[PATCH] devfs: Remove the tty_driver devfs_name field as it's no longer needed
[linux-2.6-block.git] / drivers / char / stallion.c
CommitLineData
1da177e4
LT
1/*****************************************************************************/
2
3/*
4 * stallion.c -- stallion multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27/*****************************************************************************/
28
29#include <linux/config.h>
30#include <linux/module.h>
31#include <linux/slab.h>
32#include <linux/interrupt.h>
33#include <linux/tty.h>
34#include <linux/tty_flip.h>
35#include <linux/serial.h>
36#include <linux/cd1400.h>
37#include <linux/sc26198.h>
38#include <linux/comstats.h>
39#include <linux/stallion.h>
40#include <linux/ioport.h>
41#include <linux/init.h>
42#include <linux/smp_lock.h>
1da177e4
LT
43#include <linux/device.h>
44#include <linux/delay.h>
45
46#include <asm/io.h>
47#include <asm/uaccess.h>
48
49#ifdef CONFIG_PCI
50#include <linux/pci.h>
51#endif
52
53/*****************************************************************************/
54
55/*
56 * Define different board types. Use the standard Stallion "assigned"
57 * board numbers. Boards supported in this driver are abbreviated as
58 * EIO = EasyIO and ECH = EasyConnection 8/32.
59 */
60#define BRD_EASYIO 20
61#define BRD_ECH 21
62#define BRD_ECHMC 22
63#define BRD_ECHPCI 26
64#define BRD_ECH64PCI 27
65#define BRD_EASYIOPCI 28
66
67/*
68 * Define a configuration structure to hold the board configuration.
69 * Need to set this up in the code (for now) with the boards that are
70 * to be configured into the system. This is what needs to be modified
71 * when adding/removing/modifying boards. Each line entry in the
72 * stl_brdconf[] array is a board. Each line contains io/irq/memory
73 * ranges for that board (as well as what type of board it is).
74 * Some examples:
75 * { BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },
76 * This line would configure an EasyIO board (4 or 8, no difference),
77 * at io address 2a0 and irq 10.
78 * Another example:
79 * { BRD_ECH, 0x2a8, 0x280, 0, 12, 0 },
80 * This line will configure an EasyConnection 8/32 board at primary io
81 * address 2a8, secondary io address 280 and irq 12.
82 * Enter as many lines into this array as you want (only the first 4
83 * will actually be used!). Any combination of EasyIO and EasyConnection
84 * boards can be specified. EasyConnection 8/32 boards can share their
85 * secondary io addresses between each other.
86 *
87 * NOTE: there is no need to put any entries in this table for PCI
88 * boards. They will be found automatically by the driver - provided
89 * PCI BIOS32 support is compiled into the kernel.
90 */
91
92typedef struct {
93 int brdtype;
94 int ioaddr1;
95 int ioaddr2;
96 unsigned long memaddr;
97 int irq;
98 int irqtype;
99} stlconf_t;
100
101static stlconf_t stl_brdconf[] = {
102 /*{ BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },*/
103};
104
fe971071 105static int stl_nrbrds = ARRAY_SIZE(stl_brdconf);
1da177e4
LT
106
107/*****************************************************************************/
108
109/*
110 * Define some important driver characteristics. Device major numbers
111 * allocated as per Linux Device Registry.
112 */
113#ifndef STL_SIOMEMMAJOR
114#define STL_SIOMEMMAJOR 28
115#endif
116#ifndef STL_SERIALMAJOR
117#define STL_SERIALMAJOR 24
118#endif
119#ifndef STL_CALLOUTMAJOR
120#define STL_CALLOUTMAJOR 25
121#endif
122
123/*
124 * Set the TX buffer size. Bigger is better, but we don't want
125 * to chew too much memory with buffers!
126 */
127#define STL_TXBUFLOW 512
128#define STL_TXBUFSIZE 4096
129
130/*****************************************************************************/
131
132/*
133 * Define our local driver identity first. Set up stuff to deal with
134 * all the local structures required by a serial tty driver.
135 */
136static char *stl_drvtitle = "Stallion Multiport Serial Driver";
137static char *stl_drvname = "stallion";
138static char *stl_drvversion = "5.6.0";
139
140static struct tty_driver *stl_serial;
141
142/*
143 * We will need to allocate a temporary write buffer for chars that
144 * come direct from user space. The problem is that a copy from user
145 * space might cause a page fault (typically on a system that is
146 * swapping!). All ports will share one buffer - since if the system
147 * is already swapping a shared buffer won't make things any worse.
148 */
149static char *stl_tmpwritebuf;
1da177e4
LT
150
151/*
152 * Define a local default termios struct. All ports will be created
153 * with this termios initially. Basically all it defines is a raw port
154 * at 9600, 8 data bits, 1 stop bit.
155 */
156static struct termios stl_deftermios = {
157 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
158 .c_cc = INIT_C_CC,
159};
160
161/*
162 * Define global stats structures. Not used often, and can be
163 * re-used for each stats call.
164 */
165static comstats_t stl_comstats;
166static combrd_t stl_brdstats;
167static stlbrd_t stl_dummybrd;
168static stlport_t stl_dummyport;
169
170/*
171 * Define global place to put buffer overflow characters.
172 */
173static char stl_unwanted[SC26198_RXFIFOSIZE];
174
175/*****************************************************************************/
176
177static stlbrd_t *stl_brds[STL_MAXBRDS];
178
179/*
180 * Per board state flags. Used with the state field of the board struct.
181 * Not really much here!
182 */
183#define BRD_FOUND 0x1
184
185/*
186 * Define the port structure istate flags. These set of flags are
187 * modified at interrupt time - so setting and reseting them needs
188 * to be atomic. Use the bit clear/setting routines for this.
189 */
190#define ASYI_TXBUSY 1
191#define ASYI_TXLOW 2
192#define ASYI_DCDCHANGE 3
193#define ASYI_TXFLOWED 4
194
195/*
196 * Define an array of board names as printable strings. Handy for
197 * referencing boards when printing trace and stuff.
198 */
199static char *stl_brdnames[] = {
200 (char *) NULL,
201 (char *) NULL,
202 (char *) NULL,
203 (char *) NULL,
204 (char *) NULL,
205 (char *) NULL,
206 (char *) NULL,
207 (char *) NULL,
208 (char *) NULL,
209 (char *) NULL,
210 (char *) NULL,
211 (char *) NULL,
212 (char *) NULL,
213 (char *) NULL,
214 (char *) NULL,
215 (char *) NULL,
216 (char *) NULL,
217 (char *) NULL,
218 (char *) NULL,
219 (char *) NULL,
220 "EasyIO",
221 "EC8/32-AT",
222 "EC8/32-MC",
223 (char *) NULL,
224 (char *) NULL,
225 (char *) NULL,
226 "EC8/32-PCI",
227 "EC8/64-PCI",
228 "EasyIO-PCI",
229};
230
231/*****************************************************************************/
232
233/*
234 * Define some string labels for arguments passed from the module
235 * load line. These allow for easy board definitions, and easy
236 * modification of the io, memory and irq resoucres.
237 */
238static int stl_nargs = 0;
239static char *board0[4];
240static char *board1[4];
241static char *board2[4];
242static char *board3[4];
243
244static char **stl_brdsp[] = {
245 (char **) &board0,
246 (char **) &board1,
247 (char **) &board2,
248 (char **) &board3
249};
250
251/*
252 * Define a set of common board names, and types. This is used to
253 * parse any module arguments.
