clk: bcm-2835: Remove rounding up the dividers
[linux-block.git] / drivers / clk / bcm / clk-bcm2835.c
CommitLineData
e1098e59 1// SPDX-License-Identifier: GPL-2.0+
75fabc3f 2/*
41691b88 3 * Copyright (C) 2010,2015 Broadcom
75fabc3f 4 * Copyright (C) 2012 Stephen Warren
75fabc3f
SA
5 */
6
41691b88
EA
7/**
8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9 *
10 * The clock tree on the 2835 has several levels. There's a root
11 * oscillator running at 19.2Mhz. After the oscillator there are 5
12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13 * and "HDMI displays". Those 5 PLLs each can divide their output to
14 * produce up to 4 channels. Finally, there is the level of clocks to
15 * be consumed by other hardware components (like "H264" or "HDMI
16 * state machine"), which divide off of some subset of the PLL
17 * channels.
18 *
19 * All of the clocks in the tree are exposed in the DT, because the DT
20 * may want to make assignments of the final layer of clocks to the
21 * PLL channels, and some components of the hardware will actually
22 * skip layers of the tree (for example, the pixel clock comes
23 * directly from the PLLH PIX channel without using a CM_*CTL clock
24 * generator).
25 */
26
75fabc3f
SA
27#include <linux/clk-provider.h>
28#include <linux/clkdev.h>
9e400c5c 29#include <linux/clk.h>
96bf9c69 30#include <linux/debugfs.h>
3f919581 31#include <linux/delay.h>
62e59c4e 32#include <linux/io.h>
41691b88 33#include <linux/module.h>
ee0a5a90 34#include <linux/of_device.h>
41691b88
EA
35#include <linux/platform_device.h>
36#include <linux/slab.h>
37#include <dt-bindings/clock/bcm2835.h>
38
39#define CM_PASSWORD 0x5a000000
40
41#define CM_GNRICCTL 0x000
42#define CM_GNRICDIV 0x004
43# define CM_DIV_FRAC_BITS 12
959ca92a 44# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
41691b88
EA
45
46#define CM_VPUCTL 0x008
47#define CM_VPUDIV 0x00c
48#define CM_SYSCTL 0x010
49#define CM_SYSDIV 0x014
50#define CM_PERIACTL 0x018
51#define CM_PERIADIV 0x01c
52#define CM_PERIICTL 0x020
53#define CM_PERIIDIV 0x024
54#define CM_H264CTL 0x028
55#define CM_H264DIV 0x02c
56#define CM_ISPCTL 0x030
57#define CM_ISPDIV 0x034
58#define CM_V3DCTL 0x038
59#define CM_V3DDIV 0x03c
60#define CM_CAM0CTL 0x040
61#define CM_CAM0DIV 0x044
62#define CM_CAM1CTL 0x048
63#define CM_CAM1DIV 0x04c
64#define CM_CCP2CTL 0x050
65#define CM_CCP2DIV 0x054
66#define CM_DSI0ECTL 0x058
67#define CM_DSI0EDIV 0x05c
68#define CM_DSI0PCTL 0x060
69#define CM_DSI0PDIV 0x064
70#define CM_DPICTL 0x068
71#define CM_DPIDIV 0x06c
72#define CM_GP0CTL 0x070
73#define CM_GP0DIV 0x074
74#define CM_GP1CTL 0x078
75#define CM_GP1DIV 0x07c
76#define CM_GP2CTL 0x080
77#define CM_GP2DIV 0x084
78#define CM_HSMCTL 0x088
79#define CM_HSMDIV 0x08c
80#define CM_OTPCTL 0x090
81#define CM_OTPDIV 0x094
2103a215
MS
82#define CM_PCMCTL 0x098
83#define CM_PCMDIV 0x09c
41691b88
EA
84#define CM_PWMCTL 0x0a0
85#define CM_PWMDIV 0x0a4
2103a215
MS
86#define CM_SLIMCTL 0x0a8
87#define CM_SLIMDIV 0x0ac
41691b88
EA
88#define CM_SMICTL 0x0b0
89#define CM_SMIDIV 0x0b4
2103a215
MS
90/* no definition for 0x0b8 and 0x0bc */
91#define CM_TCNTCTL 0x0c0
3f919581
EA
92# define CM_TCNT_SRC1_SHIFT 12
93#define CM_TCNTCNT 0x0c4
2103a215
MS
94#define CM_TECCTL 0x0c8
95#define CM_TECDIV 0x0cc
96#define CM_TD0CTL 0x0d0
97#define CM_TD0DIV 0x0d4
98#define CM_TD1CTL 0x0d8
99#define CM_TD1DIV 0x0dc
41691b88
EA
100#define CM_TSENSCTL 0x0e0
101#define CM_TSENSDIV 0x0e4
102#define CM_TIMERCTL 0x0e8
103#define CM_TIMERDIV 0x0ec
104#define CM_UARTCTL 0x0f0
105#define CM_UARTDIV 0x0f4
106#define CM_VECCTL 0x0f8
107#define CM_VECDIV 0x0fc
108#define CM_PULSECTL 0x190
109#define CM_PULSEDIV 0x194
110#define CM_SDCCTL 0x1a8
111#define CM_SDCDIV 0x1ac
112#define CM_ARMCTL 0x1b0
d3d6f15f
MS
113#define CM_AVEOCTL 0x1b8
114#define CM_AVEODIV 0x1bc
41691b88
EA
115#define CM_EMMCCTL 0x1c0
116#define CM_EMMCDIV 0x1c4
42de9ad4
SW
117#define CM_EMMC2CTL 0x1d0
118#define CM_EMMC2DIV 0x1d4
41691b88
EA
119
120/* General bits for the CM_*CTL regs */
121# define CM_ENABLE BIT(4)
122# define CM_KILL BIT(5)
123# define CM_GATE_BIT 6
124# define CM_GATE BIT(CM_GATE_BIT)
125# define CM_BUSY BIT(7)
126# define CM_BUSYD BIT(8)
959ca92a 127# define CM_FRAC BIT(9)
41691b88
EA
128# define CM_SRC_SHIFT 0
129# define CM_SRC_BITS 4
130# define CM_SRC_MASK 0xf
131# define CM_SRC_GND 0
132# define CM_SRC_OSC 1
133# define CM_SRC_TESTDEBUG0 2
134# define CM_SRC_TESTDEBUG1 3
135# define CM_SRC_PLLA_CORE 4
136# define CM_SRC_PLLA_PER 4
137# define CM_SRC_PLLC_CORE0 5
138# define CM_SRC_PLLC_PER 5
139# define CM_SRC_PLLC_CORE1 8
140# define CM_SRC_PLLD_CORE 6
141# define CM_SRC_PLLD_PER 6
142# define CM_SRC_PLLH_AUX 7
143# define CM_SRC_PLLC_CORE1 8
144# define CM_SRC_PLLC_CORE2 9
145
146#define CM_OSCCOUNT 0x100
147
148#define CM_PLLA 0x104
149# define CM_PLL_ANARST BIT(8)
150# define CM_PLLA_HOLDPER BIT(7)
151# define CM_PLLA_LOADPER BIT(6)
152# define CM_PLLA_HOLDCORE BIT(5)
153# define CM_PLLA_LOADCORE BIT(4)
154# define CM_PLLA_HOLDCCP2 BIT(3)
155# define CM_PLLA_LOADCCP2 BIT(2)
156# define CM_PLLA_HOLDDSI0 BIT(1)
157# define CM_PLLA_LOADDSI0 BIT(0)
158
159#define CM_PLLC 0x108
160# define CM_PLLC_HOLDPER BIT(7)
161# define CM_PLLC_LOADPER BIT(6)
162# define CM_PLLC_HOLDCORE2 BIT(5)
163# define CM_PLLC_LOADCORE2 BIT(4)
164# define CM_PLLC_HOLDCORE1 BIT(3)
165# define CM_PLLC_LOADCORE1 BIT(2)
166# define CM_PLLC_HOLDCORE0 BIT(1)
167# define CM_PLLC_LOADCORE0 BIT(0)
168
169#define CM_PLLD 0x10c
170# define CM_PLLD_HOLDPER BIT(7)
171# define CM_PLLD_LOADPER BIT(6)
172# define CM_PLLD_HOLDCORE BIT(5)
173# define CM_PLLD_LOADCORE BIT(4)
174# define CM_PLLD_HOLDDSI1 BIT(3)
175# define CM_PLLD_LOADDSI1 BIT(2)
176# define CM_PLLD_HOLDDSI0 BIT(1)
177# define CM_PLLD_LOADDSI0 BIT(0)
178
179#define CM_PLLH 0x110
180# define CM_PLLH_LOADRCAL BIT(2)
181# define CM_PLLH_LOADAUX BIT(1)
182# define CM_PLLH_LOADPIX BIT(0)
183
184#define CM_LOCK 0x114
185# define CM_LOCK_FLOCKH BIT(12)
186# define CM_LOCK_FLOCKD BIT(11)
187# define CM_LOCK_FLOCKC BIT(10)
188# define CM_LOCK_FLOCKB BIT(9)
189# define CM_LOCK_FLOCKA BIT(8)
190
191#define CM_EVENT 0x118
192#define CM_DSI1ECTL 0x158
193#define CM_DSI1EDIV 0x15c
194#define CM_DSI1PCTL 0x160
195#define CM_DSI1PDIV 0x164
196#define CM_DFTCTL 0x168
197#define CM_DFTDIV 0x16c
198
199#define CM_PLLB 0x170
200# define CM_PLLB_HOLDARM BIT(1)
201# define CM_PLLB_LOADARM BIT(0)
202
203#define A2W_PLLA_CTRL 0x1100
204#define A2W_PLLC_CTRL 0x1120
205#define A2W_PLLD_CTRL 0x1140
206#define A2W_PLLH_CTRL 0x1160
207#define A2W_PLLB_CTRL 0x11e0
208# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
209# define A2W_PLL_CTRL_PWRDN BIT(16)
210# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
211# define A2W_PLL_CTRL_PDIV_SHIFT 12
212# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
213# define A2W_PLL_CTRL_NDIV_SHIFT 0
214
215#define A2W_PLLA_ANA0 0x1010
216#define A2W_PLLC_ANA0 0x1030
217#define A2W_PLLD_ANA0 0x1050
218#define A2W_PLLH_ANA0 0x1070
219#define A2W_PLLB_ANA0 0x10f0
220
221#define A2W_PLL_KA_SHIFT 7
222#define A2W_PLL_KA_MASK GENMASK(9, 7)
223#define A2W_PLL_KI_SHIFT 19
224#define A2W_PLL_KI_MASK GENMASK(21, 19)
225#define A2W_PLL_KP_SHIFT 15
226#define A2W_PLL_KP_MASK GENMASK(18, 15)
227
228#define A2W_PLLH_KA_SHIFT 19
229#define A2W_PLLH_KA_MASK GENMASK(21, 19)
230#define A2W_PLLH_KI_LOW_SHIFT 22
231#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
232#define A2W_PLLH_KI_HIGH_SHIFT 0
233#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
234#define A2W_PLLH_KP_SHIFT 1
235#define A2W_PLLH_KP_MASK GENMASK(4, 1)
236
237#define A2W_XOSC_CTRL 0x1190
238# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
239# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
240# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
241# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
242# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
243# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
244# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
245# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
246
247#define A2W_PLLA_FRAC 0x1200
248#define A2W_PLLC_FRAC 0x1220
249#define A2W_PLLD_FRAC 0x1240
250#define A2W_PLLH_FRAC 0x1260
251#define A2W_PLLB_FRAC 0x12e0
252# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
253# define A2W_PLL_FRAC_BITS 20
254
255#define A2W_PLL_CHANNEL_DISABLE BIT(8)
256#define A2W_PLL_DIV_BITS 8
257#define A2W_PLL_DIV_SHIFT 0
258
259#define A2W_PLLA_DSI0 0x1300
260#define A2W_PLLA_CORE 0x1400
261#define A2W_PLLA_PER 0x1500
262#define A2W_PLLA_CCP2 0x1600
263
264#define A2W_PLLC_CORE2 0x1320
265#define A2W_PLLC_CORE1 0x1420
266#define A2W_PLLC_PER 0x1520
267#define A2W_PLLC_CORE0 0x1620
268
269#define A2W_PLLD_DSI0 0x1340
270#define A2W_PLLD_CORE 0x1440
271#define A2W_PLLD_PER 0x1540
272#define A2W_PLLD_DSI1 0x1640
273
274#define A2W_PLLH_AUX 0x1360
275#define A2W_PLLH_RCAL 0x1460
276#define A2W_PLLH_PIX 0x1560
277#define A2W_PLLH_STS 0x1660
278
279#define A2W_PLLH_CTRLR 0x1960
280#define A2W_PLLH_FRACR 0x1a60
281#define A2W_PLLH_AUXR 0x1b60
282#define A2W_PLLH_RCALR 0x1c60
283#define A2W_PLLH_PIXR 0x1d60
284#define A2W_PLLH_STSR 0x1e60
285
286#define A2W_PLLB_ARM 0x13e0
287#define A2W_PLLB_SP0 0x14e0
288#define A2W_PLLB_SP1 0x15e0
289#define A2W_PLLB_SP2 0x16e0
290
291#define LOCK_TIMEOUT_NS 100000000
292#define BCM2835_MAX_FB_RATE 1750000000u
293
ee0a5a90 294#define SOC_BCM2835 BIT(0)
42de9ad4
SW
295#define SOC_BCM2711 BIT(1)
296#define SOC_ALL (SOC_BCM2835 | SOC_BCM2711)
ee0a5a90 297
8a39e9fa
EA
298/*
299 * Names of clocks used within the driver that need to be replaced
300 * with an external parent's name. This array is in the order that
301 * the clocks node in the DT references external clocks.
