Merge tag 'input-for-v6.3-rc0' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor...
[linux-block.git] / drivers / clocksource / hyperv_timer.c
CommitLineData
fd1fea68
MK
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Clocksource driver for the synthetic counter and timers
5 * provided by the Hyper-V hypervisor to guest VMs, as described
6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7 * is instruction set architecture independent.
8 *
9 * Copyright (C) 2019, Microsoft, Inc.
10 *
11 * Author: Michael Kelley <mikelley@microsoft.com>
12 */
13
14#include <linux/percpu.h>
15#include <linux/cpumask.h>
16#include <linux/clockchips.h>
dd2cb348
MK
17#include <linux/clocksource.h>
18#include <linux/sched_clock.h>
fd1fea68 19#include <linux/mm.h>
4df4cb9e 20#include <linux/cpuhotplug.h>
ec866be6
MK
21#include <linux/interrupt.h>
22#include <linux/irq.h>
23#include <linux/acpi.h>
4ad1aa57 24#include <linux/hyperv.h>
fd1fea68
MK
25#include <clocksource/hyperv_timer.h>
26#include <asm/hyperv-tlfs.h>
27#include <asm/mshyperv.h>
28
29static struct clock_event_device __percpu *hv_clock_event;
bd00cd52 30static u64 hv_sched_clock_offset __ro_after_init;
fd1fea68
MK
31
32/*
33 * If false, we're using the old mechanism for stimer0 interrupts
34 * where it sends a VMbus message when it expires. The old
35 * mechanism is used when running on older versions of Hyper-V
36 * that don't support Direct Mode. While Hyper-V provides
37 * four stimer's per CPU, Linux uses only stimer0.
4df4cb9e
MK
38 *
39 * Because Direct Mode does not require processing a VMbus
40 * message, stimer interrupts can be enabled earlier in the
41 * process of booting a CPU, and consistent with when timer
42 * interrupts are enabled for other clocksource drivers.
43 * However, for legacy versions of Hyper-V when Direct Mode
44 * is not enabled, setting up stimer interrupts must be
45 * delayed until VMbus is initialized and can process the
46 * interrupt message.
fd1fea68
MK
47 */
48static bool direct_mode_enabled;
49
ec866be6 50static int stimer0_irq = -1;
fd1fea68 51static int stimer0_message_sint;
ec866be6 52static DEFINE_PER_CPU(long, stimer0_evt);
fd1fea68
MK
53
54/*
ec866be6
MK
55 * Common code for stimer0 interrupts coming via Direct Mode or
56 * as a VMbus message.
fd1fea68
MK
57 */
58void hv_stimer0_isr(void)
59{
60 struct clock_event_device *ce;
61
62 ce = this_cpu_ptr(hv_clock_event);
63 ce->event_handler(ce);
64}
65EXPORT_SYMBOL_GPL(hv_stimer0_isr);
66
ec866be6
MK
67/*
68 * stimer0 interrupt handler for architectures that support
69 * per-cpu interrupts, which also implies Direct Mode.
70 */
71static irqreturn_t hv_stimer0_percpu_isr(int irq, void *dev_id)
72{
73 hv_stimer0_isr();
74 return IRQ_HANDLED;
75}
76
fd1fea68
MK
77static int hv_ce_set_next_event(unsigned long delta,
78 struct clock_event_device *evt)
79{
80 u64 current_tick;
81
0af3e137 82 current_tick = hv_read_reference_counter();
fd1fea68 83 current_tick += delta;
f3c5e63c 84 hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
fd1fea68
MK
85 return 0;
86}
87
88static int hv_ce_shutdown(struct clock_event_device *evt)
89{
f3c5e63c
MK
90 hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
91 hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
ec866be6
MK
92 if (direct_mode_enabled && stimer0_irq >= 0)
93 disable_percpu_irq(stimer0_irq);
fd1fea68
MK
94
95 return 0;
96}
97
98static int hv_ce_set_oneshot(struct clock_event_device *evt)
99{
100 union hv_stimer_config timer_cfg;
101
102 timer_cfg.as_uint64 = 0;
103 timer_cfg.enable = 1;
104 timer_cfg.auto_enable = 1;
105 if (direct_mode_enabled) {
106 /*
107 * When it expires, the timer will directly interrupt
108 * on the specified hardware vector/IRQ.
