c6f
SS
277 u32 v1, v2, v3;
278 u32 o1, o2;
5b644c7a 279
2cda3ac4 280 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
3fb1b6ad
MD
281
282 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
283 do {
5b644c7a 284 o2 = o1;
7269f933
LP
285 v1 = sh_cmt_read_cmcnt(ch);
286 v2 = sh_cmt_read_cmcnt(ch);
287 v3 = sh_cmt_read_cmcnt(ch);
2cda3ac4 288 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
5b644c7a
MD
289 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
290 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
3fb1b6ad 291
5b644c7a 292 *has_wrapped = o1;
3fb1b6ad
MD
293 return v2;
294}
295
7269f933 296static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
3fb1b6ad 297{
22627c6f
SS
298 unsigned long flags;
299 u32 value;
3fb1b6ad
MD
300
301 /* start stop register shared by multiple timer channels */
de599c88 302 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
7269f933 303 value = sh_cmt_read_cmstr(ch);
3fb1b6ad
MD
304
305 if (start)
81b3b271 306 value |= 1 << ch->timer_bit;
3fb1b6ad 307 else
81b3b271 308 value &= ~(1 << ch->timer_bit);
3fb1b6ad 309
7269f933 310 sh_cmt_write_cmstr(ch, value);
de599c88 311 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
3fb1b6ad
MD
312}
313
890f423b 314static int sh_cmt_enable(struct sh_cmt_channel *ch)
3fb1b6ad 315{
3f7e5e24 316 int k, ret;
3fb1b6ad 317
7269f933
LP
318 pm_runtime_get_sync(&ch->cmt->pdev->dev);
319 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
bad81383 320
9436b4ab 321 /* enable clock */
7269f933 322 ret = clk_enable(ch->cmt->clk);
3fb1b6ad 323 if (ret) {
740a9518
LP
324 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
325 ch->index);
3f7e5e24 326 goto err0;
3fb1b6ad 327 }
3fb1b6ad
MD
328
329 /* make sure channel is disabled */
7269f933 330 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad
MD
331
332 /* configure channel, periodic mode and maximum timeout */
2cda3ac4 333 if (ch->cmt->info->width == 16) {
d14be99b
LP
334 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
335 SH_CMT16_CMCSR_CKS512);
3014f474 336 } else {
d14be99b
LP
337 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
338 SH_CMT32_CMCSR_CMTOUT_IE |
339 SH_CMT32_CMCSR_CMR_IRQ |
340 SH_CMT32_CMCSR_CKS_RCLK8);
3014f474 341 }
3fb1b6ad 342
7269f933
LP
343 sh_cmt_write_cmcor(ch, 0xffffffff);
344 sh_cmt_write_cmcnt(ch, 0);
3fb1b6ad 345
3f7e5e24
MD
346 /*
347 * According to the sh73a0 user's manual, as CMCNT can be operated
348 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
349 * modifying CMCNT register; two RCLK cycles are necessary before
350 * this register is either read or any modification of the value
351 * it holds is reflected in the LSI's actual operation.
352 *
353 * While at it, we're supposed to clear out the CMCNT as of this
354 * moment, so make sure it's processed properly here. This will
355 * take RCLKx2 at maximum.