302 */
303static const char *const cprman_parent_names[] = {
304 "xosc",
305 "dsi0_byte",
306 "dsi0_ddr2",
307 "dsi0_ddr",
308 "dsi1_byte",
309 "dsi1_ddr2",
310 "dsi1_ddr",
311};
312
41691b88
EA
313struct bcm2835_cprman {
314 struct device *dev;
315 void __iomem *regs;
6e1e60da 316 spinlock_t regs_lock; /* spinlock for all clocks */
f34e4651 317 unsigned int soc;
8a39e9fa
EA
318
319 /*
320 * Real names of cprman clock parents looked up through
321 * of_clk_get_parent_name(), which will be used in the
322 * parent_names[] arrays for clock registration.
323 */
324 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
41691b88 325
b19f009d
SB
326 /* Must be last */
327 struct clk_hw_onecell_data onecell;
41691b88
EA
328};
329
ee0a5a90
SW
330struct cprman_plat_data {
331 unsigned int soc;
332};
333
41691b88
EA
334static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
335{
336 writel(CM_PASSWORD | val, cprman->regs + reg);
337}
338
339static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
340{
341 return readl(cprman->regs + reg);
342}
526d239c 343
3f919581
EA
344/* Does a cycle of measuring a clock through the TCNT clock, which may
345 * source from many other clocks in the system.
346 */
347static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
348 u32 tcnt_mux)
349{
350 u32 osccount = 19200; /* 1ms */
351 u32 count;
352 ktime_t timeout;
353
354 spin_lock(&cprman->regs_lock);
355
356 cprman_write(cprman, CM_TCNTCTL, CM_KILL);
357
358 cprman_write(cprman, CM_TCNTCTL,
359 (tcnt_mux & CM_SRC_MASK) |
360 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
361
362 cprman_write(cprman, CM_OSCCOUNT, osccount);
363
364 /* do a kind delay at the start */
365 mdelay(1);
366
367 /* Finish off whatever is left of OSCCOUNT */
368 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
369 while (cprman_read(cprman, CM_OSCCOUNT)) {
370 if (ktime_after(ktime_get(), timeout)) {
371 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
372 count = 0;
373 goto out;
374 }
375 cpu_relax();
376 }
377
378 /* Wait for BUSY to clear. */
379 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
380 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
381 if (ktime_after(ktime_get(), timeout)) {
382 dev_err(cprman->dev, "timeout waiting for !BUSY\n");
383 count = 0;
384 goto out;
385 }
386 cpu_relax();
387 }
388
389 count = cprman_read(cprman, CM_TCNTCNT);
390
391 cprman_write(cprman, CM_TCNTCTL, 0);
392
393out:
394 spin_unlock(&cprman->regs_lock);
395
396 return count * 1000;
397}
398
d75d50c0 399static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
dc543267
RF
400 const struct debugfs_reg32 *regs,
401 size_t nregs, struct dentry *dentry)
96bf9c69 402{
96bf9c69
MS
403 struct debugfs_regset32 *regset;
404
405 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
406 if (!regset)
d75d50c0 407 return;
96bf9c69
MS
408
409 regset->regs = regs;
410 regset->nregs = nregs;
411 regset->base = cprman->regs + base;
412
c0526a11 413 debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
96bf9c69
MS
414}
415
41691b88
EA
416struct bcm2835_pll_data {
417 const char *name;
418 u32 cm_ctrl_reg;
419 u32 a2w_ctrl_reg;
420 u32 frac_reg;
421 u32 ana_reg_base;
422 u32 reference_enable_mask;
423 /* Bit in CM_LOCK to indicate when the PLL has locked. */
424 u32 lock_mask;
b2683d06 425 u32 flags;
41691b88
EA
426
427 const struct bcm2835_pll_ana_bits *ana;
428
429 unsigned long min_rate;
430 unsigned long max_rate;
431 /*
432 * Highest rate for the VCO before we have to use the
433 * pre-divide-by-2.
434 */
435 unsigned long max_fb_rate;
436};
437
438struct bcm2835_pll_ana_bits {
439 u32 mask0;
440 u32 set0;
441 u32 mask1;
442 u32 set1;
443 u32 mask3;
444 u32 set3;
445 u32 fb_prediv_mask;
446};
447
448static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
449 .mask0 = 0,
450 .set0 = 0,
49012d1b 451 .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
41691b88 452 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
49012d1b 453 .mask3 = A2W_PLL_KA_MASK,
41691b88
EA
454 .set3 = (2 << A2W_PLL_KA_SHIFT),
455 .fb_prediv_mask = BIT(14),
456};
457
458static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
49012d1b 459 .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
41691b88 460 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
49012d1b 461 .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
41691b88
EA
462 .set1 = (6 << A2W_PLLH_KP_SHIFT),
463 .mask3 = 0,
464 .set3 = 0,
465 .fb_prediv_mask = BIT(11),
466};
467
41691b88
EA
468struct bcm2835_pll_divider_data {
469 const char *name;
3b15afef
MS
470 const char *source_pll;
471
41691b88
EA
472 u32 cm_reg;
473 u32 a2w_reg;
474
475 u32 load_mask;
476 u32 hold_mask;
477 u32 fixed_divider;
55486091 478 u32 flags;
41691b88
EA
479};
480
41691b88
EA
481struct bcm2835_clock_data {
482 const char *name;
483
484 const char *const *parents;
485 int num_mux_parents;
486
155e8b3b
BB
487 /* Bitmap encoding which parents accept rate change propagation. */
488 unsigned int set_rate_parent;
489
41691b88
EA
490 u32 ctl_reg;
491 u32 div_reg;
492
493 /* Number of integer bits in the divider */
494 u32 int_bits;
495 /* Number of fractional bits in the divider */
496 u32 frac_bits;
497
e69fdcca
EA
498 u32 flags;
499
41691b88 500 bool is_vpu_clock;
959ca92a 501 bool is_mash_clock;
3542976d 502 bool low_jitter;
3f919581
EA
503
504 u32 tcnt_mux;
41691b88
EA
505};
506
56eb3a2e
MS
507struct bcm2835_gate_data {
508 const char *name;
509 const char *parent;
510
511 u32 ctl_reg;
512};
513
41691b88
EA
514struct bcm2835_pll {
515 struct clk_hw hw;
516 struct bcm2835_cprman *cprman;
517 const struct bcm2835_pll_data *data;
518};
519
520static int bcm2835_pll_is_on(struct clk_hw *hw)
521{
522 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
523 struct bcm2835_cprman *cprman = pll->cprman;
524 const struct bcm2835_pll_data *data = pll->data;
525
526 return cprman_read(cprman, data->a2w_ctrl_reg) &
527 A2W_PLL_CTRL_PRST_DISABLE;
528}
529
f34e4651
NSJ
530static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
531 const struct bcm2835_pll_data *data)
532{
533 /*
534 * On BCM2711 there isn't a pre-divisor available in the PLL feedback
535 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
536 * for to for VCO RANGE bits.
