clk: vc5: Use i2c_get_match_data() instead of device_get_match_data()
[linux-block.git] / drivers / clk / clk-versaclock7.c
CommitLineData
48c5e98f
AH
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common clock framework driver for the Versaclock7 family of timing devices.
4 *
5 * Copyright (c) 2022 Renesas Electronics Corporation
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/bitfield.h>
11#include <linux/clk.h>
12#include <linux/clk-provider.h>
13#include <linux/i2c.h>
14#include <linux/math64.h>
15#include <linux/module.h>
16#include <linux/of.h>
17#include <linux/of_platform.h>
893911e6 18#include <linux/property.h>
48c5e98f
AH
19#include <linux/regmap.h>
20#include <linux/swab.h>
21
22/*
23 * 16-bit register address: the lower 8 bits of the register address come
24 * from the offset addr byte and the upper 8 bits come from the page register.
25 */
26#define VC7_PAGE_ADDR 0xFD
27#define VC7_PAGE_WINDOW 256
28#define VC7_MAX_REG 0x364
29
30/* Maximum number of banks supported by VC7 */
31#define VC7_NUM_BANKS 7
32
33/* Maximum number of FODs supported by VC7 */
34#define VC7_NUM_FOD 3
35
36/* Maximum number of IODs supported by VC7 */
37#define VC7_NUM_IOD 4
38
39/* Maximum number of outputs supported by VC7 */
40#define VC7_NUM_OUT 12
41
42/* VCO valid range is 9.5 GHz to 10.7 GHz */
43#define VC7_APLL_VCO_MIN 9500000000UL
44#define VC7_APLL_VCO_MAX 10700000000UL
45
46/* APLL denominator is fixed at 2^27 */
47#define VC7_APLL_DENOMINATOR_BITS 27
48
49/* FOD 1st stage denominator is fixed 2^34 */
50#define VC7_FOD_DENOMINATOR_BITS 34
51
52/* IOD can operate between 1kHz and 650MHz */
53#define VC7_IOD_RATE_MIN 1000UL
54#define VC7_IOD_RATE_MAX 650000000UL
55#define VC7_IOD_MIN_DIVISOR 14
56#define VC7_IOD_MAX_DIVISOR 0x1ffffff /* 25-bit */
57
58#define VC7_FOD_RATE_MIN 1000UL
59#define VC7_FOD_RATE_MAX 650000000UL
60#define VC7_FOD_1ST_STAGE_RATE_MIN 33000000UL /* 33 MHz */
61#define VC7_FOD_1ST_STAGE_RATE_MAX 650000000UL /* 650 MHz */
62#define VC7_FOD_1ST_INT_MAX 324
63#define VC7_FOD_2ND_INT_MIN 2
64#define VC7_FOD_2ND_INT_MAX 0x1ffff /* 17-bit */
65
66/* VC7 Registers */
67
68#define VC7_REG_XO_CNFG 0x2C
69#define VC7_REG_XO_CNFG_COUNT 4
70#define VC7_REG_XO_IB_H_DIV_SHIFT 24
71#define VC7_REG_XO_IB_H_DIV_MASK GENMASK(28, VC7_REG_XO_IB_H_DIV_SHIFT)
72
73#define VC7_REG_APLL_FB_DIV_FRAC 0x120
74#define VC7_REG_APLL_FB_DIV_FRAC_COUNT 4
75#define VC7_REG_APLL_FB_DIV_FRAC_MASK GENMASK(26, 0)
76
77#define VC7_REG_APLL_FB_DIV_INT 0x124
78#define VC7_REG_APLL_FB_DIV_INT_COUNT 2
79#define VC7_REG_APLL_FB_DIV_INT_MASK GENMASK(9, 0)
80
81#define VC7_REG_APLL_CNFG 0x127
82#define VC7_REG_APLL_EN_DOUBLER BIT(0)
83
84#define VC7_REG_OUT_BANK_CNFG(idx) (0x280 + (0x4 * (idx)))
85#define VC7_REG_OUTPUT_BANK_SRC_MASK GENMASK(2, 0)
86
87#define VC7_REG_FOD_INT_CNFG(idx) (0x1E0 + (0x10 * (idx)))
88#define VC7_REG_FOD_INT_CNFG_COUNT 8
89#define VC7_REG_FOD_1ST_INT_MASK GENMASK(8, 0)
90#define VC7_REG_FOD_2ND_INT_SHIFT 9
91#define VC7_REG_FOD_2ND_INT_MASK GENMASK(25, VC7_REG_FOD_2ND_INT_SHIFT)
92#define VC7_REG_FOD_FRAC_SHIFT 26
93#define VC7_REG_FOD_FRAC_MASK GENMASK_ULL(59, VC7_REG_FOD_FRAC_SHIFT)
94
95#define VC7_REG_IOD_INT_CNFG(idx) (0x1C0 + (0x8 * (idx)))
96#define VC7_REG_IOD_INT_CNFG_COUNT 4
97#define VC7_REG_IOD_INT_MASK GENMASK(24, 0)
98
99#define VC7_REG_ODRV_EN(idx) (0x240 + (0x4 * (idx)))
100#define VC7_REG_OUT_DIS BIT(0)
101
102struct vc7_driver_data;
103static const struct regmap_config vc7_regmap_config;
104
105/* Supported Renesas VC7 models */
106enum vc7_model {
107 VC7_RC21008A,
108};
109
110struct vc7_chip_info {
111 const enum vc7_model model;
112 const unsigned int banks[VC7_NUM_BANKS];
113 const unsigned int num_banks;
114 const unsigned int outputs[VC7_NUM_OUT];
115 const unsigned int num_outputs;
116};
117
118/*
119 * Changing the APLL frequency is currently not supported.
120 * The APLL will consist of an opaque block between the XO and FOD/IODs and
121 * its frequency will be computed based on the current state of the device.
