Merge tag 'loongarch-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai...
[linux-block.git] / drivers / clk / clk-si5341.c
CommitLineData
3044a860
ML
1// SPDX-License-Identifier: GPL-2.0
2/*
f9eec2ea 3 * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345
3044a860
ML
4 * Copyright (C) 2019 Topic Embedded Products
5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
f9eec2ea
ML
6 *
7 * The Si5341 has 10 outputs and 5 synthesizers.
8 * The Si5340 is a smaller version of the Si5341 with only 4 outputs.
9 * The Si5345 is similar to the Si5341, with the addition of fractional input
10 * dividers and automatic input selection.
11 * The Si5342 and Si5344 are smaller versions of the Si5345.
3044a860
ML
12 */
13
14#include <linux/clk.h>
15#include <linux/clk-provider.h>
16#include <linux/delay.h>
17#include <linux/gcd.h>
18#include <linux/math64.h>
19#include <linux/i2c.h>
20#include <linux/module.h>
21#include <linux/regmap.h>
b7bbf6ec 22#include <linux/regulator/consumer.h>
3044a860
ML
23#include <linux/slab.h>
24#include <asm/unaligned.h>
25
69275187
ML
26#define SI5341_NUM_INPUTS 4
27
3044a860 28#define SI5340_MAX_NUM_OUTPUTS 4
f9eec2ea
ML
29#define SI5341_MAX_NUM_OUTPUTS 10
30#define SI5342_MAX_NUM_OUTPUTS 2
31#define SI5344_MAX_NUM_OUTPUTS 4
32#define SI5345_MAX_NUM_OUTPUTS 10
3044a860 33
3044a860 34#define SI5340_NUM_SYNTH 4
f9eec2ea
ML
35#define SI5341_NUM_SYNTH 5
36#define SI5342_NUM_SYNTH 2
37#define SI5344_NUM_SYNTH 4
38#define SI5345_NUM_SYNTH 5
3044a860
ML
39
40/* Range of the synthesizer fractional divider */
41#define SI5341_SYNTH_N_MIN 10
42#define SI5341_SYNTH_N_MAX 4095
43
44/* The chip can get its input clock from 3 input pins or an XTAL */
45
46/* There is one PLL running at 13500–14256 MHz */
47#define SI5341_PLL_VCO_MIN 13500000000ull
48#define SI5341_PLL_VCO_MAX 14256000000ull
49
50/* The 5 frequency synthesizers obtain their input from the PLL */
51struct clk_si5341_synth {
52 struct clk_hw hw;
53 struct clk_si5341 *data;
54 u8 index;
55};
56#define to_clk_si5341_synth(_hw) \
57 container_of(_hw, struct clk_si5341_synth, hw)
58
59/* The output stages can be connected to any synth (full mux) */
60struct clk_si5341_output {
61 struct clk_hw hw;
62 struct clk_si5341 *data;
b7bbf6ec 63 struct regulator *vddo_reg;
3044a860
ML
64 u8 index;
65};
66#define to_clk_si5341_output(_hw) \
67 container_of(_hw, struct clk_si5341_output, hw)
68
69struct clk_si5341 {
70 struct clk_hw hw;
71 struct regmap *regmap;
72 struct i2c_client *i2c_client;
73 struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
74 struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
69275187
ML
75 struct clk *input_clk[SI5341_NUM_INPUTS];
76 const char *input_clk_name[SI5341_NUM_INPUTS];
3044a860
ML
77 const u16 *reg_output_offset;
78 const u16 *reg_rdiv_offset;
79 u64 freq_vco; /* 13500–14256 MHz */
80 u8 num_outputs;
81 u8 num_synth;
f9eec2ea 82 u16 chip_id;
ab89a343 83 bool xaxb_ext_clk;
2f02c5e4 84 bool iovdd_33;
3044a860
ML
85};
86#define to_clk_si5341(_hw) container_of(_hw, struct clk_si5341, hw)
87
88struct clk_si5341_output_config {
89 u8 out_format_drv_bits;
90 u8 out_cm_ampl_bits;
b7bbf6ec 91 u8 vdd_sel_bits;
3044a860
ML
92 bool synth_master;
93 bool always_on;
94};
95
96#define SI5341_PAGE 0x0001
97#define SI5341_PN_BASE 0x0002
98#define SI5341_DEVICE_REV 0x0005
99#define SI5341_STATUS 0x000C
71dcc4d1
RH
100#define SI5341_LOS 0x000D
101#define SI5341_STATUS_STICKY 0x0011
102#define SI5341_LOS_STICKY 0x0012
3044a860 103#define SI5341_SOFT_RST 0x001C
69275187 104#define SI5341_IN_SEL 0x0021
6e7d2de1 105#define SI5341_DEVICE_READY 0x00FE
69275187 106#define SI5341_XAXB_CFG 0x090E
2f02c5e4 107#define SI5341_IO_VDD_SEL 0x0943
69275187
ML
108#define SI5341_IN_EN 0x0949
109#define SI5341_INX_TO_PFD_EN 0x094A
110
71dcc4d1
RH
111/* Status bits */
112#define SI5341_STATUS_SYSINCAL BIT(0)
113#define SI5341_STATUS_LOSXAXB BIT(1)
114#define SI5341_STATUS_LOSREF BIT(2)
115#define SI5341_STATUS_LOL BIT(3)
116
69275187
ML
117/* Input selection */
118#define SI5341_IN_SEL_MASK 0x06
119#define SI5341_IN_SEL_SHIFT 1
120#define SI5341_IN_SEL_REGCTRL 0x01
121#define SI5341_INX_TO_PFD_SHIFT 4
122
123/* XTAL config bits */
124#define SI5341_XAXB_CFG_EXTCLK_EN BIT(0)
125#define SI5341_XAXB_CFG_PDNB BIT(1)
3044a860
ML
126
127/* Input dividers (48-bit) */
128#define SI5341_IN_PDIV(x) (0x0208 + ((x) * 10))
129#define SI5341_IN_PSET(x) (0x020E + ((x) * 10))
69275187 130#define SI5341_PX_UPD 0x0230
3044a860
ML
131
132/* PLL configuration */
133#define SI5341_PLL_M_NUM 0x0235
134#define SI5341_PLL_M_DEN 0x023B
135
136/* Output configuration */
137#define SI5341_OUT_CONFIG(output) \
138 ((output)->data->reg_output_offset[(output)->index])
139#define SI5341_OUT_FORMAT(output) (SI5341_OUT_CONFIG(output) + 1)
140#define SI5341_OUT_CM(output) (SI5341_OUT_CONFIG(output) + 2)
141#define SI5341_OUT_MUX_SEL(output) (SI5341_OUT_CONFIG(output) + 3)
142#define SI5341_OUT_R_REG(output) \
143 ((output)->data->reg_rdiv_offset[(output)->index])
144
b7bbf6ec
RH
145#define SI5341_OUT_MUX_VDD_SEL_MASK 0x38
146
3044a860
ML
147/* Synthesize N divider */
148#define SI5341_SYNTH_N_NUM(x) (0x0302 + ((x) * 11))
149#define SI5341_SYNTH_N_DEN(x) (0x0308 + ((x) * 11))
150#define SI5341_SYNTH_N_UPD(x) (0x030C + ((x) * 11))
151
152/* Synthesizer output enable, phase bypass, power mode */
153#define SI5341_SYNTH_N_CLK_TO_OUTX_EN 0x0A03
154#define SI5341_SYNTH_N_PIBYP 0x0A04
155#define SI5341_SYNTH_N_PDNB 0x0A05
156#define SI5341_SYNTH_N_CLK_DIS 0x0B4A
157
158#define SI5341_REGISTER_MAX 0xBFF
159
160/* SI5341_OUT_CONFIG bits */
161#define SI5341_OUT_CFG_PDN BIT(0)
162#define SI5341_OUT_CFG_OE BIT(1)
163#define SI5341_OUT_CFG_RDIV_FORCE2 BIT(2)
164
165/* Static configuration (to be moved to firmware) */
166struct si5341_reg_default {
167 u16 address;
168 u8 value;
169};
170
69275187
ML
171static const char * const si5341_input_clock_names[] = {
172 "in0", "in1", "in2", "xtal"
173};
174
3044a860 175/* Output configuration registers 0..9 are not quite logically organized */
f9eec2ea 176/* Also for si5345 */
3044a860
ML
177static const u16 si5341_reg_output_offset[] = {
178 0x0108,
179 0x010D,
180 0x0112,
181 0x0117,
182 0x011C,
183 0x0121,
184 0x0126,
185 0x012B,
186 0x0130,
187 0x013A,
188};
189
f9eec2ea 190/* for si5340, si5342 and si5344 */
3044a860
ML
191static const u16 si5340_reg_output_offset[] = {
192 0x0112,
193 0x0117,
194 0x0126,
195 0x012B,
196};
197
198/* The location of the R divider registers */
199static const u16 si5341_reg_rdiv_offset[] = {
200 0x024A,
201 0x024D,
202 0x0250,
203 0x0253,
204 0x0256,
205 0x0259,
206 0x025C,
207 0x025F,
208 0x0262,
209 0x0268,
210};
211static const u16 si5340_reg_rdiv_offset[] = {
212 0x0250,
213 0x0253,
214 0x025C,
215 0x025F,
216};
217
218/*
219 * Programming sequence from ClockBuilder, settings to initialize the system
220 * using only the XTAL input, without pre-divider.