254 */
255
256typedef struct stlbrdtype {
257 char *name;
258 int type;
259} stlbrdtype_t;
260
261static stlbrdtype_t stl_brdstr[] = {
262 { "easyio", BRD_EASYIO },
263 { "eio", BRD_EASYIO },
264 { "20", BRD_EASYIO },
265 { "ec8/32", BRD_ECH },
266 { "ec8/32-at", BRD_ECH },
267 { "ec8/32-isa", BRD_ECH },
268 { "ech", BRD_ECH },
269 { "echat", BRD_ECH },
270 { "21", BRD_ECH },
271 { "ec8/32-mc", BRD_ECHMC },
272 { "ec8/32-mca", BRD_ECHMC },
273 { "echmc", BRD_ECHMC },
274 { "echmca", BRD_ECHMC },
275 { "22", BRD_ECHMC },
276 { "ec8/32-pc", BRD_ECHPCI },
277 { "ec8/32-pci", BRD_ECHPCI },
278 { "26", BRD_ECHPCI },
279 { "ec8/64-pc", BRD_ECH64PCI },
280 { "ec8/64-pci", BRD_ECH64PCI },
281 { "ech-pci", BRD_ECH64PCI },
282 { "echpci", BRD_ECH64PCI },
283 { "echpc", BRD_ECH64PCI },
284 { "27", BRD_ECH64PCI },
285 { "easyio-pc", BRD_EASYIOPCI },
286 { "easyio-pci", BRD_EASYIOPCI },
287 { "eio-pci", BRD_EASYIOPCI },
288 { "eiopci", BRD_EASYIOPCI },
289 { "28", BRD_EASYIOPCI },
290};
291
292/*
293 * Define the module agruments.
294 */
295MODULE_AUTHOR("Greg Ungerer");
296MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
297MODULE_LICENSE("GPL");
298
299module_param_array(board0, charp, &stl_nargs, 0);
300MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
301module_param_array(board1, charp, &stl_nargs, 0);
302MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
303module_param_array(board2, charp, &stl_nargs, 0);
304MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
305module_param_array(board3, charp, &stl_nargs, 0);
306MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
307
308/*****************************************************************************/
309
310/*
311 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
312 * to the directly accessible io ports of these boards (not the uarts -
313 * they are in cd1400.h and sc26198.h).
314 */
315#define EIO_8PORTRS 0x04
316#define EIO_4PORTRS 0x05
317#define EIO_8PORTDI 0x00
318#define EIO_8PORTM 0x06
319#define EIO_MK3 0x03
320#define EIO_IDBITMASK 0x07
321
322#define EIO_BRDMASK 0xf0
323#define ID_BRD4 0x10
324#define ID_BRD8 0x20
325#define ID_BRD16 0x30
326
327#define EIO_INTRPEND 0x08
328#define EIO_INTEDGE 0x00
329#define EIO_INTLEVEL 0x08
330#define EIO_0WS 0x10
331
332#define ECH_ID 0xa0
333#define ECH_IDBITMASK 0xe0
334#define ECH_BRDENABLE 0x08
335#define ECH_BRDDISABLE 0x00
336#define ECH_INTENABLE 0x01
337#define ECH_INTDISABLE 0x00
338#define ECH_INTLEVEL 0x02
339#define ECH_INTEDGE 0x00
340#define ECH_INTRPEND 0x01
341#define ECH_BRDRESET 0x01
342
343#define ECHMC_INTENABLE 0x01
344#define ECHMC_BRDRESET 0x02
345
346#define ECH_PNLSTATUS 2
347#define ECH_PNL16PORT 0x20
348#define ECH_PNLIDMASK 0x07
349#define ECH_PNLXPID 0x40
350#define ECH_PNLINTRPEND 0x80
351
352#define ECH_ADDR2MASK 0x1e0
353
354/*
355 * Define the vector mapping bits for the programmable interrupt board
356 * hardware. These bits encode the interrupt for the board to use - it
357 * is software selectable (except the EIO-8M).
358 */
359static unsigned char stl_vecmap[] = {
360 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
361 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
362};
363
364/*
365 * Set up enable and disable macros for the ECH boards. They require
366 * the secondary io address space to be activated and deactivated.
367 * This way all ECH boards can share their secondary io region.
368 * If this is an ECH-PCI board then also need to set the page pointer
369 * to point to the correct page.
370 */
371#define BRDENABLE(brdnr,pagenr) \
372 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
373 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
374 stl_brds[(brdnr)]->ioctrl); \
375 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
376 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
377
378#define BRDDISABLE(brdnr) \
379 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
380 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
381 stl_brds[(brdnr)]->ioctrl);
382
383#define STL_CD1400MAXBAUD 230400
384#define STL_SC26198MAXBAUD 460800
385
386#define STL_BAUDBASE 115200
387#define STL_CLOSEDELAY (5 * HZ / 10)
388
389/*****************************************************************************/
390
391#ifdef CONFIG_PCI
392
393/*
394 * Define the Stallion PCI vendor and device IDs.
395 */
396#ifndef PCI_VENDOR_ID_STALLION
397#define PCI_VENDOR_ID_STALLION 0x124d
398#endif
399#ifndef PCI_DEVICE_ID_ECHPCI832
400#define PCI_DEVICE_ID_ECHPCI832 0x0000
401#endif
402#ifndef PCI_DEVICE_ID_ECHPCI864
403#define PCI_DEVICE_ID_ECHPCI864 0x0002
404#endif
405#ifndef PCI_DEVICE_ID_EIOPCI
406#define PCI_DEVICE_ID_EIOPCI 0x0003
407#endif
408
409/*
410 * Define structure to hold all Stallion PCI boards.
411 */
412typedef struct stlpcibrd {
413 unsigned short vendid;
414 unsigned short devid;
415 int brdtype;
416} stlpcibrd_t;
417
418static stlpcibrd_t stl_pcibrds[] = {
419 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864, BRD_ECH64PCI },
420 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI, BRD_EASYIOPCI },
421 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832, BRD_ECHPCI },
422 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410, BRD_ECHPCI },
423};
424
fe971071 425static int stl_nrpcibrds = ARRAY_SIZE(stl_pcibrds);
1da177e4
LT
426
427#endif
428
429/*****************************************************************************/
430
431/*
432 * Define macros to extract a brd/port number from a minor number.
433 */
434#define MINOR2BRD(min) (((min) & 0xc0) >> 6)
435#define MINOR2PORT(min) ((min) & 0x3f)
436
437/*
438 * Define a baud rate table that converts termios baud rate selector
439 * into the actual baud rate value. All baud rate calculations are
440 * based on the actual baud rate required.
441 */
442static unsigned int stl_baudrates[] = {
443 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
444 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
445};
446
447/*
448 * Define some handy local macros...
449 */
450#undef MIN
451#define MIN(a,b) (((a) <= (b)) ? (a) : (b))
452
453#undef TOLOWER
454#define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
455
456/*****************************************************************************/
457
458/*
459 * Declare all those functions in this driver!