356 */
357 for (k = 0; k < 100; k++) {
7269f933 358 if (!sh_cmt_read_cmcnt(ch))
3f7e5e24
MD
359 break;
360 udelay(1);
361 }
362
7269f933 363 if (sh_cmt_read_cmcnt(ch)) {
740a9518
LP
364 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
365 ch->index);
3f7e5e24
MD
366 ret = -ETIMEDOUT;
367 goto err1;
368 }
369
3fb1b6ad 370 /* enable channel */
7269f933 371 sh_cmt_start_stop_ch(ch, 1);
3fb1b6ad 372 return 0;
3f7e5e24
MD
373 err1:
374 /* stop clock */
7269f933 375 clk_disable(ch->cmt->clk);
3f7e5e24
MD
376
377 err0:
378 return ret;
3fb1b6ad
MD
379}
380
7269f933 381static void sh_cmt_disable(struct sh_cmt_channel *ch)
3fb1b6ad
MD
382{
383 /* disable channel */
7269f933 384 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad 385
be890a1a 386 /* disable interrupts in CMT block */
7269f933 387 sh_cmt_write_cmcsr(ch, 0);
be890a1a 388
9436b4ab 389 /* stop clock */
7269f933 390 clk_disable(ch->cmt->clk);
bad81383 391
7269f933
LP
392 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
393 pm_runtime_put(&ch->cmt->pdev->dev);
3fb1b6ad
MD
394}
395
396/* private flags */
397#define FLAG_CLOCKEVENT (1 << 0)
398#define FLAG_CLOCKSOURCE (1 << 1)
399#define FLAG_REPROGRAM (1 << 2)
400#define FLAG_SKIPEVENT (1 << 3)
401#define FLAG_IRQCONTEXT (1 << 4)
402
7269f933 403static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
3fb1b6ad
MD
404 int absolute)
405{
22627c6f
SS
406 u32 value = ch->next_match_value;
407 u32 new_match;
408 u32 delay = 0;
409 u32 now = 0;
410 u32 has_wrapped;
3fb1b6ad 411
7269f933
LP
412 now = sh_cmt_get_counter(ch, &has_wrapped);
413 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
3fb1b6ad
MD
414
415 if (has_wrapped) {
416 /* we're competing with the interrupt handler.
417 * -> let the interrupt handler reprogram the timer.
418 * -> interrupt number two handles the event.
419 */
7269f933 420 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
421 return;
422 }
423
424 if (absolute)
425 now = 0;
426
427 do {
428 /* reprogram the timer hardware,
429 * but don't save the new match value yet.
430 */
431 new_match = now + value + delay;
7269f933
LP
432 if (new_match > ch->max_match_value)
433 new_match = ch->max_match_value;
3fb1b6ad 434
7269f933 435 sh_cmt_write_cmcor(ch, new_match);
3fb1b6ad 436
7269f933
LP
437 now = sh_cmt_get_counter(ch, &has_wrapped);
438 if (has_wrapped && (new_match > ch->match_value)) {
3fb1b6ad
MD
439 /* we are changing to a greater match value,
440 * so this wrap must be caused by the counter
441 * matching the old value.
442 * -> first interrupt reprograms the timer.
443 * -> interrupt number two handles the event.
444 */
7269f933 445 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
446 break;
447 }
448
449 if (has_wrapped) {
450 /* we are changing to a smaller match value,
451 * so the wrap must be caused by the counter
452 * matching the new value.
453 * -> save programmed match value.
454 * -> let isr handle the event.
455 */
7269f933 456 ch->match_value = new_match;
3fb1b6ad
MD
457 break;
458 }
459
460 /* be safe: verify hardware settings */
461 if (now < new_match) {
462 /* timer value is below match value, all good.
463 * this makes sure we won't miss any match events.
464 * -> save programmed match value.
465 * -> let isr handle the event.
466 */
7269f933 467 ch->match_value = new_match;
3fb1b6ad
MD
468 break;
469 }
470
471 /* the counter has reached a value greater
472 * than our new match value. and since the
473 * has_wrapped flag isn't set we must have
474 * programmed a too close event.
475 * -> increase delay and retry.
476 */
477 if (delay)
478 delay <<= 1;
479 else
480 delay = 1;
481
482 if (!delay)
740a9518
LP
483 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
484 ch->index);
3fb1b6ad
MD
485
486 } while (delay);
487}
488
7269f933 489static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
3fb1b6ad 490{
7269f933 491 if (delta > ch->max_match_value)
740a9518
LP
492 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
493 ch->index);
3fb1b6ad 494
7269f933
LP
495 ch->next_match_value = delta;
496 sh_cmt_clock_event_program_verify(ch, 0);
65ada547
TY
497}
498
7269f933 499static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
65ada547
TY
500{
501 unsigned long flags;
502
7269f933
LP
503 raw_spin_lock_irqsave(&ch->lock, flags);
504 __sh_cmt_set_next(ch, delta);
505 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
506}
507
508static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
509{
7269f933 510 struct sh_cmt_channel *ch = dev_id;
3fb1b6ad
MD
511
512 /* clear flags */
2cda3ac4
LP
513 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
514 ch->cmt->info->clear_bits);
3fb1b6ad
MD
515
516 /* update clock source counter to begin with if enabled
517 * the wrap flag should be cleared by the timer specific
518 * isr before we end up here.