221 * This also contains settings that aren't mentioned anywhere in the datasheet.
222 * The "known" settings like synth and output configuration are done later.
223 */
224static const struct si5341_reg_default si5341_reg_defaults[] = {
225 { 0x0017, 0x3A }, /* INT mask (disable interrupts) */
226 { 0x0018, 0xFF }, /* INT mask */
227 { 0x0021, 0x0F }, /* Select XTAL as input */
228 { 0x0022, 0x00 }, /* Not in datasheet */
229 { 0x002B, 0x02 }, /* SPI config */
230 { 0x002C, 0x20 }, /* LOS enable for XTAL */
231 { 0x002D, 0x00 }, /* LOS timing */
232 { 0x002E, 0x00 },
233 { 0x002F, 0x00 },
234 { 0x0030, 0x00 },
235 { 0x0031, 0x00 },
236 { 0x0032, 0x00 },
237 { 0x0033, 0x00 },
238 { 0x0034, 0x00 },
239 { 0x0035, 0x00 },
240 { 0x0036, 0x00 },
241 { 0x0037, 0x00 },
242 { 0x0038, 0x00 }, /* LOS setting (thresholds) */
243 { 0x0039, 0x00 },
244 { 0x003A, 0x00 },
245 { 0x003B, 0x00 },
246 { 0x003C, 0x00 },
247 { 0x003D, 0x00 }, /* LOS setting (thresholds) end */
248 { 0x0041, 0x00 }, /* LOS0_DIV_SEL */
249 { 0x0042, 0x00 }, /* LOS1_DIV_SEL */
250 { 0x0043, 0x00 }, /* LOS2_DIV_SEL */
251 { 0x0044, 0x00 }, /* LOS3_DIV_SEL */
252 { 0x009E, 0x00 }, /* Not in datasheet */
253 { 0x0102, 0x01 }, /* Enable outputs */
254 { 0x013F, 0x00 }, /* Not in datasheet */
255 { 0x0140, 0x00 }, /* Not in datasheet */
256 { 0x0141, 0x40 }, /* OUT LOS */
257 { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
258 { 0x0203, 0x00 },
259 { 0x0204, 0x00 },
260 { 0x0205, 0x00 },
261 { 0x0206, 0x00 }, /* PXAXB (2^x) */
262 { 0x0208, 0x00 }, /* Px divider setting (usually 0) */
263 { 0x0209, 0x00 },
264 { 0x020A, 0x00 },
265 { 0x020B, 0x00 },
266 { 0x020C, 0x00 },
267 { 0x020D, 0x00 },
268 { 0x020E, 0x00 },
269 { 0x020F, 0x00 },
270 { 0x0210, 0x00 },
271 { 0x0211, 0x00 },
272 { 0x0212, 0x00 },
273 { 0x0213, 0x00 },
274 { 0x0214, 0x00 },
275 { 0x0215, 0x00 },
276 { 0x0216, 0x00 },
277 { 0x0217, 0x00 },
278 { 0x0218, 0x00 },
279 { 0x0219, 0x00 },
280 { 0x021A, 0x00 },
281 { 0x021B, 0x00 },
282 { 0x021C, 0x00 },
283 { 0x021D, 0x00 },
284 { 0x021E, 0x00 },
285 { 0x021F, 0x00 },
286 { 0x0220, 0x00 },
287 { 0x0221, 0x00 },
288 { 0x0222, 0x00 },
289 { 0x0223, 0x00 },
290 { 0x0224, 0x00 },
291 { 0x0225, 0x00 },
292 { 0x0226, 0x00 },
293 { 0x0227, 0x00 },
294 { 0x0228, 0x00 },
295 { 0x0229, 0x00 },
296 { 0x022A, 0x00 },
297 { 0x022B, 0x00 },
298 { 0x022C, 0x00 },
299 { 0x022D, 0x00 },
300 { 0x022E, 0x00 },
301 { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
302 { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
303 { 0x026C, 0x00 },
304 { 0x026D, 0x00 },
305 { 0x026E, 0x00 },
306 { 0x026F, 0x00 },
307 { 0x0270, 0x00 },
308 { 0x0271, 0x00 },
309 { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
310 { 0x0339, 0x1F }, /* N_FSTEP_MSK */
311 { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
312 { 0x033C, 0x00 },
313 { 0x033D, 0x00 },
314 { 0x033E, 0x00 },
315 { 0x033F, 0x00 },
316 { 0x0340, 0x00 },
317 { 0x0341, 0x00 },
318 { 0x0342, 0x00 },
319 { 0x0343, 0x00 },
320 { 0x0344, 0x00 },
321 { 0x0345, 0x00 },
322 { 0x0346, 0x00 },
323 { 0x0347, 0x00 },
324 { 0x0348, 0x00 },
325 { 0x0349, 0x00 },
326 { 0x034A, 0x00 },
327 { 0x034B, 0x00 },
328 { 0x034C, 0x00 },
329 { 0x034D, 0x00 },
330 { 0x034E, 0x00 },
331 { 0x034F, 0x00 },
332 { 0x0350, 0x00 },
333 { 0x0351, 0x00 },
334 { 0x0352, 0x00 },
335 { 0x0353, 0x00 },
336 { 0x0354, 0x00 },
337 { 0x0355, 0x00 },
338 { 0x0356, 0x00 },
339 { 0x0357, 0x00 },
340 { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
341 { 0x0359, 0x00 }, /* Nx_DELAY */
342 { 0x035A, 0x00 },
343 { 0x035B, 0x00 },
344 { 0x035C, 0x00 },
345 { 0x035D, 0x00 },
346 { 0x035E, 0x00 },
347 { 0x035F, 0x00 },
348 { 0x0360, 0x00 },
349 { 0x0361, 0x00 },
350 { 0x0362, 0x00 }, /* Nx_DELAY end */
351 { 0x0802, 0x00 }, /* Not in datasheet */
352 { 0x0803, 0x00 }, /* Not in datasheet */
353 { 0x0804, 0x00 }, /* Not in datasheet */
354 { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
355 { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
3044a860
ML
356 { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
357 { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
358 { 0x0A02, 0x00 }, /* Not in datasheet */
359 { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
3c9b49b0
RH
360 { 0x0B57, 0x10 }, /* VCO_RESET_CALCODE (not described in datasheet) */
361 { 0x0B58, 0x05 }, /* VCO_RESET_CALCODE (not described in datasheet) */
3044a860
ML
362};
363
364/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
365static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
366 u64 *val1, u32 *val2)
367{
368 int err;
369 u8 r[10];
370
371 err = regmap_bulk_read(regmap, reg, r, 10);
372 if (err < 0)
373 return err;
374
375 *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
376 (get_unaligned_le32(r));
377 *val2 = get_unaligned_le32(&r[6]);
378
379 return 0;
380}
381
382static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
383 u64 n_num, u32 n_den)
384{
385 u8 r[10];
386
387 /* Shift left as far as possible without overflowing */
388 while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
389 n_num <<= 1;
390 n_den <<= 1;
391 }
392
393 /* 44 bits (6 bytes) numerator */
394 put_unaligned_le32(n_num, r);
395 r[4] = (n_num >> 32) & 0xff;
396 r[5] = (n_num >> 40) & 0x0f;
397 /* 32 bits denominator */
398 put_unaligned_le32(n_den, &r[6]);
399
400 /* Program the fraction */
401 return regmap_bulk_write(regmap, reg, r, sizeof(r));
402}
403
404/* VCO, we assume it runs at a constant frequency */
405static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
406 unsigned long parent_rate)
407{
408 struct clk_si5341 *data = to_clk_si5341(hw);
409 int err;
410 u64 res;
411 u64 m_num;
412 u32 m_den;
413 unsigned int shift;
414
415 /* Assume that PDIV is not being used, just read the PLL setting */
416 err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
417 &m_num, &m_den);
418 if (err < 0)
419 return 0;
420
421 if (!m_num || !m_den)
422 return 0;
423
424 /*
425 * Though m_num is 64-bit, only the upper bits are actually used. While
426 * calculating m_num and m_den, they are shifted as far as possible to
427 * the left. To avoid 96-bit division here, we just shift them back so
428 * we can do with just 64 bits.
