Merge tag 'csky-for-linus-4.20-fixup-dtb' of https://github.com/c-sky/csky-linux
[linux-block.git] / drivers / clk / renesas / r9a06g032-clocks.c
CommitLineData
4c3d8852
MP
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * R9A09G032 clock driver
4 *
5 * Copyright (C) 2018 Renesas Electronics Europe Limited
6 *
7 * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
8 */
9
10#include <linux/clk.h>
11#include <linux/clk-provider.h>
12#include <linux/delay.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/math64.h>
16#include <linux/of.h>
17#include <linux/of_address.h>
18#include <linux/platform_device.h>
19#include <linux/slab.h>
20#include <linux/spinlock.h>
21#include <dt-bindings/clock/r9a06g032-sysctrl.h>
22
23struct r9a06g032_gate {
24 u16 gate, reset, ready, midle,
25 scon, mirack, mistat;
26};
27
28/* This is used to describe a clock for instantiation */
29struct r9a06g032_clkdesc {
30 const char *name;
31 uint32_t type: 3;
32 uint32_t index: 8;
33 uint32_t source : 8; /* source index + 1 (0 == none) */
34 /* these are used to populate the bitsel struct */
35 union {
36 struct r9a06g032_gate gate;
37 /* for dividers */
38 struct {
39 unsigned int div_min : 10, div_max : 10, reg: 10;
40 u16 div_table[4];
41 };
42 /* For fixed-factor ones */
43 struct {
44 u16 div, mul;
45 };
46 unsigned int factor;
47 unsigned int frequency;
48 /* for dual gate */
49 struct {
50 uint16_t group : 1, index: 3;
51 u16 sel, g1, r1, g2, r2;
52 } dual;
53 };
54} __packed;
55
56#define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \
57 { .gate = _clk, .reset = _rst, \
58 .ready = _rdy, .midle = _midle, \
59 .scon = _scon, .mirack = _mirack, .mistat = _mistat }
60#define D_GATE(_idx, _n, _src, ...) \
61 { .type = K_GATE, .index = R9A06G032_##_idx, \
62 .source = 1 + R9A06G032_##_src, .name = _n, \
63 .gate = I_GATE(__VA_ARGS__), }
64#define D_ROOT(_idx, _n, _mul, _div) \
65 { .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \
66 .div = _div, .mul = _mul }
67#define D_FFC(_idx, _n, _src, _div) \
68 { .type = K_FFC, .index = R9A06G032_##_idx, \
69 .source = 1 + R9A06G032_##_src, .name = _n, \
70 .div = _div, .mul = 1}
71#define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \
72 { .type = K_DIV, .index = R9A06G032_##_idx, \
73 .source = 1 + R9A06G032_##_src, .name = _n, \
74 .reg = _reg, .div_min = _min, .div_max = _max, \
75 .div_table = { __VA_ARGS__ } }
76#define D_UGATE(_idx, _n, _src, _g, _gi, _g1, _r1, _g2, _r2) \
77 { .type = K_DUALGATE, .index = R9A06G032_##_idx, \
78 .source = 1 + R9A06G032_##_src, .name = _n, \
79 .dual = { .group = _g, .index = _gi, \
80 .g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, }
81
82enum { K_GATE = 0, K_FFC, K_DIV, K_BITSEL, K_DUALGATE };
83
84/* Internal clock IDs */
85#define R9A06G032_CLKOUT 0
86#define R9A06G032_CLKOUT_D10 2
87#define R9A06G032_CLKOUT_D16 3
88#define R9A06G032_CLKOUT_D160 4
89#define R9A06G032_CLKOUT_D1OR2 5
90#define R9A06G032_CLKOUT_D20 6
91#define R9A06G032_CLKOUT_D40 7
92#define R9A06G032_CLKOUT_D5 8
93#define R9A06G032_CLKOUT_D8 9
94#define R9A06G032_DIV_ADC 10
95#define R9A06G032_DIV_I2C 11
96#define R9A06G032_DIV_NAND 12
97#define R9A06G032_DIV_P1_PG 13
98#define R9A06G032_DIV_P2_PG 14
99#define R9A06G032_DIV_P3_PG 15
100#define R9A06G032_DIV_P4_PG 16
101#define R9A06G032_DIV_P5_PG 17
102#define R9A06G032_DIV_P6_PG 18
103#define R9A06G032_DIV_QSPI0 19
104#define R9A06G032_DIV_QSPI1 20
105#define R9A06G032_DIV_REF_SYNC 21
106#define R9A06G032_DIV_SDIO0 22
107#define R9A06G032_DIV_SDIO1 23
108#define R9A06G032_DIV_SWITCH 24
109#define R9A06G032_DIV_UART 25
110#define R9A06G032_DIV_MOTOR 64
111#define R9A06G032_CLK_DDRPHY_PLLCLK_D4 78
112#define R9A06G032_CLK_ECAT100_D4 79
113#define R9A06G032_CLK_HSR100_D2 80
114#define R9A06G032_CLK_REF_SYNC_D4 81
115#define R9A06G032_CLK_REF_SYNC_D8 82
116#define R9A06G032_CLK_SERCOS100_D2 83
117#define R9A06G032_DIV_CA7 84
118
119#define R9A06G032_UART_GROUP_012 154
120#define R9A06G032_UART_GROUP_34567 155
121
122#define R9A06G032_CLOCK_COUNT (R9A06G032_UART_GROUP_34567 + 1)
123
124static const struct r9a06g032_clkdesc r9a06g032_clocks[] __initconst = {
125 D_ROOT(CLKOUT, "clkout", 25, 1),
126 D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
127 D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
128 D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
129 D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
130 D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
131 D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
132 D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
133 D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
134 D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
135 D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
136 D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
137 D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
138 D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
139 D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