537 */
538 if (cprman->soc & SOC_BCM2711)
539 return 0;
540
541 return data->ana->fb_prediv_mask;
542}
543
41691b88
EA
544static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
545 unsigned long parent_rate,
546 u32 *ndiv, u32 *fdiv)
547{
548 u64 div;
549
550 div = (u64)rate << A2W_PLL_FRAC_BITS;
551 do_div(div, parent_rate);
552
553 *ndiv = div >> A2W_PLL_FRAC_BITS;
554 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
555}
556
557static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
558 u32 ndiv, u32 fdiv, u32 pdiv)
559{
560 u64 rate;
561
562 if (pdiv == 0)
563 return 0;
564
565 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
566 do_div(rate, pdiv);
567 return rate >> A2W_PLL_FRAC_BITS;
568}
569
570static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
571 unsigned long *parent_rate)
572{
c4e634ce
EA
573 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
574 const struct bcm2835_pll_data *data = pll->data;
41691b88
EA
575 u32 ndiv, fdiv;
576
c4e634ce
EA
577 rate = clamp(rate, data->min_rate, data->max_rate);
578
41691b88
EA
579 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
580
581 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
582}
583
584static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
585 unsigned long parent_rate)
586{
587 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
588 struct bcm2835_cprman *cprman = pll->cprman;
589 const struct bcm2835_pll_data *data = pll->data;
590 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
591 u32 ndiv, pdiv, fdiv;
592 bool using_prediv;
593
594 if (parent_rate == 0)
595 return 0;
596
597 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
598 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
599 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
600 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
f34e4651 601 bcm2835_pll_get_prediv_mask(cprman, data);
41691b88 602
e45098d7 603 if (using_prediv) {
41691b88 604 ndiv *= 2;
e45098d7
PE
605 fdiv *= 2;
606 }
41691b88
EA
607
608 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
609}
610
611static void bcm2835_pll_off(struct clk_hw *hw)
612{
613 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
614 struct bcm2835_cprman *cprman = pll->cprman;
615 const struct bcm2835_pll_data *data = pll->data;
616
6727f086 617 spin_lock(&cprman->regs_lock);
75387237 618 cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
6727f086
MS
619 cprman_write(cprman, data->a2w_ctrl_reg,
620 cprman_read(cprman, data->a2w_ctrl_reg) |
621 A2W_PLL_CTRL_PWRDN);
622 spin_unlock(&cprman->regs_lock);
41691b88
EA
623}
624
625static int bcm2835_pll_on(struct clk_hw *hw)
626{
627 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
628 struct bcm2835_cprman *cprman = pll->cprman;
629 const struct bcm2835_pll_data *data = pll->data;
630 ktime_t timeout;
631
e708b383
EA
632 cprman_write(cprman, data->a2w_ctrl_reg,
633 cprman_read(cprman, data->a2w_ctrl_reg) &
634 ~A2W_PLL_CTRL_PWRDN);
635
41691b88 636 /* Take the PLL out of reset. */
7997f3b2 637 spin_lock(&cprman->regs_lock);
41691b88
EA
638 cprman_write(cprman, data->cm_ctrl_reg,
639 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
7997f3b2 640 spin_unlock(&cprman->regs_lock);
41691b88
EA
641
642 /* Wait for the PLL to lock. */
643 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
644 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
645 if (ktime_after(ktime_get(), timeout)) {
646 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
647 clk_hw_get_name(hw));
648 return -ETIMEDOUT;
649 }
650
651 cpu_relax();
652 }
653
75387237
BB
654 cprman_write(cprman, data->a2w_ctrl_reg,
655 cprman_read(cprman, data->a2w_ctrl_reg) |
656 A2W_PLL_CTRL_PRST_DISABLE);
657
41691b88
EA
658 return 0;
659}
660
661static void
662bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
663{
664 int i;
665
666 /*
667 * ANA register setup is done as a series of writes to
668 * ANA3-ANA0, in that order. This lets us write all 4
669 * registers as a single cycle of the serdes interface (taking
670 * 100 xosc clocks), whereas if we were to update ana0, 1, and
671 * 3 individually through their partial-write registers, each
672 * would be their own serdes cycle.
673 */
674 for (i = 3; i >= 0; i--)
675 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
676}
677
678static int bcm2835_pll_set_rate(struct clk_hw *hw,
679 unsigned long rate, unsigned long parent_rate)
680{
681 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
682 struct bcm2835_cprman *cprman = pll->cprman;
683 const struct bcm2835_pll_data *data = pll->data;
f34e4651 684 u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
41691b88
EA
685 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
686 u32 ndiv, fdiv, a2w_ctl;
687 u32 ana[4];
688 int i;
689
41691b88
EA
690 if (rate > data->max_fb_rate) {
691 use_fb_prediv = true;
692 rate /= 2;
693 } else {
694 use_fb_prediv = false;
695 }
696
697 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
698
699 for (i = 3; i >= 0; i--)
700 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
701
f34e4651 702 was_using_prediv = ana[1] & prediv_mask;
41691b88
EA
703
704 ana[0] &= ~data->ana->mask0;
705 ana[0] |= data->ana->set0;
706 ana[1] &= ~data->ana->mask1;
707 ana[1] |= data->ana->set1;
708 ana[3] &= ~data->ana->mask3;
709 ana[3] |= data->ana->set3;
710
711 if (was_using_prediv && !use_fb_prediv) {
f34e4651 712 ana[1] &= ~prediv_mask;
41691b88
EA
713 do_ana_setup_first = true;
714 } else if (!was_using_prediv && use_fb_prediv) {
f34e4651 715 ana[1] |= prediv_mask;
41691b88
EA
716 do_ana_setup_first = false;
717 } else {
718 do_ana_setup_first = true;
719 }
720
721 /* Unmask the reference clock from the oscillator. */
7997f3b2 722 spin_lock(&cprman->regs_lock);
41691b88
EA
723 cprman_write(cprman, A2W_XOSC_CTRL,
724 cprman_read(cprman, A2W_XOSC_CTRL) |
725 data->reference_enable_mask);
7997f3b2 726 spin_unlock(&cprman->regs_lock);
41691b88
EA
727
728 if (do_ana_setup_first)
729 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
730
731 /* Set the PLL multiplier from the oscillator. */
732 cprman_write(cprman, data->frac_reg, fdiv);
733
734 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
735 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
736 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
737 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
738 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
739 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
740
741 if (!do_ana_setup_first)
742 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
743
744 return 0;
745}
746
d75d50c0 747static void bcm2835_pll_debug_init(struct clk_hw *hw,
96bf9c69
MS
748 struct dentry *dentry)
749{
750 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
751 struct bcm2835_cprman *cprman = pll->cprman;
752 const struct bcm2835_pll_data *data = pll->data;
753 struct debugfs_reg32 *regs;
754
a86854d0 755 regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
96bf9c69 756 if (!regs)
d75d50c0 757 return;
96bf9c69
MS
758
759 regs[0].name = "cm_ctrl";
760 regs[0].offset = data->cm_ctrl_reg;
761 regs[1].name = "a2w_ctrl";
762 regs[1].offset = data->a2w_ctrl_reg;
763 regs[2].name = "frac";
764 regs[2].offset = data->frac_reg;
765 regs[3].name = "ana0";
766 regs[3].offset = data->ana_reg_base + 0 * 4;
767 regs[4].name = "ana1";
768 regs[4].offset = data->ana_reg_base + 1 * 4;
769 regs[5].name = "ana2";
770 regs[5].offset = data->ana_reg_base + 2 * 4;
771 regs[6].name = "ana3";
772 regs[6].offset = data->ana_reg_base + 3 * 4;
773
d75d50c0 774 bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
96bf9c69
MS
775}
776
41691b88
EA
777static const struct clk_ops bcm2835_pll_clk_ops = {
778 .is_prepared = bcm2835_pll_is_on,
779 .prepare = bcm2835_pll_on,
780 .unprepare = bcm2835_pll_off,
781 .recalc_rate = bcm2835_pll_get_rate,
782 .set_rate = bcm2835_pll_set_rate,
783 .round_rate = bcm2835_pll_round_rate,
96bf9c69 784 .debug_init = bcm2835_pll_debug_init,
41691b88
EA
785};
786
787struct bcm2835_pll_divider {
788 struct clk_divider div;
789 struct bcm2835_cprman *cprman;
790 const struct bcm2835_pll_divider_data *data;
791};
792
793static struct bcm2835_pll_divider *
794bcm2835_pll_divider_from_hw(struct clk_hw *hw)
795{
796 return container_of(hw, struct bcm2835_pll_divider, div.hw);
797}
798
799static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
800{
801 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
802 struct bcm2835_cprman *cprman = divider->cprman;
803 const struct bcm2835_pll_divider_data *data = divider->data;
804
805 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
806}
807
699470f3
MB
808static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw,
809 struct clk_rate_request *req)
41691b88 810{
699470f3 811 return clk_divider_ops.determine_rate(hw, req);
41691b88
EA
812}
813
814static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
815 unsigned long parent_rate)
816{
79c1e2fc 817 return clk_divider_ops.recalc_rate(hw, parent_rate);
41691b88
EA
818}
819
820static void bcm2835_pll_divider_off(struct clk_hw *hw)
821{
822 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
823 struct bcm2835_cprman *cprman = divider->cprman;
824 const struct bcm2835_pll_divider_data *data = divider->data;
825
ec36a5c6 826 spin_lock(&cprman->regs_lock);
41691b88
EA
827 cprman_write(cprman, data->cm_reg,
828 (cprman_read(cprman, data->cm_reg) &
829 ~data->load_mask) | data->hold_mask);
68af4fa8
BB
830 cprman_write(cprman, data->a2w_reg,
831 cprman_read(cprman, data->a2w_reg) |
832 A2W_PLL_CHANNEL_DISABLE);
ec36a5c6 833 spin_unlock(&cprman->regs_lock);
41691b88
EA
834}
835
836static int bcm2835_pll_divider_on(struct clk_hw *hw)
837{
838 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
839 struct bcm2835_cprman *cprman = divider->cprman;
840 const struct bcm2835_pll_divider_data *data = divider->data;
841
ec36a5c6 842 spin_lock(&cprman->regs_lock);
41691b88
EA
843 cprman_write(cprman, data->a2w_reg,
844 cprman_read(cprman, data->a2w_reg) &
845 ~A2W_PLL_CHANNEL_DISABLE);
846
847 cprman_write(cprman, data->cm_reg,
848 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
ec36a5c6 849 spin_unlock(&cprman->regs_lock);
41691b88
EA
850
851 return 0;
852}
853
854static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
855 unsigned long rate,
856 unsigned long parent_rate)
857{
858 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
859 struct bcm2835_cprman *cprman = divider->cprman;
860 const struct bcm2835_pll_divider_data *data = divider->data;
773b3966 861 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
41691b88 862
773b3966
EA
863 div = DIV_ROUND_UP_ULL(parent_rate, rate);
864
865 div = min(div, max_div);
866 if (div == max_div)
867 div = 0;
41691b88 868
773b3966 869 cprman_write(cprman, data->a2w_reg, div);
41691b88
EA
870 cm = cprman_read(cprman, data->cm_reg);
871 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
872 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
873
874 return 0;
875}
876
d75d50c0
SB
877static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
878 struct dentry *dentry)
96bf9c69
MS
879{
880 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
881 struct bcm2835_cprman *cprman = divider->cprman;
882 const struct bcm2835_pll_divider_data *data = divider->data;
883 struct debugfs_reg32 *regs;
884
a86854d0 885 regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
96bf9c69 886 if (!regs)
d75d50c0 887 return;
96bf9c69
MS
888
889 regs[0].name = "cm";
890 regs[0].offset = data->cm_reg;
891 regs[1].name = "a2w";
892 regs[1].offset = data->a2w_reg;
893
d75d50c0 894 bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
96bf9c69
MS
895}
896
41691b88
EA
897static const struct clk_ops bcm2835_pll_divider_clk_ops = {
898 .is_prepared = bcm2835_pll_divider_is_on,
899 .prepare = bcm2835_pll_divider_on,
900 .unprepare = bcm2835_pll_divider_off,
901 .recalc_rate = bcm2835_pll_divider_get_rate,
902 .set_rate = bcm2835_pll_divider_set_rate,
699470f3 903 .determine_rate = bcm2835_pll_divider_determine_rate,
96bf9c69 904 .debug_init = bcm2835_pll_divider_debug_init,
41691b88
EA
905};
906
907/*
908 * The CM dividers do fixed-point division, so we can't use the
909 * generic integer divider code like the PLL dividers do (and we can't
910 * fake it by having some fixed shifts preceding it in the clock tree,
911 * because we'd run out of bits in a 32-bit unsigned long).
