clk: bcm2835: expose raw clock-registers via debugfs
[linux-block.git] / drivers / clk / bcm / clk-bcm2835.c
CommitLineData
75fabc3f 1/*
41691b88 2 * Copyright (C) 2010,2015 Broadcom
75fabc3f
SA
3 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
75fabc3f
SA
15 */
16
41691b88
EA
17/**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19 *
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
28 *
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
35 */
36
75fabc3f
SA
37#include <linux/clk-provider.h>
38#include <linux/clkdev.h>
39#include <linux/clk/bcm2835.h>
96bf9c69 40#include <linux/debugfs.h>
41691b88 41#include <linux/module.h>
526d239c 42#include <linux/of.h>
41691b88
EA
43#include <linux/platform_device.h>
44#include <linux/slab.h>
45#include <dt-bindings/clock/bcm2835.h>
46
47#define CM_PASSWORD 0x5a000000
48
49#define CM_GNRICCTL 0x000
50#define CM_GNRICDIV 0x004
51# define CM_DIV_FRAC_BITS 12
959ca92a 52# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
41691b88
EA
53
54#define CM_VPUCTL 0x008
55#define CM_VPUDIV 0x00c
56#define CM_SYSCTL 0x010
57#define CM_SYSDIV 0x014
58#define CM_PERIACTL 0x018
59#define CM_PERIADIV 0x01c
60#define CM_PERIICTL 0x020
61#define CM_PERIIDIV 0x024
62#define CM_H264CTL 0x028
63#define CM_H264DIV 0x02c
64#define CM_ISPCTL 0x030
65#define CM_ISPDIV 0x034
66#define CM_V3DCTL 0x038
67#define CM_V3DDIV 0x03c
68#define CM_CAM0CTL 0x040
69#define CM_CAM0DIV 0x044
70#define CM_CAM1CTL 0x048
71#define CM_CAM1DIV 0x04c
72#define CM_CCP2CTL 0x050
73#define CM_CCP2DIV 0x054
74#define CM_DSI0ECTL 0x058
75#define CM_DSI0EDIV 0x05c
76#define CM_DSI0PCTL 0x060
77#define CM_DSI0PDIV 0x064
78#define CM_DPICTL 0x068
79#define CM_DPIDIV 0x06c
80#define CM_GP0CTL 0x070
81#define CM_GP0DIV 0x074
82#define CM_GP1CTL 0x078
83#define CM_GP1DIV 0x07c
84#define CM_GP2CTL 0x080
85#define CM_GP2DIV 0x084
86#define CM_HSMCTL 0x088
87#define CM_HSMDIV 0x08c
88#define CM_OTPCTL 0x090
89#define CM_OTPDIV 0x094
2103a215
MS
90#define CM_PCMCTL 0x098
91#define CM_PCMDIV 0x09c
41691b88
EA
92#define CM_PWMCTL 0x0a0
93#define CM_PWMDIV 0x0a4
2103a215
MS
94#define CM_SLIMCTL 0x0a8
95#define CM_SLIMDIV 0x0ac
41691b88
EA
96#define CM_SMICTL 0x0b0
97#define CM_SMIDIV 0x0b4
2103a215
MS
98/* no definition for 0x0b8 and 0x0bc */
99#define CM_TCNTCTL 0x0c0
100#define CM_TCNTDIV 0x0c4
101#define CM_TECCTL 0x0c8
102#define CM_TECDIV 0x0cc
103#define CM_TD0CTL 0x0d0
104#define CM_TD0DIV 0x0d4
105#define CM_TD1CTL 0x0d8
106#define CM_TD1DIV 0x0dc
41691b88
EA
107#define CM_TSENSCTL 0x0e0
108#define CM_TSENSDIV 0x0e4
109#define CM_TIMERCTL 0x0e8
110#define CM_TIMERDIV 0x0ec
111#define CM_UARTCTL 0x0f0
112#define CM_UARTDIV 0x0f4
113#define CM_VECCTL 0x0f8
114#define CM_VECDIV 0x0fc
115#define CM_PULSECTL 0x190
116#define CM_PULSEDIV 0x194
117#define CM_SDCCTL 0x1a8
118#define CM_SDCDIV 0x1ac
119#define CM_ARMCTL 0x1b0
120#define CM_EMMCCTL 0x1c0
121#define CM_EMMCDIV 0x1c4
122
123/* General bits for the CM_*CTL regs */
124# define CM_ENABLE BIT(4)
125# define CM_KILL BIT(5)
126# define CM_GATE_BIT 6
127# define CM_GATE BIT(CM_GATE_BIT)
128# define CM_BUSY BIT(7)
129# define CM_BUSYD BIT(8)
959ca92a 130# define CM_FRAC BIT(9)
41691b88
EA
131# define CM_SRC_SHIFT 0
132# define CM_SRC_BITS 4
133# define CM_SRC_MASK 0xf
134# define CM_SRC_GND 0
135# define CM_SRC_OSC 1
136# define CM_SRC_TESTDEBUG0 2
137# define CM_SRC_TESTDEBUG1 3
138# define CM_SRC_PLLA_CORE 4
139# define CM_SRC_PLLA_PER 4
140# define CM_SRC_PLLC_CORE0 5
141# define CM_SRC_PLLC_PER 5
142# define CM_SRC_PLLC_CORE1 8
143# define CM_SRC_PLLD_CORE 6
144# define CM_SRC_PLLD_PER 6
145# define CM_SRC_PLLH_AUX 7
146# define CM_SRC_PLLC_CORE1 8
147# define CM_SRC_PLLC_CORE2 9
148
149#define CM_OSCCOUNT 0x100
150
151#define CM_PLLA 0x104
152# define CM_PLL_ANARST BIT(8)
153# define CM_PLLA_HOLDPER BIT(7)
154# define CM_PLLA_LOADPER BIT(6)
155# define CM_PLLA_HOLDCORE BIT(5)
156# define CM_PLLA_LOADCORE BIT(4)
157# define CM_PLLA_HOLDCCP2 BIT(3)
158# define CM_PLLA_LOADCCP2 BIT(2)
159# define CM_PLLA_HOLDDSI0 BIT(1)
160# define CM_PLLA_LOADDSI0 BIT(0)
161
162#define CM_PLLC 0x108
163# define CM_PLLC_HOLDPER BIT(7)
164# define CM_PLLC_LOADPER BIT(6)
165# define CM_PLLC_HOLDCORE2 BIT(5)
166# define CM_PLLC_LOADCORE2 BIT(4)
167# define CM_PLLC_HOLDCORE1 BIT(3)
168# define CM_PLLC_LOADCORE1 BIT(2)
169# define CM_PLLC_HOLDCORE0 BIT(1)
170# define CM_PLLC_LOADCORE0 BIT(0)
171
172#define CM_PLLD 0x10c
173# define CM_PLLD_HOLDPER BIT(7)
174# define CM_PLLD_LOADPER BIT(6)
175# define CM_PLLD_HOLDCORE BIT(5)
176# define CM_PLLD_LOADCORE BIT(4)
177# define CM_PLLD_HOLDDSI1 BIT(3)
178# define CM_PLLD_LOADDSI1 BIT(2)
179# define CM_PLLD_HOLDDSI0 BIT(1)
180# define CM_PLLD_LOADDSI0 BIT(0)
181
182#define CM_PLLH 0x110
183# define CM_PLLH_LOADRCAL BIT(2)
184# define CM_PLLH_LOADAUX BIT(1)
185# define CM_PLLH_LOADPIX BIT(0)
186
187#define CM_LOCK 0x114
188# define CM_LOCK_FLOCKH BIT(12)
189# define CM_LOCK_FLOCKD BIT(11)
190# define CM_LOCK_FLOCKC BIT(10)
191# define CM_LOCK_FLOCKB BIT(9)
192# define CM_LOCK_FLOCKA BIT(8)
193
194#define CM_EVENT 0x118
195#define CM_DSI1ECTL 0x158
196#define CM_DSI1EDIV 0x15c
197#define CM_DSI1PCTL 0x160
198#define CM_DSI1PDIV 0x164
199#define CM_DFTCTL 0x168
200#define CM_DFTDIV 0x16c
201
202#define CM_PLLB 0x170
203# define CM_PLLB_HOLDARM BIT(1)
204# define CM_PLLB_LOADARM BIT(0)
205
206#define A2W_PLLA_CTRL 0x1100
207#define A2W_PLLC_CTRL 0x1120
208#define A2W_PLLD_CTRL 0x1140
209#define A2W_PLLH_CTRL 0x1160
210#define A2W_PLLB_CTRL 0x11e0
211# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
212# define A2W_PLL_CTRL_PWRDN BIT(16)
213# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
214# define A2W_PLL_CTRL_PDIV_SHIFT 12
215# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
216# define A2W_PLL_CTRL_NDIV_SHIFT 0
217
218#define A2W_PLLA_ANA0 0x1010
219#define A2W_PLLC_ANA0 0x1030
220#define A2W_PLLD_ANA0 0x1050
221#define A2W_PLLH_ANA0 0x1070