140 D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
141 D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
142 D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
143 D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
144 D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
145 D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
146 D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
147 D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
148 D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
149 D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
150 D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
151 D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0),
152 D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0),
153 D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0),
154 D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0),
155 D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0),
156 D_GATE(CLK_ADC, "clk_adc", DIV_ADC, 0x1ea, 0x1eb, 0, 0, 0, 0, 0),
157 D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, 0x405, 0, 0, 0, 0, 0, 0),
158 D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, 0x483, 0, 0, 0, 0, 0, 0),
159 D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, 0x1e6, 0x1e7, 0, 0, 0, 0, 0),
160 D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, 0x1e8, 0x1e9, 0, 0, 0, 0, 0),
161 D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, 0x342, 0, 0, 0, 0, 0, 0),
162 D_GATE(CLK_NAND, "clk_nand", DIV_NAND, 0x284, 0x285, 0, 0, 0, 0, 0),
163 D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, 0x774, 0x775, 0, 0, 0, 0, 0),
164 D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, 0x862, 0x863, 0, 0, 0, 0, 0),
165 D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, 0x864, 0x865, 0, 0, 0, 0, 0),
166 D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, 0x866, 0x867, 0, 0, 0, 0, 0),
167 D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, 0x824, 0x825, 0, 0, 0, 0, 0),
168 D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, 0x826, 0x827, 0, 0, 0, 0, 0),
169 D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0),
170 D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0),
171 D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0),
172 D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0),
173 D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, 0x2a4, 0x2a5, 0, 0, 0, 0, 0),
174 D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, 0x484, 0x485, 0, 0, 0, 0, 0),
175 D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, 0x340, 0, 0, 0, 0, 0, 0),
176 D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, 0x341, 0, 0, 0, 0, 0, 0),
177 D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, 0x64, 0, 0, 0, 0, 0, 0),
178 D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, 0x644, 0, 0, 0, 0, 0, 0),
179 D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, 0x425, 0, 0, 0, 0, 0, 0),
180 D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, 0x860, 0x861, 0, 0, 0, 0, 0),
181 D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, 0x7e0, 0x7e1, 0, 0, 0, 0, 0),
182 D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, 0x7e2, 0x7e3, 0, 0, 0, 0, 0),
183 D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, 0x7e4, 0x7e5, 0, 0, 0, 0, 0),
184 D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, 0x7e6, 0x7e7, 0, 0, 0, 0, 0),
185 D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, 0x820, 0x821, 0, 0, 0, 0, 0),
186 D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, 0x822, 0x823, 0, 0, 0, 0, 0),
187 D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, 0x982, 0x983, 0, 0, 0, 0, 0),
188 D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
189 D_GATE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441),
190 D_GATE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0),
191 D_GATE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461),
192 D_GATE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0),
193 D_GATE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0),
194 D_GATE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0),
195 D_GATE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0),
196 D_GATE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0),
197 D_GATE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103),
198 D_GATE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101),
199 D_GATE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, 0xe5, 0, 0, 0, 0, 0, 0),
200 D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05),
201 D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0),
202 D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
203 D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
204 D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
205 D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
206 D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
207 D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
208 D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