122 */
123struct vc7_apll_data {
124 struct clk *clk;
125 struct vc7_driver_data *vc7;
126 u8 xo_ib_h_div;
127 u8 en_doubler;
128 u16 apll_fb_div_int;
129 u32 apll_fb_div_frac;
130};
131
132struct vc7_fod_data {
133 struct clk_hw hw;
134 struct vc7_driver_data *vc7;
135 unsigned int num;
136 u32 fod_1st_int;
137 u32 fod_2nd_int;
138 u64 fod_frac;
139};
140
141struct vc7_iod_data {
142 struct clk_hw hw;
143 struct vc7_driver_data *vc7;
144 unsigned int num;
145 u32 iod_int;
146};
147
148struct vc7_out_data {
149 struct clk_hw hw;
150 struct vc7_driver_data *vc7;
151 unsigned int num;
152 unsigned int out_dis;
153};
154
155struct vc7_driver_data {
156 struct i2c_client *client;
157 struct regmap *regmap;
158 const struct vc7_chip_info *chip_info;
159
160 struct clk *pin_xin;
161 struct vc7_apll_data clk_apll;
162 struct vc7_fod_data clk_fod[VC7_NUM_FOD];
163 struct vc7_iod_data clk_iod[VC7_NUM_IOD];
164 struct vc7_out_data clk_out[VC7_NUM_OUT];
165};
166
167struct vc7_bank_src_map {
168 enum vc7_bank_src_type {
169 VC7_FOD,
170 VC7_IOD,
171 } type;
172 union _divider {
173 struct vc7_iod_data *iod;
174 struct vc7_fod_data *fod;
175 } src;
176};
177
178static struct clk_hw *vc7_of_clk_get(struct of_phandle_args *clkspec,
179 void *data)
180{
181 struct vc7_driver_data *vc7 = data;
182 unsigned int idx = clkspec->args[0];
183
184 if (idx >= vc7->chip_info->num_outputs)
185 return ERR_PTR(-EINVAL);
186
187 return &vc7->clk_out[idx].hw;
188}
189
190static const unsigned int RC21008A_index_to_output_mapping[] = {
191 1, 2, 3, 6, 7, 8, 10, 11
192};
193
194static int vc7_map_index_to_output(const enum vc7_model model, const unsigned int i)
195{
196 switch (model) {
197 case VC7_RC21008A:
198 return RC21008A_index_to_output_mapping[i];
199 default:
200 return i;
201 }
202}
203
204/* bank to output mapping, same across all variants */
205static const unsigned int output_bank_mapping[] = {
206 0, /* Output 0 */
207 1, /* Output 1 */
208 2, /* Output 2 */
209 2, /* Output 3 */
210 3, /* Output 4 */
211 3, /* Output 5 */
212 3, /* Output 6 */
213 3, /* Output 7 */
214 4, /* Output 8 */
215 4, /* Output 9 */
216 5, /* Output 10 */
217 6 /* Output 11 */
218};
219
220/**
221 * vc7_64_mul_64_to_128() - Multiply two u64 and return an unsigned 128-bit integer
222 * as an upper and lower part.
223 *
224 * @left: The left argument.
225 * @right: The right argument.
226 * @hi: The upper 64-bits of the 128-bit product.
227 * @lo: The lower 64-bits of the 128-bit product.
228 *
229 * From mul_64_64 in crypto/ecc.c:350 in the linux kernel, accessed in v5.17.2.
230 */
231static void vc7_64_mul_64_to_128(u64 left, u64 right, u64 *hi, u64 *lo)
232{
233 u64 a0 = left & 0xffffffffull;
234 u64 a1 = left >> 32;
235 u64 b0 = right & 0xffffffffull;
236 u64 b1 = right >> 32;
237 u64 m0 = a0 * b0;
238 u64 m1 = a0 * b1;
239 u64 m2 = a1 * b0;
240 u64 m3 = a1 * b1;
241
242 m2 += (m0 >> 32);
243 m2 += m1;
244
245 /* Overflow */
246 if (m2 < m1)
247 m3 += 0x100000000ull;
248
249 *lo = (m0 & 0xffffffffull) | (m2 << 32);
250 *hi = m3 + (m2 >> 32);
251}
252
253/**
254 * vc7_128_div_64_to_64() - Divides a 128-bit uint by a 64-bit divisor, return a 64-bit quotient.
255 *
256 * @numhi: The uppper 64-bits of the dividend.
257 * @numlo: The lower 64-bits of the dividend.
258 * @den: The denominator (divisor).
259 * @r: The remainder, pass NULL if the remainder is not needed.
260 *
261 * Originally from libdivide, modified to use kernel u64/u32 types.
262 *
263 * See https://github.com/ridiculousfish/libdivide/blob/master/libdivide.h#L471.
264 *
265 * Return: The 64-bit quotient of the division.
266 *
267 * In case of overflow of division by zero, max(u64) is returned.
268 */
269static u64 vc7_128_div_64_to_64(u64 numhi, u64 numlo, u64 den, u64 *r)
270{
271 /*
272 * We work in base 2**32.
273 * A uint32 holds a single digit. A uint64 holds two digits.
274 * Our numerator is conceptually [num3, num2, num1, num0].
275 * Our denominator is [den1, den0].
276 */
277 const u64 b = ((u64)1 << 32);
278
279 /* The high and low digits of our computed quotient. */
280 u32 q1, q0;
281
282 /* The normalization shift factor */
283 int shift;
284
285 /*
286 * The high and low digits of our denominator (after normalizing).
287 * Also the low 2 digits of our numerator (after normalizing).
288 */
289 u32 den1, den0, num1, num0;
290
291 /* A partial remainder; */
292 u64 rem;
293
294 /*
295 * The estimated quotient, and its corresponding remainder (unrelated
296 * to true remainder).
297 */
298 u64 qhat, rhat;
299
300 /* Variables used to correct the estimated quotient. */
301 u64 c1, c2;
302
303 /* Check for overflow and divide by 0. */
304 if (numhi >= den) {
305 if (r)
306 *r = ~0ull;
307 return ~0ull;
308 }
309
310 /*
311 * Determine the normalization factor. We multiply den by this, so that
312 * its leading digit is at least half b. In binary this means just
313 * shifting left by the number of leading zeros, so that there's a 1 in
314 * the MSB.