912 */
913struct bcm2835_clock {
914 struct clk_hw hw;
915 struct bcm2835_cprman *cprman;
916 const struct bcm2835_clock_data *data;
917};
918
919static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
920{
921 return container_of(hw, struct bcm2835_clock, hw);
922}
923
924static int bcm2835_clock_is_on(struct clk_hw *hw)
925{
926 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
927 struct bcm2835_cprman *cprman = clock->cprman;
928 const struct bcm2835_clock_data *data = clock->data;
929
930 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
931}
932
933static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
934 unsigned long rate,
8ca011ef 935 unsigned long parent_rate)
41691b88
EA
936{
937 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
938 const struct bcm2835_clock_data *data = clock->data;
9c95b32c
RP
939 u32 unused_frac_mask =
940 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
41691b88 941 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
9c95b32c 942 u64 rem;
959ca92a 943 u32 div, mindiv, maxdiv;
41691b88 944
9c95b32c 945 rem = do_div(temp, rate);
41691b88 946 div = temp;
9c95b32c 947 div &= ~unused_frac_mask;
41691b88 948
959ca92a
MS
949 /* different clamping limits apply for a mash clock */
950 if (data->is_mash_clock) {
951 /* clamp to min divider of 2 */
952 mindiv = 2 << CM_DIV_FRAC_BITS;
953 /* clamp to the highest possible integer divider */
954 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
955 } else {
956 /* clamp to min divider of 1 */
957 mindiv = 1 << CM_DIV_FRAC_BITS;
958 /* clamp to the highest possible fractional divider */
959 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
960 CM_DIV_FRAC_BITS - data->frac_bits);
961 }
962
963 /* apply the clamping limits */
964 div = max_t(u32, div, mindiv);
965 div = min_t(u32, div, maxdiv);
41691b88
EA
966
967 return div;
968}
969
970static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
971 unsigned long parent_rate,
972 u32 div)
973{
974 const struct bcm2835_clock_data *data = clock->data;
975 u64 temp;
976
8a39e9fa
EA
977 if (data->int_bits == 0 && data->frac_bits == 0)
978 return parent_rate;
979
41691b88
EA
980 /*
981 * The divisor is a 12.12 fixed point field, but only some of
982 * the bits are populated in any given clock.
983 */
984 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
985 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
986
987 if (div == 0)
988 return 0;
989
990 temp = (u64)parent_rate << data->frac_bits;
991
992 do_div(temp, div);
993
994 return temp;
995}
996
41691b88
EA
997static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
998 unsigned long parent_rate)
999{
1000 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1001 struct bcm2835_cprman *cprman = clock->cprman;
1002 const struct bcm2835_clock_data *data = clock->data;
8a39e9fa
EA
1003 u32 div;
1004
1005 if (data->int_bits == 0 && data->frac_bits == 0)
1006 return parent_rate;
1007
1008 div = cprman_read(cprman, data->div_reg);
41691b88
EA
1009
1010 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1011}
1012
1013static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1014{
1015 struct bcm2835_cprman *cprman = clock->cprman;
1016 const struct bcm2835_clock_data *data = clock->data;
1017 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1018
1019 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1020 if (ktime_after(ktime_get(), timeout)) {
1021 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1022 clk_hw_get_name(&clock->hw));
1023 return;
1024 }
1025 cpu_relax();
1026 }
1027}
1028
1029static void bcm2835_clock_off(struct clk_hw *hw)
1030{
1031 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1032 struct bcm2835_cprman *cprman = clock->cprman;
1033 const struct bcm2835_clock_data *data = clock->data;
1034
1035 spin_lock(&cprman->regs_lock);
1036 cprman_write(cprman, data->ctl_reg,
1037 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1038 spin_unlock(&cprman->regs_lock);
1039
1040 /* BUSY will remain high until the divider completes its cycle. */
1041 bcm2835_clock_wait_busy(clock);
1042}
1043
1044static int bcm2835_clock_on(struct clk_hw *hw)
1045{
1046 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1047 struct bcm2835_cprman *cprman = clock->cprman;
1048 const struct bcm2835_clock_data *data = clock->data;
1049
1050 spin_lock(&cprman->regs_lock);
1051 cprman_write(cprman, data->ctl_reg,
1052 cprman_read(cprman, data->ctl_reg) |
1053 CM_ENABLE |
1054 CM_GATE);
1055 spin_unlock(&cprman->regs_lock);
1056
3f919581
EA
1057 /* Debug code to measure the clock once it's turned on to see
1058 * if it's ticking at the rate we expect.
1059 */
1060 if (data->tcnt_mux && false) {
1061 dev_info(cprman->dev,
1062 "clk %s: rate %ld, measure %ld\n",
1063 data->name,
1064 clk_hw_get_rate(hw),
1065 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1066 }
1067
41691b88
EA
1068 return 0;
1069}
1070
1071static int bcm2835_clock_set_rate(struct clk_hw *hw,
1072 unsigned long rate, unsigned long parent_rate)
1073{
1074 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1075 struct bcm2835_cprman *cprman = clock->cprman;
1076 const struct bcm2835_clock_data *data = clock->data;
8ca011ef 1077 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
959ca92a
MS
1078 u32 ctl;
1079
1080 spin_lock(&cprman->regs_lock);
1081
1082 /*
1083 * Setting up frac support
1084 *
1085 * In principle it is recommended to stop/start the clock first,
1086 * but as we set CLK_SET_RATE_GATE during registration of the
1087 * clock this requirement should be take care of by the
1088 * clk-framework.
1089 */
1090 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1091 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1092 cprman_write(cprman, data->ctl_reg, ctl);
41691b88
EA
1093
1094 cprman_write(cprman, data->div_reg, div);
1095
959ca92a
MS
1096 spin_unlock(&cprman->regs_lock);
1097
41691b88
EA
1098 return 0;
1099}
1100
67615c58
EA
1101static bool
1102bcm2835_clk_is_pllc(struct clk_hw *hw)
1103{
1104 if (!hw)
1105 return false;
1106
1107 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1108}
1109
155e8b3b
BB
1110static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1111 int parent_idx,
1112 unsigned long rate,
1113 u32 *div,
3542976d
PE
1114 unsigned long *prate,
1115 unsigned long *avgrate)
155e8b3b
BB
1116{
1117 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1118 struct bcm2835_cprman *cprman = clock->cprman;
1119 const struct bcm2835_clock_data *data = clock->data;
2aab7a20 1120 unsigned long best_rate = 0;
155e8b3b
BB
1121 u32 curdiv, mindiv, maxdiv;
1122 struct clk_hw *parent;
1123
1124 parent = clk_hw_get_parent_by_index(hw, parent_idx);
1125
1126 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1127 *prate = clk_hw_get_rate(parent);
8ca011ef 1128 *div = bcm2835_clock_choose_div(hw, rate, *prate);
155e8b3b 1129
3542976d
PE
1130 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1131
1132 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1133 unsigned long high, low;
1134 u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1135
1136 high = bcm2835_clock_rate_from_divisor(clock, *prate,
1137 int_div);
1138 int_div += CM_DIV_FRAC_MASK + 1;
1139 low = bcm2835_clock_rate_from_divisor(clock, *prate,
1140 int_div);
1141
1142 /*
1143 * Return a value which is the maximum deviation
1144 * below the ideal rate, for use as a metric.
1145 */
1146 return *avgrate - max(*avgrate - low, high - *avgrate);
1147 }
1148 return *avgrate;
155e8b3b
BB
1149 }
1150
1151 if (data->frac_bits)
1152 dev_warn(cprman->dev,
1153 "frac bits are not used when propagating rate change");
1154
1155 /* clamp to min divider of 2 if we're dealing with a mash clock */
1156 mindiv = data->is_mash_clock ? 2 : 1;
1157 maxdiv = BIT(data->int_bits) - 1;
1158
1159 /* TODO: Be smart, and only test a subset of the available divisors. */
1160 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1161 unsigned long tmp_rate;
1162
1163 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1164 tmp_rate /= curdiv;
1165 if (curdiv == mindiv ||
1166 (tmp_rate > best_rate && tmp_rate <= rate))
1167 best_rate = tmp_rate;
1168
1169 if (best_rate == rate)
1170 break;
1171 }
1172
1173 *div = curdiv << CM_DIV_FRAC_BITS;
1174 *prate = curdiv * best_rate;
3542976d 1175 *avgrate = best_rate;
155e8b3b
BB
1176
1177 return best_rate;
1178}
1179
6d18b8ad 1180static int bcm2835_clock_determine_rate(struct clk_hw *hw,
6e1e60da 1181 struct clk_rate_request *req)
6d18b8ad 1182{
6d18b8ad 1183 struct clk_hw *parent, *best_parent = NULL;
67615c58 1184 bool current_parent_is_pllc;
6d18b8ad
RP
1185 unsigned long rate, best_rate = 0;
1186 unsigned long prate, best_prate = 0;
3542976d 1187 unsigned long avgrate, best_avgrate = 0;
6d18b8ad
RP
1188 size_t i;
1189 u32 div;
1190
67615c58
EA
1191 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1192
6d18b8ad
RP
1193 /*
1194 * Select parent clock that results in the closest but lower rate
1195 */
1196 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1197 parent = clk_hw_get_parent_by_index(hw, i);
1198 if (!parent)
1199 continue;
67615c58
EA
1200
1201 /*
1202 * Don't choose a PLLC-derived clock as our parent
1203 * unless it had been manually set that way. PLLC's
1204 * frequency gets adjusted by the firmware due to
1205 * over-temp or under-voltage conditions, without
1206 * prior notification to our clock consumer.