519 */
7269f933
LP
520 if (ch->flags & FLAG_CLOCKSOURCE)
521 ch->total_cycles += ch->match_value + 1;
3fb1b6ad 522
7269f933
LP
523 if (!(ch->flags & FLAG_REPROGRAM))
524 ch->next_match_value = ch->max_match_value;
3fb1b6ad 525
7269f933 526 ch->flags |= FLAG_IRQCONTEXT;
3fb1b6ad 527
7269f933
LP
528 if (ch->flags & FLAG_CLOCKEVENT) {
529 if (!(ch->flags & FLAG_SKIPEVENT)) {
051b782e 530 if (clockevent_state_oneshot(&ch->ced)) {
7269f933
LP
531 ch->next_match_value = ch->max_match_value;
532 ch->flags |= FLAG_REPROGRAM;
3fb1b6ad
MD
533 }
534
7269f933 535 ch->ced.event_handler(&ch->ced);
3fb1b6ad
MD
536 }
537 }
538
7269f933 539 ch->flags &= ~FLAG_SKIPEVENT;
3fb1b6ad 540
7269f933
LP
541 if (ch->flags & FLAG_REPROGRAM) {
542 ch->flags &= ~FLAG_REPROGRAM;
543 sh_cmt_clock_event_program_verify(ch, 1);
3fb1b6ad 544
7269f933 545 if (ch->flags & FLAG_CLOCKEVENT)
051b782e 546 if ((clockevent_state_shutdown(&ch->ced))
7269f933
LP
547 || (ch->match_value == ch->next_match_value))
548 ch->flags &= ~FLAG_REPROGRAM;
3fb1b6ad
MD
549 }
550
7269f933 551 ch->flags &= ~FLAG_IRQCONTEXT;
3fb1b6ad
MD
552
553 return IRQ_HANDLED;
554}
555
7269f933 556static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
557{
558 int ret = 0;
559 unsigned long flags;
560
7269f933 561 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 562
7269f933 563 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
890f423b 564 ret = sh_cmt_enable(ch);
3fb1b6ad
MD
565
566 if (ret)
567 goto out;
7269f933 568 ch->flags |= flag;
3fb1b6ad
MD
569
570 /* setup timeout if no clockevent */
7269f933
LP
571 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
572 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 573 out:
7269f933 574 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
575
576 return ret;
577}
578
7269f933 579static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
580{
581 unsigned long flags;
582 unsigned long f;
583
7269f933 584 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 585
7269f933
LP
586 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
587 ch->flags &= ~flag;
3fb1b6ad 588
7269f933
LP
589 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
590 sh_cmt_disable(ch);
3fb1b6ad
MD
591
592 /* adjust the timeout to maximum if only clocksource left */
7269f933
LP
593 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
594 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 595
7269f933 596 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
597}
598
7269f933 599static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
19bdc9d0 600{
7269f933 601 return container_of(cs, struct sh_cmt_channel, cs);
19bdc9d0
MD
602}
603
a5a1d1c2 604static u64 sh_cmt_clocksource_read(struct clocksource *cs)
19bdc9d0 605{
7269f933 606 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
22627c6f 607 unsigned long flags;
22627c6f 608 u32 has_wrapped;
37e7742c 609 u64 value;
22627c6f 610 u32 raw;
19bdc9d0 611
7269f933
LP
612 raw_spin_lock_irqsave(&ch->lock, flags);
613 value = ch->total_cycles;
614 raw = sh_cmt_get_counter(ch, &has_wrapped);
19bdc9d0
MD
615
616 if (unlikely(has_wrapped))
7269f933
LP
617 raw += ch->match_value + 1;
618 raw_spin_unlock_irqrestore(&ch->lock, flags);
19bdc9d0
MD
619
620 return value + raw;
621}
622
623static int sh_cmt_clocksource_enable(struct clocksource *cs)
624{
3593f5fe 625 int ret;
7269f933 626 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0 627
7269f933 628 WARN_ON(ch->cs_enabled);
bad81383 629
7269f933 630 ch->total_cycles = 0;
19bdc9d0 631
7269f933 632 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
890f423b 633 if (!ret)
7269f933 634 ch->cs_enabled = true;
890f423b 635