429 */
430 shift = 0;
431 res = m_num;
432 while (res & 0xffff00000000ULL) {
433 ++shift;
434 res >>= 1;
435 }
436 res *= parent_rate;
437 do_div(res, (m_den >> shift));
438
439 /* We cannot return the actual frequency in 32 bit, store it locally */
440 data->freq_vco = res;
441
442 /* Report kHz since the value is out of range */
443 do_div(res, 1000);
444
445 return (unsigned long)res;
446}
447
69275187
ML
448static int si5341_clk_get_selected_input(struct clk_si5341 *data)
449{
450 int err;
451 u32 val;
452
453 err = regmap_read(data->regmap, SI5341_IN_SEL, &val);
454 if (err < 0)
455 return err;
456
457 return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT;
458}
459
460static u8 si5341_clk_get_parent(struct clk_hw *hw)
461{
462 struct clk_si5341 *data = to_clk_si5341(hw);
463 int res = si5341_clk_get_selected_input(data);
464
465 if (res < 0)
466 return 0; /* Apparently we cannot report errors */
467
468 return res;
469}
470
471static int si5341_clk_reparent(struct clk_si5341 *data, u8 index)
472{
473 int err;
474 u8 val;
475
476 val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK;
477 /* Enable register-based input selection */
478 val |= SI5341_IN_SEL_REGCTRL;
479
480 err = regmap_update_bits(data->regmap,
481 SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val);
482 if (err < 0)
483 return err;
484
485 if (index < 3) {
486 /* Enable input buffer for selected input */
487 err = regmap_update_bits(data->regmap,
488 SI5341_IN_EN, 0x07, BIT(index));
489 if (err < 0)
490 return err;
491
492 /* Enables the input to phase detector */
493 err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
494 0x7 << SI5341_INX_TO_PFD_SHIFT,
495 BIT(index + SI5341_INX_TO_PFD_SHIFT));
496 if (err < 0)
497 return err;
498
499 /* Power down XTAL oscillator and buffer */
500 err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
501 SI5341_XAXB_CFG_PDNB, 0);
502 if (err < 0)
503 return err;
504
505 /*
506 * Set the P divider to "1". There's no explanation in the
507 * datasheet of these registers, but the clockbuilder software
508 * programs a "1" when the input is being used.
509 */
510 err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1);
511 if (err < 0)
512 return err;
513
514 err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1);
515 if (err < 0)
516 return err;
517
518 /* Set update PDIV bit */
519 err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index));
520 if (err < 0)
521 return err;
522 } else {
523 /* Disable all input buffers */
524 err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0);
525 if (err < 0)
526 return err;
527
528 /* Disable input to phase detector */
529 err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
530 0x7 << SI5341_INX_TO_PFD_SHIFT, 0);
531 if (err < 0)
532 return err;
533
ab89a343 534 /* Power up XTAL oscillator and buffer, select clock mode */
69275187 535 err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
ab89a343
RH
536 SI5341_XAXB_CFG_PDNB | SI5341_XAXB_CFG_EXTCLK_EN,
537 SI5341_XAXB_CFG_PDNB | (data->xaxb_ext_clk ?
538 SI5341_XAXB_CFG_EXTCLK_EN : 0));
69275187
ML
539 if (err < 0)
540 return err;
541 }
542
543 return 0;
544}
545
546static int si5341_clk_set_parent(struct clk_hw *hw, u8 index)
547{
548 struct clk_si5341 *data = to_clk_si5341(hw);
549
550 return si5341_clk_reparent(data, index);
551}
552
3044a860 553static const struct clk_ops si5341_clk_ops = {
69275187
ML
554 .set_parent = si5341_clk_set_parent,
555 .get_parent = si5341_clk_get_parent,
3044a860
ML
556 .recalc_rate = si5341_clk_recalc_rate,
557};
558
559/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
560
561/* The synthesizer is on if all power and enable bits are set */
562static int si5341_synth_clk_is_on(struct clk_hw *hw)
563{
564 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
565 int err;
566 u32 val;
567 u8 index = synth->index;
568
569 err = regmap_read(synth->data->regmap,
570 SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
571 if (err < 0)
572 return 0;
573
574 if (!(val & BIT(index)))
575 return 0;
576
577 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
578 if (err < 0)
579 return 0;
580
581 if (!(val & BIT(index)))
582 return 0;
583
584 /* This bit must be 0 for the synthesizer to receive clock input */
585 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
586 if (err < 0)
587 return 0;
588
589 return !(val & BIT(index));
590}
591
592static void si5341_synth_clk_unprepare(struct clk_hw *hw)
593{
594 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
595 u8 index = synth->index; /* In range 0..5 */
596 u8 mask = BIT(index);
597
598 /* Disable output */
599 regmap_update_bits(synth->data->regmap,
600 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
601 /* Power down */
602 regmap_update_bits(synth->data->regmap,
603 SI5341_SYNTH_N_PDNB, mask, 0);
604 /* Disable clock input to synth (set to 1 to disable) */
605 regmap_update_bits(synth->data->regmap,
606 SI5341_SYNTH_N_CLK_DIS, mask, mask);
607}
608
609static int si5341_synth_clk_prepare(struct clk_hw *hw)
610{
611 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
612 int err;
613 u8 index = synth->index;
614 u8 mask = BIT(index);
615
616 /* Power up */
617 err = regmap_update_bits(synth->data->regmap,
618 SI5341_SYNTH_N_PDNB, mask, mask);
619 if (err < 0)
620 return err;
621
622 /* Enable clock input to synth (set bit to 0 to enable) */
623 err = regmap_update_bits(synth->data->regmap,
624 SI5341_SYNTH_N_CLK_DIS, mask, 0);
625 if (err < 0)
626 return err;
627
628 /* Enable output */
629 return regmap_update_bits(synth->data->regmap,
630 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
631}
632
633/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
634static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
635 unsigned long parent_rate)
636{
637 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
638 u64 f;
639 u64 n_num;
640 u32 n_den;
641 int err;
642
643 err = si5341_decode_44_32(synth->data->regmap,
644 SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
645 if (err < 0)
646 return err;
78f6f406
RH
647 /* Check for bogus/uninitialized settings */
648 if (!n_num || !n_den)
649 return 0;
3044a860
ML
650
651 /*
652 * n_num and n_den are shifted left as much as possible, so to prevent
653 * overflow in 64-bit math, we shift n_den 4 bits to the right
654 */
655 f = synth->data->freq_vco;
656 f *= n_den >> 4;
657
7c55e8ef 658 /* Now we need to do 64-bit division: f/n_num */
3044a860
ML
659 /* And compensate for the 4 bits we dropped */
660 f = div64_u64(f, (n_num >> 4));
661
662 return f;
663}
664
665static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
666 unsigned long *parent_rate)
667{
668 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
669 u64 f;
670
671 /* The synthesizer accuracy is such that anything in range will work */
672 f = synth->data->freq_vco;
673 do_div(f, SI5341_SYNTH_N_MAX);
674 if (rate < f)
675 return f;
676
677 f = synth->data->freq_vco;
678 do_div(f, SI5341_SYNTH_N_MIN);
679 if (rate > f)
680 return f;
681
682 return rate;
683}
684
685static int si5341_synth_program(struct clk_si5341_synth *synth,