1207 */
1208 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1209 continue;
1210
155e8b3b 1211 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
3542976d
PE
1212 &div, &prate,
1213 &avgrate);
5517357a 1214 if (abs(req->rate - rate) < abs(req->rate - best_rate)) {
6d18b8ad
RP
1215 best_parent = parent;
1216 best_prate = prate;
1217 best_rate = rate;
3542976d 1218 best_avgrate = avgrate;
6d18b8ad
RP
1219 }
1220 }
1221
1222 if (!best_parent)
1223 return -EINVAL;
1224
1225 req->best_parent_hw = best_parent;
1226 req->best_parent_rate = best_prate;
1227
3542976d 1228 req->rate = best_avgrate;
6d18b8ad
RP
1229
1230 return 0;
1231}
1232
1233static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1234{
1235 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1236 struct bcm2835_cprman *cprman = clock->cprman;
1237 const struct bcm2835_clock_data *data = clock->data;
1238 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1239
1240 cprman_write(cprman, data->ctl_reg, src);
1241 return 0;
1242}
1243
1244static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1245{
1246 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1247 struct bcm2835_cprman *cprman = clock->cprman;
1248 const struct bcm2835_clock_data *data = clock->data;
1249 u32 src = cprman_read(cprman, data->ctl_reg);
1250
1251 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1252}
1253
dc543267 1254static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
96bf9c69
MS
1255 {
1256 .name = "ctl",
1257 .offset = 0,
1258 },
1259 {
1260 .name = "div",
1261 .offset = 4,
1262 },
1263};
1264
d75d50c0 1265static void bcm2835_clock_debug_init(struct clk_hw *hw,
96bf9c69
MS
1266 struct dentry *dentry)
1267{
1268 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1269 struct bcm2835_cprman *cprman = clock->cprman;
1270 const struct bcm2835_clock_data *data = clock->data;
1271
d75d50c0 1272 bcm2835_debugfs_regset(cprman, data->ctl_reg,
96bf9c69
MS
1273 bcm2835_debugfs_clock_reg32,
1274 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1275 dentry);
1276}
1277
41691b88
EA
1278static const struct clk_ops bcm2835_clock_clk_ops = {
1279 .is_prepared = bcm2835_clock_is_on,
1280 .prepare = bcm2835_clock_on,
1281 .unprepare = bcm2835_clock_off,
1282 .recalc_rate = bcm2835_clock_get_rate,
1283 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1284 .determine_rate = bcm2835_clock_determine_rate,
1285 .set_parent = bcm2835_clock_set_parent,
1286 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1287 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1288};
1289
1290static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1291{
1292 return true;
1293}
1294
1295/*
1296 * The VPU clock can never be disabled (it doesn't have an ENABLE
1297 * bit), so it gets its own set of clock ops.
1298 */
1299static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1300 .is_prepared = bcm2835_vpu_clock_is_on,
1301 .recalc_rate = bcm2835_clock_get_rate,
1302 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1303 .determine_rate = bcm2835_clock_determine_rate,
1304 .set_parent = bcm2835_clock_set_parent,
1305 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1306 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1307};
1308
b19f009d 1309static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
99a1ae29 1310 const void *data)
41691b88 1311{
99a1ae29 1312 const struct bcm2835_pll_data *pll_data = data;
41691b88
EA
1313 struct bcm2835_pll *pll;
1314 struct clk_init_data init;
b19f009d 1315 int ret;
41691b88
EA
1316
1317 memset(&init, 0, sizeof(init));
1318
1319 /* All of the PLLs derive from the external oscillator. */
8a39e9fa 1320 init.parent_names = &cprman->real_parent_names[0];
41691b88 1321 init.num_parents = 1;
99a1ae29 1322 init.name = pll_data->name;
41691b88 1323 init.ops = &bcm2835_pll_clk_ops;
b2683d06 1324 init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
41691b88
EA
1325
1326 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1327 if (!pll)
1328 return NULL;
1329
1330 pll->cprman = cprman;
99a1ae29 1331 pll->data = pll_data;
41691b88
EA
1332 pll->hw.init = &init;
1333
b19f009d 1334 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
f6c992ca
NE
1335 if (ret) {
1336 kfree(pll);
b19f009d 1337 return NULL;
f6c992ca 1338 }
b19f009d 1339 return &pll->hw;
41691b88
EA
1340}
1341
b19f009d 1342static struct clk_hw *
41691b88 1343bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
99a1ae29 1344 const void *data)
41691b88 1345{
99a1ae29 1346 const struct bcm2835_pll_divider_data *divider_data = data;
41691b88
EA
1347 struct bcm2835_pll_divider *divider;
1348 struct clk_init_data init;
41691b88 1349 const char *divider_name;
b19f009d 1350 int ret;
41691b88 1351
99a1ae29 1352 if (divider_data->fixed_divider != 1) {
41691b88 1353 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
99a1ae29 1354 "%s_prediv", divider_data->name);
41691b88
EA
1355 if (!divider_name)
1356 return NULL;
1357 } else {
99a1ae29 1358 divider_name = divider_data->name;
41691b88
EA
1359 }
1360
1361 memset(&init, 0, sizeof(init));
1362
99a1ae29 1363 init.parent_names = &divider_data->source_pll;
41691b88
EA
1364 init.num_parents = 1;
1365 init.name = divider_name;
1366 init.ops = &bcm2835_pll_divider_clk_ops;
99a1ae29 1367 init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
41691b88
EA
1368
1369 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1370 if (!divider)
1371 return NULL;
1372
99a1ae29 1373 divider->div.reg = cprman->regs + divider_data->a2w_reg;
41691b88
EA
1374 divider->div.shift = A2W_PLL_DIV_SHIFT;
1375 divider->div.width = A2W_PLL_DIV_BITS;
79c1e2fc 1376 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
41691b88
EA
1377 divider->div.lock = &cprman->regs_lock;
1378 divider->div.hw.init = &init;
1379 divider->div.table = NULL;
1380
1381 divider->cprman = cprman;
99a1ae29 1382 divider->data = divider_data;
41691b88 1383
b19f009d
SB
1384 ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1385 if (ret)
1386 return ERR_PTR(ret);
41691b88
EA
1387
1388 /*
1389 * PLLH's channels have a fixed divide by 10 afterwards, which
1390 * is what our consumers are actually using.
1391 */
99a1ae29
NC
1392 if (divider_data->fixed_divider != 1) {
1393 return clk_hw_register_fixed_factor(cprman->dev,
1394 divider_data->name,
b19f009d
SB
1395 divider_name,
1396 CLK_SET_RATE_PARENT,
1397 1,
99a1ae29 1398 divider_data->fixed_divider);
41691b88
EA
1399 }
1400
b19f009d 1401 return &divider->div.hw;
41691b88
EA
1402}
1403
b19f009d 1404static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
99a1ae29 1405 const void *data)
41691b88 1406{
99a1ae29 1407 const struct bcm2835_clock_data *clock_data = data;
41691b88
EA
1408 struct bcm2835_clock *clock;
1409 struct clk_init_data init;
6d18b8ad 1410 const char *parents[1 << CM_SRC_BITS];
99e71543 1411 size_t i;
b19f009d 1412 int ret;
41691b88
EA
1413
1414 /*
8a39e9fa
EA
1415 * Replace our strings referencing parent clocks with the
1416 * actual clock-output-name of the parent.
41691b88 1417 */
99a1ae29
NC
1418 for (i = 0; i < clock_data->num_mux_parents; i++) {
1419 parents[i] = clock_data->parents[i];
8a39e9fa 1420
99e71543
YX
1421 ret = match_string(cprman_parent_names,
1422 ARRAY_SIZE(cprman_parent_names),
1423 parents[i]);
1424 if (ret >= 0)
1425 parents[i] = cprman->real_parent_names[ret];
41691b88
EA
1426 }
1427
1428 memset(&init, 0, sizeof(init));
6d18b8ad 1429 init.parent_names = parents;
99a1ae29
NC
1430 init.num_parents = clock_data->num_mux_parents;
1431 init.name = clock_data->name;
1432 init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
41691b88 1433
155e8b3b
BB
1434 /*
1435 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1436 * rate changes on at least of the parents.
1437 */
99a1ae29 1438 if (clock_data->set_rate_parent)
155e8b3b
BB
1439 init.flags |= CLK_SET_RATE_PARENT;
1440
99a1ae29 1441 if (clock_data->is_vpu_clock) {
41691b88
EA
1442 init.ops = &bcm2835_vpu_clock_clk_ops;
1443 } else {
1444 init.ops = &bcm2835_clock_clk_ops;
1445 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
eddcbe83
EA
1446
1447 /* If the clock wasn't actually enabled at boot, it's not
1448 * critical.
1449 */
99a1ae29 1450 if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
eddcbe83 1451 init.flags &= ~CLK_IS_CRITICAL;
41691b88
EA
1452 }
1453
1454 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1455 if (!clock)
1456 return NULL;
1457
1458 clock->cprman = cprman;
99a1ae29 1459 clock->data = clock_data;
41691b88
EA
1460 clock->hw.init = &init;
1461
b19f009d
SB
1462 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1463 if (ret)
1464 return ERR_PTR(ret);
1465 return &clock->hw;
41691b88
EA
1466}
1467
f376c43b 1468static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
99a1ae29 1469 const void *data)
56eb3a2e 1470{
99a1ae29
NC
1471 const struct bcm2835_gate_data *gate_data = data;
1472
1473 return clk_hw_register_gate(cprman->dev, gate_data->name,
1474 gate_data->parent,
f376c43b 1475 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
99a1ae29 1476 cprman->regs + gate_data->ctl_reg,
f376c43b 1477 CM_GATE_BIT, 0, &cprman->regs_lock);
56eb3a2e
MS
1478}
1479
56eb3a2e 1480struct bcm2835_clk_desc {
99a1ae29
NC
1481 struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1482 const void *data);
ee0a5a90 1483 unsigned int supported;
56eb3a2e
MS
1484 const void *data;
1485};
1486
3b15afef 1487/* assignment helper macros for different clock types */
99a1ae29 1488#define _REGISTER(f, s, ...) { .clk_register = f, \
ee0a5a90
SW
1489 .supported = s, \
1490 .data = __VA_ARGS__ }
1491#define REGISTER_PLL(s, ...) _REGISTER(&bcm2835_register_pll, \
1492 s, \
3b15afef
MS
1493 &(struct bcm2835_pll_data) \
1494 {__VA_ARGS__})
ee0a5a90
SW
1495#define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1496 s, \
1497 &(struct bcm2835_pll_divider_data) \
1498 {__VA_ARGS__})
1499#define REGISTER_CLK(s, ...) _REGISTER(&bcm2835_register_clock, \
1500 s, \
3b15afef
MS
1501 &(struct bcm2835_clock_data) \
1502 {__VA_ARGS__})
ee0a5a90
SW
1503#define REGISTER_GATE(s, ...) _REGISTER(&bcm2835_register_gate, \
1504 s, \
3b15afef
MS
1505 &(struct bcm2835_gate_data) \
1506 {__VA_ARGS__})
1507
1508/* parent mux arrays plus helper macros */
1509
1510/* main oscillator parent mux */
1511static const char *const bcm2835_clock_osc_parents[] = {
1512 "gnd",
1513 "xosc",
1514 "testdebug0",
1515 "testdebug1"
1516};
1517
ee0a5a90
SW
1518#define REGISTER_OSC_CLK(s, ...) REGISTER_CLK( \
1519 s, \
3b15afef
MS
1520 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1521 .parents = bcm2835_clock_osc_parents, \
1522 __VA_ARGS__)
1523
1524/* main peripherial parent mux */
1525static const char *const bcm2835_clock_per_parents[] = {
1526 "gnd",
1527 "xosc",
1528 "testdebug0",
1529 "testdebug1",
1530 "plla_per",
1531 "pllc_per",
1532 "plld_per",
1533 "pllh_aux",
1534};
1535
ee0a5a90
SW
1536#define REGISTER_PER_CLK(s, ...) REGISTER_CLK( \
1537 s, \
3b15afef
MS
1538 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1539 .parents = bcm2835_clock_per_parents, \
1540 __VA_ARGS__)
56eb3a2e 1541
8c0de581
PE
1542/*
1543 * Restrict clock sources for the PCM peripheral to the oscillator and
1544 * PLLD_PER because other source may have varying rates or be switched
1545 * off.