109 */
110 timer_cfg.direct_mode = 1;
ec866be6
MK
111 timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
112 if (stimer0_irq >= 0)
113 enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
fd1fea68
MK
114 } else {
115 /*
116 * When it expires, the timer will generate a VMbus message,
117 * to be handled by the normal VMbus interrupt handler.
118 */
119 timer_cfg.direct_mode = 0;
120 timer_cfg.sintx = stimer0_message_sint;
121 }
f3c5e63c 122 hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
fd1fea68
MK
123 return 0;
124}
125
126/*
127 * hv_stimer_init - Per-cpu initialization of the clockevent
128 */
4df4cb9e 129static int hv_stimer_init(unsigned int cpu)
fd1fea68
MK
130{
131 struct clock_event_device *ce;
132
4df4cb9e
MK
133 if (!hv_clock_event)
134 return 0;
fd1fea68
MK
135
136 ce = per_cpu_ptr(hv_clock_event, cpu);
137 ce->name = "Hyper-V clockevent";
138 ce->features = CLOCK_EVT_FEAT_ONESHOT;
139 ce->cpumask = cpumask_of(cpu);
140 ce->rating = 1000;
141 ce->set_state_shutdown = hv_ce_shutdown;
142 ce->set_state_oneshot = hv_ce_set_oneshot;
143 ce->set_next_event = hv_ce_set_next_event;
144
145 clockevents_config_and_register(ce,
146 HV_CLOCK_HZ,
147 HV_MIN_DELTA_TICKS,
148 HV_MAX_MAX_DELTA_TICKS);
4df4cb9e 149 return 0;
fd1fea68 150}
fd1fea68
MK
151
152/*
153 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
154 */
4df4cb9e 155int hv_stimer_cleanup(unsigned int cpu)
fd1fea68
MK
156{
157 struct clock_event_device *ce;
158
4df4cb9e
MK
159 if (!hv_clock_event)
160 return 0;
161
162 /*
163 * In the legacy case where Direct Mode is not enabled
164 * (which can only be on x86/64), stimer cleanup happens
165 * relatively early in the CPU offlining process. We
166 * must unbind the stimer-based clockevent device so
167 * that the LAPIC timer can take over until clockevents
168 * are no longer needed in the offlining process. Note
169 * that clockevents_unbind_device() eventually calls
170 * hv_ce_shutdown().
171 *
172 * The unbind should not be done when Direct Mode is
173 * enabled because we may be on an architecture where
174 * there are no other clockevent devices to fallback to.
175 */
176 ce = per_cpu_ptr(hv_clock_event, cpu);
177 if (direct_mode_enabled)
fd1fea68 178 hv_ce_shutdown(ce);
4df4cb9e
MK
179 else
180 clockevents_unbind_device(ce, cpu);
181
182 return 0;
fd1fea68
MK
183}
184EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
185
ec866be6
MK
186/*
187 * These placeholders are overridden by arch specific code on
188 * architectures that need special setup of the stimer0 IRQ because
189 * they don't support per-cpu IRQs (such as x86/x64).
190 */
191void __weak hv_setup_stimer0_handler(void (*handler)(void))
192{
193};
194
195void __weak hv_remove_stimer0_handler(void)
196{
197};
198
199/* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
200static int hv_setup_stimer0_irq(void)
201{
202 int ret;
203
204 ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
205 ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
206 if (ret < 0) {
207 pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
208 return ret;
209 }
210 stimer0_irq = ret;
211
212 ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
213 "Hyper-V stimer0", &stimer0_evt);
214 if (ret) {
215 pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
216 stimer0_irq, ret);
217 acpi_unregister_gsi(stimer0_irq);
218 stimer0_irq = -1;
219 }
220 return ret;
221}
222
223static void hv_remove_stimer0_irq(void)
224{
225 if (stimer0_irq == -1) {
226 hv_remove_stimer0_handler();
227 } else {
228 free_percpu_irq(stimer0_irq, &stimer0_evt);
229 acpi_unregister_gsi(stimer0_irq);
230 stimer0_irq = -1;
231 }
232}
233
fd1fea68 234/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
ec866be6 235int hv_stimer_alloc(bool have_percpu_irqs)
fd1fea68 236{
ec866be6 237 int ret;
4df4cb9e
MK
238
239 /*
240 * Synthetic timers are always available except on old versions of
241 * Hyper-V on x86. In that case, return as error as Linux will use a
242 * clockevent based on emulated LAPIC timer hardware.