222#define A2W_PLLB_ANA0 0x10f0
223
224#define A2W_PLL_KA_SHIFT 7
225#define A2W_PLL_KA_MASK GENMASK(9, 7)
226#define A2W_PLL_KI_SHIFT 19
227#define A2W_PLL_KI_MASK GENMASK(21, 19)
228#define A2W_PLL_KP_SHIFT 15
229#define A2W_PLL_KP_MASK GENMASK(18, 15)
230
231#define A2W_PLLH_KA_SHIFT 19
232#define A2W_PLLH_KA_MASK GENMASK(21, 19)
233#define A2W_PLLH_KI_LOW_SHIFT 22
234#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
235#define A2W_PLLH_KI_HIGH_SHIFT 0
236#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
237#define A2W_PLLH_KP_SHIFT 1
238#define A2W_PLLH_KP_MASK GENMASK(4, 1)
239
240#define A2W_XOSC_CTRL 0x1190
241# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
242# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
243# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
244# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
245# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
246# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
247# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
248# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
249
250#define A2W_PLLA_FRAC 0x1200
251#define A2W_PLLC_FRAC 0x1220
252#define A2W_PLLD_FRAC 0x1240
253#define A2W_PLLH_FRAC 0x1260
254#define A2W_PLLB_FRAC 0x12e0
255# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
256# define A2W_PLL_FRAC_BITS 20
257
258#define A2W_PLL_CHANNEL_DISABLE BIT(8)
259#define A2W_PLL_DIV_BITS 8
260#define A2W_PLL_DIV_SHIFT 0
261
262#define A2W_PLLA_DSI0 0x1300
263#define A2W_PLLA_CORE 0x1400
264#define A2W_PLLA_PER 0x1500
265#define A2W_PLLA_CCP2 0x1600
266
267#define A2W_PLLC_CORE2 0x1320
268#define A2W_PLLC_CORE1 0x1420
269#define A2W_PLLC_PER 0x1520
270#define A2W_PLLC_CORE0 0x1620
271
272#define A2W_PLLD_DSI0 0x1340
273#define A2W_PLLD_CORE 0x1440
274#define A2W_PLLD_PER 0x1540
275#define A2W_PLLD_DSI1 0x1640
276
277#define A2W_PLLH_AUX 0x1360
278#define A2W_PLLH_RCAL 0x1460
279#define A2W_PLLH_PIX 0x1560
280#define A2W_PLLH_STS 0x1660
281
282#define A2W_PLLH_CTRLR 0x1960
283#define A2W_PLLH_FRACR 0x1a60
284#define A2W_PLLH_AUXR 0x1b60
285#define A2W_PLLH_RCALR 0x1c60
286#define A2W_PLLH_PIXR 0x1d60
287#define A2W_PLLH_STSR 0x1e60
288
289#define A2W_PLLB_ARM 0x13e0
290#define A2W_PLLB_SP0 0x14e0
291#define A2W_PLLB_SP1 0x15e0
292#define A2W_PLLB_SP2 0x16e0
293
294#define LOCK_TIMEOUT_NS 100000000
295#define BCM2835_MAX_FB_RATE 1750000000u
296
297struct bcm2835_cprman {
298 struct device *dev;
299 void __iomem *regs;
6e1e60da 300 spinlock_t regs_lock; /* spinlock for all clocks */
41691b88
EA
301 const char *osc_name;
302
303 struct clk_onecell_data onecell;
304 struct clk *clks[BCM2835_CLOCK_COUNT];
305};
306
307static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
308{
309 writel(CM_PASSWORD | val, cprman->regs + reg);
310}
311
312static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
313{
314 return readl(cprman->regs + reg);
315}
526d239c 316
96bf9c69
MS
317static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
318 struct debugfs_reg32 *regs, size_t nregs,
319 struct dentry *dentry)
320{
321 struct dentry *regdump;
322 struct debugfs_regset32 *regset;
323
324 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
325 if (!regset)
326 return -ENOMEM;
327
328 regset->regs = regs;
329 regset->nregs = nregs;
330 regset->base = cprman->regs + base;
331
332 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
333 regset);
334
335 return regdump ? 0 : -ENOMEM;
336}
337
75fabc3f
SA
338/*
339 * These are fixed clocks. They're probably not all root clocks and it may
340 * be possible to turn them on and off but until this is mapped out better
341 * it's the only way they can be used.
342 */
343void __init bcm2835_init_clocks(void)
344{
345 struct clk *clk;
346 int ret;
347
bd41aa67 348 clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
0de9f23a 349 if (IS_ERR(clk))
75fabc3f
SA
350 pr_err("apb_pclk not registered\n");
351
bd41aa67 352 clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
0de9f23a 353 if (IS_ERR(clk))
75fabc3f
SA
354 pr_err("uart0_pclk not registered\n");
355 ret = clk_register_clkdev(clk, NULL, "20201000.uart");
356 if (ret)
357 pr_err("uart0_pclk alias not registered\n");
358
bd41aa67 359 clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
0de9f23a 360 if (IS_ERR(clk))
75fabc3f
SA
361 pr_err("uart1_pclk not registered\n");
362 ret = clk_register_clkdev(clk, NULL, "20215000.uart");
363 if (ret)
686ea585 364 pr_err("uart1_pclk alias not registered\n");
75fabc3f 365}
41691b88
EA
366
367struct bcm2835_pll_data {
368 const char *name;
369 u32 cm_ctrl_reg;
370 u32 a2w_ctrl_reg;
371 u32 frac_reg;
372 u32 ana_reg_base;
373 u32 reference_enable_mask;
374 /* Bit in CM_LOCK to indicate when the PLL has locked. */
375 u32 lock_mask;
376
377 const struct bcm2835_pll_ana_bits *ana;
378
379 unsigned long min_rate;
380 unsigned long max_rate;
381 /*
382 * Highest rate for the VCO before we have to use the
383 * pre-divide-by-2.
384 */
385 unsigned long max_fb_rate;
386};
387
388struct bcm2835_pll_ana_bits {
389 u32 mask0;
390 u32 set0;
391 u32 mask1;
392 u32 set1;
393 u32 mask3;
394 u32 set3;
395 u32 fb_prediv_mask;
396};
397
398static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
399 .mask0 = 0,
400 .set0 = 0,
401 .mask1 = ~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
402 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
403 .mask3 = ~A2W_PLL_KA_MASK,
404 .set3 = (2 << A2W_PLL_KA_SHIFT),
405 .fb_prediv_mask = BIT(14),
406};
407
408static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
409 .mask0 = ~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
410 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
411 .mask1 = ~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
412 .set1 = (6 << A2W_PLLH_KP_SHIFT),
413 .mask3 = 0,
414 .set3 = 0,
415 .fb_prediv_mask = BIT(11),
416};
417
418/*
419 * PLLA is the auxiliary PLL, used to drive the CCP2 (Compact Camera
420 * Port 2) transmitter clock.