315 *
316 * We also shift numer by the same amount. This cannot overflow because
317 * numhi < den. The expression (-shift & 63) is the same as (64 -
318 * shift), except it avoids the UB of shifting by 64. The funny bitwise
319 * 'and' ensures that numlo does not get shifted into numhi if shift is
320 * 0. clang 11 has an x86 codegen bug here: see LLVM bug 50118. The
321 * sequence below avoids it.
322 */
323 shift = __builtin_clzll(den);
324 den <<= shift;
325 numhi <<= shift;
326 numhi |= (numlo >> (-shift & 63)) & (-(s64)shift >> 63);
327 numlo <<= shift;
328
329 /*
330 * Extract the low digits of the numerator and both digits of the
331 * denominator.
332 */
333 num1 = (u32)(numlo >> 32);
334 num0 = (u32)(numlo & 0xFFFFFFFFu);
335 den1 = (u32)(den >> 32);
336 den0 = (u32)(den & 0xFFFFFFFFu);
337
338 /*
339 * We wish to compute q1 = [n3 n2 n1] / [d1 d0].
340 * Estimate q1 as [n3 n2] / [d1], and then correct it.
341 * Note while qhat may be 2 digits, q1 is always 1 digit.
342 */
343 qhat = div64_u64_rem(numhi, den1, &rhat);
344 c1 = qhat * den0;
345 c2 = rhat * b + num1;
346 if (c1 > c2)
347 qhat -= (c1 - c2 > den) ? 2 : 1;
348 q1 = (u32)qhat;
349
350 /* Compute the true (partial) remainder. */
351 rem = numhi * b + num1 - q1 * den;
352
353 /*
354 * We wish to compute q0 = [rem1 rem0 n0] / [d1 d0].
355 * Estimate q0 as [rem1 rem0] / [d1] and correct it.
356 */
357 qhat = div64_u64_rem(rem, den1, &rhat);
358 c1 = qhat * den0;
359 c2 = rhat * b + num0;
360 if (c1 > c2)
361 qhat -= (c1 - c2 > den) ? 2 : 1;
362 q0 = (u32)qhat;
363
364 /* Return remainder if requested. */
365 if (r)
366 *r = (rem * b + num0 - q0 * den) >> shift;
367 return ((u64)q1 << 32) | q0;
368}
369
370static int vc7_get_bank_clk(struct vc7_driver_data *vc7,
371 unsigned int bank_idx,
372 unsigned int output_bank_src,
373 struct vc7_bank_src_map *map)
374{
375 /* Mapping from Table 38 in datasheet */
376 if (bank_idx == 0 || bank_idx == 1) {
377 switch (output_bank_src) {
378 case 0:
379 map->type = VC7_IOD,
380 map->src.iod = &vc7->clk_iod[0];
381 return 0;
382 case 1:
383 map->type = VC7_IOD,
384 map->src.iod = &vc7->clk_iod[1];
385 return 0;
386 case 4:
387 map->type = VC7_FOD,
388 map->src.fod = &vc7->clk_fod[0];
389 return 0;
390 case 5:
391 map->type = VC7_FOD,
392 map->src.fod = &vc7->clk_fod[1];
393 return 0;
394 default:
395 break;
396 }
397 } else if (bank_idx == 2) {
398 switch (output_bank_src) {
399 case 1:
400 map->type = VC7_IOD,
401 map->src.iod = &vc7->clk_iod[1];
402 return 0;
403 case 4:
404 map->type = VC7_FOD,
405 map->src.fod = &vc7->clk_fod[0];
406 return 0;
407 case 5:
408 map->type = VC7_FOD,
409 map->src.fod = &vc7->clk_fod[1];
410 return 0;
411 default:
412 break;
413 }
414 } else if (bank_idx == 3) {
415 switch (output_bank_src) {
416 case 4:
417 map->type = VC7_FOD,
418 map->src.fod = &vc7->clk_fod[0];
419 return 0;
420 case 5:
421 map->type = VC7_FOD,
422 map->src.fod = &vc7->clk_fod[1];
423 return 0;
424 case 6:
425 map->type = VC7_FOD,
426 map->src.fod = &vc7->clk_fod[2];
427 return 0;
428 default:
429 break;
430 }
431 } else if (bank_idx == 4) {
432 switch (output_bank_src) {
433 case 0:
434 /* CLKIN1 not supported in this driver */
435 break;
436 case 2:
437 map->type = VC7_IOD,
438 map->src.iod = &vc7->clk_iod[2];
439 return 0;
440 case 5:
441 map->type = VC7_FOD,
442 map->src.fod = &vc7->clk_fod[1];
443 return 0;
444 case 6:
445 map->type = VC7_FOD,
446 map->src.fod = &vc7->clk_fod[2];
447 return 0;
448 case 7:
449 /* CLKIN0 not supported in this driver */
450 break;
451 default:
452 break;
453 }
454 } else if (bank_idx == 5) {
455 switch (output_bank_src) {
456 case 0:
457 /* CLKIN1 not supported in this driver */
458 break;
459 case 1:
460 /* XIN_REFIN not supported in this driver */
461 break;
462 case 2:
463 map->type = VC7_IOD,
464 map->src.iod = &vc7->clk_iod[2];
465 return 0;
466 case 3:
467 map->type = VC7_IOD,
468 map->src.iod = &vc7->clk_iod[3];
469 return 0;
470 case 5:
471 map->type = VC7_FOD,
472 map->src.fod = &vc7->clk_fod[1];
473 return 0;
474 case 6:
475 map->type = VC7_FOD,
476 map->src.fod = &vc7->clk_fod[2];
477 return 0;
478 case 7:
479 /* CLKIN0 not supported in this driver */
480 break;
481 default:
482 break;
483 }
484 } else if (bank_idx == 6) {
485 switch (output_bank_src) {
486 case 0:
487 /* CLKIN1 not supported in this driver */
488 break;
489 case 2:
490 map->type = VC7_IOD,
491 map->src.iod = &vc7->clk_iod[2];
492 return 0;
493 case 3:
494 map->type = VC7_IOD,
495 map->src.iod = &vc7->clk_iod[3];
496 return 0;
497 case 5:
498 map->type = VC7_FOD,
499 map->src.fod = &vc7->clk_fod[1];
500 return 0;
501 case 6:
502 map->type = VC7_FOD,
503 map->src.fod = &vc7->clk_fod[2];
504 return 0;
505 case 7:
506 /* CLKIN0 not supported in this driver */
507 break;
508 default:
509 break;
510 }
511 }
512
513 pr_warn("bank_src%d = %d is not supported\n", bank_idx, output_bank_src);
514 return -1;
515}
516
517static int vc7_read_apll(struct vc7_driver_data *vc7)
518{
519 int err;
520 u32 val32;
521 u16 val16;
522
523 err = regmap_bulk_read(vc7->regmap,
524 VC7_REG_XO_CNFG,
525 (u32 *)&val32,
526 VC7_REG_XO_CNFG_COUNT);
527 if (err) {
528 dev_err(&vc7->client->dev, "failed to read XO_CNFG\n");
529 return err;
530 }
531
532 vc7->clk_apll.xo_ib_h_div = (val32 & VC7_REG_XO_IB_H_DIV_MASK)
533 >> VC7_REG_XO_IB_H_DIV_SHIFT;
534
535 err = regmap_read(vc7->regmap,
536 VC7_REG_APLL_CNFG,
537 &val32);
538 if (err) {
539 dev_err(&vc7->client->dev, "failed to read APLL_CNFG\n");
540 return err;
541 }
542
543 vc7->clk_apll.en_doubler = val32 & VC7_REG_APLL_EN_DOUBLER;
544
545 err = regmap_bulk_read(vc7->regmap,
546 VC7_REG_APLL_FB_DIV_FRAC,
547 (u32 *)&val32,
548 VC7_REG_APLL_FB_DIV_FRAC_COUNT);
549 if (err) {
550 dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_FRAC\n");
551 return err;
552 }
553
554 vc7->clk_apll.apll_fb_div_frac = val32 & VC7_REG_APLL_FB_DIV_FRAC_MASK;
555
556 err = regmap_bulk_read(vc7->regmap,
557 VC7_REG_APLL_FB_DIV_INT,
558 (u16 *)&val16,
559 VC7_REG_APLL_FB_DIV_INT_COUNT);
560 if (err) {
561 dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_INT\n");
562 return err;
563 }
564
565 vc7->clk_apll.apll_fb_div_int = val16 & VC7_REG_APLL_FB_DIV_INT_MASK;
566
567 return 0;
568}
569
570static int vc7_read_fod(struct vc7_driver_data *vc7, unsigned int idx)
571{
572 int err;
573 u64 val;
574
575 err = regmap_bulk_read(vc7->regmap,
576 VC7_REG_FOD_INT_CNFG(idx),
577 (u64 *)&val,
578 VC7_REG_FOD_INT_CNFG_COUNT);
579 if (err) {
580 dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
581 return err;
582 }
583
584 vc7->clk_fod[idx].fod_1st_int = (val & VC7_REG_FOD_1ST_INT_MASK);
585 vc7->clk_fod[idx].fod_2nd_int =
586 (val & VC7_REG_FOD_2ND_INT_MASK) >> VC7_REG_FOD_2ND_INT_SHIFT;
587 vc7->clk_fod[idx].fod_frac = (val & VC7_REG_FOD_FRAC_MASK)
588 >> VC7_REG_FOD_FRAC_SHIFT;
589
590 return 0;
591}
592
593static int vc7_write_fod(struct vc7_driver_data *vc7, unsigned int idx)
594{
595 int err;
596 u64 val;
597
598 /*
599 * FOD dividers are part of an atomic group where fod_1st_int,
600 * fod_2nd_int, and fod_frac must be written together. The new divider
601 * is applied when the MSB of fod_frac is written.
602 */
603
604 err = regmap_bulk_read(vc7->regmap,
605 VC7_REG_FOD_INT_CNFG(idx),
606 (u64 *)&val,
607 VC7_REG_FOD_INT_CNFG_COUNT);
608 if (err) {
609 dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
610 return err;
611 }
612
613 val = u64_replace_bits(val,
614 vc7->clk_fod[idx].fod_1st_int,
615 VC7_REG_FOD_1ST_INT_MASK);
616 val = u64_replace_bits(val,
617 vc7->clk_fod[idx].fod_2nd_int,
618 VC7_REG_FOD_2ND_INT_MASK);
619 val = u64_replace_bits(val,
620 vc7->clk_fod[idx].fod_frac,
621 VC7_REG_FOD_FRAC_MASK);
622
623 err = regmap_bulk_write(vc7->regmap,
624 VC7_REG_FOD_INT_CNFG(idx),
625 (u64 *)&val,
626 sizeof(u64));
627 if (err) {
628 dev_err(&vc7->client->dev, "failed to write FOD%d\n", idx);
629 return err;
630 }
631
632 return 0;
633}
634
635static int vc7_read_iod(struct vc7_driver_data *vc7, unsigned int idx)
636{
637 int err;
638 u32 val;
639
640 err = regmap_bulk_read(vc7->regmap,
641 VC7_REG_IOD_INT_CNFG(idx),
642 (u32 *)&val,
643 VC7_REG_IOD_INT_CNFG_COUNT);
644 if (err) {
645 dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
646 return err;
647 }
648
649 vc7->clk_iod[idx].iod_int = (val & VC7_REG_IOD_INT_MASK);
650
651 return 0;
652}
653
654static int vc7_write_iod(struct vc7_driver_data *vc7, unsigned int idx)
655{
656 int err;
657 u32 val;
658
659 /*
660 * IOD divider field is atomic and all bits must be written.
661 * The new divider is applied when the MSB of iod_int is written.