460 */
461
462static void stl_argbrds(void);
463static int stl_parsebrd(stlconf_t *confp, char **argp);
464
465static unsigned long stl_atol(char *str);
466
408b664a 467static int stl_init(void);
1da177e4
LT
468static int stl_open(struct tty_struct *tty, struct file *filp);
469static void stl_close(struct tty_struct *tty, struct file *filp);
470static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count);
471static void stl_putchar(struct tty_struct *tty, unsigned char ch);
472static void stl_flushchars(struct tty_struct *tty);
473static int stl_writeroom(struct tty_struct *tty);
474static int stl_charsinbuffer(struct tty_struct *tty);
475static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
476static void stl_settermios(struct tty_struct *tty, struct termios *old);
477static void stl_throttle(struct tty_struct *tty);
478static void stl_unthrottle(struct tty_struct *tty);
479static void stl_stop(struct tty_struct *tty);
480static void stl_start(struct tty_struct *tty);
481static void stl_flushbuffer(struct tty_struct *tty);
482static void stl_breakctl(struct tty_struct *tty, int state);
483static void stl_waituntilsent(struct tty_struct *tty, int timeout);
484static void stl_sendxchar(struct tty_struct *tty, char ch);
485static void stl_hangup(struct tty_struct *tty);
486static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
487static int stl_portinfo(stlport_t *portp, int portnr, char *pos);
488static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data);
489
490static int stl_brdinit(stlbrd_t *brdp);
491static int stl_initports(stlbrd_t *brdp, stlpanel_t *panelp);
492static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp);
493static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp);
494static int stl_getbrdstats(combrd_t __user *bp);
495static int stl_getportstats(stlport_t *portp, comstats_t __user *cp);
496static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp);
497static int stl_getportstruct(stlport_t __user *arg);
498static int stl_getbrdstruct(stlbrd_t __user *arg);
499static int stl_waitcarrier(stlport_t *portp, struct file *filp);
500static int stl_eiointr(stlbrd_t *brdp);
501static int stl_echatintr(stlbrd_t *brdp);
502static int stl_echmcaintr(stlbrd_t *brdp);
503static int stl_echpciintr(stlbrd_t *brdp);
504static int stl_echpci64intr(stlbrd_t *brdp);
505static void stl_offintr(void *private);
1da177e4
LT
506static stlbrd_t *stl_allocbrd(void);
507static stlport_t *stl_getport(int brdnr, int panelnr, int portnr);
508
509static inline int stl_initbrds(void);
510static inline int stl_initeio(stlbrd_t *brdp);
511static inline int stl_initech(stlbrd_t *brdp);
512static inline int stl_getbrdnr(void);
513
514#ifdef CONFIG_PCI
515static inline int stl_findpcibrds(void);
516static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp);
517#endif
518
519/*
520 * CD1400 uart specific handling functions.
521 */
522static void stl_cd1400setreg(stlport_t *portp, int regnr, int value);
523static int stl_cd1400getreg(stlport_t *portp, int regnr);
524static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value);
525static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
526static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
527static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp);
528static int stl_cd1400getsignals(stlport_t *portp);
529static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts);
530static void stl_cd1400ccrwait(stlport_t *portp);
531static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx);
532static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx);
533static void stl_cd1400disableintrs(stlport_t *portp);
534static void stl_cd1400sendbreak(stlport_t *portp, int len);
535static void stl_cd1400flowctrl(stlport_t *portp, int state);
536static void stl_cd1400sendflow(stlport_t *portp, int state);
537static void stl_cd1400flush(stlport_t *portp);
538static int stl_cd1400datastate(stlport_t *portp);
539static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase);
540static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase);
541static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr);
542static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr);
543static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr);
544
545static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr);
546
547/*
548 * SC26198 uart specific handling functions.
549 */
550static void stl_sc26198setreg(stlport_t *portp, int regnr, int value);
551static int stl_sc26198getreg(stlport_t *portp, int regnr);
552static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value);
553static int stl_sc26198getglobreg(stlport_t *portp, int regnr);
554static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
555static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
556static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp);
557static int stl_sc26198getsignals(stlport_t *portp);
558static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts);
559static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx);
560static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx);
561static void stl_sc26198disableintrs(stlport_t *portp);
562static void stl_sc26198sendbreak(stlport_t *portp, int len);
563static void stl_sc26198flowctrl(stlport_t *portp, int state);
564static void stl_sc26198sendflow(stlport_t *portp, int state);
565static void stl_sc26198flush(stlport_t *portp);
566static int stl_sc26198datastate(stlport_t *portp);
567static void stl_sc26198wait(stlport_t *portp);
568static void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty);
569static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase);
570static void stl_sc26198txisr(stlport_t *port);
571static void stl_sc26198rxisr(stlport_t *port, unsigned int iack);
572static void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch);
573static void stl_sc26198rxbadchars(stlport_t *portp);
574static void stl_sc26198otherisr(stlport_t *port, unsigned int iack);
575
576/*****************************************************************************/
577
578/*
579 * Generic UART support structure.
580 */
581typedef struct uart {
582 int (*panelinit)(stlbrd_t *brdp, stlpanel_t *panelp);
583 void (*portinit)(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
584 void (*setport)(stlport_t *portp, struct termios *tiosp);
585 int (*getsignals)(stlport_t *portp);
586 void (*setsignals)(stlport_t *portp, int dtr, int rts);
587 void (*enablerxtx)(stlport_t *portp, int rx, int tx);
588 void (*startrxtx)(stlport_t *portp, int rx, int tx);
589 void (*disableintrs)(stlport_t *portp);
590 void (*sendbreak)(stlport_t *portp, int len);
591 void (*flowctrl)(stlport_t *portp, int state);
592 void (*sendflow)(stlport_t *portp, int state);
593 void (*flush)(stlport_t *portp);
594 int (*datastate)(stlport_t *portp);
595 void (*intr)(stlpanel_t *panelp, unsigned int iobase);
596} uart_t;
597
598/*
599 * Define some macros to make calling these functions nice and clean.
600 */
601#define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
602#define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
603#define stl_setport (* ((uart_t *) portp->uartp)->setport)
604#define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
605#define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
606#define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
607#define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
608#define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
609#define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
610#define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
611#define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
612#define stl_flush (* ((uart_t *) portp->uartp)->flush)
613#define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
614
615/*****************************************************************************/
616
617/*
618 * CD1400 UART specific data initialization.
619 */
620static uart_t stl_cd1400uart = {
621 stl_cd1400panelinit,
622 stl_cd1400portinit,
623 stl_cd1400setport,
624 stl_cd1400getsignals,
625 stl_cd1400setsignals,
626 stl_cd1400enablerxtx,
627 stl_cd1400startrxtx,
628 stl_cd1400disableintrs,
629 stl_cd1400sendbreak,
630 stl_cd1400flowctrl,
631 stl_cd1400sendflow,
632 stl_cd1400flush,
633 stl_cd1400datastate,
634 stl_cd1400eiointr
635};
636
637/*
638 * Define the offsets within the register bank of a cd1400 based panel.
639 * These io address offsets are common to the EasyIO board as well.
640 */
641#define EREG_ADDR 0
642#define EREG_DATA 4
643#define EREG_RXACK 5
644#define EREG_TXACK 6
645#define EREG_MDACK 7
646
647#define EREG_BANKSIZE 8
648
649#define CD1400_CLK 25000000
650#define CD1400_CLK8M 20000000
651
652/*
653 * Define the cd1400 baud rate clocks. These are used when calculating
654 * what clock and divisor to use for the required baud rate. Also
655 * define the maximum baud rate allowed, and the default base baud.
656 */
657static int stl_cd1400clkdivs[] = {
658 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
659};
660
661/*****************************************************************************/
662
663/*
664 * SC26198 UART specific data initization.
665 */
666static uart_t stl_sc26198uart = {
667 stl_sc26198panelinit,
668 stl_sc26198portinit,
669 stl_sc26198setport,
670 stl_sc26198getsignals,
671 stl_sc26198setsignals,
672 stl_sc26198enablerxtx,
673 stl_sc26198startrxtx,
674 stl_sc26198disableintrs,
675 stl_sc26198sendbreak,
676 stl_sc26198flowctrl,
677 stl_sc26198sendflow,
678 stl_sc26198flush,
679 stl_sc26198datastate,
680 stl_sc26198intr
681};
682
683/*
684 * Define the offsets within the register bank of a sc26198 based panel.