421 *
422 * It is in the PX LDO power domain, which is on when the AUDIO domain
423 * is on.
424 */
425static const struct bcm2835_pll_data bcm2835_plla_data = {
426 .name = "plla",
427 .cm_ctrl_reg = CM_PLLA,
428 .a2w_ctrl_reg = A2W_PLLA_CTRL,
429 .frac_reg = A2W_PLLA_FRAC,
430 .ana_reg_base = A2W_PLLA_ANA0,
431 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
432 .lock_mask = CM_LOCK_FLOCKA,
433
434 .ana = &bcm2835_ana_default,
435
436 .min_rate = 600000000u,
437 .max_rate = 2400000000u,
438 .max_fb_rate = BCM2835_MAX_FB_RATE,
439};
440
441/* PLLB is used for the ARM's clock. */
442static const struct bcm2835_pll_data bcm2835_pllb_data = {
443 .name = "pllb",
444 .cm_ctrl_reg = CM_PLLB,
445 .a2w_ctrl_reg = A2W_PLLB_CTRL,
446 .frac_reg = A2W_PLLB_FRAC,
447 .ana_reg_base = A2W_PLLB_ANA0,
448 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
449 .lock_mask = CM_LOCK_FLOCKB,
450
451 .ana = &bcm2835_ana_default,
452
453 .min_rate = 600000000u,
454 .max_rate = 3000000000u,
455 .max_fb_rate = BCM2835_MAX_FB_RATE,
456};
457
458/*
459 * PLLC is the core PLL, used to drive the core VPU clock.
460 *
461 * It is in the PX LDO power domain, which is on when the AUDIO domain
462 * is on.
463*/
464static const struct bcm2835_pll_data bcm2835_pllc_data = {
465 .name = "pllc",
466 .cm_ctrl_reg = CM_PLLC,
467 .a2w_ctrl_reg = A2W_PLLC_CTRL,
468 .frac_reg = A2W_PLLC_FRAC,
469 .ana_reg_base = A2W_PLLC_ANA0,
470 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
471 .lock_mask = CM_LOCK_FLOCKC,
472
473 .ana = &bcm2835_ana_default,
474
475 .min_rate = 600000000u,
476 .max_rate = 3000000000u,
477 .max_fb_rate = BCM2835_MAX_FB_RATE,
478};
479
480/*
481 * PLLD is the display PLL, used to drive DSI display panels.
482 *
483 * It is in the PX LDO power domain, which is on when the AUDIO domain
484 * is on.
485 */
486static const struct bcm2835_pll_data bcm2835_plld_data = {
487 .name = "plld",
488 .cm_ctrl_reg = CM_PLLD,
489 .a2w_ctrl_reg = A2W_PLLD_CTRL,
490 .frac_reg = A2W_PLLD_FRAC,
491 .ana_reg_base = A2W_PLLD_ANA0,
492 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
493 .lock_mask = CM_LOCK_FLOCKD,
494
495 .ana = &bcm2835_ana_default,
496
497 .min_rate = 600000000u,
498 .max_rate = 2400000000u,
499 .max_fb_rate = BCM2835_MAX_FB_RATE,
500};
501
502/*
503 * PLLH is used to supply the pixel clock or the AUX clock for the TV
504 * encoder.
505 *
506 * It is in the HDMI power domain.
507 */
508static const struct bcm2835_pll_data bcm2835_pllh_data = {
509 "pllh",
510 .cm_ctrl_reg = CM_PLLH,
511 .a2w_ctrl_reg = A2W_PLLH_CTRL,
512 .frac_reg = A2W_PLLH_FRAC,
513 .ana_reg_base = A2W_PLLH_ANA0,
514 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
515 .lock_mask = CM_LOCK_FLOCKH,
516
517 .ana = &bcm2835_ana_pllh,
518
519 .min_rate = 600000000u,
520 .max_rate = 3000000000u,
521 .max_fb_rate = BCM2835_MAX_FB_RATE,
522};
523
524struct bcm2835_pll_divider_data {
525 const char *name;
526 const struct bcm2835_pll_data *source_pll;
527 u32 cm_reg;
528 u32 a2w_reg;
529
530 u32 load_mask;
531 u32 hold_mask;
532 u32 fixed_divider;
533};
534
535static const struct bcm2835_pll_divider_data bcm2835_plla_core_data = {
536 .name = "plla_core",
537 .source_pll = &bcm2835_plla_data,
538 .cm_reg = CM_PLLA,
539 .a2w_reg = A2W_PLLA_CORE,
540 .load_mask = CM_PLLA_LOADCORE,
541 .hold_mask = CM_PLLA_HOLDCORE,
542 .fixed_divider = 1,
543};
544
545static const struct bcm2835_pll_divider_data bcm2835_plla_per_data = {
546 .name = "plla_per",
547 .source_pll = &bcm2835_plla_data,
548 .cm_reg = CM_PLLA,
549 .a2w_reg = A2W_PLLA_PER,
550 .load_mask = CM_PLLA_LOADPER,
551 .hold_mask = CM_PLLA_HOLDPER,
552 .fixed_divider = 1,
553};
554
555static const struct bcm2835_pll_divider_data bcm2835_pllb_arm_data = {
556 .name = "pllb_arm",
557 .source_pll = &bcm2835_pllb_data,
558 .cm_reg = CM_PLLB,
559 .a2w_reg = A2W_PLLB_ARM,
560 .load_mask = CM_PLLB_LOADARM,
561 .hold_mask = CM_PLLB_HOLDARM,
562 .fixed_divider = 1,
563};
564
565static const struct bcm2835_pll_divider_data bcm2835_pllc_core0_data = {
566 .name = "pllc_core0",
567 .source_pll = &bcm2835_pllc_data,
568 .cm_reg = CM_PLLC,
569 .a2w_reg = A2W_PLLC_CORE0,
570 .load_mask = CM_PLLC_LOADCORE0,
571 .hold_mask = CM_PLLC_HOLDCORE0,
572 .fixed_divider = 1,
573};
574
575static const struct bcm2835_pll_divider_data bcm2835_pllc_core1_data = {
576 .name = "pllc_core1", .source_pll = &bcm2835_pllc_data,
577 .cm_reg = CM_PLLC, A2W_PLLC_CORE1,
578 .load_mask = CM_PLLC_LOADCORE1,
579 .hold_mask = CM_PLLC_HOLDCORE1,
580 .fixed_divider = 1,
581};
582
583static const struct bcm2835_pll_divider_data bcm2835_pllc_core2_data = {
584 .name = "pllc_core2",
585 .source_pll = &bcm2835_pllc_data,
586 .cm_reg = CM_PLLC,
587 .a2w_reg = A2W_PLLC_CORE2,
588 .load_mask = CM_PLLC_LOADCORE2,
589 .hold_mask = CM_PLLC_HOLDCORE2,
590 .fixed_divider = 1,
591};
592
593static const struct bcm2835_pll_divider_data bcm2835_pllc_per_data = {
594 .name = "pllc_per",
595 .source_pll = &bcm2835_pllc_data,
596 .cm_reg = CM_PLLC,
597 .a2w_reg = A2W_PLLC_PER,
598 .load_mask = CM_PLLC_LOADPER,
599 .hold_mask = CM_PLLC_HOLDPER,
600 .fixed_divider = 1,
601};
602
603static const struct bcm2835_pll_divider_data bcm2835_plld_core_data = {
604 .name = "plld_core",
605 .source_pll = &bcm2835_plld_data,
606 .cm_reg = CM_PLLD,
607 .a2w_reg = A2W_PLLD_CORE,
608 .load_mask = CM_PLLD_LOADCORE,
609 .hold_mask = CM_PLLD_HOLDCORE,