209 D_GATE(HCLK_CAN0, "hclk_can0", CLK_48, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0),
210 D_GATE(HCLK_CAN1, "hclk_can1", CLK_48, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0),
211 D_GATE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0),
212 D_GATE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0),
213 D_GATE(HCLK_RSV, "hclk_rsv", CLK_48, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0),
214 D_GATE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0),
215 D_GATE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0),
216 D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
217 D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1),
218 D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, 0x323, 0x324, 0, 0, 0, 0, 0),
219 D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, 0x403, 0x404, 0, 0, 0, 0, 0),
220 D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, 0x484, 0x485, 0, 0, 0, 0, 0),
221 D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, 0xc60, 0xc61, 0, 0, 0, 0, 0),
222 D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, 0x424, 0x423, 0, 0, 0, 0, 0),
223 D_GATE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0),
224 D_GATE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0),
225 D_GATE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, 0x123, 0x124, 0x125, 0, 0x142, 0, 0),
226 D_GATE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141),
227 D_GATE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1),
228 D_GATE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2),
229 D_GATE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5),
230 D_GATE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2),
231 D_GATE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2),
232 D_GATE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, 0x212, 0x213, 0x214, 0, 0, 0, 0),
233 D_GATE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, 0x215, 0x216, 0x217, 0, 0, 0, 0),
234 D_GATE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, 0x229, 0x22a, 0x22b, 0, 0, 0, 0),
235 D_GATE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1),
236 D_GATE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0),
237 D_GATE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0),
238 D_GATE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0),
239 D_GATE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, 0x164, 0x165, 0x166, 0, 0x183, 0, 0),
240 D_GATE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182),
241 D_GATE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2),
242 D_GATE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25),
243 D_GATE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0),
244 D_GATE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, 0x22f, 0x230, 0x231, 0, 0, 0, 0),
245 D_GATE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0),
246 D_GATE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0),
247 D_GATE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302),
248 D_GATE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2),
249 D_GATE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0),
250 D_GATE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, 0xa00, 0, 0, 0, 0, 0, 0),
251 D_GATE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82),
252 D_GATE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662),
253 D_GATE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0),
254 D_GATE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, 0x200, 0x201, 0x202, 0, 0, 0, 0),
255 D_GATE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, 0x203, 0x204, 0x205, 0, 0, 0, 0),
256 D_GATE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, 0x206, 0x207, 0x208, 0, 0, 0, 0),
257 D_GATE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, 0x209, 0x20a, 0x20b, 0, 0, 0, 0),
258 D_GATE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0),
259 D_GATE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, 0x20f, 0x210, 0x211, 0, 0, 0, 0),
260 D_GATE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, 0x980, 0, 0x981, 0, 0, 0, 0),
261 D_GATE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0),
262 D_GATE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0),
263 D_GATE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0),
264 D_GATE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0),
265 D_GATE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, 0x218, 0x219, 0x21a, 0, 0, 0, 0),
266 D_GATE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0),
267 D_GATE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, 0x220, 0x221, 0x222, 0, 0, 0, 0),
268 D_GATE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, 0x223, 0x224, 0x225, 0, 0, 0, 0),
269 D_GATE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, 0x226, 0x227, 0x228, 0, 0, 0, 0),
270 /*
271 * These are not hardware clocks, but are needed to handle the special
272 * case where we have a 'selector bit' that doesn't just change the
273 * parent for a clock, but also the gate it's suposed to use.