1546 *
1547 * Prevent other sources from being selected by replacing their names in
1548 * the list of potential parents with dummy entries (entry index is
1549 * significant).
1550 */
1551static const char *const bcm2835_pcm_per_parents[] = {
1552 "-",
1553 "xosc",
1554 "-",
1555 "-",
1556 "-",
1557 "-",
1558 "plld_per",
1559 "-",
1560};
1561
ee0a5a90
SW
1562#define REGISTER_PCM_CLK(s, ...) REGISTER_CLK( \
1563 s, \
8c0de581
PE
1564 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1565 .parents = bcm2835_pcm_per_parents, \
1566 __VA_ARGS__)
1567
3b15afef
MS
1568/* main vpu parent mux */
1569static const char *const bcm2835_clock_vpu_parents[] = {
1570 "gnd",
1571 "xosc",
1572 "testdebug0",
1573 "testdebug1",
1574 "plla_core",
1575 "pllc_core0",
1576 "plld_core",
1577 "pllh_aux",
1578 "pllc_core1",
1579 "pllc_core2",
1580};
1581
ee0a5a90
SW
1582#define REGISTER_VPU_CLK(s, ...) REGISTER_CLK( \
1583 s, \
3b15afef
MS
1584 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1585 .parents = bcm2835_clock_vpu_parents, \
1586 __VA_ARGS__)
1587
8a39e9fa
EA
1588/*
1589 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1590 * analog PHY. The _inv variants are generated internally to cprman,
1591 * but we don't use them so they aren't hooked up.
1592 */
1593static const char *const bcm2835_clock_dsi0_parents[] = {
1594 "gnd",
1595 "xosc",
1596 "testdebug0",
1597 "testdebug1",
1598 "dsi0_ddr",
1599 "dsi0_ddr_inv",
1600 "dsi0_ddr2",
1601 "dsi0_ddr2_inv",
1602 "dsi0_byte",
1603 "dsi0_byte_inv",
1604};
1605
1606static const char *const bcm2835_clock_dsi1_parents[] = {
1607 "gnd",
1608 "xosc",
1609 "testdebug0",
1610 "testdebug1",
1611 "dsi1_ddr",
1612 "dsi1_ddr_inv",
1613 "dsi1_ddr2",
1614 "dsi1_ddr2_inv",
1615 "dsi1_byte",
1616 "dsi1_byte_inv",
1617};
1618
ee0a5a90
SW
1619#define REGISTER_DSI0_CLK(s, ...) REGISTER_CLK( \
1620 s, \
8a39e9fa
EA
1621 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1622 .parents = bcm2835_clock_dsi0_parents, \
1623 __VA_ARGS__)
1624
ee0a5a90
SW
1625#define REGISTER_DSI1_CLK(s, ...) REGISTER_CLK( \
1626 s, \
8a39e9fa
EA
1627 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1628 .parents = bcm2835_clock_dsi1_parents, \
1629 __VA_ARGS__)
1630
3b15afef
MS
1631/*
1632 * the real definition of all the pll, pll_dividers and clocks
1633 * these make use of the above REGISTER_* macros
1634 */
56eb3a2e 1635static const struct bcm2835_clk_desc clk_desc_array[] = {
3b15afef
MS
1636 /* the PLL + PLL dividers */
1637
1638 /*
1639 * PLLA is the auxiliary PLL, used to drive the CCP2
1640 * (Compact Camera Port 2) transmitter clock.
1641 *
1642 * It is in the PX LDO power domain, which is on when the
1643 * AUDIO domain is on.
1644 */
1645 [BCM2835_PLLA] = REGISTER_PLL(
ee0a5a90 1646 SOC_ALL,
3b15afef
MS
1647 .name = "plla",
1648 .cm_ctrl_reg = CM_PLLA,
1649 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1650 .frac_reg = A2W_PLLA_FRAC,
1651 .ana_reg_base = A2W_PLLA_ANA0,
1652 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1653 .lock_mask = CM_LOCK_FLOCKA,
1654
1655 .ana = &bcm2835_ana_default,
1656
1657 .min_rate = 600000000u,
1658 .max_rate = 2400000000u,
1659 .max_fb_rate = BCM2835_MAX_FB_RATE),
1660 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
ee0a5a90 1661 SOC_ALL,
3b15afef
MS
1662 .name = "plla_core",
1663 .source_pll = "plla",
1664 .cm_reg = CM_PLLA,
1665 .a2w_reg = A2W_PLLA_CORE,
1666 .load_mask = CM_PLLA_LOADCORE,
1667 .hold_mask = CM_PLLA_HOLDCORE,
55486091
EA
1668 .fixed_divider = 1,
1669 .flags = CLK_SET_RATE_PARENT),
3b15afef 1670 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
ee0a5a90 1671 SOC_ALL,
3b15afef
MS
1672 .name = "plla_per",
1673 .source_pll = "plla",
1674 .cm_reg = CM_PLLA,
1675 .a2w_reg = A2W_PLLA_PER,
1676 .load_mask = CM_PLLA_LOADPER,
1677 .hold_mask = CM_PLLA_HOLDPER,
55486091
EA
1678 .fixed_divider = 1,
1679 .flags = CLK_SET_RATE_PARENT),
72843695 1680 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
ee0a5a90 1681 SOC_ALL,
72843695
MS
1682 .name = "plla_dsi0",
1683 .source_pll = "plla",
1684 .cm_reg = CM_PLLA,
1685 .a2w_reg = A2W_PLLA_DSI0,
1686 .load_mask = CM_PLLA_LOADDSI0,
1687 .hold_mask = CM_PLLA_HOLDDSI0,
1688 .fixed_divider = 1),
1689 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
ee0a5a90 1690 SOC_ALL,
72843695
MS
1691 .name = "plla_ccp2",
1692 .source_pll = "plla",
1693 .cm_reg = CM_PLLA,
1694 .a2w_reg = A2W_PLLA_CCP2,
1695 .load_mask = CM_PLLA_LOADCCP2,
1696 .hold_mask = CM_PLLA_HOLDCCP2,
55486091
EA
1697 .fixed_divider = 1,
1698 .flags = CLK_SET_RATE_PARENT),
3b15afef 1699
dbe01b44
MR
1700 /* PLLB is used for the ARM's clock. */
1701 [BCM2835_PLLB] = REGISTER_PLL(
1702 SOC_ALL,
1703 .name = "pllb",
1704 .cm_ctrl_reg = CM_PLLB,
1705 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1706 .frac_reg = A2W_PLLB_FRAC,
1707 .ana_reg_base = A2W_PLLB_ANA0,
1708 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1709 .lock_mask = CM_LOCK_FLOCKB,
1710
1711 .ana = &bcm2835_ana_default,
1712
1713 .min_rate = 600000000u,
1714 .max_rate = 3000000000u,
0d46fafc
MR
1715 .max_fb_rate = BCM2835_MAX_FB_RATE,
1716 .flags = CLK_GET_RATE_NOCACHE),
dbe01b44
MR
1717 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1718 SOC_ALL,
1719 .name = "pllb_arm",
1720 .source_pll = "pllb",
1721 .cm_reg = CM_PLLB,
1722 .a2w_reg = A2W_PLLB_ARM,
1723 .load_mask = CM_PLLB_LOADARM,
1724 .hold_mask = CM_PLLB_HOLDARM,
1725 .fixed_divider = 1,
0d46fafc 1726 .flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
3b15afef
MS
1727
1728 /*
1729 * PLLC is the core PLL, used to drive the core VPU clock.
1730 *
1731 * It is in the PX LDO power domain, which is on when the
1732 * AUDIO domain is on.
1733 */
1734 [BCM2835_PLLC] = REGISTER_PLL(
ee0a5a90 1735 SOC_ALL,
3b15afef
MS
1736 .name = "pllc",
1737 .cm_ctrl_reg = CM_PLLC,
1738 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1739 .frac_reg = A2W_PLLC_FRAC,
1740 .ana_reg_base = A2W_PLLC_ANA0,
1741 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1742 .lock_mask = CM_LOCK_FLOCKC,
1743
1744 .ana = &bcm2835_ana_default,
1745
1746 .min_rate = 600000000u,
1747 .max_rate = 3000000000u,
1748 .max_fb_rate = BCM2835_MAX_FB_RATE),
1749 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
ee0a5a90 1750 SOC_ALL,
3b15afef
MS
1751 .name = "pllc_core0",
1752 .source_pll = "pllc",
1753 .cm_reg = CM_PLLC,
1754 .a2w_reg = A2W_PLLC_CORE0,
1755 .load_mask = CM_PLLC_LOADCORE0,
1756 .hold_mask = CM_PLLC_HOLDCORE0,
55486091
EA
1757 .fixed_divider = 1,
1758 .flags = CLK_SET_RATE_PARENT),
3b15afef 1759 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
ee0a5a90 1760 SOC_ALL,
3b15afef
MS
1761 .name = "pllc_core1",
1762 .source_pll = "pllc",
1763 .cm_reg = CM_PLLC,
1764 .a2w_reg = A2W_PLLC_CORE1,
1765 .load_mask = CM_PLLC_LOADCORE1,
1766 .hold_mask = CM_PLLC_HOLDCORE1,
55486091
EA
1767 .fixed_divider = 1,
1768 .flags = CLK_SET_RATE_PARENT),
3b15afef 1769 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
ee0a5a90 1770 SOC_ALL,
3b15afef
MS
1771 .name = "pllc_core2",
1772 .source_pll = "pllc",
1773 .cm_reg = CM_PLLC,
1774 .a2w_reg = A2W_PLLC_CORE2,
1775 .load_mask = CM_PLLC_LOADCORE2,
1776 .hold_mask = CM_PLLC_HOLDCORE2,
55486091
EA
1777 .fixed_divider = 1,
1778 .flags = CLK_SET_RATE_PARENT),
3b15afef 1779 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
ee0a5a90 1780 SOC_ALL,
3b15afef
MS
1781 .name = "pllc_per",
1782 .source_pll = "pllc",
1783 .cm_reg = CM_PLLC,
1784 .a2w_reg = A2W_PLLC_PER,
1785 .load_mask = CM_PLLC_LOADPER,
1786 .hold_mask = CM_PLLC_HOLDPER,
55486091
EA
1787 .fixed_divider = 1,
1788 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1789
1790 /*
1791 * PLLD is the display PLL, used to drive DSI display panels.
1792 *
1793 * It is in the PX LDO power domain, which is on when the
1794 * AUDIO domain is on.