685 */
686#define XP_DATA 0
687#define XP_ADDR 1
688#define XP_MODID 2
689#define XP_STATUS 2
690#define XP_IACK 3
691
692#define XP_BANKSIZE 4
693
694/*
695 * Define the sc26198 baud rate table. Offsets within the table
696 * represent the actual baud rate selector of sc26198 registers.
697 */
698static unsigned int sc26198_baudtable[] = {
699 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
700 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
701 230400, 460800, 921600
702};
703
fe971071 704#define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
1da177e4
LT
705
706/*****************************************************************************/
707
708/*
709 * Define the driver info for a user level control device. Used mainly
710 * to get at port stats - only not using the port device itself.
711 */
712static struct file_operations stl_fsiomem = {
713 .owner = THIS_MODULE,
714 .ioctl = stl_memioctl,
715};
716
717/*****************************************************************************/
718
ca8eca68 719static struct class *stallion_class;
1da177e4
LT
720
721/*
722 * Loadable module initialization stuff.
723 */
724
725static int __init stallion_module_init(void)
726{
727 unsigned long flags;
728
729#ifdef DEBUG
730 printk("init_module()\n");
731#endif
732
733 save_flags(flags);
734 cli();
735 stl_init();
736 restore_flags(flags);
737
014c2544 738 return 0;
1da177e4
LT
739}
740
741/*****************************************************************************/
742
743static void __exit stallion_module_exit(void)
744{
745 stlbrd_t *brdp;
746 stlpanel_t *panelp;
747 stlport_t *portp;
748 unsigned long flags;
749 int i, j, k;
750
751#ifdef DEBUG
752 printk("cleanup_module()\n");
753#endif
754
755 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
756 stl_drvversion);
757
758 save_flags(flags);
759 cli();
760
761/*
762 * Free up all allocated resources used by the ports. This includes
763 * memory and interrupts. As part of this process we will also do
764 * a hangup on every open port - to try to flush out any processes
765 * hanging onto ports.
766 */
767 i = tty_unregister_driver(stl_serial);
768 put_tty_driver(stl_serial);
769 if (i) {
770 printk("STALLION: failed to un-register tty driver, "
771 "errno=%d\n", -i);
772 restore_flags(flags);
773 return;
774 }
8ab5e4c1 775 for (i = 0; i < 4; i++)
ca8eca68 776 class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
1da177e4
LT
777 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
778 printk("STALLION: failed to un-register serial memory device, "
779 "errno=%d\n", -i);
ca8eca68 780 class_destroy(stallion_class);
1da177e4 781
735d5661 782 kfree(stl_tmpwritebuf);
1da177e4
LT
783
784 for (i = 0; (i < stl_nrbrds); i++) {
785 if ((brdp = stl_brds[i]) == (stlbrd_t *) NULL)
786 continue;
787
788 free_irq(brdp->irq, brdp);
789
790 for (j = 0; (j < STL_MAXPANELS); j++) {
791 panelp = brdp->panels[j];
792 if (panelp == (stlpanel_t *) NULL)
793 continue;
794 for (k = 0; (k < STL_PORTSPERPANEL); k++) {
795 portp = panelp->ports[k];
796 if (portp == (stlport_t *) NULL)
797 continue;
798 if (portp->tty != (struct tty_struct *) NULL)
799 stl_hangup(portp->tty);
735d5661 800 kfree(portp->tx.buf);
1da177e4
LT
801 kfree(portp);
802 }
803 kfree(panelp);
804 }
805
806 release_region(brdp->ioaddr1, brdp->iosize1);
807 if (brdp->iosize2 > 0)
808 release_region(brdp->ioaddr2, brdp->iosize2);
809
810 kfree(brdp);
811 stl_brds[i] = (stlbrd_t *) NULL;
812 }
813
814 restore_flags(flags);
815}
816
817module_init(stallion_module_init);
818module_exit(stallion_module_exit);
819
820/*****************************************************************************/
821
822/*
823 * Check for any arguments passed in on the module load command line.
824 */
825
826static void stl_argbrds(void)
827{
828 stlconf_t conf;
829 stlbrd_t *brdp;
830 int i;
831
832#ifdef DEBUG
833 printk("stl_argbrds()\n");
834#endif
835
836 for (i = stl_nrbrds; (i < stl_nargs); i++) {
837 memset(&conf, 0, sizeof(conf));
838 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
839 continue;
840 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
841 continue;
842 stl_nrbrds = i + 1;
843 brdp->brdnr = i;
844 brdp->brdtype = conf.brdtype;
845 brdp->ioaddr1 = conf.ioaddr1;
846 brdp->ioaddr2 = conf.ioaddr2;
847 brdp->irq = conf.irq;
848 brdp->irqtype = conf.irqtype;
849 stl_brdinit(brdp);
850 }
851}
852
853/*****************************************************************************/
854
855/*
856 * Convert an ascii string number into an unsigned long.
857 */
858
859static unsigned long stl_atol(char *str)
860{
861 unsigned long val;
862 int base, c;
863 char *sp;
864
865 val = 0;
866 sp = str;
867 if ((*sp == '0') && (*(sp+1) == 'x')) {
868 base = 16;
869 sp += 2;
870 } else if (*sp == '0') {
871 base = 8;
872 sp++;
873 } else {
874 base = 10;
875 }
876
877 for (; (*sp != 0); sp++) {
878 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
879 if ((c < 0) || (c >= base)) {
880 printk("STALLION: invalid argument %s\n", str);
881 val = 0;
882 break;
883 }
884 val = (val * base) + c;
885 }
014c2544 886 return val;
1da177e4
LT
887}
888
889/*****************************************************************************/
890
891/*
892 * Parse the supplied argument string, into the board conf struct.
893 */
894
895static int stl_parsebrd(stlconf_t *confp, char **argp)
896{
897 char *sp;
fe971071 898 int i;
1da177e4
LT
899
900#ifdef DEBUG
901 printk("stl_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
902#endif
903
904 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
014c2544 905 return 0;
1da177e4
LT
906
907 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
908 *sp = TOLOWER(*sp);
909
fe971071 910 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++) {
1da177e4
LT
911 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
912 break;
913 }
fe971071 914 if (i == ARRAY_SIZE(stl_brdstr)) {
1da177e4 915 printk("STALLION: unknown board name, %s?\n", argp[0]);
fe971071 916 return 0;
1da177e4
LT
917 }
918
919 confp->brdtype = stl_brdstr[i].type;
920
921 i = 1;
922 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
923 confp->ioaddr1 = stl_atol(argp[i]);
924 i++;
925 if (confp->brdtype == BRD_ECH) {
926 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
927 confp->ioaddr2 = stl_atol(argp[i]);
928 i++;
929 }
930 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
931 confp->irq = stl_atol(argp[i]);
014c2544 932 return 1;
1da177e4
LT
933}
934
935/*****************************************************************************/
936
1da177e4
LT
937/*
938 * Allocate a new board structure. Fill out the basic info in it.