274 */
275 {
276 .index = R9A06G032_UART_GROUP_012,
277 .name = "uart_group_012",
278 .type = K_BITSEL,
279 .source = 1 + R9A06G032_DIV_UART,
280 /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
281 .dual.sel = ((0xec / 4) << 5) | 24,
282 .dual.group = 0,
283 },
284 {
285 .index = R9A06G032_UART_GROUP_34567,
286 .name = "uart_group_34567",
287 .type = K_BITSEL,
288 .source = 1 + R9A06G032_DIV_P2_PG,
289 /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
290 .dual.sel = ((0x34 / 4) << 5) | 30,
291 .dual.group = 1,
292 },
293 D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5),
294 D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, 1, 0x1b6, 0x1b7, 0x1b8, 0x1b9),
295 D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, 2, 0x1ba, 0x1bb, 0x1bc, 0x1bd),
296 D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, 0, 0x760, 0x761, 0x762, 0x763),
297 D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, 1, 0x764, 0x765, 0x766, 0x767),
298 D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, 2, 0x768, 0x769, 0x76a, 0x76b),
299 D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, 3, 0x76c, 0x76d, 0x76e, 0x76f),
300 D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, 4, 0x770, 0x771, 0x772, 0x773),
301};
302
303struct r9a06g032_priv {
304 struct clk_onecell_data data;
305 spinlock_t lock; /* protects concurent access to gates */
306 void __iomem *reg;
307};
308
309/* register/bit pairs are encoded as an uint16_t */
310static void
311clk_rdesc_set(struct r9a06g032_priv *clocks,
312 u16 one, unsigned int on)
313{
314 u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
315 u32 val = readl(reg);
316
317 val = (val & ~(1U << (one & 0x1f))) | ((!!on) << (one & 0x1f));
318 writel(val, reg);
319}
320
321static int
322clk_rdesc_get(struct r9a06g032_priv *clocks,
323 uint16_t one)
324{
325 u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
326 u32 val = readl(reg);
327
328 return !!(val & (1U << (one & 0x1f)));
329}
330
331/*
332 * This implements the R9A09G032 clock gate 'driver'. We cannot use the system's
333 * clock gate framework as the gates on the R9A09G032 have a special enabling
334 * sequence, therefore we use this little proxy.
335 */
336struct r9a06g032_clk_gate {
337 struct clk_hw hw;
338 struct r9a06g032_priv *clocks;
339 u16 index;
340
341 struct r9a06g032_gate gate;
342};
343
344#define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
345
346static void
347r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
348 struct r9a06g032_gate *g, int on)
349{
350 unsigned long flags;
351
352 WARN_ON(!g->gate);
353
354 spin_lock_irqsave(&clocks->lock, flags);
355 clk_rdesc_set(clocks, g->gate, on);
356 /* De-assert reset */
357 if (g->reset)
358 clk_rdesc_set(clocks, g->reset, 1);
359 spin_unlock_irqrestore(&clocks->lock, flags);
360
361 /* Hardware manual recommends 5us delay after enabling clock & reset */
362 udelay(5);
363
364 /* If the peripheral is memory mapped (i.e. an AXI slave), there is an
365 * associated SLVRDY bit in the System Controller that needs to be set
366 * so that the FlexWAY bus fabric passes on the read/write requests.