610 .fixed_divider = 1,
611};
612
613static const struct bcm2835_pll_divider_data bcm2835_plld_per_data = {
614 .name = "plld_per",
615 .source_pll = &bcm2835_plld_data,
616 .cm_reg = CM_PLLD,
617 .a2w_reg = A2W_PLLD_PER,
618 .load_mask = CM_PLLD_LOADPER,
619 .hold_mask = CM_PLLD_HOLDPER,
620 .fixed_divider = 1,
621};
622
623static const struct bcm2835_pll_divider_data bcm2835_pllh_rcal_data = {
624 .name = "pllh_rcal",
625 .source_pll = &bcm2835_pllh_data,
626 .cm_reg = CM_PLLH,
627 .a2w_reg = A2W_PLLH_RCAL,
628 .load_mask = CM_PLLH_LOADRCAL,
629 .hold_mask = 0,
630 .fixed_divider = 10,
631};
632
633static const struct bcm2835_pll_divider_data bcm2835_pllh_aux_data = {
634 .name = "pllh_aux",
635 .source_pll = &bcm2835_pllh_data,
636 .cm_reg = CM_PLLH,
637 .a2w_reg = A2W_PLLH_AUX,
638 .load_mask = CM_PLLH_LOADAUX,
639 .hold_mask = 0,
640 .fixed_divider = 10,
641};
642
643static const struct bcm2835_pll_divider_data bcm2835_pllh_pix_data = {
644 .name = "pllh_pix",
645 .source_pll = &bcm2835_pllh_data,
646 .cm_reg = CM_PLLH,
647 .a2w_reg = A2W_PLLH_PIX,
648 .load_mask = CM_PLLH_LOADPIX,
649 .hold_mask = 0,
650 .fixed_divider = 10,
651};
652
653struct bcm2835_clock_data {
654 const char *name;
655
656 const char *const *parents;
657 int num_mux_parents;
658
659 u32 ctl_reg;
660 u32 div_reg;
661
662 /* Number of integer bits in the divider */
663 u32 int_bits;
664 /* Number of fractional bits in the divider */
665 u32 frac_bits;
666
667 bool is_vpu_clock;
959ca92a 668 bool is_mash_clock;
41691b88
EA
669};
670
671static const char *const bcm2835_clock_per_parents[] = {
672 "gnd",
673 "xosc",
674 "testdebug0",
675 "testdebug1",
676 "plla_per",
677 "pllc_per",
678 "plld_per",
679 "pllh_aux",
680};
681
682static const char *const bcm2835_clock_vpu_parents[] = {
683 "gnd",
684 "xosc",
685 "testdebug0",
686 "testdebug1",
687 "plla_core",
688 "pllc_core0",
689 "plld_core",
690 "pllh_aux",
691 "pllc_core1",
692 "pllc_core2",
693};
694
695static const char *const bcm2835_clock_osc_parents[] = {
696 "gnd",
697 "xosc",
698 "testdebug0",
699 "testdebug1"
700};
701
702/*
703 * Used for a 1Mhz clock for the system clocksource, and also used by
704 * the watchdog timer and the camera pulse generator.
705 */
706static const struct bcm2835_clock_data bcm2835_clock_timer_data = {
707 .name = "timer",
708 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
709 .parents = bcm2835_clock_osc_parents,
710 .ctl_reg = CM_TIMERCTL,
711 .div_reg = CM_TIMERDIV,
712 .int_bits = 6,
713 .frac_bits = 12,
714};
715
716/* One Time Programmable Memory clock. Maximum 10Mhz. */
717static const struct bcm2835_clock_data bcm2835_clock_otp_data = {
718 .name = "otp",
719 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
720 .parents = bcm2835_clock_osc_parents,
721 .ctl_reg = CM_OTPCTL,
722 .div_reg = CM_OTPDIV,
723 .int_bits = 4,
724 .frac_bits = 0,
725};
726
727/*
728 * VPU clock. This doesn't have an enable bit, since it drives the
729 * bus for everything else, and is special so it doesn't need to be
730 * gated for rate changes. It is also known as "clk_audio" in various
731 * hardware documentation.
732 */
733static const struct bcm2835_clock_data bcm2835_clock_vpu_data = {
734 .name = "vpu",
735 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
736 .parents = bcm2835_clock_vpu_parents,
737 .ctl_reg = CM_VPUCTL,
738 .div_reg = CM_VPUDIV,
739 .int_bits = 12,
740 .frac_bits = 8,
741 .is_vpu_clock = true,
742};
743
744static const struct bcm2835_clock_data bcm2835_clock_v3d_data = {
745 .name = "v3d",
746 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
747 .parents = bcm2835_clock_vpu_parents,
748 .ctl_reg = CM_V3DCTL,
749 .div_reg = CM_V3DDIV,
750 .int_bits = 4,
751 .frac_bits = 8,
752};
753
754static const struct bcm2835_clock_data bcm2835_clock_isp_data = {
755 .name = "isp",
756 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
757 .parents = bcm2835_clock_vpu_parents,
758 .ctl_reg = CM_ISPCTL,
759 .div_reg = CM_ISPDIV,
760 .int_bits = 4,
761 .frac_bits = 8,
762};
763
764static const struct bcm2835_clock_data bcm2835_clock_h264_data = {
765 .name = "h264",
766 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
767 .parents = bcm2835_clock_vpu_parents,
768 .ctl_reg = CM_H264CTL,
769 .div_reg = CM_H264DIV,
770 .int_bits = 4,
771 .frac_bits = 8,
772};
773
774/* TV encoder clock. Only operating frequency is 108Mhz. */
775static const struct bcm2835_clock_data bcm2835_clock_vec_data = {
776 .name = "vec",
777 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
778 .parents = bcm2835_clock_per_parents,
779 .ctl_reg = CM_VECCTL,
780 .div_reg = CM_VECDIV,
781 .int_bits = 4,
782 .frac_bits = 0,
783};
784
785static const struct bcm2835_clock_data bcm2835_clock_uart_data = {
786 .name = "uart",
787 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
788 .parents = bcm2835_clock_per_parents,
789 .ctl_reg = CM_UARTCTL,
790 .div_reg = CM_UARTDIV,
791 .int_bits = 10,
792 .frac_bits = 12,
793};
794
795/* HDMI state machine */
796static const struct bcm2835_clock_data bcm2835_clock_hsm_data = {
797 .name = "hsm",
798 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
799 .parents = bcm2835_clock_per_parents,
800 .ctl_reg = CM_HSMCTL,
801 .div_reg = CM_HSMDIV,
802 .int_bits = 4,
803 .frac_bits = 8,
804};
805
806/*
807 * Secondary SDRAM clock. Used for low-voltage modes when the PLL in
808 * the SDRAM controller can't be used.