686 u64 n_num, u32 n_den, bool is_integer)
687{
688 int err;
689 u8 index = synth->index;
690
691 err = si5341_encode_44_32(synth->data->regmap,
692 SI5341_SYNTH_N_NUM(index), n_num, n_den);
693
694 err = regmap_update_bits(synth->data->regmap,
695 SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
696 if (err < 0)
697 return err;
698
699 return regmap_write(synth->data->regmap,
700 SI5341_SYNTH_N_UPD(index), 0x01);
701}
702
703
704static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
705 unsigned long parent_rate)
706{
707 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
708 u64 n_num;
709 u32 n_den;
710 u32 r;
711 u32 g;
712 bool is_integer;
713
714 n_num = synth->data->freq_vco;
3044a860
ML
715
716 /* see if there's an integer solution */
717 r = do_div(n_num, rate);
718 is_integer = (r == 0);
719 if (is_integer) {
720 /* Integer divider equal to n_num */
721 n_den = 1;
722 } else {
723 /* Calculate a fractional solution */
724 g = gcd(r, rate);
725 n_den = rate / g;
726 n_num *= n_den;
727 n_num += r / g;
728 }
729
730 dev_dbg(&synth->data->i2c_client->dev,
731 "%s(%u): n=0x%llx d=0x%x %s\n", __func__,
732 synth->index, n_num, n_den,
733 is_integer ? "int" : "frac");
734
735 return si5341_synth_program(synth, n_num, n_den, is_integer);
736}
737
738static const struct clk_ops si5341_synth_clk_ops = {
739 .is_prepared = si5341_synth_clk_is_on,
740 .prepare = si5341_synth_clk_prepare,
741 .unprepare = si5341_synth_clk_unprepare,
742 .recalc_rate = si5341_synth_clk_recalc_rate,
743 .round_rate = si5341_synth_clk_round_rate,
744 .set_rate = si5341_synth_clk_set_rate,
745};
746
747static int si5341_output_clk_is_on(struct clk_hw *hw)
748{
749 struct clk_si5341_output *output = to_clk_si5341_output(hw);
750 int err;
751 u32 val;
752
753 err = regmap_read(output->data->regmap,
754 SI5341_OUT_CONFIG(output), &val);
755 if (err < 0)
756 return err;
757
758 /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
759 return (val & 0x03) == SI5341_OUT_CFG_OE;
760}
761
762/* Disables and then powers down the output */
763static void si5341_output_clk_unprepare(struct clk_hw *hw)
764{
765 struct clk_si5341_output *output = to_clk_si5341_output(hw);
766
767 regmap_update_bits(output->data->regmap,
768 SI5341_OUT_CONFIG(output),
769 SI5341_OUT_CFG_OE, 0);
770 regmap_update_bits(output->data->regmap,
771 SI5341_OUT_CONFIG(output),
772 SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
773}
774
775/* Powers up and then enables the output */
776static int si5341_output_clk_prepare(struct clk_hw *hw)
777{
778 struct clk_si5341_output *output = to_clk_si5341_output(hw);
779 int err;
780
781 err = regmap_update_bits(output->data->regmap,
782 SI5341_OUT_CONFIG(output),
783 SI5341_OUT_CFG_PDN, 0);
784 if (err < 0)
785 return err;
786
787 return regmap_update_bits(output->data->regmap,
788 SI5341_OUT_CONFIG(output),
789 SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
790}
791
792static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
793 unsigned long parent_rate)
794{
795 struct clk_si5341_output *output = to_clk_si5341_output(hw);
796 int err;
797 u32 val;
798 u32 r_divider;
799 u8 r[3];
800
2a8b5394
AW
801 err = regmap_read(output->data->regmap,
802 SI5341_OUT_CONFIG(output), &val);
803 if (err < 0)
804 return err;
805
806 /* If SI5341_OUT_CFG_RDIV_FORCE2 is set, r_divider is 2 */
807 if (val & SI5341_OUT_CFG_RDIV_FORCE2)
808 return parent_rate / 2;
809
3044a860
ML
810 err = regmap_bulk_read(output->data->regmap,
811 SI5341_OUT_R_REG(output), r, 3);
812 if (err < 0)
813 return err;
814
815 /* Calculate value as 24-bit integer*/
816 r_divider = r[2] << 16 | r[1] << 8 | r[0];
817
818 /* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
819 if (!r_divider)
820 return 0;
821
822 /* Divider is 2*(Rx_REG+1) */
823 r_divider += 1;
824 r_divider <<= 1;
825
3044a860
ML
826
827 return parent_rate / r_divider;
828}
829
830static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
831 unsigned long *parent_rate)
832{
833 unsigned long r;
834
78f6f406
RH
835 if (!rate)
836 return 0;
837
3044a860
ML
838 r = *parent_rate >> 1;
839
840 /* If rate is an even divisor, no changes to parent required */
841 if (r && !(r % rate))
842 return (long)rate;
843
844 if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
845 if (rate > 200000000) {
846 /* minimum r-divider is 2 */
847 r = 2;
848 } else {
849 /* Take a parent frequency near 400 MHz */
850 r = (400000000u / rate) & ~1;
851 }
852 *parent_rate = r * rate;
853 } else {
854 /* We cannot change our parent's rate, report what we can do */
855 r /= rate;
856 rate = *parent_rate / (r << 1);
857 }
858
859 return rate;
860}
861
862static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
863 unsigned long parent_rate)
864{
865 struct clk_si5341_output *output = to_clk_si5341_output(hw);
78f6f406 866 u32 r_div;
3044a860
ML
867 int err;
868 u8 r[3];
869
78f6f406
RH
870 if (!rate)
871 return -EINVAL;
872
873 /* Frequency divider is (r_div + 1) * 2 */
874 r_div = (parent_rate / rate) >> 1;
875
3044a860
ML
876 if (r_div <= 1)
877 r_div = 0;
878 else if (r_div >= BIT(24))
879 r_div = BIT(24) - 1;
880 else
881 --r_div;
882
883 /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
884 err = regmap_update_bits(output->data->regmap,
885 SI5341_OUT_CONFIG(output),
886 SI5341_OUT_CFG_RDIV_FORCE2,
887 (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
888 if (err < 0)
889 return err;
890
891 /* Always write Rx_REG, because a zero value disables the divider */
892 r[0] = r_div ? (r_div & 0xff) : 1;
893 r[1] = (r_div >> 8) & 0xff;
894 r[2] = (r_div >> 16) & 0xff;
895 err = regmap_bulk_write(output->data->regmap,
896 SI5341_OUT_R_REG(output), r, 3);
897
898 return 0;
899}
900
901static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
902{
903 return regmap_update_bits(output->data->regmap,
904 SI5341_OUT_MUX_SEL(output), 0x07, index);
905}
906
907static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
908{
909 struct clk_si5341_output *output = to_clk_si5341_output(hw);
910
911 if (index >= output->data->num_synth)
912 return -EINVAL;
913
914 return si5341_output_reparent(output, index);
915}
916
917static u8 si5341_output_get_parent(struct clk_hw *hw)
918{
919 struct clk_si5341_output *output = to_clk_si5341_output(hw);
3044a860
ML
920 u32 val;
921
84afc9ec 922 regmap_read(output->data->regmap, SI5341_OUT_MUX_SEL(output), &val);
3044a860
ML
923
924 return val & 0x7;
925}
926
927static const struct clk_ops si5341_output_clk_ops = {
928 .is_prepared = si5341_output_clk_is_on,
929 .prepare = si5341_output_clk_prepare,
930 .unprepare = si5341_output_clk_unprepare,
931 .recalc_rate = si5341_output_clk_recalc_rate,
932 .round_rate = si5341_output_clk_round_rate,
933 .set_rate = si5341_output_clk_set_rate,
934 .set_parent = si5341_output_set_parent,
935 .get_parent = si5341_output_get_parent,
936};
937
938/*
939 * The chip can be bought in a pre-programmed version, or one can program the
940 * NVM in the chip to boot up in a preset mode. This routine tries to determine
941 * if that's the case, or if we need to reset and program everything from
942 * scratch. Returns negative error, or true/false.