3593f5fe 636 return ret;
19bdc9d0
MD
637}
638
639static void sh_cmt_clocksource_disable(struct clocksource *cs)
640{
7269f933 641 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
bad81383 642
7269f933 643 WARN_ON(!ch->cs_enabled);
bad81383 644
7269f933
LP
645 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
646 ch->cs_enabled = false;
19bdc9d0
MD
647}
648
9bb5ec88
RW
649static void sh_cmt_clocksource_suspend(struct clocksource *cs)
650{
7269f933 651 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 652
54d46b7f
GU
653 if (!ch->cs_enabled)
654 return;
655
7269f933
LP
656 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
9bb5ec88
RW
658}
659
c8162884
MD
660static void sh_cmt_clocksource_resume(struct clocksource *cs)
661{
7269f933 662 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 663
54d46b7f
GU
664 if (!ch->cs_enabled)
665 return;
666
7269f933
LP
667 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
668 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
c8162884
MD
669}
670
7269f933 671static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
fb28a659 672 const char *name)
19bdc9d0 673{
7269f933 674 struct clocksource *cs = &ch->cs;
19bdc9d0
MD
675
676 cs->name = name;
fb28a659 677 cs->rating = 125;
19bdc9d0
MD
678 cs->read = sh_cmt_clocksource_read;
679 cs->enable = sh_cmt_clocksource_enable;
680 cs->disable = sh_cmt_clocksource_disable;
9bb5ec88 681 cs->suspend = sh_cmt_clocksource_suspend;
c8162884 682 cs->resume = sh_cmt_clocksource_resume;
37e7742c 683 cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
19bdc9d0 684 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
f4d7c356 685
740a9518
LP
686 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
687 ch->index);
f4d7c356 688
890f423b 689 clocksource_register_hz(cs, ch->cmt->rate);
19bdc9d0
MD
690 return 0;
691}
692
7269f933 693static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
3fb1b6ad 694{
7269f933 695 return container_of(ced, struct sh_cmt_channel, ced);
3fb1b6ad
MD
696}
697
7269f933 698static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
3fb1b6ad 699{
7269f933 700 sh_cmt_start(ch, FLAG_CLOCKEVENT);
3fb1b6ad 701
3fb1b6ad 702 if (periodic)
890f423b 703 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
3fb1b6ad 704 else
7269f933 705 sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad
MD
706}
707
051b782e
VK
708static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
709{
710 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
711
712 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
713 return 0;
714}
715
716static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
717 int periodic)
3fb1b6ad 718{
7269f933 719 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
720
721 /* deal with old setting first */
051b782e 722 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
7269f933 723 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad 724
051b782e
VK
725 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
726 ch->index, periodic ? "periodic" : "oneshot");
727 sh_cmt_clock_event_start(ch, periodic);
728 return 0;
729}
730
731static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
732{
733 return sh_cmt_clock_event_set_state(ced, 0);
734}
735
736static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
737{
738 return sh_cmt_clock_event_set_state(ced, 1);
3fb1b6ad
MD
739}
740
741static int sh_cmt_clock_event_next(unsigned long delta,
742 struct clock_event_device *ced)
743{
7269f933 744 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad 745
051b782e 746 BUG_ON(!clockevent_state_oneshot(ced));
7269f933
LP
747 if (likely(ch->flags & FLAG_IRQCONTEXT))