809 */
810static const struct bcm2835_clock_data bcm2835_clock_sdram_data = {
811 .name = "sdram",
812 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
813 .parents = bcm2835_clock_vpu_parents,
814 .ctl_reg = CM_SDCCTL,
815 .div_reg = CM_SDCDIV,
816 .int_bits = 6,
817 .frac_bits = 0,
818};
819
820/* Clock for the temperature sensor. Generally run at 2Mhz, max 5Mhz. */
821static const struct bcm2835_clock_data bcm2835_clock_tsens_data = {
822 .name = "tsens",
823 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
824 .parents = bcm2835_clock_osc_parents,
825 .ctl_reg = CM_TSENSCTL,
826 .div_reg = CM_TSENSDIV,
827 .int_bits = 5,
828 .frac_bits = 0,
829};
830
831/* Arasan EMMC clock */
832static const struct bcm2835_clock_data bcm2835_clock_emmc_data = {
833 .name = "emmc",
834 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
835 .parents = bcm2835_clock_per_parents,
836 .ctl_reg = CM_EMMCCTL,
837 .div_reg = CM_EMMCDIV,
838 .int_bits = 4,
839 .frac_bits = 8,
840};
841
cfbab8fb
RP
842static const struct bcm2835_clock_data bcm2835_clock_pwm_data = {
843 .name = "pwm",
844 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
845 .parents = bcm2835_clock_per_parents,
846 .ctl_reg = CM_PWMCTL,
847 .div_reg = CM_PWMDIV,
848 .int_bits = 12,
849 .frac_bits = 12,
959ca92a 850 .is_mash_clock = true,
cfbab8fb
RP
851};
852
41691b88
EA
853struct bcm2835_pll {
854 struct clk_hw hw;
855 struct bcm2835_cprman *cprman;
856 const struct bcm2835_pll_data *data;
857};
858
859static int bcm2835_pll_is_on(struct clk_hw *hw)
860{
861 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
862 struct bcm2835_cprman *cprman = pll->cprman;
863 const struct bcm2835_pll_data *data = pll->data;
864
865 return cprman_read(cprman, data->a2w_ctrl_reg) &
866 A2W_PLL_CTRL_PRST_DISABLE;
867}
868
869static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
870 unsigned long parent_rate,
871 u32 *ndiv, u32 *fdiv)
872{
873 u64 div;
874
875 div = (u64)rate << A2W_PLL_FRAC_BITS;
876 do_div(div, parent_rate);
877
878 *ndiv = div >> A2W_PLL_FRAC_BITS;
879 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
880}
881
882static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
883 u32 ndiv, u32 fdiv, u32 pdiv)
884{
885 u64 rate;
886
887 if (pdiv == 0)
888 return 0;
889
890 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
891 do_div(rate, pdiv);
892 return rate >> A2W_PLL_FRAC_BITS;
893}
894
895static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
896 unsigned long *parent_rate)
897{
898 u32 ndiv, fdiv;
899
900 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
901
902 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
903}
904
905static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
906 unsigned long parent_rate)
907{
908 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
909 struct bcm2835_cprman *cprman = pll->cprman;
910 const struct bcm2835_pll_data *data = pll->data;
911 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
912 u32 ndiv, pdiv, fdiv;
913 bool using_prediv;
914
915 if (parent_rate == 0)
916 return 0;
917
918 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
919 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
920 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
921 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
922 data->ana->fb_prediv_mask;
923
924 if (using_prediv)
925 ndiv *= 2;
926
927 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
928}
929
930static void bcm2835_pll_off(struct clk_hw *hw)
931{
932 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
933 struct bcm2835_cprman *cprman = pll->cprman;
934 const struct bcm2835_pll_data *data = pll->data;
935
6727f086
MS
936 spin_lock(&cprman->regs_lock);
937 cprman_write(cprman, data->cm_ctrl_reg,
938 cprman_read(cprman, data->cm_ctrl_reg) |
939 CM_PLL_ANARST);
940 cprman_write(cprman, data->a2w_ctrl_reg,
941 cprman_read(cprman, data->a2w_ctrl_reg) |
942 A2W_PLL_CTRL_PWRDN);
943 spin_unlock(&cprman->regs_lock);
41691b88
EA
944}
945
946static int bcm2835_pll_on(struct clk_hw *hw)
947{
948 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
949 struct bcm2835_cprman *cprman = pll->cprman;
950 const struct bcm2835_pll_data *data = pll->data;
951 ktime_t timeout;
952
953 /* Take the PLL out of reset. */
954 cprman_write(cprman, data->cm_ctrl_reg,
955 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
956
957 /* Wait for the PLL to lock. */
958 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
959 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
960 if (ktime_after(ktime_get(), timeout)) {
961 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
962 clk_hw_get_name(hw));
963 return -ETIMEDOUT;
964 }
965
966 cpu_relax();
967 }
968
969 return 0;
970}
971
972static void
973bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
974{
975 int i;
976
977 /*
978 * ANA register setup is done as a series of writes to
979 * ANA3-ANA0, in that order. This lets us write all 4
980 * registers as a single cycle of the serdes interface (taking
981 * 100 xosc clocks), whereas if we were to update ana0, 1, and
982 * 3 individually through their partial-write registers, each
983 * would be their own serdes cycle.
984 */
985 for (i = 3; i >= 0; i--)
986 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
987}
988
989static int bcm2835_pll_set_rate(struct clk_hw *hw,
990 unsigned long rate, unsigned long parent_rate)
991{
992 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
993 struct bcm2835_cprman *cprman = pll->cprman;
994 const struct bcm2835_pll_data *data = pll->data;
995 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
996 u32 ndiv, fdiv, a2w_ctl;
997 u32 ana[4];
998 int i;
999
1000 if (rate < data->min_rate || rate > data->max_rate) {
1001 dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
1002 clk_hw_get_name(hw), rate,
1003 data->min_rate, data->max_rate);
1004 return -EINVAL;
1005 }
1006
1007 if (rate > data->max_fb_rate) {
1008 use_fb_prediv = true;
1009 rate /= 2;
1010 } else {
1011 use_fb_prediv = false;
1012 }
1013
1014 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
1015
1016 for (i = 3; i >= 0; i--)
1017 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
1018
1019 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
1020
1021 ana[0] &= ~data->ana->mask0;
1022 ana[0] |= data->ana->set0;
1023 ana[1] &= ~data->ana->mask1;
1024 ana[1] |= data->ana->set1;
1025 ana[3] &= ~data->ana->mask3;
1026 ana[3] |= data->ana->set3;
1027
1028 if (was_using_prediv && !use_fb_prediv) {
1029 ana[1] &= ~data->ana->fb_prediv_mask;
1030 do_ana_setup_first = true;
1031 } else if (!was_using_prediv && use_fb_prediv) {
1032 ana[1] |= data->ana->fb_prediv_mask;
1033 do_ana_setup_first = false;
1034 } else {
1035 do_ana_setup_first = true;
1036 }
1037
1038 /* Unmask the reference clock from the oscillator. */
1039 cprman_write(cprman, A2W_XOSC_CTRL,
1040 cprman_read(cprman, A2W_XOSC_CTRL) |
1041 data->reference_enable_mask);
1042
1043 if (do_ana_setup_first)
1044 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
1045
1046 /* Set the PLL multiplier from the oscillator. */
1047 cprman_write(cprman, data->frac_reg, fdiv);
1048
1049 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
1050 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
1051 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
1052 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
1053 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
1054 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
1055
1056 if (!do_ana_setup_first)
1057 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
1058
1059 return 0;
1060}
1061
96bf9c69
MS
1062static int bcm2835_pll_debug_init(struct clk_hw *hw,
1063 struct dentry *dentry)
1064{
1065 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
1066 struct bcm2835_cprman *cprman = pll->cprman;
1067 const struct bcm2835_pll_data *data = pll->data;