939 */
940
941static stlbrd_t *stl_allocbrd(void)
942{
943 stlbrd_t *brdp;
944
b0b4ed72
TK
945 brdp = kzalloc(sizeof(stlbrd_t), GFP_KERNEL);
946 if (!brdp) {
1da177e4
LT
947 printk("STALLION: failed to allocate memory (size=%d)\n",
948 sizeof(stlbrd_t));
b0b4ed72 949 return NULL;
1da177e4
LT
950 }
951
1da177e4 952 brdp->magic = STL_BOARDMAGIC;
014c2544 953 return brdp;
1da177e4
LT
954}
955
956/*****************************************************************************/
957
958static int stl_open(struct tty_struct *tty, struct file *filp)
959{
960 stlport_t *portp;
961 stlbrd_t *brdp;
962 unsigned int minordev;
963 int brdnr, panelnr, portnr, rc;
964
965#ifdef DEBUG
966 printk("stl_open(tty=%x,filp=%x): device=%s\n", (int) tty,
967 (int) filp, tty->name);
968#endif
969
970 minordev = tty->index;
971 brdnr = MINOR2BRD(minordev);
972 if (brdnr >= stl_nrbrds)
014c2544 973 return -ENODEV;
1da177e4
LT
974 brdp = stl_brds[brdnr];
975 if (brdp == (stlbrd_t *) NULL)
014c2544 976 return -ENODEV;
1da177e4
LT
977 minordev = MINOR2PORT(minordev);
978 for (portnr = -1, panelnr = 0; (panelnr < STL_MAXPANELS); panelnr++) {
979 if (brdp->panels[panelnr] == (stlpanel_t *) NULL)
980 break;
981 if (minordev < brdp->panels[panelnr]->nrports) {
982 portnr = minordev;
983 break;
984 }
985 minordev -= brdp->panels[panelnr]->nrports;
986 }
987 if (portnr < 0)
014c2544 988 return -ENODEV;
1da177e4
LT
989
990 portp = brdp->panels[panelnr]->ports[portnr];
991 if (portp == (stlport_t *) NULL)
014c2544 992 return -ENODEV;
1da177e4
LT
993
994/*
995 * On the first open of the device setup the port hardware, and
996 * initialize the per port data structure.
997 */
998 portp->tty = tty;
999 tty->driver_data = portp;
1000 portp->refcount++;
1001
1002 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
b0b4ed72
TK
1003 if (!portp->tx.buf) {
1004 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
1005 if (!portp->tx.buf)
014c2544 1006 return -ENOMEM;
1da177e4
LT
1007 portp->tx.head = portp->tx.buf;
1008 portp->tx.tail = portp->tx.buf;
1009 }
1010 stl_setport(portp, tty->termios);
1011 portp->sigs = stl_getsignals(portp);
1012 stl_setsignals(portp, 1, 1);
1013 stl_enablerxtx(portp, 1, 1);
1014 stl_startrxtx(portp, 1, 0);
1015 clear_bit(TTY_IO_ERROR, &tty->flags);
1016 portp->flags |= ASYNC_INITIALIZED;
1017 }
1018
1019/*
1020 * Check if this port is in the middle of closing. If so then wait
1021 * until it is closed then return error status, based on flag settings.
1022 * The sleep here does not need interrupt protection since the wakeup
1023 * for it is done with the same context.
1024 */
1025 if (portp->flags & ASYNC_CLOSING) {
1026 interruptible_sleep_on(&portp->close_wait);
1027 if (portp->flags & ASYNC_HUP_NOTIFY)
014c2544
JJ
1028 return -EAGAIN;
1029 return -ERESTARTSYS;
1da177e4
LT
1030 }
1031
1032/*
1033 * Based on type of open being done check if it can overlap with any
1034 * previous opens still in effect. If we are a normal serial device
1035 * then also we might have to wait for carrier.
1036 */
1037 if (!(filp->f_flags & O_NONBLOCK)) {
1038 if ((rc = stl_waitcarrier(portp, filp)) != 0)
014c2544 1039 return rc;
1da177e4
LT
1040 }
1041 portp->flags |= ASYNC_NORMAL_ACTIVE;
1042
014c2544 1043 return 0;
1da177e4
LT
1044}
1045
1046/*****************************************************************************/
1047
1048/*
1049 * Possibly need to wait for carrier (DCD signal) to come high. Say
1050 * maybe because if we are clocal then we don't need to wait...
1051 */
1052
1053static int stl_waitcarrier(stlport_t *portp, struct file *filp)
1054{
1055 unsigned long flags;
1056 int rc, doclocal;
1057
1058#ifdef DEBUG
1059 printk("stl_waitcarrier(portp=%x,filp=%x)\n", (int) portp, (int) filp);
1060#endif
1061
1062 rc = 0;
1063 doclocal = 0;
1064
1065 if (portp->tty->termios->c_cflag & CLOCAL)
1066 doclocal++;
1067
1068 save_flags(flags);
1069 cli();
1070 portp->openwaitcnt++;
1071 if (! tty_hung_up_p(filp))
1072 portp->refcount--;
1073
1074 for (;;) {
1075 stl_setsignals(portp, 1, 1);
1076 if (tty_hung_up_p(filp) ||
1077 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1078 if (portp->flags & ASYNC_HUP_NOTIFY)
1079 rc = -EBUSY;
1080 else
1081 rc = -ERESTARTSYS;
1082 break;
1083 }
1084 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1085 (doclocal || (portp->sigs & TIOCM_CD))) {
1086 break;
1087 }
1088 if (signal_pending(current)) {
1089 rc = -ERESTARTSYS;
1090 break;
1091 }
1092 interruptible_sleep_on(&portp->open_wait);
1093 }
1094
1095 if (! tty_hung_up_p(filp))
1096 portp->refcount++;
1097 portp->openwaitcnt--;
1098 restore_flags(flags);
1099
014c2544 1100 return rc;
1da177e4
LT
1101}
1102
1103/*****************************************************************************/
1104
1105static void stl_close(struct tty_struct *tty, struct file *filp)
1106{
1107 stlport_t *portp;
1108 unsigned long flags;
1109
1110#ifdef DEBUG
1111 printk("stl_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1112#endif
1113
1114 portp = tty->driver_data;
1115 if (portp == (stlport_t *) NULL)
1116 return;
1117
1118 save_flags(flags);
1119 cli();
1120 if (tty_hung_up_p(filp)) {
1121 restore_flags(flags);
1122 return;
1123 }
1124 if ((tty->count == 1) && (portp->refcount != 1))
1125 portp->refcount = 1;
1126 if (portp->refcount-- > 1) {
1127 restore_flags(flags);
1128 return;
1129 }
1130
1131 portp->refcount = 0;
1132 portp->flags |= ASYNC_CLOSING;
1133
1134/*
1135 * May want to wait for any data to drain before closing. The BUSY
1136 * flag keeps track of whether we are still sending or not - it is
1137 * very accurate for the cd1400, not quite so for the sc26198.
1138 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
1139 */
1140 tty->closing = 1;
1141 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1142 tty_wait_until_sent(tty, portp->closing_wait);
1143 stl_waituntilsent(tty, (HZ / 2));
1144
1145 portp->flags &= ~ASYNC_INITIALIZED;
1146 stl_disableintrs(portp);
1147 if (tty->termios->c_cflag & HUPCL)
1148 stl_setsignals(portp, 0, 0);
1149 stl_enablerxtx(portp, 0, 0);
1150 stl_flushbuffer(tty);
1151 portp->istate = 0;
1152 if (portp->tx.buf != (char *) NULL) {
1153 kfree(portp->tx.buf);
1154 portp->tx.buf = (char *) NULL;
1155 portp->tx.head = (char *) NULL;
1156 portp->tx.tail = (char *) NULL;
1157 }
1158 set_bit(TTY_IO_ERROR, &tty->flags);
1159 tty_ldisc_flush(tty);
1160
1161 tty->closing = 0;
1162 portp->tty = (struct tty_struct *) NULL;
1163
1164 if (portp->openwaitcnt) {
1165 if (portp->close_delay)
1166 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1167 wake_up_interruptible(&portp->open_wait);
1168 }
1169
1170 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1171 wake_up_interruptible(&portp->close_wait);
1172 restore_flags(flags);
1173}
1174
1175/*****************************************************************************/
1176
1177/*
1178 * Write routine. Take data and stuff it in to the TX ring queue.