748 ch->next_match_value = delta - 1;
3fb1b6ad 749 else
7269f933 750 sh_cmt_set_next(ch, delta - 1);
3fb1b6ad
MD
751
752 return 0;
753}
754
9bb5ec88
RW
755static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
756{
7269f933 757 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 758
7269f933
LP
759 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
760 clk_unprepare(ch->cmt->clk);
9bb5ec88
RW
761}
762
763static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
764{
7269f933 765 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 766
7269f933
LP
767 clk_prepare(ch->cmt->clk);
768 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
9bb5ec88
RW
769}
770
bfa76bb1
LP
771static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
772 const char *name)
3fb1b6ad 773{
7269f933 774 struct clock_event_device *ced = &ch->ced;
bfa76bb1
LP
775 int irq;
776 int ret;
777
31e912f5 778 irq = platform_get_irq(ch->cmt->pdev, ch->index);
bfa76bb1
LP
779 if (irq < 0) {
780 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
781 ch->index);
782 return irq;
783 }
784
785 ret = request_irq(irq, sh_cmt_interrupt,
786 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
787 dev_name(&ch->cmt->pdev->dev), ch);
788 if (ret) {
789 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
790 ch->index, irq);
791 return ret;
792 }
3fb1b6ad 793
3fb1b6ad
MD
794 ced->name = name;
795 ced->features = CLOCK_EVT_FEAT_PERIODIC;
796 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
b7fcbb0f 797 ced->rating = 125;
f1ebe1e4 798 ced->cpumask = cpu_possible_mask;
3fb1b6ad 799 ced->set_next_event = sh_cmt_clock_event_next;
051b782e
VK
800 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
801 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
802 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
9bb5ec88
RW
803 ced->suspend = sh_cmt_clock_event_suspend;
804 ced->resume = sh_cmt_clock_event_resume;
3fb1b6ad 805
890f423b
NS
806 /* TODO: calculate good shift from rate and counter bit width */
807 ced->shift = 32;
808 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
809 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
bb2e94ac 810 ced->max_delta_ticks = ch->max_match_value;
890f423b 811 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
bb2e94ac 812 ced->min_delta_ticks = 0x1f;
890f423b 813
740a9518
LP
814 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
815 ch->index);
3fb1b6ad 816 clockevents_register_device(ced);
bfa76bb1
LP
817
818 return 0;
3fb1b6ad
MD
819}
820
1d053e1d 821static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
fb28a659 822 bool clockevent, bool clocksource)
3fb1b6ad 823{
bfa76bb1
LP
824 int ret;
825
81b3b271
LP
826 if (clockevent) {
827 ch->cmt->has_clockevent = true;
bfa76bb1
LP
828 ret = sh_cmt_register_clockevent(ch, name);
829 if (ret < 0)
830 return ret;
81b3b271 831 }
3fb1b6ad 832
81b3b271
LP
833 if (clocksource) {
834 ch->cmt->has_clocksource = true;
fb28a659 835 sh_cmt_register_clocksource(ch, name);
81b3b271 836 }
19bdc9d0 837
3fb1b6ad
MD
838 return 0;
839}
840
740a9518 841static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
81b3b271
LP
842 unsigned int hwidx, bool clockevent,
843 bool clocksource, struct sh_cmt_device *cmt)
b882e7b1 844{
b882e7b1
LP
845 int ret;
846
81b3b271
LP
847 /* Skip unused channels. */
848 if (!clockevent && !clocksource)
849 return 0;
850
b882e7b1 851 ch->cmt = cmt;
740a9518 852 ch->index = index;
81b3b271 853 ch->hwidx = hwidx;
83c79a6d 854 ch->timer_bit = hwidx;
81b3b271
LP
855
856 /*
857 * Compute the address of the channel control register block. For the
858 * timers with a per-channel start/stop register, compute its address
859 * as well.