1068 struct debugfs_reg32 *regs;
1069
1070 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
1071 if (!regs)
1072 return -ENOMEM;
1073
1074 regs[0].name = "cm_ctrl";
1075 regs[0].offset = data->cm_ctrl_reg;
1076 regs[1].name = "a2w_ctrl";
1077 regs[1].offset = data->a2w_ctrl_reg;
1078 regs[2].name = "frac";
1079 regs[2].offset = data->frac_reg;
1080 regs[3].name = "ana0";
1081 regs[3].offset = data->ana_reg_base + 0 * 4;
1082 regs[4].name = "ana1";
1083 regs[4].offset = data->ana_reg_base + 1 * 4;
1084 regs[5].name = "ana2";
1085 regs[5].offset = data->ana_reg_base + 2 * 4;
1086 regs[6].name = "ana3";
1087 regs[6].offset = data->ana_reg_base + 3 * 4;
1088
1089 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
1090}
1091
41691b88
EA
1092static const struct clk_ops bcm2835_pll_clk_ops = {
1093 .is_prepared = bcm2835_pll_is_on,
1094 .prepare = bcm2835_pll_on,
1095 .unprepare = bcm2835_pll_off,
1096 .recalc_rate = bcm2835_pll_get_rate,
1097 .set_rate = bcm2835_pll_set_rate,
1098 .round_rate = bcm2835_pll_round_rate,
96bf9c69 1099 .debug_init = bcm2835_pll_debug_init,
41691b88
EA
1100};
1101
1102struct bcm2835_pll_divider {
1103 struct clk_divider div;
1104 struct bcm2835_cprman *cprman;
1105 const struct bcm2835_pll_divider_data *data;
1106};
1107
1108static struct bcm2835_pll_divider *
1109bcm2835_pll_divider_from_hw(struct clk_hw *hw)
1110{
1111 return container_of(hw, struct bcm2835_pll_divider, div.hw);
1112}
1113
1114static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
1115{
1116 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1117 struct bcm2835_cprman *cprman = divider->cprman;
1118 const struct bcm2835_pll_divider_data *data = divider->data;
1119
1120 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
1121}
1122
1123static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
1124 unsigned long rate,
1125 unsigned long *parent_rate)
1126{
1127 return clk_divider_ops.round_rate(hw, rate, parent_rate);
1128}
1129
1130static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
1131 unsigned long parent_rate)
1132{
79c1e2fc 1133 return clk_divider_ops.recalc_rate(hw, parent_rate);
41691b88
EA
1134}
1135
1136static void bcm2835_pll_divider_off(struct clk_hw *hw)
1137{
1138 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1139 struct bcm2835_cprman *cprman = divider->cprman;
1140 const struct bcm2835_pll_divider_data *data = divider->data;
1141
ec36a5c6 1142 spin_lock(&cprman->regs_lock);
41691b88
EA
1143 cprman_write(cprman, data->cm_reg,
1144 (cprman_read(cprman, data->cm_reg) &
1145 ~data->load_mask) | data->hold_mask);
1146 cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
ec36a5c6 1147 spin_unlock(&cprman->regs_lock);
41691b88
EA
1148}
1149
1150static int bcm2835_pll_divider_on(struct clk_hw *hw)
1151{
1152 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1153 struct bcm2835_cprman *cprman = divider->cprman;
1154 const struct bcm2835_pll_divider_data *data = divider->data;
1155
ec36a5c6 1156 spin_lock(&cprman->regs_lock);
41691b88
EA
1157 cprman_write(cprman, data->a2w_reg,
1158 cprman_read(cprman, data->a2w_reg) &
1159 ~A2W_PLL_CHANNEL_DISABLE);
1160
1161 cprman_write(cprman, data->cm_reg,
1162 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
ec36a5c6 1163 spin_unlock(&cprman->regs_lock);
41691b88
EA
1164
1165 return 0;
1166}
1167
1168static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
1169 unsigned long rate,
1170 unsigned long parent_rate)
1171{
1172 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1173 struct bcm2835_cprman *cprman = divider->cprman;
1174 const struct bcm2835_pll_divider_data *data = divider->data;
773b3966 1175 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
41691b88 1176
773b3966
EA
1177 div = DIV_ROUND_UP_ULL(parent_rate, rate);
1178
1179 div = min(div, max_div);
1180 if (div == max_div)
1181 div = 0;
41691b88 1182
773b3966 1183 cprman_write(cprman, data->a2w_reg, div);
41691b88
EA
1184 cm = cprman_read(cprman, data->cm_reg);
1185 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
1186 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
1187
1188 return 0;
1189}
1190
96bf9c69
MS
1191static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
1192 struct dentry *dentry)
1193{
1194 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1195 struct bcm2835_cprman *cprman = divider->cprman;
1196 const struct bcm2835_pll_divider_data *data = divider->data;
1197 struct debugfs_reg32 *regs;
1198
1199 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
1200 if (!regs)
1201 return -ENOMEM;
1202
1203 regs[0].name = "cm";
1204 regs[0].offset = data->cm_reg;
1205 regs[1].name = "a2w";
1206 regs[1].offset = data->a2w_reg;
1207
1208 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
1209}
1210
41691b88
EA
1211static const struct clk_ops bcm2835_pll_divider_clk_ops = {
1212 .is_prepared = bcm2835_pll_divider_is_on,
1213 .prepare = bcm2835_pll_divider_on,
1214 .unprepare = bcm2835_pll_divider_off,
1215 .recalc_rate = bcm2835_pll_divider_get_rate,
1216 .set_rate = bcm2835_pll_divider_set_rate,
1217 .round_rate = bcm2835_pll_divider_round_rate,
96bf9c69 1218 .debug_init = bcm2835_pll_divider_debug_init,
41691b88
EA
1219};
1220
1221/*
1222 * The CM dividers do fixed-point division, so we can't use the
1223 * generic integer divider code like the PLL dividers do (and we can't
1224 * fake it by having some fixed shifts preceding it in the clock tree,
1225 * because we'd run out of bits in a 32-bit unsigned long).
1226 */
1227struct bcm2835_clock {
1228 struct clk_hw hw;
1229 struct bcm2835_cprman *cprman;
1230 const struct bcm2835_clock_data *data;
1231};
1232
1233static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
1234{
1235 return container_of(hw, struct bcm2835_clock, hw);
1236}
1237
1238static int bcm2835_clock_is_on(struct clk_hw *hw)
1239{
1240 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1241 struct bcm2835_cprman *cprman = clock->cprman;
1242 const struct bcm2835_clock_data *data = clock->data;
1243
1244 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
1245}
1246
1247static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
1248 unsigned long rate,
9c95b32c
RP
1249 unsigned long parent_rate,
1250 bool round_up)
41691b88
EA
1251{
1252 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1253 const struct bcm2835_clock_data *data = clock->data;
9c95b32c
RP
1254 u32 unused_frac_mask =
1255 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
41691b88 1256 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
9c95b32c 1257 u64 rem;
959ca92a 1258 u32 div, mindiv, maxdiv;
41691b88 1259
9c95b32c 1260 rem = do_div(temp, rate);
41691b88
EA
1261 div = temp;
1262
9c95b32c
RP
1263 /* Round up and mask off the unused bits */
1264 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
1265 div += unused_frac_mask + 1;
1266 div &= ~unused_frac_mask;
41691b88 1267
959ca92a
MS
1268 /* different clamping limits apply for a mash clock */
1269 if (data->is_mash_clock) {
1270 /* clamp to min divider of 2 */
1271 mindiv = 2 << CM_DIV_FRAC_BITS;
1272 /* clamp to the highest possible integer divider */
1273 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
1274 } else {
1275 /* clamp to min divider of 1 */
1276 mindiv = 1 << CM_DIV_FRAC_BITS;
1277 /* clamp to the highest possible fractional divider */
1278 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
1279 CM_DIV_FRAC_BITS - data->frac_bits);
1280 }
1281
1282 /* apply the clamping limits */
1283 div = max_t(u32, div, mindiv);
1284 div = min_t(u32, div, maxdiv);
41691b88
EA
1285
1286 return div;
1287}
1288
1289static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
1290 unsigned long parent_rate,
1291 u32 div)
1292{
1293 const struct bcm2835_clock_data *data = clock->data;
1294 u64 temp;
1295
1296 /*
1297 * The divisor is a 12.12 fixed point field, but only some of
1298 * the bits are populated in any given clock.