367 */
368 if (g->ready || g->midle) {
369 spin_lock_irqsave(&clocks->lock, flags);
370 if (g->ready)
371 clk_rdesc_set(clocks, g->ready, on);
372 /* Clear 'Master Idle Request' bit */
373 if (g->midle)
374 clk_rdesc_set(clocks, g->midle, !on);
375 spin_unlock_irqrestore(&clocks->lock, flags);
376 }
377 /* Note: We don't wait for FlexWAY Socket Connection signal */
378}
379
380static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
381{
382 struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
383
384 r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
385 return 0;
386}
387
388static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
389{
390 struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
391
392 r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
393}
394
395static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
396{
397 struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
398
399 /* if clock is in reset, the gate might be on, and still not 'be' on */
400 if (g->gate.reset && !clk_rdesc_get(g->clocks, g->gate.reset))
401 return 0;
402
403 return clk_rdesc_get(g->clocks, g->gate.gate);
404}
405
406static const struct clk_ops r9a06g032_clk_gate_ops = {
407 .enable = r9a06g032_clk_gate_enable,
408 .disable = r9a06g032_clk_gate_disable,
409 .is_enabled = r9a06g032_clk_gate_is_enabled,
410};
411
412static struct clk *
413r9a06g032_register_gate(struct r9a06g032_priv *clocks,
414 const char *parent_name,
415 const struct r9a06g032_clkdesc *desc)
416{
417 struct clk *clk;
418 struct r9a06g032_clk_gate *g;
419 struct clk_init_data init;
420
421 g = kzalloc(sizeof(*g), GFP_KERNEL);
422 if (!g)
423 return NULL;
424
425 init.name = desc->name;
426 init.ops = &r9a06g032_clk_gate_ops;
427 init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
428 init.parent_names = parent_name ? &parent_name : NULL;
429 init.num_parents = parent_name ? 1 : 0;
430
431 g->clocks = clocks;
432 g->index = desc->index;
433 g->gate = desc->gate;
434 g->hw.init = &init;
435
436 /*
437 * important here, some clocks are already in use by the CM3, we
438 * have to assume they are not Linux's to play with and try to disable
439 * at the end of the boot!
440 */
441 if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
442 init.flags |= CLK_IS_CRITICAL;
443 pr_debug("%s was enabled, making read-only\n", desc->name);
444 }
445
446 clk = clk_register(NULL, &g->hw);
447 if (IS_ERR(clk)) {
448 kfree(g);
449 return NULL;
450 }
451 return clk;
452}
453
454struct r9a06g032_clk_div {
455 struct clk_hw hw;
456 struct r9a06g032_priv *clocks;
457 u16 index;
458 u16 reg;
459 u16 min, max;
460 u8 table_size;
461 u16 table[8]; /* we know there are no more than 8 */
462};
463
464#define to_r9a06g032_div(_hw) \
465 container_of(_hw, struct r9a06g032_clk_div, hw)
466
467static unsigned long
468r9a06g032_div_recalc_rate(struct clk_hw *hw,
469 unsigned long parent_rate)
470{
471 struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
472 u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
473 u32 div = readl(reg);
474
475 if (div < clk->min)
476 div = clk->min;
477 else if (div > clk->max)
478 div = clk->max;
479 return DIV_ROUND_UP(parent_rate, div);
480}
481
482/*
483 * Attempts to find a value that is in range of min,max,
484 * and if a table of set dividers was specified for this
485 * register, try to find the fixed divider that is the closest
486 * to the target frequency
487 */
488static long
489r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
490 unsigned long rate, unsigned long prate)
491{
492 /* + 1 to cope with rates that have the remainder dropped */
493 u32 div = DIV_ROUND_UP(prate, rate + 1);
494 int i;
495
496 if (div <= clk->min)
497 return clk->min;
498 if (div >= clk->max)
499 return clk->max;
500
501 for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
502 if (div >= clk->table[i] && div <= clk->table[i + 1]) {
503 unsigned long m = rate -
504 DIV_ROUND_UP(prate, clk->table[i]);