243 */
244 if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
245 return -EINVAL;
fd1fea68
MK
246
247 hv_clock_event = alloc_percpu(struct clock_event_device);
248 if (!hv_clock_event)
249 return -ENOMEM;
250
251 direct_mode_enabled = ms_hyperv.misc_features &
252 HV_STIMER_DIRECT_MODE_AVAILABLE;
ec866be6
MK
253
254 /*
255 * If Direct Mode isn't enabled, the remainder of the initialization
256 * is done later by hv_stimer_legacy_init()
257 */
258 if (!direct_mode_enabled)
259 return 0;
260
261 if (have_percpu_irqs) {
262 ret = hv_setup_stimer0_irq();
4df4cb9e 263 if (ret)
ec866be6
MK
264 goto free_clock_event;
265 } else {
266 hv_setup_stimer0_handler(hv_stimer0_isr);
267 }
4df4cb9e 268
ec866be6
MK
269 /*
270 * Since we are in Direct Mode, stimer initialization
271 * can be done now with a CPUHP value in the same range
272 * as other clockevent devices.
273 */
274 ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
275 "clockevents/hyperv/stimer:starting",
276 hv_stimer_init, hv_stimer_cleanup);
277 if (ret < 0) {
278 hv_remove_stimer0_irq();
279 goto free_clock_event;
fd1fea68 280 }
4df4cb9e 281 return ret;
fd1fea68 282
ec866be6 283free_clock_event:
4df4cb9e
MK
284 free_percpu(hv_clock_event);
285 hv_clock_event = NULL;
286 return ret;
fd1fea68
MK
287}
288EXPORT_SYMBOL_GPL(hv_stimer_alloc);
289
4df4cb9e
MK
290/*
291 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
292 * the case when Direct Mode is not enabled, and the stimer
293 * must be initialized late in the CPU onlining process.
294 *
295 */
296void hv_stimer_legacy_init(unsigned int cpu, int sint)
297{
298 if (direct_mode_enabled)
299 return;
300
301 /*
302 * This function gets called by each vCPU, so setting the
303 * global stimer_message_sint value each time is conceptually
304 * not ideal, but the value passed in is always the same and
305 * it avoids introducing yet another interface into this
306 * clocksource driver just to set the sint in the legacy case.
307 */
308 stimer0_message_sint = sint;
309 (void)hv_stimer_init(cpu);
310}
311EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
312
313/*
314 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
315 * handle the case when Direct Mode is not enabled, and the
316 * stimer must be cleaned up early in the CPU offlining
317 * process.
318 */
319void hv_stimer_legacy_cleanup(unsigned int cpu)
320{
321 if (direct_mode_enabled)
322 return;
323 (void)hv_stimer_cleanup(cpu);
324}
325EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
326
fd1fea68
MK
327/*
328 * Do a global cleanup of clockevents for the cases of kexec and
329 * vmbus exit
330 */
331void hv_stimer_global_cleanup(void)
332{
333 int cpu;
fd1fea68 334
4df4cb9e
MK
335 /*
336 * hv_stime_legacy_cleanup() will stop the stimer if Direct
337 * Mode is not enabled, and fallback to the LAPIC timer.
338 */
339 for_each_present_cpu(cpu) {
340 hv_stimer_legacy_cleanup(cpu);
fd1fea68 341 }
4df4cb9e 342
ec866be6
MK
343 if (!hv_clock_event)
344 return;
345
346 if (direct_mode_enabled) {
347 cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
348 hv_remove_stimer0_irq();
349 stimer0_irq = -1;
350 }
351 free_percpu(hv_clock_event);
352 hv_clock_event = NULL;
353
fd1fea68
MK
354}
355EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
dd2cb348
MK
356
357/*
358 * Code and definitions for the Hyper-V clocksources. Two
359 * clocksources are defined: one that reads the Hyper-V defined MSR, and
360 * the other that uses the TSC reference page feature as defined in the
361 * TLFS. The MSR version is for compatibility with old versions of
362 * Hyper-V and 32-bit x86. The TSC reference page version is preferred.