81b3b271 860 */
31e912f5
LP
861 switch (cmt->info->model) {
862 case SH_CMT_16BIT:
863 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
864 break;
865 case SH_CMT_32BIT:
866 case SH_CMT_48BIT:
867 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
868 break;
83c79a6d
MD
869 case SH_CMT0_RCAR_GEN2:
870 case SH_CMT1_RCAR_GEN2:
31e912f5
LP
871 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
872 ch->ioctrl = ch->iostart + 0x10;
83c79a6d 873 ch->timer_bit = 0;
31e912f5 874 break;
81b3b271
LP
875 }
876
2cda3ac4 877 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
b882e7b1
LP
878 ch->max_match_value = ~0;
879 else
2cda3ac4 880 ch->max_match_value = (1 << cmt->info->width) - 1;
b882e7b1
LP
881
882 ch->match_value = ch->max_match_value;
883 raw_spin_lock_init(&ch->lock);
884
1d053e1d 885 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
81b3b271 886 clockevent, clocksource);
b882e7b1 887 if (ret) {
740a9518
LP
888 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
889 ch->index);
b882e7b1
LP
890 return ret;
891 }
892 ch->cs_enabled = false;
893
b882e7b1
LP
894 return 0;
895}
896
81b3b271 897static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
3fb1b6ad 898{
81b3b271 899 struct resource *mem;
3fb1b6ad 900
81b3b271
LP
901 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
902 if (!mem) {
903 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
904 return -ENXIO;
905 }
3fb1b6ad 906
81b3b271
LP
907 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
908 if (cmt->mapbase == NULL) {
909 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
910 return -ENXIO;
3fb1b6ad
MD
911 }
912
81b3b271
LP
913 return 0;
914}
915
1768aa2f
LP
916static const struct platform_device_id sh_cmt_id_table[] = {
917 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
918 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1768aa2f
LP
919 { }
920};
921MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
922
923static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
1768aa2f 924 { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
8d50e947
GU
925 {
926 /* deprecated, preserved for backward compatibility */
927 .compatible = "renesas,cmt-48-gen2",
928 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
929 },
eceb4c49
SS
930 {
931 .compatible = "renesas,rcar-gen2-cmt0",
932 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
933 },
934 {
935 .compatible = "renesas,rcar-gen2-cmt1",
936 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
937 },
ac142a7f
SS
938 {
939 .compatible = "renesas,rcar-gen3-cmt0",
940 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
941 },
942 {
943 .compatible = "renesas,rcar-gen3-cmt1",
944 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
945 },
1768aa2f
LP
946 { }
947};
948MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
949
81b3b271
LP
950static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
951{
31e912f5
LP
952 unsigned int mask;
953 unsigned int i;
81b3b271
LP
954 int ret;
955
81b3b271 956 cmt->pdev = pdev;
de599c88 957 raw_spin_lock_init(&cmt->lock);
81b3b271 958
1768aa2f 959 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2d1d5172 960 cmt->info = of_device_get_match_data(&pdev->dev);
d1d28597 961 cmt->hw_channels = cmt->info->channels_mask;
1768aa2f
LP
962 } else if (pdev->dev.platform_data) {
963 struct sh_timer_config *cfg = pdev->dev.platform_data;
964 const struct platform_device_id *id = pdev->id_entry;
965
966 cmt->info = (const struct sh_cmt_info *)id->driver_data;
967 cmt->hw_channels = cfg->channels_mask;
968 } else {
81b3b271
LP
969 dev_err(&cmt->pdev->dev, "missing platform data\n");
970 return -ENXIO;
971 }
972
81b3b271 973 /* Get hold of clock. */
31e912f5 974 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
2653caf4
LP
975 if (IS_ERR(cmt->clk)) {
976 dev_err(&cmt->pdev->dev, "cannot get clock\n");
81b3b271 977 return PTR_ERR(cmt->clk);
3fb1b6ad
MD
978 }
979
2653caf4 980 ret = clk_prepare(cmt->clk);
57dee992 981 if (ret < 0)
81b3b271 982 goto err_clk_put;
57dee992 983
890f423b
NS
984 /* Determine clock rate. */
985 ret = clk_enable(cmt->clk);
986 if (ret < 0)
987 goto err_clk_unprepare;
988
989 if (cmt->info->width == 16)
990 cmt->rate = clk_get_rate(cmt->clk) / 512;
991 else
992 cmt->rate = clk_get_rate(cmt->clk) / 8;
993
994 clk_disable(cmt->clk);
995
31e912f5
LP
996 /* Map the memory resource(s). */
997 ret = sh_cmt_map_memory(cmt);
81b3b271
LP
998 if (ret < 0)
999 goto err_clk_unprepare;
1000
1001 /* Allocate and setup the channels. */
1768aa2f 1002 cmt->num_channels = hweight8(cmt->hw_channels);
6396bb22 1003 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
81b3b271 1004 GFP_KERNEL);
f5ec9b19
LP
1005 if (cmt->channels == NULL) {
1006 ret = -ENOMEM;
81b3b271 1007 goto err_unmap;
f5ec9b19
LP
1008 }
1009
31e912f5
LP
1010 /*
1011 * Use the first channel as a clock event device and the second channel
1012 * as a clock source. If only one channel is available use it for both.