943 */
944static int si5341_is_programmed_already(struct clk_si5341 *data)
945{
946 int err;
947 u8 r[4];
948
949 /* Read the PLL divider value, it must have a non-zero value */
950 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
951 r, ARRAY_SIZE(r));
952 if (err < 0)
953 return err;
954
955 return !!get_unaligned_le32(r);
956}
957
958static struct clk_hw *
959of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
960{
961 struct clk_si5341 *data = _data;
962 unsigned int idx = clkspec->args[1];
963 unsigned int group = clkspec->args[0];
964
965 switch (group) {
966 case 0:
967 if (idx >= data->num_outputs) {
968 dev_err(&data->i2c_client->dev,
969 "invalid output index %u\n", idx);
970 return ERR_PTR(-EINVAL);
971 }
972 return &data->clk[idx].hw;
973 case 1:
974 if (idx >= data->num_synth) {
975 dev_err(&data->i2c_client->dev,
976 "invalid synthesizer index %u\n", idx);
977 return ERR_PTR(-EINVAL);
978 }
979 return &data->synth[idx].hw;
980 case 2:
981 if (idx > 0) {
982 dev_err(&data->i2c_client->dev,
983 "invalid PLL index %u\n", idx);
984 return ERR_PTR(-EINVAL);
985 }
986 return &data->hw;
987 default:
988 dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
989 return ERR_PTR(-EINVAL);
990 }
991}
992
993static int si5341_probe_chip_id(struct clk_si5341 *data)
994{
995 int err;
996 u8 reg[4];
997 u16 model;
998
999 err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
1000 ARRAY_SIZE(reg));
1001 if (err < 0) {
1002 dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
1003 return err;
1004 }
1005
1006 model = get_unaligned_le16(reg);
1007
1008 dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
1009 model, reg[2], reg[3]);
1010
1011 switch (model) {
1012 case 0x5340:
1013 data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
1014 data->num_synth = SI5340_NUM_SYNTH;
1015 data->reg_output_offset = si5340_reg_output_offset;
1016 data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1017 break;
1018 case 0x5341:
1019 data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
1020 data->num_synth = SI5341_NUM_SYNTH;
1021 data->reg_output_offset = si5341_reg_output_offset;
1022 data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1023 break;
f9eec2ea
ML
1024 case 0x5342:
1025 data->num_outputs = SI5342_MAX_NUM_OUTPUTS;
1026 data->num_synth = SI5342_NUM_SYNTH;
1027 data->reg_output_offset = si5340_reg_output_offset;
1028 data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1029 break;
1030 case 0x5344:
1031 data->num_outputs = SI5344_MAX_NUM_OUTPUTS;
1032 data->num_synth = SI5344_NUM_SYNTH;
1033 data->reg_output_offset = si5340_reg_output_offset;
1034 data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1035 break;
1036 case 0x5345:
1037 data->num_outputs = SI5345_MAX_NUM_OUTPUTS;
1038 data->num_synth = SI5345_NUM_SYNTH;
1039 data->reg_output_offset = si5341_reg_output_offset;
1040 data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1041 break;
3044a860
ML
1042 default:
1043 dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
1044 model);
1045 return -EINVAL;
1046 }
1047
f9eec2ea
ML
1048 data->chip_id = model;
1049
3044a860
ML
1050 return 0;
1051}
1052
1053/* Read active settings into the regmap cache for later reference */
1054static int si5341_read_settings(struct clk_si5341 *data)
1055{
1056 int err;
1057 u8 i;
1058 u8 r[10];
1059
1060 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
1061 if (err < 0)
1062 return err;
1063
1064 err = regmap_bulk_read(data->regmap,
1065 SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
1066 if (err < 0)
1067 return err;
1068
1069 err = regmap_bulk_read(data->regmap,
1070 SI5341_SYNTH_N_CLK_DIS, r, 1);
1071 if (err < 0)
1072 return err;
1073
1074 for (i = 0; i < data->num_synth; ++i) {
1075 err = regmap_bulk_read(data->regmap,
1076 SI5341_SYNTH_N_NUM(i), r, 10);
1077 if (err < 0)
1078 return err;
1079 }
1080
1081 for (i = 0; i < data->num_outputs; ++i) {
1082 err = regmap_bulk_read(data->regmap,
1083 data->reg_output_offset[i], r, 4);
1084 if (err < 0)
1085 return err;
1086
1087 err = regmap_bulk_read(data->regmap,
1088 data->reg_rdiv_offset[i], r, 3);
1089 if (err < 0)
1090 return err;
1091 }
1092
1093 return 0;
1094}
1095
1096static int si5341_write_multiple(struct clk_si5341 *data,
1097 const struct si5341_reg_default *values, unsigned int num_values)
1098{
1099 unsigned int i;
1100 int res;
1101
1102 for (i = 0; i < num_values; ++i) {
1103 res = regmap_write(data->regmap,
1104 values[i].address, values[i].value);
1105 if (res < 0) {
1106 dev_err(&data->i2c_client->dev,
1107 "Failed to write %#x:%#x\n",
1108 values[i].address, values[i].value);
1109 return res;
1110 }
1111 }
1112
1113 return 0;
1114}
1115
1116static const struct si5341_reg_default si5341_preamble[] = {
1117 { 0x0B25, 0x00 },
1118 { 0x0502, 0x01 },
1119 { 0x0505, 0x03 },
3c9b49b0 1120 { 0x0957, 0x17 },
3044a860
ML
1121 { 0x0B4E, 0x1A },
1122};
1123
f9eec2ea
ML
1124static const struct si5341_reg_default si5345_preamble[] = {
1125 { 0x0B25, 0x00 },
1126 { 0x0540, 0x01 },
1127};
1128
3044a860
ML
1129static int si5341_send_preamble(struct clk_si5341 *data)
1130{
1131 int res;
1132 u32 revision;
1133
1134 /* For revision 2 and up, the values are slightly different */
1135 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1136 if (res < 0)
1137 return res;
1138
1139 /* Write "preamble" as specified by datasheet */
1140 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
1141 if (res < 0)
1142 return res;
f9eec2ea
ML
1143
1144 /* The si5342..si5345 require a different preamble */
1145 if (data->chip_id > 0x5341)
1146 res = si5341_write_multiple(data,
1147 si5345_preamble, ARRAY_SIZE(si5345_preamble));
1148 else
1149 res = si5341_write_multiple(data,
1150 si5341_preamble, ARRAY_SIZE(si5341_preamble));
3044a860
ML
1151 if (res < 0)
1152 return res;
1153
1154 /* Datasheet specifies a 300ms wait after sending the preamble */
1155 msleep(300);
1156
1157 return 0;
1158}
1159
1160/* Perform a soft reset and write post-amble */
1161static int si5341_finalize_defaults(struct clk_si5341 *data)
1162{
1163 int res;
1164 u32 revision;
1165
2f02c5e4
RH
1166 res = regmap_write(data->regmap, SI5341_IO_VDD_SEL,
1167 data->iovdd_33 ? 1 : 0);
1168 if (res < 0)
1169 return res;
1170
3044a860
ML
1171 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1172 if (res < 0)
1173 return res;
1174
1175 dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
1176
1177 res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
1178 if (res < 0)
1179 return res;
1180
f9eec2ea
ML
1181 /* The si5342..si5345 have an additional post-amble */
1182 if (data->chip_id > 0x5341) {
1183 res = regmap_write(data->regmap, 0x540, 0x0);
1184 if (res < 0)
1185 return res;
1186 }
1187
3044a860
ML
1188 /* Datasheet does not explain these nameless registers */
1189 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
1190 if (res < 0)
1191 return res;
1192 res = regmap_write(data->regmap, 0x0B25, 0x02);
1193 if (res < 0)
1194 return res;
1195
1196 return 0;
1197}
1198
1199
1200static const struct regmap_range si5341_regmap_volatile_range[] = {
1201 regmap_reg_range(0x000C, 0x0012), /* Status */
1202 regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
1203 regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
69275187
ML
1204 /* Update bits for P divider and synth config */
1205 regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD),
3044a860
ML
1206 regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
1207 regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
1208 regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
1209 regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
1210 regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
1211};
1212
1213static const struct regmap_access_table si5341_regmap_volatile = {
1214 .yes_ranges = si5341_regmap_volatile_range,
1215 .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1216};
1217
1218/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1219static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1220 {
1221 .range_min = 0,
1222 .range_max = SI5341_REGISTER_MAX,
1223 .selector_reg = SI5341_PAGE,
1224 .selector_mask = 0xff,
1225 .selector_shift = 0,
1226 .window_start = 0,
1227 .window_len = 256,
1228 },
1229};
1230
6e7d2de1
RH
1231static int si5341_wait_device_ready(struct i2c_client *client)
1232{
1233 int count;
1234
1235 /* Datasheet warns: Any attempt to read or write any register other
1236 * than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the
1237 * NVM programming and may corrupt the register contents, as they are
1238 * read from NVM. Note that this includes accesses to the PAGE register.