363 */
364
ddc61bbc
BF
365static union {
366 struct ms_hyperv_tsc_page page;
367 u8 reserved[PAGE_SIZE];
368} tsc_pg __aligned(PAGE_SIZE);
dd2cb348 369
76be6331 370static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
e1f5c66d
SK
371static unsigned long tsc_pfn;
372
364adc45 373unsigned long hv_get_tsc_pfn(void)
e1f5c66d
SK
374{
375 return tsc_pfn;
376}
364adc45 377EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
76be6331 378
dd2cb348
MK
379struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
380{
76be6331 381 return tsc_page;
dd2cb348
MK
382}
383EXPORT_SYMBOL_GPL(hv_get_tsc_page);
384
0af3e137 385static u64 notrace read_hv_clock_tsc(void)
dd2cb348 386{
ddc61bbc 387 u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
dd2cb348
MK
388
389 if (current_tick == U64_MAX)
f3c5e63c 390 current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT);
dd2cb348
MK
391
392 return current_tick;
393}
394
0af3e137
AP
395static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
396{
397 return read_hv_clock_tsc();
398}
399
1f3aed01 400static u64 notrace read_hv_sched_clock_tsc(void)
dd2cb348 401{
749da8ca
YX
402 return (read_hv_clock_tsc() - hv_sched_clock_offset) *
403 (NSEC_PER_SEC / HV_CLOCK_HZ);
dd2cb348
MK
404}
405
1349401f
DC
406static void suspend_hv_clock_tsc(struct clocksource *arg)
407{
4ad1aa57 408 union hv_reference_tsc_msr tsc_msr;
1349401f
DC
409
410 /* Disable the TSC page */
4ad1aa57
AR
411 tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
412 tsc_msr.enable = 0;
413 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
1349401f
DC
414}
415
416
417static void resume_hv_clock_tsc(struct clocksource *arg)
418{
4ad1aa57 419 union hv_reference_tsc_msr tsc_msr;
1349401f
DC
420
421 /* Re-enable the TSC page */
4ad1aa57
AR
422 tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
423 tsc_msr.enable = 1;
e1f5c66d 424 tsc_msr.pfn = tsc_pfn;
4ad1aa57 425 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
1349401f
DC
426}
427
3486d2c9 428#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
eec399dd
TG
429static int hv_cs_enable(struct clocksource *cs)
430{
e4ab4658 431 vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
eec399dd
TG
432 return 0;
433}
e4ab4658 434#endif
eec399dd 435
dd2cb348
MK
436static struct clocksource hyperv_cs_tsc = {
437 .name = "hyperv_clocksource_tsc_page",
4c78738e 438 .rating = 500,
0af3e137 439 .read = read_hv_clock_tsc_cs,
dd2cb348
MK
440 .mask = CLOCKSOURCE_MASK(64),
441 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
1349401f
DC
442 .suspend= suspend_hv_clock_tsc,
443 .resume = resume_hv_clock_tsc,
3486d2c9 444#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
eec399dd 445 .enable = hv_cs_enable,
e4ab4658
MK
446 .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
447#else
448 .vdso_clock_mode = VDSO_CLOCKMODE_NONE,
449#endif
dd2cb348 450};
dd2cb348 451
0af3e137 452static u64 notrace read_hv_clock_msr(void)
dd2cb348 453{
dd2cb348
MK
454 /*
455 * Read the partition counter to get the current tick count. This count
456 * is set to 0 when the partition is created and is incremented in
457 * 100 nanosecond units.
458 */
f3c5e63c 459 return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
dd2cb348
MK
460}
461
0af3e137
AP
462static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
463{
464 return read_hv_clock_msr();
465}
466
1f3aed01 467static u64 notrace read_hv_sched_clock_msr(void)
dd2cb348 468{
749da8ca
YX
469 return (read_hv_clock_msr() - hv_sched_clock_offset) *
470 (NSEC_PER_SEC / HV_CLOCK_HZ);
dd2cb348
MK
471}
472
473static struct clocksource hyperv_cs_msr = {
474 .name = "hyperv_clocksource_msr",
4c78738e 475 .rating = 500,
0af3e137 476 .read = read_hv_clock_msr_cs,
dd2cb348
MK
477 .mask = CLOCKSOURCE_MASK(64),
478 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
479};
480
eb3e1d37
MK
481/*
482 * Reference to pv_ops must be inline so objtool
483 * detection of noinstr violations can work correctly.