505 unsigned long p =
506 DIV_ROUND_UP(prate, clk->table[i + 1]) -
507 rate;
508 /*
509 * select the divider that generates
510 * the value closest to the ideal frequency
511 */
512 div = p >= m ? clk->table[i] : clk->table[i + 1];
513 return div;
514 }
515 }
516 return div;
517}
518
519static long
520r9a06g032_div_round_rate(struct clk_hw *hw,
521 unsigned long rate, unsigned long *prate)
522{
523 struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
524 u32 div = DIV_ROUND_UP(*prate, rate);
525
526 pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
527 hw->clk, rate, *prate, div);
528 pr_devel(" min %d (%ld) max %d (%ld)\n",
529 clk->min, DIV_ROUND_UP(*prate, clk->min),
530 clk->max, DIV_ROUND_UP(*prate, clk->max));
531
532 div = r9a06g032_div_clamp_div(clk, rate, *prate);
533 /*
534 * this is a hack. Currently the serial driver asks for a clock rate
535 * that is 16 times the baud rate -- and that is wildly outside the
536 * range of the UART divider, somehow there is no provision for that
537 * case of 'let the divider as is if outside range'.
538 * The serial driver *shouldn't* play with these clocks anyway, there's
539 * several uarts attached to this divider, and changing this impacts
540 * everyone.
541 */
ee02950d
PE
542 if (clk->index == R9A06G032_DIV_UART ||
543 clk->index == R9A06G032_DIV_P2_PG) {
4c3d8852
MP
544 pr_devel("%s div uart hack!\n", __func__);
545 return clk_get_rate(hw->clk);
546 }
547 pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
548 *prate, div, DIV_ROUND_UP(*prate, div));
549 return DIV_ROUND_UP(*prate, div);
550}
551
552static int
553r9a06g032_div_set_rate(struct clk_hw *hw,
554 unsigned long rate, unsigned long parent_rate)
555{
556 struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
557 /* + 1 to cope with rates that have the remainder dropped */
558 u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
559 u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
560
561 pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
562 rate, parent_rate, div);
563
564 /*
565 * Need to write the bit 31 with the divider value to
566 * latch it. Technically we should wait until it has been
567 * cleared too.
568 * TODO: Find whether this callback is sleepable, in case
569 * the hardware /does/ require some sort of spinloop here.
570 */
571 writel(div | BIT(31), reg);
572
573 return 0;
574}
575
576static const struct clk_ops r9a06g032_clk_div_ops = {
577 .recalc_rate = r9a06g032_div_recalc_rate,
578 .round_rate = r9a06g032_div_round_rate,
579 .set_rate = r9a06g032_div_set_rate,
580};
581
582static struct clk *
583r9a06g032_register_div(struct r9a06g032_priv *clocks,
584 const char *parent_name,
585 const struct r9a06g032_clkdesc *desc)
586{
587 struct r9a06g032_clk_div *div;
588 struct clk *clk;
589 struct clk_init_data init;
590 unsigned int i;
591
592 div = kzalloc(sizeof(*div), GFP_KERNEL);
593 if (!div)
594 return NULL;
595
596 init.name = desc->name;
597 init.ops = &r9a06g032_clk_div_ops;
598 init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
599 init.parent_names = parent_name ? &parent_name : NULL;
600 init.num_parents = parent_name ? 1 : 0;
601
602 div->clocks = clocks;
603 div->index = desc->index;
604 div->reg = desc->reg;
605 div->hw.init = &init;
606 div->min = desc->div_min;
607 div->max = desc->div_max;
608 /* populate (optional) divider table fixed values */
609 for (i = 0; i < ARRAY_SIZE(div->table) &&
610 i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
611 div->table[div->table_size++] = desc->div_table[i];
612 }
613
614 clk = clk_register(NULL, &div->hw);
615 if (IS_ERR(clk)) {
616 kfree(div);
617 return NULL;
618 }
619 return clk;
620}
621
622/*
623 * This clock provider handles the case of the R9A06G032 where you have
624 * peripherals that have two potential clock source and two gates, one for
625 * each of the clock source - the used clock source (for all sub clocks)
626 * is selected by a single bit.