1179 * If transmit interrupts are not running then start them.
1180 */
1181
1182static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
1183{
1184 stlport_t *portp;
1185 unsigned int len, stlen;
1186 unsigned char *chbuf;
1187 char *head, *tail;
1188
1189#ifdef DEBUG
1190 printk("stl_write(tty=%x,buf=%x,count=%d)\n",
1191 (int) tty, (int) buf, count);
1192#endif
1193
1194 if ((tty == (struct tty_struct *) NULL) ||
1195 (stl_tmpwritebuf == (char *) NULL))
014c2544 1196 return 0;
1da177e4
LT
1197 portp = tty->driver_data;
1198 if (portp == (stlport_t *) NULL)
014c2544 1199 return 0;
1da177e4 1200 if (portp->tx.buf == (char *) NULL)
014c2544 1201 return 0;
1da177e4
LT
1202
1203/*
1204 * If copying direct from user space we must cater for page faults,
1205 * causing us to "sleep" here for a while. To handle this copy in all
1206 * the data we need now, into a local buffer. Then when we got it all
1207 * copy it into the TX buffer.
1208 */
1209 chbuf = (unsigned char *) buf;
1210
1211 head = portp->tx.head;
1212 tail = portp->tx.tail;
1213 if (head >= tail) {
1214 len = STL_TXBUFSIZE - (head - tail) - 1;
1215 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
1216 } else {
1217 len = tail - head - 1;
1218 stlen = len;
1219 }
1220
1221 len = MIN(len, count);
1222 count = 0;
1223 while (len > 0) {
1224 stlen = MIN(len, stlen);
1225 memcpy(head, chbuf, stlen);
1226 len -= stlen;
1227 chbuf += stlen;
1228 count += stlen;
1229 head += stlen;
1230 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1231 head = portp->tx.buf;
1232 stlen = tail - head;
1233 }
1234 }
1235 portp->tx.head = head;
1236
1237 clear_bit(ASYI_TXLOW, &portp->istate);
1238 stl_startrxtx(portp, -1, 1);
1239
014c2544 1240 return count;
1da177e4
LT
1241}
1242
1243/*****************************************************************************/
1244
1245static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1246{
1247 stlport_t *portp;
1248 unsigned int len;
1249 char *head, *tail;
1250
1251#ifdef DEBUG
1252 printk("stl_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1253#endif
1254
1255 if (tty == (struct tty_struct *) NULL)
1256 return;
1257 portp = tty->driver_data;
1258 if (portp == (stlport_t *) NULL)
1259 return;
1260 if (portp->tx.buf == (char *) NULL)
1261 return;
1262
1263 head = portp->tx.head;
1264 tail = portp->tx.tail;
1265
1266 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1267 len--;
1268
1269 if (len > 0) {
1270 *head++ = ch;
1271 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1272 head = portp->tx.buf;
1273 }
1274 portp->tx.head = head;
1275}
1276
1277/*****************************************************************************/
1278
1279/*
1280 * If there are any characters in the buffer then make sure that TX
1281 * interrupts are on and get'em out. Normally used after the putchar
1282 * routine has been called.
1283 */
1284
1285static void stl_flushchars(struct tty_struct *tty)
1286{
1287 stlport_t *portp;
1288
1289#ifdef DEBUG
1290 printk("stl_flushchars(tty=%x)\n", (int) tty);
1291#endif
1292
1293 if (tty == (struct tty_struct *) NULL)
1294 return;
1295 portp = tty->driver_data;
1296 if (portp == (stlport_t *) NULL)
1297 return;
1298 if (portp->tx.buf == (char *) NULL)
1299 return;
1300
1301#if 0
1302 if (tty->stopped || tty->hw_stopped ||
1303 (portp->tx.head == portp->tx.tail))
1304 return;
1305#endif
1306 stl_startrxtx(portp, -1, 1);
1307}
1308
1309/*****************************************************************************/
1310
1311static int stl_writeroom(struct tty_struct *tty)
1312{
1313 stlport_t *portp;
1314 char *head, *tail;
1315
1316#ifdef DEBUG
1317 printk("stl_writeroom(tty=%x)\n", (int) tty);
1318#endif
1319
1320 if (tty == (struct tty_struct *) NULL)
014c2544 1321 return 0;
1da177e4
LT
1322 portp = tty->driver_data;
1323 if (portp == (stlport_t *) NULL)
014c2544 1324 return 0;
1da177e4 1325 if (portp->tx.buf == (char *) NULL)
014c2544 1326 return 0;
1da177e4
LT
1327
1328 head = portp->tx.head;
1329 tail = portp->tx.tail;
014c2544 1330 return ((head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1));
1da177e4
LT
1331}
1332
1333/*****************************************************************************/
1334
1335/*
1336 * Return number of chars in the TX buffer. Normally we would just
1337 * calculate the number of chars in the buffer and return that, but if
1338 * the buffer is empty and TX interrupts are still on then we return
1339 * that the buffer still has 1 char in it. This way whoever called us
1340 * will not think that ALL chars have drained - since the UART still
1341 * must have some chars in it (we are busy after all).
1342 */
1343
1344static int stl_charsinbuffer(struct tty_struct *tty)
1345{
1346 stlport_t *portp;
1347 unsigned int size;
1348 char *head, *tail;
1349
1350#ifdef DEBUG
1351 printk("stl_charsinbuffer(tty=%x)\n", (int) tty);
1352#endif
1353
1354 if (tty == (struct tty_struct *) NULL)
014c2544 1355 return 0;
1da177e4
LT
1356 portp = tty->driver_data;
1357 if (portp == (stlport_t *) NULL)
014c2544 1358 return 0;
1da177e4 1359 if (portp->tx.buf == (char *) NULL)
014c2544 1360 return 0;
1da177e4
LT
1361
1362 head = portp->tx.head;
1363 tail = portp->tx.tail;
1364 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1365 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1366 size = 1;
014c2544 1367 return size;
1da177e4
LT
1368}
1369
1370/*****************************************************************************/
1371
1372/*
1373 * Generate the serial struct info.
1374 */
1375
1376static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp)
1377{
1378 struct serial_struct sio;
1379 stlbrd_t *brdp;
1380
1381#ifdef DEBUG
1382 printk("stl_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1383#endif
1384
1385 memset(&sio, 0, sizeof(struct serial_struct));
1386 sio.line = portp->portnr;
1387 sio.port = portp->ioaddr;
1388 sio.flags = portp->flags;
1389 sio.baud_base = portp->baud_base;
1390 sio.close_delay = portp->close_delay;
1391 sio.closing_wait = portp->closing_wait;
1392 sio.custom_divisor = portp->custom_divisor;
1393 sio.hub6 = 0;
1394 if (portp->uartp == &stl_cd1400uart) {
1395 sio.type = PORT_CIRRUS;
1396 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1397 } else {
1398 sio.type = PORT_UNKNOWN;
1399 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1400 }
1401
1402 brdp = stl_brds[portp->brdnr];
1403 if (brdp != (stlbrd_t *) NULL)
1404 sio.irq = brdp->irq;
1405
1406 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1407}
1408
1409/*****************************************************************************/
1410
1411/*
1412 * Set port according to the serial struct info.
1413 * At this point we do not do any auto-configure stuff, so we will
1414 * just quietly ignore any requests to change irq, etc.