662 */
663
664 err = regmap_bulk_read(vc7->regmap,
665 VC7_REG_IOD_INT_CNFG(idx),
666 (u32 *)&val,
667 VC7_REG_IOD_INT_CNFG_COUNT);
668 if (err) {
669 dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
670 return err;
671 }
672
673 val = u32_replace_bits(val,
674 vc7->clk_iod[idx].iod_int,
675 VC7_REG_IOD_INT_MASK);
676
677 err = regmap_bulk_write(vc7->regmap,
678 VC7_REG_IOD_INT_CNFG(idx),
679 (u32 *)&val,
680 sizeof(u32));
681 if (err) {
682 dev_err(&vc7->client->dev, "failed to write IOD%d\n", idx);
683 return err;
684 }
685
686 return 0;
687}
688
689static int vc7_read_output(struct vc7_driver_data *vc7, unsigned int idx)
690{
691 int err;
692 unsigned int val, out_num;
693
694 out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
695 err = regmap_read(vc7->regmap,
696 VC7_REG_ODRV_EN(out_num),
697 &val);
698 if (err) {
699 dev_err(&vc7->client->dev, "failed to read ODRV_EN[%d]\n", idx);
700 return err;
701 }
702
703 vc7->clk_out[idx].out_dis = val & VC7_REG_OUT_DIS;
704
705 return 0;
706}
707
708static int vc7_write_output(struct vc7_driver_data *vc7, unsigned int idx)
709{
710 int err;
711 unsigned int out_num;
712
713 out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
714 err = regmap_write_bits(vc7->regmap,
715 VC7_REG_ODRV_EN(out_num),
716 VC7_REG_OUT_DIS,
717 vc7->clk_out[idx].out_dis);
718
719 if (err) {
720 dev_err(&vc7->client->dev, "failed to write ODRV_EN[%d]\n", idx);
721 return err;
722 }
723
724 return 0;
725}
726
727static unsigned long vc7_get_apll_rate(struct vc7_driver_data *vc7)
728{
729 int err;
730 unsigned long xtal_rate;
731 u64 refin_div, apll_rate;
732
733 xtal_rate = clk_get_rate(vc7->pin_xin);
734 err = vc7_read_apll(vc7);
735 if (err) {
736 dev_err(&vc7->client->dev, "unable to read apll\n");
737 return err;
738 }
739
740 /* 0 is bypassed, 1 is reserved */
741 if (vc7->clk_apll.xo_ib_h_div < 2)
742 refin_div = xtal_rate;
743 else
744 refin_div = div64_u64(xtal_rate, vc7->clk_apll.xo_ib_h_div);
745
746 if (vc7->clk_apll.en_doubler)
747 refin_div *= 2;
748
749 /* divider = int + (frac / 2^27) */
750 apll_rate = (refin_div * vc7->clk_apll.apll_fb_div_int) +
751 ((refin_div * vc7->clk_apll.apll_fb_div_frac) >> VC7_APLL_DENOMINATOR_BITS);
752
753 pr_debug("%s - xo_ib_h_div: %u, apll_fb_div_int: %u, apll_fb_div_frac: %u\n",
754 __func__, vc7->clk_apll.xo_ib_h_div, vc7->clk_apll.apll_fb_div_int,
755 vc7->clk_apll.apll_fb_div_frac);
756 pr_debug("%s - refin_div: %llu, apll rate: %llu\n",
757 __func__, refin_div, apll_rate);
758
759 return apll_rate;
760}
761
762static void vc7_calc_iod_divider(unsigned long rate, unsigned long parent_rate,
763 u32 *divider)
764{
765 *divider = DIV_ROUND_UP(parent_rate, rate);
766 if (*divider < VC7_IOD_MIN_DIVISOR)
767 *divider = VC7_IOD_MIN_DIVISOR;
768 if (*divider > VC7_IOD_MAX_DIVISOR)
769 *divider = VC7_IOD_MAX_DIVISOR;
770}
771
772static void vc7_calc_fod_1st_stage(unsigned long rate, unsigned long parent_rate,
773 u32 *div_int, u64 *div_frac)
774{
775 u64 rem;
776
777 *div_int = (u32)div64_u64_rem(parent_rate, rate, &rem);
778 *div_frac = div64_u64(rem << VC7_FOD_DENOMINATOR_BITS, rate);
779}
780
781static unsigned long vc7_calc_fod_1st_stage_rate(unsigned long parent_rate,
782 u32 fod_1st_int, u64 fod_frac)
783{
784 u64 numer, denom, hi, lo, divisor;
785
786 numer = fod_frac;
787 denom = BIT_ULL(VC7_FOD_DENOMINATOR_BITS);
788
789 if (fod_frac) {
790 vc7_64_mul_64_to_128(parent_rate, denom, &hi, &lo);
791 divisor = ((u64)fod_1st_int * denom) + numer;
792 return vc7_128_div_64_to_64(hi, lo, divisor, NULL);
793 }
794
795 return div64_u64(parent_rate, fod_1st_int);
796}
797
798static unsigned long vc7_calc_fod_2nd_stage_rate(unsigned long parent_rate,
799 u32 fod_1st_int, u32 fod_2nd_int, u64 fod_frac)
800{
801 unsigned long fod_1st_stage_rate;
802
803 fod_1st_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, fod_1st_int, fod_frac);
804
805 if (fod_2nd_int < 2)
806 return fod_1st_stage_rate;
807
808 /*
809 * There is a div-by-2 preceding the 2nd stage integer divider
810 * (not shown on block diagram) so the actual 2nd stage integer
811 * divisor is 2 * N.
812 */
813 return div64_u64(fod_1st_stage_rate >> 1, fod_2nd_int);
814}
815
816static void vc7_calc_fod_divider(unsigned long rate, unsigned long parent_rate,
817 u32 *fod_1st_int, u32 *fod_2nd_int, u64 *fod_frac)
818{
819 unsigned int allow_frac, i, best_frac_i;
820 unsigned long first_stage_rate;
821
822 vc7_calc_fod_1st_stage(rate, parent_rate, fod_1st_int, fod_frac);
823 first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, *fod_1st_int, *fod_frac);
824
825 *fod_2nd_int = 0;
826
827 /* Do we need the second stage integer divider? */
828 if (first_stage_rate < VC7_FOD_1ST_STAGE_RATE_MIN) {
829 allow_frac = 0;
830 best_frac_i = VC7_FOD_2ND_INT_MIN;
831
832 for (i = VC7_FOD_2ND_INT_MIN; i <= VC7_FOD_2ND_INT_MAX; i++) {
833 /*
834 * 1) There is a div-by-2 preceding the 2nd stage integer divider
835 * (not shown on block diagram) so the actual 2nd stage integer
836 * divisor is 2 * N.