1239 * Also: DEVICE_READY is available on every register page, so no page
1240 * change is needed to read it.
1241 * Do this outside regmap to avoid automatic PAGE register access.
1242 * May take up to 300ms to complete.
1243 */
1244 for (count = 0; count < 15; ++count) {
1245 s32 result = i2c_smbus_read_byte_data(client,
1246 SI5341_DEVICE_READY);
1247 if (result < 0)
1248 return result;
1249 if (result == 0x0F)
1250 return 0;
1251 msleep(20);
1252 }
1253 dev_err(&client->dev, "timeout waiting for DEVICE_READY\n");
1254 return -EIO;
1255}
1256
3044a860
ML
1257static const struct regmap_config si5341_regmap_config = {
1258 .reg_bits = 8,
1259 .val_bits = 8,
1260 .cache_type = REGCACHE_RBTREE,
1261 .ranges = si5341_regmap_ranges,
1262 .num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1263 .max_register = SI5341_REGISTER_MAX,
1264 .volatile_table = &si5341_regmap_volatile,
1265};
1266
b7bbf6ec
RH
1267static int si5341_dt_parse_dt(struct clk_si5341 *data,
1268 struct clk_si5341_output_config *config)
3044a860
ML
1269{
1270 struct device_node *child;
b7bbf6ec 1271 struct device_node *np = data->i2c_client->dev.of_node;
3044a860
ML
1272 u32 num;
1273 u32 val;
1274
1275 memset(config, 0, sizeof(struct clk_si5341_output_config) *
1276 SI5341_MAX_NUM_OUTPUTS);
1277
1278 for_each_child_of_node(np, child) {
1279 if (of_property_read_u32(child, "reg", &num)) {
b7bbf6ec 1280 dev_err(&data->i2c_client->dev, "missing reg property of %s\n",
3044a860
ML
1281 child->name);
1282 goto put_child;
1283 }
1284
1285 if (num >= SI5341_MAX_NUM_OUTPUTS) {
b7bbf6ec 1286 dev_err(&data->i2c_client->dev, "invalid clkout %d\n", num);
3044a860
ML
1287 goto put_child;
1288 }
1289
1290 if (!of_property_read_u32(child, "silabs,format", &val)) {
1291 /* Set cm and ampl conservatively to 3v3 settings */
1292 switch (val) {
1293 case 1: /* normal differential */
1294 config[num].out_cm_ampl_bits = 0x33;
1295 break;
1296 case 2: /* low-power differential */
1297 config[num].out_cm_ampl_bits = 0x13;
1298 break;
1299 case 4: /* LVCMOS */
1300 config[num].out_cm_ampl_bits = 0x33;
1301 /* Set SI recommended impedance for LVCMOS */
1302 config[num].out_format_drv_bits |= 0xc0;
1303 break;
1304 default:
b7bbf6ec 1305 dev_err(&data->i2c_client->dev,
3044a860
ML
1306 "invalid silabs,format %u for %u\n",
1307 val, num);
1308 goto put_child;
1309 }
1310 config[num].out_format_drv_bits &= ~0x07;
1311 config[num].out_format_drv_bits |= val & 0x07;
1312 /* Always enable the SYNC feature */
1313 config[num].out_format_drv_bits |= 0x08;
1314 }
1315
1316 if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1317 if (val > 0xf) {
b7bbf6ec 1318 dev_err(&data->i2c_client->dev,
3044a860
ML
1319 "invalid silabs,common-mode %u\n",
1320 val);
1321 goto put_child;
1322 }
1323 config[num].out_cm_ampl_bits &= 0xf0;
1324 config[num].out_cm_ampl_bits |= val & 0x0f;
1325 }
1326
1327 if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1328 if (val > 0xf) {
b7bbf6ec 1329 dev_err(&data->i2c_client->dev,
3044a860
ML
1330 "invalid silabs,amplitude %u\n",
1331 val);
1332 goto put_child;
1333 }
1334 config[num].out_cm_ampl_bits &= 0x0f;
1335 config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1336 }
1337
1338 if (of_property_read_bool(child, "silabs,disable-high"))
1339 config[num].out_format_drv_bits |= 0x10;
1340
1341 config[num].synth_master =
1342 of_property_read_bool(child, "silabs,synth-master");
1343
1344 config[num].always_on =
1345 of_property_read_bool(child, "always-on");
b7bbf6ec
RH
1346
1347 config[num].vdd_sel_bits = 0x08;
1348 if (data->clk[num].vddo_reg) {
1349 int vdd = regulator_get_voltage(data->clk[num].vddo_reg);
1350
1351 switch (vdd) {
1352 case 3300000:
1353 config[num].vdd_sel_bits |= 0 << 4;
1354 break;
1355 case 1800000:
1356 config[num].vdd_sel_bits |= 1 << 4;
1357 break;
1358 case 2500000:
1359 config[num].vdd_sel_bits |= 2 << 4;
1360 break;
1361 default:
1362 dev_err(&data->i2c_client->dev,
1363 "unsupported vddo voltage %d for %s\n",
1364 vdd, child->name);
1365 goto put_child;
1366 }
1367 } else {
1368 /* chip seems to default to 2.5V when not set */
1369 dev_warn(&data->i2c_client->dev,
1370 "no regulator set, defaulting vdd_sel to 2.5V for %s\n",
1371 child->name);
1372 config[num].vdd_sel_bits |= 2 << 4;
1373 }
3044a860
ML
1374 }
1375
1376 return 0;
1377
1378put_child:
1379 of_node_put(child);
1380 return -EINVAL;
1381}
1382
1383/*
1384 * If not pre-configured, calculate and set the PLL configuration manually.
1385 * For low-jitter performance, the PLL should be set such that the synthesizers
1386 * only need integer division.
1387 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1388 * the chip to generate any frequency on its outputs, but jitter performance
1389 * may be sub-optimal.