1795 */
1796 [BCM2835_PLLD] = REGISTER_PLL(
ee0a5a90 1797 SOC_ALL,
3b15afef
MS
1798 .name = "plld",
1799 .cm_ctrl_reg = CM_PLLD,
1800 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1801 .frac_reg = A2W_PLLD_FRAC,
1802 .ana_reg_base = A2W_PLLD_ANA0,
1803 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1804 .lock_mask = CM_LOCK_FLOCKD,
1805
1806 .ana = &bcm2835_ana_default,
1807
1808 .min_rate = 600000000u,
1809 .max_rate = 2400000000u,
1810 .max_fb_rate = BCM2835_MAX_FB_RATE),
1811 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
ee0a5a90 1812 SOC_ALL,
3b15afef
MS
1813 .name = "plld_core",
1814 .source_pll = "plld",
1815 .cm_reg = CM_PLLD,
1816 .a2w_reg = A2W_PLLD_CORE,
1817 .load_mask = CM_PLLD_LOADCORE,
1818 .hold_mask = CM_PLLD_HOLDCORE,
55486091
EA
1819 .fixed_divider = 1,
1820 .flags = CLK_SET_RATE_PARENT),
5c5ba218
SW
1821 /*
1822 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1823 * Otherwise this could cause firmware lookups. That's why we mark
1824 * it as critical.
1825 */
3b15afef 1826 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
ee0a5a90 1827 SOC_ALL,
3b15afef
MS
1828 .name = "plld_per",
1829 .source_pll = "plld",
1830 .cm_reg = CM_PLLD,
1831 .a2w_reg = A2W_PLLD_PER,
1832 .load_mask = CM_PLLD_LOADPER,
1833 .hold_mask = CM_PLLD_HOLDPER,
55486091 1834 .fixed_divider = 1,
5c5ba218 1835 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
72843695 1836 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
ee0a5a90 1837 SOC_ALL,
72843695
MS
1838 .name = "plld_dsi0",
1839 .source_pll = "plld",
1840 .cm_reg = CM_PLLD,
1841 .a2w_reg = A2W_PLLD_DSI0,
1842 .load_mask = CM_PLLD_LOADDSI0,
1843 .hold_mask = CM_PLLD_HOLDDSI0,
1844 .fixed_divider = 1),
1845 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
ee0a5a90 1846 SOC_ALL,
72843695
MS
1847 .name = "plld_dsi1",
1848 .source_pll = "plld",
1849 .cm_reg = CM_PLLD,
1850 .a2w_reg = A2W_PLLD_DSI1,
1851 .load_mask = CM_PLLD_LOADDSI1,
1852 .hold_mask = CM_PLLD_HOLDDSI1,
1853 .fixed_divider = 1),
3b15afef
MS
1854
1855 /*
1856 * PLLH is used to supply the pixel clock or the AUX clock for the
1857 * TV encoder.
1858 *
1859 * It is in the HDMI power domain.
1860 */
1861 [BCM2835_PLLH] = REGISTER_PLL(
ee0a5a90 1862 SOC_BCM2835,
3b15afef
MS
1863 "pllh",
1864 .cm_ctrl_reg = CM_PLLH,
1865 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1866 .frac_reg = A2W_PLLH_FRAC,
1867 .ana_reg_base = A2W_PLLH_ANA0,
1868 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1869 .lock_mask = CM_LOCK_FLOCKH,
1870
1871 .ana = &bcm2835_ana_pllh,
1872
1873 .min_rate = 600000000u,
1874 .max_rate = 3000000000u,
1875 .max_fb_rate = BCM2835_MAX_FB_RATE),
1876 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
ee0a5a90 1877 SOC_BCM2835,
3b15afef
MS
1878 .name = "pllh_rcal",
1879 .source_pll = "pllh",
1880 .cm_reg = CM_PLLH,
1881 .a2w_reg = A2W_PLLH_RCAL,
1882 .load_mask = CM_PLLH_LOADRCAL,
1883 .hold_mask = 0,
55486091
EA
1884 .fixed_divider = 10,
1885 .flags = CLK_SET_RATE_PARENT),
3b15afef 1886 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
ee0a5a90 1887 SOC_BCM2835,
3b15afef
MS
1888 .name = "pllh_aux",
1889 .source_pll = "pllh",
1890 .cm_reg = CM_PLLH,
1891 .a2w_reg = A2W_PLLH_AUX,
1892 .load_mask = CM_PLLH_LOADAUX,
1893 .hold_mask = 0,
55486091
EA
1894 .fixed_divider = 1,
1895 .flags = CLK_SET_RATE_PARENT),
3b15afef 1896 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
ee0a5a90 1897 SOC_BCM2835,
3b15afef
MS
1898 .name = "pllh_pix",
1899 .source_pll = "pllh",
1900 .cm_reg = CM_PLLH,
1901 .a2w_reg = A2W_PLLH_PIX,
1902 .load_mask = CM_PLLH_LOADPIX,
1903 .hold_mask = 0,
55486091
EA
1904 .fixed_divider = 10,
1905 .flags = CLK_SET_RATE_PARENT),
3b15afef 1906
56eb3a2e 1907 /* the clocks */
3b15afef
MS
1908
1909 /* clocks with oscillator parent mux */
1910
1911 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1912 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
ee0a5a90 1913 SOC_ALL,
3b15afef
MS
1914 .name = "otp",
1915 .ctl_reg = CM_OTPCTL,
1916 .div_reg = CM_OTPDIV,
1917 .int_bits = 4,
3f919581
EA
1918 .frac_bits = 0,
1919 .tcnt_mux = 6),
3b15afef
MS
1920 /*
1921 * Used for a 1Mhz clock for the system clocksource, and also used
1922 * bythe watchdog timer and the camera pulse generator.
1923 */
1924 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
ee0a5a90 1925 SOC_ALL,
3b15afef
MS
1926 .name = "timer",
1927 .ctl_reg = CM_TIMERCTL,
1928 .div_reg = CM_TIMERDIV,
1929 .int_bits = 6,
1930 .frac_bits = 12),
1931 /*
1932 * Clock for the temperature sensor.
1933 * Generally run at 2Mhz, max 5Mhz.
1934 */
1935 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
ee0a5a90 1936 SOC_ALL,
3b15afef
MS
1937 .name = "tsens",
1938 .ctl_reg = CM_TSENSCTL,
1939 .div_reg = CM_TSENSDIV,
1940 .int_bits = 5,
1941 .frac_bits = 0),
d3d6f15f 1942 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
ee0a5a90 1943 SOC_ALL,
d3d6f15f
MS
1944 .name = "tec",
1945 .ctl_reg = CM_TECCTL,
1946 .div_reg = CM_TECDIV,
1947 .int_bits = 6,
1948 .frac_bits = 0),
3b15afef
MS
1949
1950 /* clocks with vpu parent mux */
1951 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
ee0a5a90 1952 SOC_ALL,
3b15afef
MS
1953 .name = "h264",
1954 .ctl_reg = CM_H264CTL,
1955 .div_reg = CM_H264DIV,
1956 .int_bits = 4,
3f919581
EA
1957 .frac_bits = 8,
1958 .tcnt_mux = 1),
3b15afef 1959 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
ee0a5a90 1960 SOC_ALL,
3b15afef
MS
1961 .name = "isp",
1962 .ctl_reg = CM_ISPCTL,
1963 .div_reg = CM_ISPDIV,
1964 .int_bits = 4,
3f919581
EA
1965 .frac_bits = 8,
1966 .tcnt_mux = 2),
d3d6f15f 1967
3b15afef
MS
1968 /*
1969 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1970 * in the SDRAM controller can't be used.
1971 */
1972 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
ee0a5a90 1973 SOC_ALL,
3b15afef
MS
1974 .name = "sdram",
1975 .ctl_reg = CM_SDCCTL,
1976 .div_reg = CM_SDCDIV,
1977 .int_bits = 6,
3f919581
EA
1978 .frac_bits = 0,
1979 .tcnt_mux = 3),
3b15afef 1980 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
ee0a5a90 1981 SOC_ALL,
3b15afef
MS
1982 .name = "v3d",
1983 .ctl_reg = CM_V3DCTL,
1984 .div_reg = CM_V3DDIV,
1985 .int_bits = 4,
3f919581
EA
1986 .frac_bits = 8,
1987 .tcnt_mux = 4),
3b15afef
MS
1988 /*
1989 * VPU clock. This doesn't have an enable bit, since it drives
1990 * the bus for everything else, and is special so it doesn't need
1991 * to be gated for rate changes. It is also known as "clk_audio"
1992 * in various hardware documentation.