837 * 2) Attempt to find an integer solution first. This means stepping
838 * through each 2nd stage integer and recalculating the 1st stage
839 * until the 1st stage frequency is out of bounds. If no integer
840 * solution is found, use the best fractional solution.
841 */
842 vc7_calc_fod_1st_stage(parent_rate, rate * 2 * i, fod_1st_int, fod_frac);
843 first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate,
844 *fod_1st_int,
845 *fod_frac);
846
847 /* Remember the first viable fractional solution */
848 if (best_frac_i == VC7_FOD_2ND_INT_MIN &&
849 first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MIN) {
850 best_frac_i = i;
851 }
852
853 /* Is the divider viable? Prefer integer solutions over fractional. */
854 if (*fod_1st_int < VC7_FOD_1ST_INT_MAX &&
855 first_stage_rate >= VC7_FOD_1ST_STAGE_RATE_MIN &&
856 (allow_frac || *fod_frac == 0)) {
857 *fod_2nd_int = i;
858 break;
859 }
860
861 /* Ran out of divisors or the 1st stage frequency is out of range */
862 if (i >= VC7_FOD_2ND_INT_MAX ||
863 first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MAX) {
864 allow_frac = 1;
865 i = best_frac_i;
866
867 /* Restore the best frac and rerun the loop for the last time */
868 if (best_frac_i != VC7_FOD_2ND_INT_MIN)
869 i--;
870
871 continue;
872 }
873 }
874 }
875}
876
877static unsigned long vc7_fod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
878{
879 struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
880 struct vc7_driver_data *vc7 = fod->vc7;
881 int err;
882 unsigned long fod_rate;
883
884 err = vc7_read_fod(vc7, fod->num);
885 if (err) {
886 dev_err(&vc7->client->dev, "error reading registers for %s\n",
887 clk_hw_get_name(hw));
888 return err;
889 }
890
891 pr_debug("%s - %s: parent_rate: %lu\n", __func__, clk_hw_get_name(hw), parent_rate);
892
893 fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
894 fod->fod_2nd_int, fod->fod_frac);
895
896 pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
897 __func__, clk_hw_get_name(hw),
898 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
899 pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
900
901 return fod_rate;
902}
903
904static long vc7_fod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
905{
906 struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
907 unsigned long fod_rate;
908
909 pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
910 __func__, clk_hw_get_name(hw), rate, *parent_rate);
911
912 vc7_calc_fod_divider(rate, *parent_rate,
913 &fod->fod_1st_int, &fod->fod_2nd_int, &fod->fod_frac);
914 fod_rate = vc7_calc_fod_2nd_stage_rate(*parent_rate, fod->fod_1st_int,
915 fod->fod_2nd_int, fod->fod_frac);
916
917 pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
918 __func__, clk_hw_get_name(hw),
919 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
920 pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
921
922 return fod_rate;
923}
924
925static int vc7_fod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
926{
927 struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
928 struct vc7_driver_data *vc7 = fod->vc7;
929 unsigned long fod_rate;
930
931 pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
932 __func__, clk_hw_get_name(hw), rate, parent_rate);
933
934 if (rate < VC7_FOD_RATE_MIN || rate > VC7_FOD_RATE_MAX) {
935 dev_err(&vc7->client->dev,
936 "requested frequency %lu Hz for %s is out of range\n",
937 rate, clk_hw_get_name(hw));
938 return -EINVAL;
939 }
940
941 vc7_write_fod(vc7, fod->num);
942
943 fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
944 fod->fod_2nd_int, fod->fod_frac);
945
946 pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
947 __func__, clk_hw_get_name(hw),
948 fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
949 pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
950
951 return 0;
952}
953
954static const struct clk_ops vc7_fod_ops = {
955 .recalc_rate = vc7_fod_recalc_rate,
956 .round_rate = vc7_fod_round_rate,
957 .set_rate = vc7_fod_set_rate,
958};
959
960static unsigned long vc7_iod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
961{
962 struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
963 struct vc7_driver_data *vc7 = iod->vc7;
964 int err;
965 unsigned long iod_rate;
966
967 err = vc7_read_iod(vc7, iod->num);
968 if (err) {
969 dev_err(&vc7->client->dev, "error reading registers for %s\n",
970 clk_hw_get_name(hw));
971 return err;
972 }
973
974 iod_rate = div64_u64(parent_rate, iod->iod_int);
975
976 pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
977 pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), iod_rate);
978
979 return iod_rate;
980}
981
982static long vc7_iod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
983{
984 struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
985 unsigned long iod_rate;
986
987 pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
988 __func__, clk_hw_get_name(hw), rate, *parent_rate);
989
990 vc7_calc_iod_divider(rate, *parent_rate, &iod->iod_int);
991 iod_rate = div64_u64(*parent_rate, iod->iod_int);
992
993 pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
994 pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
995
996 return iod_rate;
997}
998
999static int vc7_iod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
1000{
1001 struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
1002 struct vc7_driver_data *vc7 = iod->vc7;
1003 unsigned long iod_rate;
1004
1005 pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