1390 */
1391static int si5341_initialize_pll(struct clk_si5341 *data)
1392{
1393 struct device_node *np = data->i2c_client->dev.of_node;
1394 u32 m_num = 0;
1395 u32 m_den = 0;
69275187 1396 int sel;
3044a860
ML
1397
1398 if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1399 dev_err(&data->i2c_client->dev,
1400 "PLL configuration requires silabs,pll-m-num\n");
1401 }
1402 if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1403 dev_err(&data->i2c_client->dev,
1404 "PLL configuration requires silabs,pll-m-den\n");
1405 }
1406
1407 if (!m_num || !m_den) {
1408 dev_err(&data->i2c_client->dev,
1409 "PLL configuration invalid, assume 14GHz\n");
69275187
ML
1410 sel = si5341_clk_get_selected_input(data);
1411 if (sel < 0)
1412 return sel;
1413
1414 m_den = clk_get_rate(data->input_clk[sel]) / 10;
3044a860
ML
1415 m_num = 1400000000;
1416 }
1417
1418 return si5341_encode_44_32(data->regmap,
1419 SI5341_PLL_M_NUM, m_num, m_den);
1420}
1421
69275187
ML
1422static int si5341_clk_select_active_input(struct clk_si5341 *data)
1423{
1424 int res;
1425 int err;
1426 int i;
1427
1428 res = si5341_clk_get_selected_input(data);
1429 if (res < 0)
1430 return res;
1431
1432 /* If the current register setting is invalid, pick the first input */
1433 if (!data->input_clk[res]) {
1434 dev_dbg(&data->i2c_client->dev,
1435 "Input %d not connected, rerouting\n", res);
1436 res = -ENODEV;
1437 for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1438 if (data->input_clk[i]) {
1439 res = i;
1440 break;
1441 }
1442 }
1443 if (res < 0) {
1444 dev_err(&data->i2c_client->dev,
1445 "No clock input available\n");
1446 return res;
1447 }
1448 }
1449
1450 /* Make sure the selected clock is also enabled and routed */
1451 err = si5341_clk_reparent(data, res);
1452 if (err < 0)
1453 return err;
1454
1455 err = clk_prepare_enable(data->input_clk[res]);
1456 if (err < 0)
1457 return err;
1458
1459 return res;
1460}
1461
9b13ff43
RH
1462static ssize_t input_present_show(struct device *dev,
1463 struct device_attribute *attr,
1464 char *buf)
1465{
1466 struct clk_si5341 *data = dev_get_drvdata(dev);
1467 u32 status;
1468 int res = regmap_read(data->regmap, SI5341_STATUS, &status);
1469
1470 if (res < 0)
1471 return res;
1472 res = !(status & SI5341_STATUS_LOSREF);
982c5953 1473 return sysfs_emit(buf, "%d\n", res);
9b13ff43
RH
1474}
1475static DEVICE_ATTR_RO(input_present);
1476
1477static ssize_t input_present_sticky_show(struct device *dev,
1478 struct device_attribute *attr,
1479 char *buf)
1480{
1481 struct clk_si5341 *data = dev_get_drvdata(dev);
1482 u32 status;
1483 int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status);
1484
1485 if (res < 0)
1486 return res;
1487 res = !(status & SI5341_STATUS_LOSREF);
982c5953 1488 return sysfs_emit(buf, "%d\n", res);
9b13ff43
RH
1489}
1490static DEVICE_ATTR_RO(input_present_sticky);
1491
1492static ssize_t pll_locked_show(struct device *dev,
1493 struct device_attribute *attr,
1494 char *buf)
1495{
1496 struct clk_si5341 *data = dev_get_drvdata(dev);
1497 u32 status;
1498 int res = regmap_read(data->regmap, SI5341_STATUS, &status);
1499
1500 if (res < 0)
1501 return res;
1502 res = !(status & SI5341_STATUS_LOL);
982c5953 1503 return sysfs_emit(buf, "%d\n", res);
9b13ff43
RH
1504}
1505static DEVICE_ATTR_RO(pll_locked);
1506
1507static ssize_t pll_locked_sticky_show(struct device *dev,
1508 struct device_attribute *attr,
1509 char *buf)
1510{
1511 struct clk_si5341 *data = dev_get_drvdata(dev);
1512 u32 status;
1513 int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status);
1514
1515 if (res < 0)
1516 return res;
1517 res = !(status & SI5341_STATUS_LOL);
982c5953 1518 return sysfs_emit(buf, "%d\n", res);
9b13ff43
RH
1519}
1520static DEVICE_ATTR_RO(pll_locked_sticky);
1521
1522static ssize_t clear_sticky_store(struct device *dev,
1523 struct device_attribute *attr,
1524 const char *buf, size_t count)
1525{
1526 struct clk_si5341 *data = dev_get_drvdata(dev);
1527 long val;
1528
1529 if (kstrtol(buf, 10, &val))
1530 return -EINVAL;
1531 if (val) {
1532 int res = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1533
1534 if (res < 0)
1535 return res;
1536 }
1537 return count;
1538}
1539static DEVICE_ATTR_WO(clear_sticky);
1540
1541static const struct attribute *si5341_attributes[] = {
1542 &dev_attr_input_present.attr,
1543 &dev_attr_input_present_sticky.attr,
1544 &dev_attr_pll_locked.attr,
1545 &dev_attr_pll_locked_sticky.attr,
1546 &dev_attr_clear_sticky.attr,
1547 NULL
1548};
1549
adc00f60 1550static int si5341_probe(struct i2c_client *client)
3044a860
ML
1551{
1552 struct clk_si5341 *data;
1553 struct clk_init_data init;
69275187 1554 struct clk *input;
3044a860
ML
1555 const char *root_clock_name;
1556 const char *synth_clock_names[SI5341_NUM_SYNTH];
1557 int err;
1558 unsigned int i;
1559 struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1560 bool initialization_required;
71dcc4d1 1561 u32 status;
3044a860
ML
1562
1563 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1564 if (!data)
1565 return -ENOMEM;
1566
1567 data->i2c_client = client;
1568
6e7d2de1
RH
1569 /* Must be done before otherwise touching hardware */
1570 err = si5341_wait_device_ready(client);
1571 if (err)
1572 return err;
1573
69275187
ML
1574 for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1575 input = devm_clk_get(&client->dev, si5341_input_clock_names[i]);
1576 if (IS_ERR(input)) {
1577 if (PTR_ERR(input) == -EPROBE_DEFER)
1578 return -EPROBE_DEFER;
1579 data->input_clk_name[i] = si5341_input_clock_names[i];
1580 } else {
1581 data->input_clk[i] = input;
1582 data->input_clk_name[i] = __clk_get_name(input);
1583 }
3044a860
ML
1584 }
1585
b7bbf6ec
RH
1586 for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1587 char reg_name[10];
1588
1589 snprintf(reg_name, sizeof(reg_name), "vddo%d", i);
1590 data->clk[i].vddo_reg = devm_regulator_get_optional(
1591 &client->dev, reg_name);
1592 if (IS_ERR(data->clk[i].vddo_reg)) {
1593 err = PTR_ERR(data->clk[i].vddo_reg);
1594 data->clk[i].vddo_reg = NULL;
1595 if (err == -ENODEV)
1596 continue;
1597 goto cleanup;
1598 } else {
1599 err = regulator_enable(data->clk[i].vddo_reg);
1600 if (err) {
1601 dev_err(&client->dev,
1602 "failed to enable %s regulator: %d\n",
1603 reg_name, err);
1604 data->clk[i].vddo_reg = NULL;
1605 goto cleanup;
1606 }
1607 }
1608 }
1609
1610 err = si5341_dt_parse_dt(data, config);
3044a860 1611 if (err)
b7bbf6ec 1612 goto cleanup;
3044a860
ML
1613
1614 if (of_property_read_string(client->dev.of_node, "clock-output-names",
1615 &init.name))
1616 init.name = client->dev.of_node->name;
1617 root_clock_name = init.name;
1618
1619 data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
b7bbf6ec
RH
1620 if (IS_ERR(data->regmap)) {
1621 err = PTR_ERR(data->regmap);
1622 goto cleanup;
1623 }
3044a860
ML
1624
1625 i2c_set_clientdata(client, data);
1626
1627 err = si5341_probe_chip_id(data);
1628 if (err < 0)
b7bbf6ec 1629 goto cleanup;
3044a860 1630
3044a860
ML
1631 if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1632 initialization_required = true;
1633 } else {
1634 err = si5341_is_programmed_already(data);
1635 if (err < 0)
b7bbf6ec 1636 goto cleanup;
3044a860
ML
1637
1638 initialization_required = !err;
1639 }
ab89a343
RH
1640 data->xaxb_ext_clk = of_property_read_bool(client->dev.of_node,
1641 "silabs,xaxb-ext-clk");
2f02c5e4
RH
1642 data->iovdd_33 = of_property_read_bool(client->dev.of_node,
1643 "silabs,iovdd-33");
3044a860
ML
1644
1645 if (initialization_required) {
1646 /* Populate the regmap cache in preparation for "cache only" */
1647 err = si5341_read_settings(data);
1648 if (err < 0)
b7bbf6ec 1649 goto cleanup;
3044a860
ML
1650
1651 err = si5341_send_preamble(data);
1652 if (err < 0)
b7bbf6ec 1653 goto cleanup;
3044a860
ML
1654
1655 /*
1656 * We intend to send all 'final' register values in a single
1657 * transaction. So cache all register writes until we're done
1658 * configuring.