1013 */
1768aa2f 1014 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
31e912f5
LP
1015 unsigned int hwidx = ffs(mask) - 1;
1016 bool clocksource = i == 1 || cmt->num_channels == 1;
1017 bool clockevent = i == 0;
1018
1019 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1020 clockevent, clocksource, cmt);
81b3b271
LP
1021 if (ret < 0)
1022 goto err_unmap;
f5ec9b19 1023
31e912f5 1024 mask &= ~(1 << hwidx);
81b3b271 1025 }
da64c2a8 1026
2653caf4 1027 platform_set_drvdata(pdev, cmt);
adccc69e 1028
da64c2a8 1029 return 0;
81b3b271
LP
1030
1031err_unmap:
f5ec9b19 1032 kfree(cmt->channels);
31e912f5 1033 iounmap(cmt->mapbase);
81b3b271 1034err_clk_unprepare:
2653caf4 1035 clk_unprepare(cmt->clk);
81b3b271 1036err_clk_put:
2653caf4 1037 clk_put(cmt->clk);
3fb1b6ad
MD
1038 return ret;
1039}
1040
1850514b 1041static int sh_cmt_probe(struct platform_device *pdev)
3fb1b6ad 1042{
2653caf4 1043 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
3fb1b6ad
MD
1044 int ret;
1045
9bb5ec88 1046 if (!is_early_platform_device(pdev)) {
bad81383
RW
1047 pm_runtime_set_active(&pdev->dev);
1048 pm_runtime_enable(&pdev->dev);
9bb5ec88 1049 }
615a445f 1050
2653caf4 1051 if (cmt) {
214a607a 1052 dev_info(&pdev->dev, "kept as earlytimer\n");
bad81383 1053 goto out;
e475eedb
MD
1054 }
1055
b262bc74 1056 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
0178f41d 1057 if (cmt == NULL)
3fb1b6ad 1058 return -ENOMEM;
3fb1b6ad 1059
2653caf4 1060 ret = sh_cmt_setup(cmt, pdev);
3fb1b6ad 1061 if (ret) {
2653caf4 1062 kfree(cmt);
bad81383
RW
1063 pm_runtime_idle(&pdev->dev);
1064 return ret;
3fb1b6ad 1065 }
bad81383
RW
1066 if (is_early_platform_device(pdev))
1067 return 0;
1068
1069 out:
81b3b271 1070 if (cmt->has_clockevent || cmt->has_clocksource)
bad81383
RW
1071 pm_runtime_irq_safe(&pdev->dev);
1072 else
1073 pm_runtime_idle(&pdev->dev);
1074
1075 return 0;
3fb1b6ad
MD
1076}
1077
1850514b 1078static int sh_cmt_remove(struct platform_device *pdev)
3fb1b6ad
MD
1079{
1080 return -EBUSY; /* cannot unregister clockevent and clocksource */
1081}
1082
1083static struct platform_driver sh_cmt_device_driver = {
1084 .probe = sh_cmt_probe,
1850514b 1085 .remove = sh_cmt_remove,
3fb1b6ad
MD
1086 .driver = {
1087 .name = "sh_cmt",
1768aa2f 1088 .of_match_table = of_match_ptr(sh_cmt_of_table),
81b3b271
LP
1089 },
1090 .id_table = sh_cmt_id_table,
3fb1b6ad
MD
1091};
1092
1093static int __init sh_cmt_init(void)
1094{
1095 return platform_driver_register(&sh_cmt_device_driver);
1096}
1097
1098static void __exit sh_cmt_exit(void)
1099{
1100 platform_driver_unregister(&sh_cmt_device_driver);
1101}
1102
e475eedb 1103early_platform_init("earlytimer", &sh_cmt_device_driver);
e903a031 1104subsys_initcall(sh_cmt_init);
3fb1b6ad
MD
1105module_exit(sh_cmt_exit);
1106
1107MODULE_AUTHOR("Magnus Damm");
1108MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1109MODULE_LICENSE("GPL v2");