484 */
485#ifdef CONFIG_GENERIC_SCHED_CLOCK
486static __always_inline void hv_setup_sched_clock(void *sched_clock)
487{
488 /*
489 * We're on an architecture with generic sched clock (not x86/x64).
490 * The Hyper-V sched clock read function returns nanoseconds, not
491 * the normal 100ns units of the Hyper-V synthetic clock.
492 */
493 sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
494}
495#elif defined CONFIG_PARAVIRT
496static __always_inline void hv_setup_sched_clock(void *sched_clock)
497{
498 /* We're on x86/x64 *and* using PV ops */
4d480dbf 499 paravirt_set_sched_clock(sched_clock);
eb3e1d37
MK
500}
501#else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
502static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
503#endif /* CONFIG_GENERIC_SCHED_CLOCK */
504
dd2cb348
MK
505static bool __init hv_init_tsc_clocksource(void)
506{
4ad1aa57 507 union hv_reference_tsc_msr tsc_msr;
dd2cb348
MK
508
509 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
510 return false;
511
4c78738e
MK
512 /*
513 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
514 * handles frequency and offset changes due to live migration,
515 * pause/resume, and other VM management operations. So lower the
516 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
517 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
518 * TSC will be preferred over the virtualized ARM64 arch counter.
ec866be6
MK
519 * While the Hyper-V MSR clocksource won't be used since the
520 * Reference TSC clocksource is present, change its rating as
521 * well for consistency.
4c78738e 522 */
ec866be6 523 if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
4c78738e 524 hyperv_cs_tsc.rating = 250;
ec866be6
MK
525 hyperv_cs_msr.rating = 250;
526 }
4c78738e 527
0af3e137 528 hv_read_reference_counter = read_hv_clock_tsc;
dd2cb348
MK
529
530 /*
0408f16b
SK
531 * TSC page mapping works differently in root compared to guest.
532 * - In guest partition the guest PFN has to be passed to the
533 * hypervisor.
534 * - In root partition it's other way around: it has to map the PFN
535 * provided by the hypervisor.
536 * But it can't be mapped right here as it's too early and MMU isn't
537 * ready yet. So, we only set the enable bit here and will remap the
538 * page later in hv_remap_tsc_clocksource().
539 *
540 * It worth mentioning, that TSC clocksource read function
541 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
542 * TSC page is zeroed (which is the case until the PFN is remapped) and
543 * thus TSC clocksource will work even without the real TSC page
544 * mapped.
dd2cb348 545 */
4ad1aa57 546 tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
0408f16b
SK
547 if (hv_root_partition)
548 tsc_pfn = tsc_msr.pfn;
549 else
550 tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
4ad1aa57 551 tsc_msr.enable = 1;
e1f5c66d 552 tsc_msr.pfn = tsc_pfn;
4ad1aa57 553 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
dd2cb348 554
dd2cb348
MK
555 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
556
0af3e137 557 hv_sched_clock_offset = hv_read_reference_counter();
bd00cd52
TL
558 hv_setup_sched_clock(read_hv_sched_clock_tsc);
559
dd2cb348
MK
560 return true;
561}
dd2cb348
MK
562
563void __init hv_init_clocksource(void)
564{
565 /*
566 * Try to set up the TSC page clocksource. If it succeeds, we're
4bf07f65 567 * done. Otherwise, set up the MSR clocksource. At least one of
dd2cb348
MK
568 * these will always be available except on very old versions of
569 * Hyper-V on x86. In that case we won't have a Hyper-V
570 * clocksource, but Linux will still run with a clocksource based
571 * on the emulated PIT or LAPIC timer.
572 */
573 if (hv_init_tsc_clocksource())
574 return;
575
576 if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
577 return;
578
0af3e137 579 hv_read_reference_counter = read_hv_clock_msr;
dd2cb348
MK
580 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
581
0af3e137 582 hv_sched_clock_offset = hv_read_reference_counter();
bd00cd52 583 hv_setup_sched_clock(read_hv_sched_clock_msr);
dd2cb348 584}
0408f16b
SK
585
586void __init hv_remap_tsc_clocksource(void)
587{
588 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
589 return;
590
591 if (!hv_root_partition) {
592 WARN(1, "%s: attempt to remap TSC page in guest partition\n",
593 __func__);
594 return;
595 }
596
597 tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
598 MEMREMAP_WB);
599 if (!tsc_page)
600 pr_err("Failed to remap Hyper-V TSC page.\n");
601}