1659 */
1660 regcache_cache_only(data->regmap, true);
1661
1662 /* Write the configuration pairs from the firmware blob */
1663 err = si5341_write_multiple(data, si5341_reg_defaults,
1664 ARRAY_SIZE(si5341_reg_defaults));
1665 if (err < 0)
b7bbf6ec 1666 goto cleanup;
69275187
ML
1667 }
1668
1669 /* Input must be up and running at this point */
1670 err = si5341_clk_select_active_input(data);
1671 if (err < 0)
b7bbf6ec 1672 goto cleanup;
3044a860 1673
69275187 1674 if (initialization_required) {
3044a860
ML
1675 /* PLL configuration is required */
1676 err = si5341_initialize_pll(data);
1677 if (err < 0)
b7bbf6ec 1678 goto cleanup;
3044a860
ML
1679 }
1680
1681 /* Register the PLL */
69275187
ML
1682 init.parent_names = data->input_clk_name;
1683 init.num_parents = SI5341_NUM_INPUTS;
3044a860
ML
1684 init.ops = &si5341_clk_ops;
1685 init.flags = 0;
1686 data->hw.init = &init;
1687
1688 err = devm_clk_hw_register(&client->dev, &data->hw);
1689 if (err) {
1690 dev_err(&client->dev, "clock registration failed\n");
b7bbf6ec 1691 goto cleanup;
3044a860
ML
1692 }
1693
1694 init.num_parents = 1;
1695 init.parent_names = &root_clock_name;
1696 init.ops = &si5341_synth_clk_ops;
1697 for (i = 0; i < data->num_synth; ++i) {
1698 synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1699 "%s.N%u", client->dev.of_node->name, i);
1700 init.name = synth_clock_names[i];
1701 data->synth[i].index = i;
1702 data->synth[i].data = data;
1703 data->synth[i].hw.init = &init;
1704 err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1705 if (err) {
1706 dev_err(&client->dev,
1707 "synth N%u registration failed\n", i);
1708 }
1709 }
1710
1711 init.num_parents = data->num_synth;
1712 init.parent_names = synth_clock_names;
1713 init.ops = &si5341_output_clk_ops;
1714 for (i = 0; i < data->num_outputs; ++i) {
1715 init.name = kasprintf(GFP_KERNEL, "%s.%d",
1716 client->dev.of_node->name, i);
1717 init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1718 data->clk[i].index = i;
1719 data->clk[i].data = data;
1720 data->clk[i].hw.init = &init;
1721 if (config[i].out_format_drv_bits & 0x07) {
1722 regmap_write(data->regmap,
1723 SI5341_OUT_FORMAT(&data->clk[i]),
1724 config[i].out_format_drv_bits);
1725 regmap_write(data->regmap,
1726 SI5341_OUT_CM(&data->clk[i]),
1727 config[i].out_cm_ampl_bits);
b7bbf6ec
RH
1728 regmap_update_bits(data->regmap,
1729 SI5341_OUT_MUX_SEL(&data->clk[i]),
1730 SI5341_OUT_MUX_VDD_SEL_MASK,
1731 config[i].vdd_sel_bits);
3044a860
ML
1732 }
1733 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1734 kfree(init.name); /* clock framework made a copy of the name */
1735 if (err) {
1736 dev_err(&client->dev,
1737 "output %u registration failed\n", i);
b7bbf6ec 1738 goto cleanup;
3044a860
ML
1739 }
1740 if (config[i].always_on)
1741 clk_prepare(data->clk[i].hw.clk);
1742 }
1743
49a8f2bc 1744 err = devm_of_clk_add_hw_provider(&client->dev, of_clk_si5341_get,
3044a860
ML
1745 data);
1746 if (err) {
1747 dev_err(&client->dev, "unable to add clk provider\n");
b7bbf6ec 1748 goto cleanup;
3044a860
ML
1749 }
1750
1751 if (initialization_required) {
1752 /* Synchronize */
1753 regcache_cache_only(data->regmap, false);
1754 err = regcache_sync(data->regmap);
1755 if (err < 0)
b7bbf6ec 1756 goto cleanup;
3044a860
ML
1757
1758 err = si5341_finalize_defaults(data);
1759 if (err < 0)
b7bbf6ec 1760 goto cleanup;
3044a860
ML
1761 }
1762
71dcc4d1
RH
1763 /* wait for device to report input clock present and PLL lock */
1764 err = regmap_read_poll_timeout(data->regmap, SI5341_STATUS, status,
1765 !(status & (SI5341_STATUS_LOSREF | SI5341_STATUS_LOL)),
1766 10000, 250000);
1767 if (err) {
1768 dev_err(&client->dev, "Error waiting for input clock or PLL lock\n");
b7bbf6ec 1769 goto cleanup;
71dcc4d1
RH
1770 }
1771
1772 /* clear sticky alarm bits from initialization */
1773 err = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1774 if (err) {
1775 dev_err(&client->dev, "unable to clear sticky status\n");
b7bbf6ec 1776 goto cleanup;
71dcc4d1
RH
1777 }
1778
9b13ff43
RH
1779 err = sysfs_create_files(&client->dev.kobj, si5341_attributes);
1780 if (err) {
1781 dev_err(&client->dev, "unable to create sysfs files\n");
1782 goto cleanup;
1783 }
1784
3044a860
ML
1785 /* Free the names, clk framework makes copies */
1786 for (i = 0; i < data->num_synth; ++i)
1787 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1788
1789 return 0;
b7bbf6ec
RH
1790
1791cleanup:
1792 for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1793 if (data->clk[i].vddo_reg)
1794 regulator_disable(data->clk[i].vddo_reg);
1795 }
1796 return err;
1797}
1798
ed5c2f5f 1799static void si5341_remove(struct i2c_client *client)
b7bbf6ec
RH
1800{
1801 struct clk_si5341 *data = i2c_get_clientdata(client);
1802 int i;
1803
9b13ff43
RH
1804 sysfs_remove_files(&client->dev.kobj, si5341_attributes);
1805
b7bbf6ec
RH
1806 for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1807 if (data->clk[i].vddo_reg)
1808 regulator_disable(data->clk[i].vddo_reg);
1809 }
3044a860
ML
1810}
1811
1812static const struct i2c_device_id si5341_id[] = {
1813 { "si5340", 0 },
1814 { "si5341", 1 },
f9eec2ea
ML
1815 { "si5342", 2 },
1816 { "si5344", 4 },
1817 { "si5345", 5 },
3044a860
ML
1818 { }
1819};
1820MODULE_DEVICE_TABLE(i2c, si5341_id);
1821
1822static const struct of_device_id clk_si5341_of_match[] = {
1823 { .compatible = "silabs,si5340" },
1824 { .compatible = "silabs,si5341" },
f9eec2ea
ML
1825 { .compatible = "silabs,si5342" },
1826 { .compatible = "silabs,si5344" },
1827 { .compatible = "silabs,si5345" },
3044a860
ML
1828 { }
1829};
1830MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1831
1832static struct i2c_driver si5341_driver = {
1833 .driver = {
1834 .name = "si5341",
1835 .of_match_table = clk_si5341_of_match,
1836 },
adc00f60 1837 .probe_new = si5341_probe,
b7bbf6ec 1838 .remove = si5341_remove,
3044a860
ML
1839 .id_table = si5341_id,
1840};
1841module_i2c_driver(si5341_driver);
1842
1843MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1844MODULE_DESCRIPTION("Si5341 driver");
1845MODULE_LICENSE("GPL");