1006 __func__, clk_hw_get_name(hw), rate, parent_rate);
1007
1008 if (rate < VC7_IOD_RATE_MIN || rate > VC7_IOD_RATE_MAX) {
1009 dev_err(&vc7->client->dev,
1010 "requested frequency %lu Hz for %s is out of range\n",
1011 rate, clk_hw_get_name(hw));
1012 return -EINVAL;
1013 }
1014
1015 vc7_write_iod(vc7, iod->num);
1016
1017 iod_rate = div64_u64(parent_rate, iod->iod_int);
1018
1019 pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
1020 pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
1021
1022 return 0;
1023}
1024
1025static const struct clk_ops vc7_iod_ops = {
1026 .recalc_rate = vc7_iod_recalc_rate,
1027 .round_rate = vc7_iod_round_rate,
1028 .set_rate = vc7_iod_set_rate,
1029};
1030
1031static int vc7_clk_out_prepare(struct clk_hw *hw)
1032{
1033 struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1034 struct vc7_driver_data *vc7 = out->vc7;
1035 int err;
1036
1037 out->out_dis = 0;
1038
1039 err = vc7_write_output(vc7, out->num);
1040 if (err) {
1041 dev_err(&vc7->client->dev, "error writing registers for %s\n",
1042 clk_hw_get_name(hw));
1043 return err;
1044 }
1045
1046 pr_debug("%s - %s: clk prepared\n", __func__, clk_hw_get_name(hw));
1047
1048 return 0;
1049}
1050
1051static void vc7_clk_out_unprepare(struct clk_hw *hw)
1052{
1053 struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1054 struct vc7_driver_data *vc7 = out->vc7;
1055 int err;
1056
1057 out->out_dis = 1;
1058
1059 err = vc7_write_output(vc7, out->num);
1060 if (err) {
1061 dev_err(&vc7->client->dev, "error writing registers for %s\n",
1062 clk_hw_get_name(hw));
1063 return;
1064 }
1065
1066 pr_debug("%s - %s: clk unprepared\n", __func__, clk_hw_get_name(hw));
1067}
1068
1069static int vc7_clk_out_is_enabled(struct clk_hw *hw)
1070{
1071 struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
1072 struct vc7_driver_data *vc7 = out->vc7;
1073 int err, is_enabled;
1074
1075 err = vc7_read_output(vc7, out->num);
1076 if (err) {
1077 dev_err(&vc7->client->dev, "error reading registers for %s\n",
1078 clk_hw_get_name(hw));
1079 return err;
1080 }
1081
1082 is_enabled = !out->out_dis;
1083
1084 pr_debug("%s - %s: is_enabled=%d\n", __func__, clk_hw_get_name(hw), is_enabled);
1085
1086 return is_enabled;
1087}
1088
1089static const struct clk_ops vc7_clk_out_ops = {
1090 .prepare = vc7_clk_out_prepare,
1091 .unprepare = vc7_clk_out_unprepare,
1092 .is_enabled = vc7_clk_out_is_enabled,
1093};
1094
1095static int vc7_probe(struct i2c_client *client)
1096{
1097 struct vc7_driver_data *vc7;
1098 struct clk_init_data clk_init;
1099 struct vc7_bank_src_map bank_src_map;
1100 const char *node_name, *apll_name;
1101 const char *parent_names[1];
1102 unsigned int i, val, bank_idx, out_num;
1103 unsigned long apll_rate;
1104 int ret;
1105
1106 vc7 = devm_kzalloc(&client->dev, sizeof(*vc7), GFP_KERNEL);
1107 if (!vc7)
1108 return -ENOMEM;
1109
1110 i2c_set_clientdata(client, vc7);
1111 vc7->client = client;
893911e6 1112 vc7->chip_info = device_get_match_data(&client->dev);
48c5e98f
AH
1113
1114 vc7->pin_xin = devm_clk_get(&client->dev, "xin");
1115 if (PTR_ERR(vc7->pin_xin) == -EPROBE_DEFER) {
1116 return dev_err_probe(&client->dev, -EPROBE_DEFER,
1117 "xin not specified\n");
1118 }
1119
1120 vc7->regmap = devm_regmap_init_i2c(client, &vc7_regmap_config);
1121 if (IS_ERR(vc7->regmap)) {
1122 return dev_err_probe(&client->dev, PTR_ERR(vc7->regmap),
1123 "failed to allocate register map\n");
1124 }
1125
1126 if (of_property_read_string(client->dev.of_node, "clock-output-names",
1127 &node_name))
1128 node_name = client->dev.of_node->name;
1129
1130 /* Register APLL */
1131 apll_rate = vc7_get_apll_rate(vc7);
1132 apll_name = kasprintf(GFP_KERNEL, "%s_apll", node_name);
1133 vc7->clk_apll.clk = clk_register_fixed_rate(&client->dev, apll_name,
1134 __clk_get_name(vc7->pin_xin),
1135 0, apll_rate);
1136 kfree(apll_name); /* ccf made a copy of the name */
1137 if (IS_ERR(vc7->clk_apll.clk)) {
1138 return dev_err_probe(&client->dev, PTR_ERR(vc7->clk_apll.clk),
1139 "failed to register apll\n");
1140 }
1141
1142 /* Register FODs */
1143 for (i = 0; i < VC7_NUM_FOD; i++) {
1144 memset(&clk_init, 0, sizeof(clk_init));
1145 clk_init.name = kasprintf(GFP_KERNEL, "%s_fod%d", node_name, i);
1146 clk_init.ops = &vc7_fod_ops;
1147 clk_init.parent_names = parent_names;
1148 parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
1149 clk_init.num_parents = 1;
1150 vc7->clk_fod[i].num = i;
1151 vc7->clk_fod[i].vc7 = vc7;
1152 vc7->clk_fod[i].hw.init = &clk_init;
1153 ret = devm_clk_hw_register(&client->dev, &vc7->clk_fod[i].hw);
1154 if (ret)
1155 goto err_clk_register;
1156 kfree(clk_init.name); /* ccf made a copy of the name */
1157 }
1158
1159 /* Register IODs */
1160 for (i = 0; i < VC7_NUM_IOD; i++) {
1161 memset(&clk_init, 0, sizeof(clk_init));
1162 clk_init.name = kasprintf(GFP_KERNEL, "%s_iod%d", node_name, i);
1163 clk_init.ops = &vc7_iod_ops;
1164 clk_init.parent_names = parent_names;
1165 parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
1166 clk_init.num_parents = 1;
1167 vc7->clk_iod[i].num = i;
1168 vc7->clk_iod[i].vc7 = vc7;
1169 vc7->clk_iod[i].hw.init = &clk_init;
1170 ret = devm_clk_hw_register(&client->dev, &vc7->clk_iod[i].hw);
1171 if (ret)
1172 goto err_clk_register;
1173 kfree(clk_init.name); /* ccf made a copy of the name */
1174 }
1175
1176 /* Register outputs */
1177 for (i = 0; i < vc7->chip_info->num_outputs; i++) {
1178 out_num = vc7_map_index_to_output(vc7->chip_info->model, i);
1179
1180 /*
1181 * This driver does not support remapping FOD/IOD to banks.