1993 */
1994 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
ee0a5a90 1995 SOC_ALL,
3b15afef
MS
1996 .name = "vpu",
1997 .ctl_reg = CM_VPUCTL,
1998 .div_reg = CM_VPUDIV,
1999 .int_bits = 12,
2000 .frac_bits = 8,
e69fdcca 2001 .flags = CLK_IS_CRITICAL,
3f919581
EA
2002 .is_vpu_clock = true,
2003 .tcnt_mux = 5),
3b15afef
MS
2004
2005 /* clocks with per parent mux */
d3d6f15f 2006 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
ee0a5a90 2007 SOC_ALL,
d3d6f15f
MS
2008 .name = "aveo",
2009 .ctl_reg = CM_AVEOCTL,
2010 .div_reg = CM_AVEODIV,
2011 .int_bits = 4,
3f919581
EA
2012 .frac_bits = 0,
2013 .tcnt_mux = 38),
d3d6f15f 2014 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
ee0a5a90 2015 SOC_ALL,
d3d6f15f
MS
2016 .name = "cam0",
2017 .ctl_reg = CM_CAM0CTL,
2018 .div_reg = CM_CAM0DIV,
2019 .int_bits = 4,
3f919581
EA
2020 .frac_bits = 8,
2021 .tcnt_mux = 14),
d3d6f15f 2022 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
ee0a5a90 2023 SOC_ALL,
d3d6f15f
MS
2024 .name = "cam1",
2025 .ctl_reg = CM_CAM1CTL,
2026 .div_reg = CM_CAM1DIV,
2027 .int_bits = 4,
3f919581
EA
2028 .frac_bits = 8,
2029 .tcnt_mux = 15),
d3d6f15f 2030 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
ee0a5a90 2031 SOC_ALL,
d3d6f15f
MS
2032 .name = "dft",
2033 .ctl_reg = CM_DFTCTL,
2034 .div_reg = CM_DFTDIV,
2035 .int_bits = 5,
2036 .frac_bits = 0),
2037 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
ee0a5a90 2038 SOC_ALL,
d3d6f15f
MS
2039 .name = "dpi",
2040 .ctl_reg = CM_DPICTL,
2041 .div_reg = CM_DPIDIV,
2042 .int_bits = 4,
3f919581
EA
2043 .frac_bits = 8,
2044 .tcnt_mux = 17),
3b15afef
MS
2045
2046 /* Arasan EMMC clock */
2047 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
ee0a5a90 2048 SOC_ALL,
3b15afef
MS
2049 .name = "emmc",
2050 .ctl_reg = CM_EMMCCTL,
2051 .div_reg = CM_EMMCDIV,
2052 .int_bits = 4,
3f919581
EA
2053 .frac_bits = 8,
2054 .tcnt_mux = 39),
d3d6f15f 2055
42de9ad4
SW
2056 /* EMMC2 clock (only available for BCM2711) */
2057 [BCM2711_CLOCK_EMMC2] = REGISTER_PER_CLK(
2058 SOC_BCM2711,
2059 .name = "emmc2",
2060 .ctl_reg = CM_EMMC2CTL,
2061 .div_reg = CM_EMMC2DIV,
2062 .int_bits = 4,
2063 .frac_bits = 8,
2064 .tcnt_mux = 42),
2065
d3d6f15f
MS
2066 /* General purpose (GPIO) clocks */
2067 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
ee0a5a90 2068 SOC_ALL,
d3d6f15f
MS
2069 .name = "gp0",
2070 .ctl_reg = CM_GP0CTL,
2071 .div_reg = CM_GP0DIV,
2072 .int_bits = 12,
2073 .frac_bits = 12,
3f919581
EA
2074 .is_mash_clock = true,
2075 .tcnt_mux = 20),
d3d6f15f 2076 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
ee0a5a90 2077 SOC_ALL,
d3d6f15f
MS
2078 .name = "gp1",
2079 .ctl_reg = CM_GP1CTL,
2080 .div_reg = CM_GP1DIV,
2081 .int_bits = 12,
2082 .frac_bits = 12,
eddcbe83 2083 .flags = CLK_IS_CRITICAL,
3f919581
EA
2084 .is_mash_clock = true,
2085 .tcnt_mux = 21),
d3d6f15f 2086 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
ee0a5a90 2087 SOC_ALL,
d3d6f15f
MS
2088 .name = "gp2",
2089 .ctl_reg = CM_GP2CTL,
2090 .div_reg = CM_GP2DIV,
2091 .int_bits = 12,
eddcbe83
EA
2092 .frac_bits = 12,
2093 .flags = CLK_IS_CRITICAL),
d3d6f15f 2094
3b15afef
MS
2095 /* HDMI state machine */
2096 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
ee0a5a90 2097 SOC_ALL,
3b15afef
MS
2098 .name = "hsm",
2099 .ctl_reg = CM_HSMCTL,
2100 .div_reg = CM_HSMDIV,
2101 .int_bits = 4,
3f919581
EA
2102 .frac_bits = 8,
2103 .tcnt_mux = 22),
8c0de581 2104 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK(
ee0a5a90 2105 SOC_ALL,
33b68960
MS
2106 .name = "pcm",
2107 .ctl_reg = CM_PCMCTL,
2108 .div_reg = CM_PCMDIV,
2109 .int_bits = 12,
2110 .frac_bits = 12,
3f919581 2111 .is_mash_clock = true,
3542976d 2112 .low_jitter = true,
3f919581 2113 .tcnt_mux = 23),
3b15afef 2114 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
ee0a5a90 2115 SOC_ALL,
3b15afef
MS
2116 .name = "pwm",
2117 .ctl_reg = CM_PWMCTL,
2118 .div_reg = CM_PWMDIV,
2119 .int_bits = 12,
2120 .frac_bits = 12,
3f919581
EA
2121 .is_mash_clock = true,
2122 .tcnt_mux = 24),
d3d6f15f 2123 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
ee0a5a90 2124 SOC_ALL,
d3d6f15f
MS
2125 .name = "slim",
2126 .ctl_reg = CM_SLIMCTL,
2127 .div_reg = CM_SLIMDIV,
2128 .int_bits = 12,
2129 .frac_bits = 12,
3f919581
EA
2130 .is_mash_clock = true,
2131 .tcnt_mux = 25),
d3d6f15f 2132 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
ee0a5a90 2133 SOC_ALL,
d3d6f15f
MS
2134 .name = "smi",
2135 .ctl_reg = CM_SMICTL,
2136 .div_reg = CM_SMIDIV,
2137 .int_bits = 4,
3f919581
EA
2138 .frac_bits = 8,
2139 .tcnt_mux = 27),
3b15afef 2140 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
ee0a5a90 2141 SOC_ALL,
3b15afef
MS
2142 .name = "uart",
2143 .ctl_reg = CM_UARTCTL,
2144 .div_reg = CM_UARTDIV,
2145 .int_bits = 10,
3f919581
EA
2146 .frac_bits = 12,
2147 .tcnt_mux = 28),
d3d6f15f 2148
3b15afef
MS
2149 /* TV encoder clock. Only operating frequency is 108Mhz. */
2150 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
ee0a5a90 2151 SOC_ALL,
3b15afef
MS
2152 .name = "vec",
2153 .ctl_reg = CM_VECCTL,
2154 .div_reg = CM_VECDIV,
2155 .int_bits = 4,
d86d46af
BB
2156 .frac_bits = 0,
2157 /*
2158 * Allow rate change propagation only on PLLH_AUX which is
2159 * assigned index 7 in the parent array.
2160 */
3f919581
EA
2161 .set_rate_parent = BIT(7),
2162 .tcnt_mux = 29),
3b15afef 2163
d3d6f15f
MS
2164 /* dsi clocks */
2165 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
ee0a5a90 2166 SOC_ALL,
d3d6f15f
MS
2167 .name = "dsi0e",
2168 .ctl_reg = CM_DSI0ECTL,
2169 .div_reg = CM_DSI0EDIV,
2170 .int_bits = 4,
3f919581
EA
2171 .frac_bits = 8,
2172 .tcnt_mux = 18),
d3d6f15f 2173 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
ee0a5a90 2174 SOC_ALL,
d3d6f15f
MS
2175 .name = "dsi1e",
2176 .ctl_reg = CM_DSI1ECTL,
2177 .div_reg = CM_DSI1EDIV,
2178 .int_bits = 4,
3f919581
EA
2179 .frac_bits = 8,
2180 .tcnt_mux = 19),
8a39e9fa 2181 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
ee0a5a90 2182 SOC_ALL,
8a39e9fa
EA
2183 .name = "dsi0p",
2184 .ctl_reg = CM_DSI0PCTL,
2185 .div_reg = CM_DSI0PDIV,
2186 .int_bits = 0,
3f919581
EA
2187 .frac_bits = 0,
2188 .tcnt_mux = 12),
8a39e9fa 2189 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
ee0a5a90 2190 SOC_ALL,
8a39e9fa
EA
2191 .name = "dsi1p",
2192 .ctl_reg = CM_DSI1PCTL,
2193 .div_reg = CM_DSI1PDIV,
2194 .int_bits = 0,
3f919581
EA
2195 .frac_bits = 0,
2196 .tcnt_mux = 13),
d3d6f15f 2197
56eb3a2e 2198 /* the gates */
3b15afef
MS
2199
2200 /*
2201 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2202 * you have the debug bit set in the power manager, which we
2203 * don't bother exposing) are individual gates off of the
2204 * non-stop vpu clock.
2205 */
56eb3a2e 2206 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
ee0a5a90 2207 SOC_ALL,
3b15afef
MS
2208 .name = "peri_image",
2209 .parent = "vpu",
2210 .ctl_reg = CM_PERIICTL),
56eb3a2e
MS
2211};
2212
9e400c5c
EA
2213/*
2214 * Permanently take a reference on the parent of the SDRAM clock.
2215 *
2216 * While the SDRAM is being driven by its dedicated PLL most of the
2217 * time, there is a little loop running in the firmware that
2218 * periodically switches the SDRAM to using our CM clock to do PVT
2219 * recalibration, with the assumption that the previously configured
2220 * SDRAM parent is still enabled and running.
2221 */
2222static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2223{
2224 struct clk *parent = clk_get_parent(sdc);
2225
2226 if (IS_ERR(parent))
2227 return PTR_ERR(parent);
2228
2229 return clk_prepare_enable(parent);
2230}
2231
41691b88
EA
2232static int bcm2835_clk_probe(struct platform_device *pdev)
2233{
2234 struct device *dev = &pdev->dev;
b19f009d 2235 struct clk_hw **hws;
41691b88 2236 struct bcm2835_cprman *cprman;
56eb3a2e
MS
2237 const struct bcm2835_clk_desc *desc;
2238 const size_t asize = ARRAY_SIZE(clk_desc_array);
ee0a5a90 2239 const struct cprman_plat_data *pdata;
56eb3a2e 2240 size_t i;
9e400c5c 2241 int ret;
41691b88 2242
ee0a5a90
SW
2243 pdata = of_device_get_match_data(&pdev->dev);
2244 if (!pdata)
2245 return -ENODEV;
2246
0ed2dd03
KC
2247 cprman = devm_kzalloc(dev,
2248 struct_size(cprman, onecell.hws, asize),
56eb3a2e 2249 GFP_KERNEL);
41691b88
EA
2250 if (!cprman)
2251 return -ENOMEM;
2252
2253 spin_lock_init(&cprman->regs_lock);
2254 cprman->dev = dev;
4d3a3695 2255 cprman->regs = devm_platform_ioremap_resource(pdev, 0);
41691b88
EA
2256 if (IS_ERR(cprman->regs))
2257 return PTR_ERR(cprman->regs);
2258
8a39e9fa
EA
2259 memcpy(cprman->real_parent_names, cprman_parent_names,
2260 sizeof(cprman_parent_names));
2261 of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2262 ARRAY_SIZE(cprman_parent_names));
2263
2264 /*
2265 * Make sure the external oscillator has been registered.
2266 *
2267 * The other (DSI) clocks are not present on older device
2268 * trees, which we still need to support for backwards
2269 * compatibility.
2270 */
2271 if (!cprman->real_parent_names[0])
41691b88
EA
2272 return -ENODEV;
2273
2274 platform_set_drvdata(pdev, cprman);
2275
b19f009d 2276 cprman->onecell.num = asize;
f34e4651 2277 cprman->soc = pdata->soc;
b19f009d 2278 hws = cprman->onecell.hws;
41691b88 2279
56eb3a2e
MS
2280 for (i = 0; i < asize; i++) {
2281 desc = &clk_desc_array[i];
ee0a5a90
SW
2282 if (desc->clk_register && desc->data &&
2283 (desc->supported & pdata->soc)) {
b19f009d 2284 hws[i] = desc->clk_register(cprman, desc->data);
ee0a5a90 2285 }
56eb3a2e 2286 }
cfbab8fb 2287
b19f009d 2288 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
9e400c5c
EA
2289 if (ret)
2290 return ret;
2291
b19f009d
SB
2292 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2293 &cprman->onecell);
41691b88
EA
2294}
2295
ee0a5a90
SW
2296static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2297 .soc = SOC_BCM2835,
2298};
2299
42de9ad4
SW
2300static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2301 .soc = SOC_BCM2711,
2302};
2303
41691b88 2304static const struct of_device_id bcm2835_clk_of_match[] = {
ee0a5a90 2305 { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
42de9ad4 2306 { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
41691b88
EA
2307 {}
2308};
2309MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2310
2311static struct platform_driver bcm2835_clk_driver = {
2312 .driver = {
2313 .name = "bcm2835-clk",
2314 .of_match_table = bcm2835_clk_of_match,
2315 },
2316 .probe = bcm2835_clk_probe,
2317};
2318
2319builtin_platform_driver(bcm2835_clk_driver);
2320
2321MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2322MODULE_DESCRIPTION("BCM2835 clock driver");
819ed0ad 2323MODULE_LICENSE("GPL");