627 * That single bit affects all sub-clocks, and therefore needs to change the
628 * active gate (and turn the others off) and force a recalculation of the rates.
629 *
630 * This implements two clock providers, one 'bitselect' that
631 * handles the switch between both parents, and another 'dualgate'
632 * that knows which gate to poke at, depending on the parent's bit position.
633 */
634struct r9a06g032_clk_bitsel {
635 struct clk_hw hw;
636 struct r9a06g032_priv *clocks;
637 u16 index;
638 u16 selector; /* selector register + bit */
639};
640
641#define to_clk_bitselect(_hw) \
642 container_of(_hw, struct r9a06g032_clk_bitsel, hw)
643
644static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
645{
646 struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
647
648 return clk_rdesc_get(set->clocks, set->selector);
649}
650
651static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
652{
653 struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
654
655 /* a single bit in the register selects one of two parent clocks */
656 clk_rdesc_set(set->clocks, set->selector, !!index);
657
658 return 0;
659}
660
661static const struct clk_ops clk_bitselect_ops = {
662 .get_parent = r9a06g032_clk_mux_get_parent,
663 .set_parent = r9a06g032_clk_mux_set_parent,
664};
665
666static struct clk *
667r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
668 const char *parent_name,
669 const struct r9a06g032_clkdesc *desc)
670{
671 struct clk *clk;
672 struct r9a06g032_clk_bitsel *g;
673 struct clk_init_data init;
674 const char *names[2];
675
676 /* allocate the gate */
677 g = kzalloc(sizeof(*g), GFP_KERNEL);
678 if (!g)
679 return NULL;
680
681 names[0] = parent_name;
682 names[1] = "clk_pll_usb";
683
684 init.name = desc->name;
685 init.ops = &clk_bitselect_ops;
686 init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
687 init.parent_names = names;
688 init.num_parents = 2;
689
690 g->clocks = clocks;
691 g->index = desc->index;
692 g->selector = desc->dual.sel;
693 g->hw.init = &init;
694
695 clk = clk_register(NULL, &g->hw);
696 if (IS_ERR(clk)) {
697 kfree(g);
698 return NULL;
699 }
700 return clk;
701}
702
703struct r9a06g032_clk_dualgate {
704 struct clk_hw hw;
705 struct r9a06g032_priv *clocks;
706 u16 index;
707 u16 selector; /* selector register + bit */
708 struct r9a06g032_gate gate[2];
709};
710
711#define to_clk_dualgate(_hw) \
712 container_of(_hw, struct r9a06g032_clk_dualgate, hw)
713
714static int
715r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
716{
717 u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
718
719 /* we always turn off the 'other' gate, regardless */
720 r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
721 r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
722
723 return 0;
724}
725
726static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
727{
728 struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
729
730 r9a06g032_clk_dualgate_setenable(gate, 1);
731
732 return 0;
733}
734
735static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
736{
737 struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
738
739 r9a06g032_clk_dualgate_setenable(gate, 0);
740}
741
742static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
743{
744 struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
745 u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
746
747 return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
748}
749
750static const struct clk_ops r9a06g032_clk_dualgate_ops = {
751 .enable = r9a06g032_clk_dualgate_enable,
752 .disable = r9a06g032_clk_dualgate_disable,
753 .is_enabled = r9a06g032_clk_dualgate_is_enabled,
754};
755
756static struct clk *
757r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
758 const char *parent_name,
759 const struct r9a06g032_clkdesc *desc,
760 uint16_t sel)
761{
762 struct r9a06g032_clk_dualgate *g;
763 struct clk *clk;
764 struct clk_init_data init;
765
766 /* allocate the gate */
767 g = kzalloc(sizeof(*g), GFP_KERNEL);
768 if (!g)
769 return NULL;
770 g->clocks = clocks;
771 g->index = desc->index;
772 g->selector = sel;
773 g->gate[0].gate = desc->dual.g1;
774 g->gate[0].reset = desc->dual.r1;
775 g->gate[1].gate = desc->dual.g2;
776 g->gate[1].reset = desc->dual.r2;
777
778 init.name = desc->name;
779 init.ops = &r9a06g032_clk_dualgate_ops;
780 init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
781 init.parent_names = &parent_name;
782 init.num_parents = 1;
783 g->hw.init = &init;
784 /*
785 * important here, some clocks are already in use by the CM3, we
786 * have to assume they are not Linux's to play with and try to disable
787 * at the end of the boot!