1182 * The device state is read and the driver is setup to match
1183 * the device's existing mapping.
1184 */
1185 bank_idx = output_bank_mapping[out_num];
1186
1187 regmap_read(vc7->regmap, VC7_REG_OUT_BANK_CNFG(bank_idx), &val);
1188 val &= VC7_REG_OUTPUT_BANK_SRC_MASK;
1189
1190 memset(&bank_src_map, 0, sizeof(bank_src_map));
1191 ret = vc7_get_bank_clk(vc7, bank_idx, val, &bank_src_map);
1192 if (ret) {
1193 dev_err_probe(&client->dev, ret,
1194 "unable to register output %d\n", i);
1195 return ret;
1196 }
1197
1198 switch (bank_src_map.type) {
1199 case VC7_FOD:
1200 parent_names[0] = clk_hw_get_name(&bank_src_map.src.fod->hw);
1201 break;
1202 case VC7_IOD:
1203 parent_names[0] = clk_hw_get_name(&bank_src_map.src.iod->hw);
1204 break;
1205 }
1206
1207 memset(&clk_init, 0, sizeof(clk_init));
1208 clk_init.name = kasprintf(GFP_KERNEL, "%s_out%d", node_name, i);
1209 clk_init.ops = &vc7_clk_out_ops;
1210 clk_init.flags = CLK_SET_RATE_PARENT;
1211 clk_init.parent_names = parent_names;
1212 clk_init.num_parents = 1;
1213 vc7->clk_out[i].num = i;
1214 vc7->clk_out[i].vc7 = vc7;
1215 vc7->clk_out[i].hw.init = &clk_init;
1216 ret = devm_clk_hw_register(&client->dev, &vc7->clk_out[i].hw);
1217 if (ret)
1218 goto err_clk_register;
1219 kfree(clk_init.name); /* ccf made a copy of the name */
1220 }
1221
1222 ret = of_clk_add_hw_provider(client->dev.of_node, vc7_of_clk_get, vc7);
1223 if (ret) {
1224 dev_err_probe(&client->dev, ret, "unable to add clk provider\n");
1225 goto err_clk;
1226 }
1227
1228 return ret;
1229
1230err_clk_register:
1231 dev_err_probe(&client->dev, ret,
1232 "unable to register %s\n", clk_init.name);
1233 kfree(clk_init.name); /* ccf made a copy of the name */
1234err_clk:
1235 clk_unregister_fixed_rate(vc7->clk_apll.clk);
1236 return ret;
1237}
1238
bdc753c7 1239static void vc7_remove(struct i2c_client *client)
48c5e98f
AH
1240{
1241 struct vc7_driver_data *vc7 = i2c_get_clientdata(client);
1242
1243 of_clk_del_provider(client->dev.of_node);
1244 clk_unregister_fixed_rate(vc7->clk_apll.clk);
48c5e98f
AH
1245}
1246
1247static bool vc7_volatile_reg(struct device *dev, unsigned int reg)
1248{
1249 if (reg == VC7_PAGE_ADDR)
1250 return false;
1251
1252 return true;
1253}
1254
1255static const struct vc7_chip_info vc7_rc21008a_info = {
1256 .model = VC7_RC21008A,
1257 .num_banks = 6,
1258 .num_outputs = 8,
1259};
1260
1261static struct regmap_range_cfg vc7_range_cfg[] = {
1262{
1263 .range_min = 0,
1264 .range_max = VC7_MAX_REG,
1265 .selector_reg = VC7_PAGE_ADDR,
1266 .selector_mask = 0xFF,
1267 .selector_shift = 0,
1268 .window_start = 0,
1269 .window_len = VC7_PAGE_WINDOW,
1270}};
1271
1272static const struct regmap_config vc7_regmap_config = {
1273 .reg_bits = 8,
1274 .val_bits = 8,
1275 .max_register = VC7_MAX_REG,
1276 .ranges = vc7_range_cfg,
1277 .num_ranges = ARRAY_SIZE(vc7_range_cfg),
1278 .volatile_reg = vc7_volatile_reg,
1279 .cache_type = REGCACHE_RBTREE,
1280 .can_multi_write = true,
1281 .reg_format_endian = REGMAP_ENDIAN_LITTLE,
1282 .val_format_endian = REGMAP_ENDIAN_LITTLE,
1283};
1284
1285static const struct i2c_device_id vc7_i2c_id[] = {
b5e10bee 1286 { "rc21008a", .driver_data = (kernel_ulong_t)&vc7_rc21008a_info },
48c5e98f
AH
1287 {}
1288};
1289MODULE_DEVICE_TABLE(i2c, vc7_i2c_id);
1290
1291static const struct of_device_id vc7_of_match[] = {
1292 { .compatible = "renesas,rc21008a", .data = &vc7_rc21008a_info },
1293 {}
1294};
1295MODULE_DEVICE_TABLE(of, vc7_of_match);
1296
1297static struct i2c_driver vc7_i2c_driver = {
1298 .driver = {
1299 .name = "vc7",
1300 .of_match_table = vc7_of_match,
1301 },
62279db5 1302 .probe = vc7_probe,
48c5e98f
AH
1303 .remove = vc7_remove,
1304 .id_table = vc7_i2c_id,
1305};
1306module_i2c_driver(vc7_i2c_driver);
1307
1308MODULE_LICENSE("GPL");
1309MODULE_AUTHOR("Alex Helms <alexander.helms.jy@renesas.com");
1310MODULE_DESCRIPTION("Renesas Versaclock7 common clock framework driver");