1415 */
1416
1417static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp)
1418{
1419 struct serial_struct sio;
1420
1421#ifdef DEBUG
1422 printk("stl_setserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1423#endif
1424
1425 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1426 return -EFAULT;
1427 if (!capable(CAP_SYS_ADMIN)) {
1428 if ((sio.baud_base != portp->baud_base) ||
1429 (sio.close_delay != portp->close_delay) ||
1430 ((sio.flags & ~ASYNC_USR_MASK) !=
1431 (portp->flags & ~ASYNC_USR_MASK)))
014c2544 1432 return -EPERM;
1da177e4
LT
1433 }
1434
1435 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1436 (sio.flags & ASYNC_USR_MASK);
1437 portp->baud_base = sio.baud_base;
1438 portp->close_delay = sio.close_delay;
1439 portp->closing_wait = sio.closing_wait;
1440 portp->custom_divisor = sio.custom_divisor;
1441 stl_setport(portp, portp->tty->termios);
014c2544 1442 return 0;
1da177e4
LT
1443}
1444
1445/*****************************************************************************/
1446
1447static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1448{
1449 stlport_t *portp;
1450
1451 if (tty == (struct tty_struct *) NULL)
014c2544 1452 return -ENODEV;
1da177e4
LT
1453 portp = tty->driver_data;
1454 if (portp == (stlport_t *) NULL)
014c2544 1455 return -ENODEV;
1da177e4 1456 if (tty->flags & (1 << TTY_IO_ERROR))
014c2544 1457 return -EIO;
1da177e4
LT
1458
1459 return stl_getsignals(portp);
1460}
1461
1462static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1463 unsigned int set, unsigned int clear)
1464{
1465 stlport_t *portp;
1466 int rts = -1, dtr = -1;
1467
1468 if (tty == (struct tty_struct *) NULL)
014c2544 1469 return -ENODEV;
1da177e4
LT
1470 portp = tty->driver_data;
1471 if (portp == (stlport_t *) NULL)
014c2544 1472 return -ENODEV;
1da177e4 1473 if (tty->flags & (1 << TTY_IO_ERROR))
014c2544 1474 return -EIO;
1da177e4
LT
1475
1476 if (set & TIOCM_RTS)
1477 rts = 1;
1478 if (set & TIOCM_DTR)
1479 dtr = 1;
1480 if (clear & TIOCM_RTS)
1481 rts = 0;
1482 if (clear & TIOCM_DTR)
1483 dtr = 0;
1484
1485 stl_setsignals(portp, dtr, rts);
1486 return 0;
1487}
1488
1489static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1490{
1491 stlport_t *portp;
1492 unsigned int ival;
1493 int rc;
1494 void __user *argp = (void __user *)arg;
1495
1496#ifdef DEBUG
1497 printk("stl_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1498 (int) tty, (int) file, cmd, (int) arg);
1499#endif
1500
1501 if (tty == (struct tty_struct *) NULL)
014c2544 1502 return -ENODEV;
1da177e4
LT
1503 portp = tty->driver_data;
1504 if (portp == (stlport_t *) NULL)
014c2544 1505 return -ENODEV;
1da177e4
LT
1506
1507 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1508 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1509 if (tty->flags & (1 << TTY_IO_ERROR))
014c2544 1510 return -EIO;
1da177e4
LT
1511 }
1512
1513 rc = 0;
1514
1515 switch (cmd) {
1516 case TIOCGSOFTCAR:
1517 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1518 (unsigned __user *) argp);
1519 break;
1520 case TIOCSSOFTCAR:
1521 if (get_user(ival, (unsigned int __user *) arg))
1522 return -EFAULT;
1523 tty->termios->c_cflag =
1524 (tty->termios->c_cflag & ~CLOCAL) |
1525 (ival ? CLOCAL : 0);
1526 break;
1527 case TIOCGSERIAL:
1528 rc = stl_getserial(portp, argp);
1529 break;
1530 case TIOCSSERIAL:
1531 rc = stl_setserial(portp, argp);
1532 break;
1533 case COM_GETPORTSTATS:
1534 rc = stl_getportstats(portp, argp);
1535 break;
1536 case COM_CLRPORTSTATS:
1537 rc = stl_clrportstats(portp, argp);
1538 break;
1539 case TIOCSERCONFIG:
1540 case TIOCSERGWILD:
1541 case TIOCSERSWILD:
1542 case TIOCSERGETLSR:
1543 case TIOCSERGSTRUCT:
1544 case TIOCSERGETMULTI:
1545 case TIOCSERSETMULTI:
1546 default:
1547 rc = -ENOIOCTLCMD;
1548 break;
1549 }
1550
014c2544 1551 return rc;
1da177e4
LT
1552}
1553
1554/*****************************************************************************/
1555
1556static void stl_settermios(struct tty_struct *tty, struct termios *old)
1557{
1558 stlport_t *portp;
1559 struct termios *tiosp;
1560
1561#ifdef DEBUG
1562 printk("stl_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
1563#endif
1564
1565 if (tty == (struct tty_struct *) NULL)
1566 return;
1567 portp = tty->driver_data;
1568 if (portp == (stlport_t *) NULL)
1569 return;
1570
1571 tiosp = tty->termios;
1572 if ((tiosp->c_cflag == old->c_cflag) &&
1573 (tiosp->c_iflag == old->c_iflag))
1574 return;
1575
1576 stl_setport(portp, tiosp);
1577 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1578 -1);
1579 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1580 tty->hw_stopped = 0;
1581 stl_start(tty);
1582 }
1583 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1584 wake_up_interruptible(&portp->open_wait);
1585}
1586
1587/*****************************************************************************/
1588
1589/*
1590 * Attempt to flow control who ever is sending us data. Based on termios
1591 * settings use software or/and hardware flow control.
1592 */
1593
1594static void stl_throttle(struct tty_struct *tty)
1595{
1596 stlport_t *portp;
1597
1598#ifdef DEBUG
1599 printk("stl_throttle(tty=%x)\n", (int) tty);
1600#endif
1601
1602 if (tty == (struct tty_struct *) NULL)
1603 return;
1604 portp = tty->driver_data;
1605 if (portp == (stlport_t *) NULL)
1606 return;
1607 stl_flowctrl(portp, 0);
1608}
1609
1610/*****************************************************************************/
1611
1612/*
1613 * Unflow control the device sending us data...
1614 */
1615
1616static void stl_unthrottle(struct tty_struct *tty)
1617{
1618 stlport_t *portp;
1619
1620#ifdef DEBUG
1621 printk("stl_unthrottle(tty=%x)\n", (int) tty);
1622#endif
1623
1624 if (tty == (struct tty_struct *) NULL)
1625 return;
1626 portp = tty->driver_data;
1627 if (portp == (stlport_t *) NULL)
1628 return;
1629 stl_flowctrl(portp, 1);
1630}
1631
1632/*****************************************************************************/
1633
1634/*
1635 * Stop the transmitter. Basically to do this we will just turn TX
1636 * interrupts off.
1637 */
1638
1639static void stl_stop(struct tty_struct *tty)
1640{
1641 stlport_t *portp;
1642
1643#ifdef DEBUG
1644 printk("stl_stop(tty=%x)\n", (int) tty);
1645#endif
1646
1647 if (tty == (struct tty_struct *) NULL)
1648 return;
1649 portp = tty->driver_data;
1650 if (portp == (stlport_t *) NULL)
1651 return;
1652 stl_startrxtx(portp, -1, 0);
1653}
1654
1655/*****************************************************************************/
1656
1657/*
1658 * Start the transmitter again. Just turn TX interrupts back on.