788 */
789 if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
790 init.flags |= CLK_IS_CRITICAL;
791 pr_debug("%s was enabled, making read-only\n", desc->name);
792 }
793
794 clk = clk_register(NULL, &g->hw);
795 if (IS_ERR(clk)) {
796 kfree(g);
797 return NULL;
798 }
799 return clk;
800}
801
802static void r9a06g032_clocks_del_clk_provider(void *data)
803{
804 of_clk_del_provider(data);
805}
806
807static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
808{
809 struct device *dev = &pdev->dev;
810 struct device_node *np = dev->of_node;
811 struct r9a06g032_priv *clocks;
812 struct clk **clks;
813 struct clk *mclk;
814 unsigned int i;
815 u16 uart_group_sel[2];
816 int error;
817
818 clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
819 clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
820 GFP_KERNEL);
821 if (!clocks || !clks)
822 return -ENOMEM;
823
824 spin_lock_init(&clocks->lock);
825
826 clocks->data.clks = clks;
827 clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
828
829 mclk = devm_clk_get(dev, "mclk");
830 if (IS_ERR(mclk))
831 return PTR_ERR(mclk);
832
833 clocks->reg = of_iomap(np, 0);
834 if (WARN_ON(!clocks->reg))
835 return -ENOMEM;
836 for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
837 const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
838 const char *parent_name = d->source ?
839 __clk_get_name(clocks->data.clks[d->source - 1]) :
840 __clk_get_name(mclk);
841 struct clk *clk = NULL;
842
843 switch (d->type) {
844 case K_FFC:
845 clk = clk_register_fixed_factor(NULL, d->name,
846 parent_name, 0,
847 d->mul, d->div);
848 break;
849 case K_GATE:
850 clk = r9a06g032_register_gate(clocks, parent_name, d);
851 break;
852 case K_DIV:
853 clk = r9a06g032_register_div(clocks, parent_name, d);
854 break;
855 case K_BITSEL:
856 /* keep that selector register around */
857 uart_group_sel[d->dual.group] = d->dual.sel;
858 clk = r9a06g032_register_bitsel(clocks, parent_name, d);
859 break;
860 case K_DUALGATE:
861 clk = r9a06g032_register_dualgate(clocks, parent_name,
862 d,
863 uart_group_sel[d->dual.group]);
864 break;
865 }
866 clocks->data.clks[d->index] = clk;
867 }
868 error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
869 if (error)
870 return error;
871
872 return devm_add_action_or_reset(dev,
873 r9a06g032_clocks_del_clk_provider, np);
874}
875
876static const struct of_device_id r9a06g032_match[] = {
877 { .compatible = "renesas,r9a06g032-sysctrl" },
878 { }
879};
880
881static struct platform_driver r9a06g032_clock_driver = {
882 .driver = {
883 .name = "renesas,r9a06g032-sysctrl",
884 .of_match_table = r9a06g032_match,
885 },
886};
887
888static int __init r9a06g032_clocks_init(void)
889{
890 return platform_driver_probe(&r9a06g032_clock_driver,
891 r9a06g032_clocks_probe);
892}
893
894subsys_initcall(r9a06g032_clocks_init);