1299 */
1300 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
1301 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
1302
1303 if (div == 0)
1304 return 0;
1305
1306 temp = (u64)parent_rate << data->frac_bits;
1307
1308 do_div(temp, div);
1309
1310 return temp;
1311}
1312
41691b88
EA
1313static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1314 unsigned long parent_rate)
1315{
1316 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1317 struct bcm2835_cprman *cprman = clock->cprman;
1318 const struct bcm2835_clock_data *data = clock->data;
1319 u32 div = cprman_read(cprman, data->div_reg);
1320
1321 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1322}
1323
1324static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1325{
1326 struct bcm2835_cprman *cprman = clock->cprman;
1327 const struct bcm2835_clock_data *data = clock->data;
1328 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1329
1330 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1331 if (ktime_after(ktime_get(), timeout)) {
1332 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1333 clk_hw_get_name(&clock->hw));
1334 return;
1335 }
1336 cpu_relax();
1337 }
1338}
1339
1340static void bcm2835_clock_off(struct clk_hw *hw)
1341{
1342 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1343 struct bcm2835_cprman *cprman = clock->cprman;
1344 const struct bcm2835_clock_data *data = clock->data;
1345
1346 spin_lock(&cprman->regs_lock);
1347 cprman_write(cprman, data->ctl_reg,
1348 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1349 spin_unlock(&cprman->regs_lock);
1350
1351 /* BUSY will remain high until the divider completes its cycle. */
1352 bcm2835_clock_wait_busy(clock);
1353}
1354
1355static int bcm2835_clock_on(struct clk_hw *hw)
1356{
1357 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1358 struct bcm2835_cprman *cprman = clock->cprman;
1359 const struct bcm2835_clock_data *data = clock->data;
1360
1361 spin_lock(&cprman->regs_lock);
1362 cprman_write(cprman, data->ctl_reg,
1363 cprman_read(cprman, data->ctl_reg) |
1364 CM_ENABLE |
1365 CM_GATE);
1366 spin_unlock(&cprman->regs_lock);
1367
1368 return 0;
1369}
1370
1371static int bcm2835_clock_set_rate(struct clk_hw *hw,
1372 unsigned long rate, unsigned long parent_rate)
1373{
1374 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1375 struct bcm2835_cprman *cprman = clock->cprman;
1376 const struct bcm2835_clock_data *data = clock->data;
9c95b32c 1377 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
959ca92a
MS
1378 u32 ctl;
1379
1380 spin_lock(&cprman->regs_lock);
1381
1382 /*
1383 * Setting up frac support
1384 *
1385 * In principle it is recommended to stop/start the clock first,
1386 * but as we set CLK_SET_RATE_GATE during registration of the
1387 * clock this requirement should be take care of by the
1388 * clk-framework.
1389 */
1390 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1391 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1392 cprman_write(cprman, data->ctl_reg, ctl);
41691b88
EA
1393
1394 cprman_write(cprman, data->div_reg, div);
1395
959ca92a
MS
1396 spin_unlock(&cprman->regs_lock);
1397
41691b88
EA
1398 return 0;
1399}
1400
6d18b8ad 1401static int bcm2835_clock_determine_rate(struct clk_hw *hw,
6e1e60da 1402 struct clk_rate_request *req)
6d18b8ad
RP
1403{
1404 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1405 struct clk_hw *parent, *best_parent = NULL;
1406 unsigned long rate, best_rate = 0;
1407 unsigned long prate, best_prate = 0;
1408 size_t i;
1409 u32 div;
1410
1411 /*
1412 * Select parent clock that results in the closest but lower rate
1413 */
1414 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1415 parent = clk_hw_get_parent_by_index(hw, i);
1416 if (!parent)
1417 continue;
1418 prate = clk_hw_get_rate(parent);
1419 div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
1420 rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
1421 if (rate > best_rate && rate <= req->rate) {
1422 best_parent = parent;
1423 best_prate = prate;
1424 best_rate = rate;
1425 }
1426 }
1427
1428 if (!best_parent)
1429 return -EINVAL;
1430
1431 req->best_parent_hw = best_parent;
1432 req->best_parent_rate = best_prate;
1433
1434 req->rate = best_rate;
1435
1436 return 0;
1437}
1438
1439static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1440{
1441 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1442 struct bcm2835_cprman *cprman = clock->cprman;
1443 const struct bcm2835_clock_data *data = clock->data;
1444 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1445
1446 cprman_write(cprman, data->ctl_reg, src);
1447 return 0;
1448}
1449
1450static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1451{
1452 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1453 struct bcm2835_cprman *cprman = clock->cprman;
1454 const struct bcm2835_clock_data *data = clock->data;
1455 u32 src = cprman_read(cprman, data->ctl_reg);
1456
1457 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1458}
1459
96bf9c69
MS
1460static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1461 {
1462 .name = "ctl",
1463 .offset = 0,
1464 },
1465 {
1466 .name = "div",
1467 .offset = 4,
1468 },
1469};
1470
1471static int bcm2835_clock_debug_init(struct clk_hw *hw,
1472 struct dentry *dentry)
1473{
1474 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1475 struct bcm2835_cprman *cprman = clock->cprman;
1476 const struct bcm2835_clock_data *data = clock->data;
1477
1478 return bcm2835_debugfs_regset(
1479 cprman, data->ctl_reg,
1480 bcm2835_debugfs_clock_reg32,
1481 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1482 dentry);
1483}
1484
41691b88
EA
1485static const struct clk_ops bcm2835_clock_clk_ops = {
1486 .is_prepared = bcm2835_clock_is_on,
1487 .prepare = bcm2835_clock_on,
1488 .unprepare = bcm2835_clock_off,
1489 .recalc_rate = bcm2835_clock_get_rate,
1490 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1491 .determine_rate = bcm2835_clock_determine_rate,
1492 .set_parent = bcm2835_clock_set_parent,
1493 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1494 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1495};
1496
1497static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1498{
1499 return true;
1500}
1501
1502/*
1503 * The VPU clock can never be disabled (it doesn't have an ENABLE
1504 * bit), so it gets its own set of clock ops.
1505 */
1506static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1507 .is_prepared = bcm2835_vpu_clock_is_on,
1508 .recalc_rate = bcm2835_clock_get_rate,
1509 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1510 .determine_rate = bcm2835_clock_determine_rate,
1511 .set_parent = bcm2835_clock_set_parent,
1512 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1513 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1514};
1515
1516static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1517 const struct bcm2835_pll_data *data)
1518{
1519 struct bcm2835_pll *pll;
1520 struct clk_init_data init;
1521
1522 memset(&init, 0, sizeof(init));
1523
1524 /* All of the PLLs derive from the external oscillator. */
1525 init.parent_names = &cprman->osc_name;
1526 init.num_parents = 1;
1527 init.name = data->name;
1528 init.ops = &bcm2835_pll_clk_ops;
1529 init.flags = CLK_IGNORE_UNUSED;
1530
1531 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1532 if (!pll)
1533 return NULL;
1534
1535 pll->cprman = cprman;
1536 pll->data = data;
1537 pll->hw.init = &init;
1538
1539 return devm_clk_register(cprman->dev, &pll->hw);
1540}
1541
1542static struct clk *
1543bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1544 const struct bcm2835_pll_divider_data *data)
1545{
1546 struct bcm2835_pll_divider *divider;
1547 struct clk_init_data init;
1548 struct clk *clk;
1549 const char *divider_name;
1550
1551 if (data->fixed_divider != 1) {
1552 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1553 "%s_prediv", data->name);
1554 if (!divider_name)
1555 return NULL;
1556 } else {
1557 divider_name = data->name;
1558 }
1559
1560 memset(&init, 0, sizeof(init));
1561
1562 init.parent_names = &data->source_pll->name;
1563 init.num_parents = 1;
1564 init.name = divider_name;
1565 init.ops = &bcm2835_pll_divider_clk_ops;
1566 init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
1567
1568 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1569 if (!divider)
1570 return NULL;
1571
1572 divider->div.reg = cprman->regs + data->a2w_reg;
1573 divider->div.shift = A2W_PLL_DIV_SHIFT;
1574 divider->div.width = A2W_PLL_DIV_BITS;
79c1e2fc 1575 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
41691b88
EA
1576 divider->div.lock = &cprman->regs_lock;
1577 divider->div.hw.init = &init;
1578 divider->div.table = NULL;
1579
1580 divider->cprman = cprman;
1581 divider->data = data;
1582
1583 clk = devm_clk_register(cprman->dev, &divider->div.hw);
1584 if (IS_ERR(clk))
1585 return clk;
1586
1587 /*
1588 * PLLH's channels have a fixed divide by 10 afterwards, which
1589 * is what our consumers are actually using.
1590 */
1591 if (data->fixed_divider != 1) {
1592 return clk_register_fixed_factor(cprman->dev, data->name,
1593 divider_name,
1594 CLK_SET_RATE_PARENT,
1595 1,
1596 data->fixed_divider);
1597 }
1598
1599 return clk;
1600}
1601
1602static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1603 const struct bcm2835_clock_data *data)
1604{
1605 struct bcm2835_clock *clock;
1606 struct clk_init_data init;
6d18b8ad
RP
1607 const char *parents[1 << CM_SRC_BITS];
1608 size_t i;
41691b88
EA
1609
1610 /*
6d18b8ad
RP
1611 * Replace our "xosc" references with the oscillator's
1612 * actual name.
41691b88 1613 */
6d18b8ad
RP
1614 for (i = 0; i < data->num_mux_parents; i++) {
1615 if (strcmp(data->parents[i], "xosc") == 0)
1616 parents[i] = cprman->osc_name;
1617 else
1618 parents[i] = data->parents[i];
41691b88
EA
1619 }
1620
1621 memset(&init, 0, sizeof(init));
6d18b8ad
RP
1622 init.parent_names = parents;
1623 init.num_parents = data->num_mux_parents;
41691b88
EA
1624 init.name = data->name;
1625 init.flags = CLK_IGNORE_UNUSED;
1626
1627 if (data->is_vpu_clock) {
1628 init.ops = &bcm2835_vpu_clock_clk_ops;
1629 } else {
1630 init.ops = &bcm2835_clock_clk_ops;
1631 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1632 }
1633
1634 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1635 if (!clock)
1636 return NULL;
1637
1638 clock->cprman = cprman;
1639 clock->data = data;
1640 clock->hw.init = &init;
1641
1642 return devm_clk_register(cprman->dev, &clock->hw);
1643}
1644
1645static int bcm2835_clk_probe(struct platform_device *pdev)
1646{
1647 struct device *dev = &pdev->dev;
1648 struct clk **clks;
1649 struct bcm2835_cprman *cprman;
1650 struct resource *res;
1651
1652 cprman = devm_kzalloc(dev, sizeof(*cprman), GFP_KERNEL);
1653 if (!cprman)
1654 return -ENOMEM;
1655
1656 spin_lock_init(&cprman->regs_lock);
1657 cprman->dev = dev;
1658 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1659 cprman->regs = devm_ioremap_resource(dev, res);
1660 if (IS_ERR(cprman->regs))
1661 return PTR_ERR(cprman->regs);
1662
1663 cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
1664 if (!cprman->osc_name)
1665 return -ENODEV;
1666
1667 platform_set_drvdata(pdev, cprman);
1668
1669 cprman->onecell.clk_num = BCM2835_CLOCK_COUNT;
1670 cprman->onecell.clks = cprman->clks;
1671 clks = cprman->clks;
1672
1673 clks[BCM2835_PLLA] = bcm2835_register_pll(cprman, &bcm2835_plla_data);
1674 clks[BCM2835_PLLB] = bcm2835_register_pll(cprman, &bcm2835_pllb_data);
1675 clks[BCM2835_PLLC] = bcm2835_register_pll(cprman, &bcm2835_pllc_data);
1676 clks[BCM2835_PLLD] = bcm2835_register_pll(cprman, &bcm2835_plld_data);
1677 clks[BCM2835_PLLH] = bcm2835_register_pll(cprman, &bcm2835_pllh_data);
1678
1679 clks[BCM2835_PLLA_CORE] =
1680 bcm2835_register_pll_divider(cprman, &bcm2835_plla_core_data);
1681 clks[BCM2835_PLLA_PER] =
1682 bcm2835_register_pll_divider(cprman, &bcm2835_plla_per_data);
1683 clks[BCM2835_PLLC_CORE0] =
1684 bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core0_data);
1685 clks[BCM2835_PLLC_CORE1] =
1686 bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core1_data);
1687 clks[BCM2835_PLLC_CORE2] =
1688 bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core2_data);
1689 clks[BCM2835_PLLC_PER] =
1690 bcm2835_register_pll_divider(cprman, &bcm2835_pllc_per_data);
1691 clks[BCM2835_PLLD_CORE] =
1692 bcm2835_register_pll_divider(cprman, &bcm2835_plld_core_data);
1693 clks[BCM2835_PLLD_PER] =
1694 bcm2835_register_pll_divider(cprman, &bcm2835_plld_per_data);
1695 clks[BCM2835_PLLH_RCAL] =
1696 bcm2835_register_pll_divider(cprman, &bcm2835_pllh_rcal_data);
1697 clks[BCM2835_PLLH_AUX] =
1698 bcm2835_register_pll_divider(cprman, &bcm2835_pllh_aux_data);
1699 clks[BCM2835_PLLH_PIX] =
1700 bcm2835_register_pll_divider(cprman, &bcm2835_pllh_pix_data);
1701
1702 clks[BCM2835_CLOCK_TIMER] =
1703 bcm2835_register_clock(cprman, &bcm2835_clock_timer_data);
1704 clks[BCM2835_CLOCK_OTP] =
1705 bcm2835_register_clock(cprman, &bcm2835_clock_otp_data);
1706 clks[BCM2835_CLOCK_TSENS] =
1707 bcm2835_register_clock(cprman, &bcm2835_clock_tsens_data);
1708 clks[BCM2835_CLOCK_VPU] =
1709 bcm2835_register_clock(cprman, &bcm2835_clock_vpu_data);
1710 clks[BCM2835_CLOCK_V3D] =
1711 bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
1712 clks[BCM2835_CLOCK_ISP] =
1713 bcm2835_register_clock(cprman, &bcm2835_clock_isp_data);
1714 clks[BCM2835_CLOCK_H264] =
1715 bcm2835_register_clock(cprman, &bcm2835_clock_h264_data);
1716 clks[BCM2835_CLOCK_V3D] =
1717 bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
1718 clks[BCM2835_CLOCK_SDRAM] =
1719 bcm2835_register_clock(cprman, &bcm2835_clock_sdram_data);
1720 clks[BCM2835_CLOCK_UART] =
1721 bcm2835_register_clock(cprman, &bcm2835_clock_uart_data);
1722 clks[BCM2835_CLOCK_VEC] =
1723 bcm2835_register_clock(cprman, &bcm2835_clock_vec_data);
1724 clks[BCM2835_CLOCK_HSM] =
1725 bcm2835_register_clock(cprman, &bcm2835_clock_hsm_data);
1726 clks[BCM2835_CLOCK_EMMC] =
1727 bcm2835_register_clock(cprman, &bcm2835_clock_emmc_data);
1728
1729 /*
1730 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1731 * you have the debug bit set in the power manager, which we
1732 * don't bother exposing) are individual gates off of the
1733 * non-stop vpu clock.
1734 */
1735 clks[BCM2835_CLOCK_PERI_IMAGE] =
1736 clk_register_gate(dev, "peri_image", "vpu",
1737 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1738 cprman->regs + CM_PERIICTL, CM_GATE_BIT,
1739 0, &cprman->regs_lock);
1740
cfbab8fb
RP
1741 clks[BCM2835_CLOCK_PWM] =
1742 bcm2835_register_clock(cprman, &bcm2835_clock_pwm_data);
1743
41691b88
EA
1744 return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
1745 &cprman->onecell);
1746}
1747
1748static const struct of_device_id bcm2835_clk_of_match[] = {
1749 { .compatible = "brcm,bcm2835-cprman", },
1750 {}
1751};
1752MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
1753
1754static struct platform_driver bcm2835_clk_driver = {
1755 .driver = {
1756 .name = "bcm2835-clk",
1757 .of_match_table = bcm2835_clk_of_match,
1758 },
1759 .probe = bcm2835_clk_probe,
1760};
1761
1762builtin_platform_driver(bcm2835_clk_driver);
1763
1764MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1765MODULE_DESCRIPTION("BCM2835 clock driver");
1766MODULE_LICENSE("GPL v2");