1659 */
1660
1661static void stl_start(struct tty_struct *tty)
1662{
1663 stlport_t *portp;
1664
1665#ifdef DEBUG
1666 printk("stl_start(tty=%x)\n", (int) tty);
1667#endif
1668
1669 if (tty == (struct tty_struct *) NULL)
1670 return;
1671 portp = tty->driver_data;
1672 if (portp == (stlport_t *) NULL)
1673 return;
1674 stl_startrxtx(portp, -1, 1);
1675}
1676
1677/*****************************************************************************/
1678
1679/*
1680 * Hangup this port. This is pretty much like closing the port, only
1681 * a little more brutal. No waiting for data to drain. Shutdown the
1682 * port and maybe drop signals.
1683 */
1684
1685static void stl_hangup(struct tty_struct *tty)
1686{
1687 stlport_t *portp;
1688
1689#ifdef DEBUG
1690 printk("stl_hangup(tty=%x)\n", (int) tty);
1691#endif
1692
1693 if (tty == (struct tty_struct *) NULL)
1694 return;
1695 portp = tty->driver_data;
1696 if (portp == (stlport_t *) NULL)
1697 return;
1698
1699 portp->flags &= ~ASYNC_INITIALIZED;
1700 stl_disableintrs(portp);
1701 if (tty->termios->c_cflag & HUPCL)
1702 stl_setsignals(portp, 0, 0);
1703 stl_enablerxtx(portp, 0, 0);
1704 stl_flushbuffer(tty);
1705 portp->istate = 0;
1706 set_bit(TTY_IO_ERROR, &tty->flags);
1707 if (portp->tx.buf != (char *) NULL) {
1708 kfree(portp->tx.buf);
1709 portp->tx.buf = (char *) NULL;
1710 portp->tx.head = (char *) NULL;
1711 portp->tx.tail = (char *) NULL;
1712 }
1713 portp->tty = (struct tty_struct *) NULL;
1714 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1715 portp->refcount = 0;
1716 wake_up_interruptible(&portp->open_wait);
1717}
1718
1719/*****************************************************************************/
1720
1721static void stl_flushbuffer(struct tty_struct *tty)
1722{
1723 stlport_t *portp;
1724
1725#ifdef DEBUG
1726 printk("stl_flushbuffer(tty=%x)\n", (int) tty);
1727#endif
1728
1729 if (tty == (struct tty_struct *) NULL)
1730 return;
1731 portp = tty->driver_data;
1732 if (portp == (stlport_t *) NULL)
1733 return;
1734
1735 stl_flush(portp);
1736 tty_wakeup(tty);
1737}
1738
1739/*****************************************************************************/
1740
1741static void stl_breakctl(struct tty_struct *tty, int state)
1742{
1743 stlport_t *portp;
1744
1745#ifdef DEBUG
1746 printk("stl_breakctl(tty=%x,state=%d)\n", (int) tty, state);
1747#endif
1748
1749 if (tty == (struct tty_struct *) NULL)
1750 return;
1751 portp = tty->driver_data;
1752 if (portp == (stlport_t *) NULL)
1753 return;
1754
1755 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1756}
1757
1758/*****************************************************************************/
1759
1760static void stl_waituntilsent(struct tty_struct *tty, int timeout)
1761{
1762 stlport_t *portp;
1763 unsigned long tend;
1764
1765#ifdef DEBUG
1766 printk("stl_waituntilsent(tty=%x,timeout=%d)\n", (int) tty, timeout);
1767#endif
1768
1769 if (tty == (struct tty_struct *) NULL)
1770 return;
1771 portp = tty->driver_data;
1772 if (portp == (stlport_t *) NULL)
1773 return;
1774
1775 if (timeout == 0)
1776 timeout = HZ;
1777 tend = jiffies + timeout;
1778
1779 while (stl_datastate(portp)) {
1780 if (signal_pending(current))
1781 break;
1782 msleep_interruptible(20);
1783 if (time_after_eq(jiffies, tend))
1784 break;
1785 }
1786}
1787
1788/*****************************************************************************/
1789
1790static void stl_sendxchar(struct tty_struct *tty, char ch)
1791{
1792 stlport_t *portp;
1793
1794#ifdef DEBUG
1795 printk("stl_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
1796#endif
1797
1798 if (tty == (struct tty_struct *) NULL)
1799 return;
1800 portp = tty->driver_data;
1801 if (portp == (stlport_t *) NULL)
1802 return;
1803
1804 if (ch == STOP_CHAR(tty))
1805 stl_sendflow(portp, 0);
1806 else if (ch == START_CHAR(tty))
1807 stl_sendflow(portp, 1);
1808 else
1809 stl_putchar(tty, ch);
1810}
1811
1812/*****************************************************************************/
1813
1814#define MAXLINE 80
1815
1816/*
1817 * Format info for a specified port. The line is deliberately limited
1818 * to 80 characters. (If it is too long it will be truncated, if too
1819 * short then padded with spaces).
1820 */
1821
1822static int stl_portinfo(stlport_t *portp, int portnr, char *pos)
1823{
1824 char *sp;
1825 int sigs, cnt;
1826
1827 sp = pos;
1828 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1829 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1830 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1831
1832 if (portp->stats.rxframing)
1833 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1834 if (portp->stats.rxparity)
1835 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1836 if (portp->stats.rxbreaks)
1837 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1838 if (portp->stats.rxoverrun)
1839 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1840
1841 sigs = stl_getsignals(portp);
1842 cnt = sprintf(sp, "%s%s%s%s%s ",
1843 (sigs & TIOCM_RTS) ? "|RTS" : "",
1844 (sigs & TIOCM_CTS) ? "|CTS" : "",
1845 (sigs & TIOCM_DTR) ? "|DTR" : "",
1846 (sigs & TIOCM_CD) ? "|DCD" : "",
1847 (sigs & TIOCM_DSR) ? "|DSR" : "");
1848 *sp = ' ';
1849 sp += cnt;
1850
1851 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
1852 *sp++ = ' ';
1853 if (cnt >= MAXLINE)
1854 pos[(MAXLINE - 2)] = '+';
1855 pos[(MAXLINE - 1)] = '\n';
1856
014c2544 1857 return MAXLINE;
1da177e4
LT
1858}
1859
1860/*****************************************************************************/
1861
1862/*
1863 * Port info, read from the /proc file system.
1864 */
1865
1866static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1867{
1868 stlbrd_t *brdp;
1869 stlpanel_t *panelp;
1870 stlport_t *portp;
1871 int brdnr, panelnr, portnr, totalport;
1872 int curoff, maxoff;
1873 char *pos;
1874
1875#ifdef DEBUG
1876 printk("stl_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
1877 "data=%x\n", (int) page, (int) start, (int) off, count,
1878 (int) eof, (int) data);
1879#endif
1880
1881 pos = page;
1882 totalport = 0;
1883 curoff = 0;
1884
1885 if (off == 0) {
1886 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1887 stl_drvversion);
1888 while (pos < (page + MAXLINE - 1))
1889 *pos++ = ' ';
1890 *pos++ = '\n';
1891 }
1892 curoff = MAXLINE;
1893
1894/*
1895 * We scan through for each board, panel and port. The offset is
1896 * calculated on the fly, and irrelevant ports are skipped.
1897 */
1898 for (brdnr = 0; (brdnr < stl_nrbrds); brdnr++) {
1899 brdp = stl_brds[brdnr];
1900 if (brdp == (stlbrd_t *) NULL)
1901 continue;
1902 if (brdp->state == 0)
1903 continue;
1904
1905 maxoff = curoff + (brdp->nrports * MAXLINE);
1906 if (off >= maxoff) {
1907 curoff = maxoff;
1908 continue;
1909 }
1910
1911 totalport = brdnr * STL_MAXPORTS;
1912 for (panelnr = 0; (panelnr < brdp->nrpanels); panelnr++) {
1913 panelp = brdp->panels[panelnr];
1914 if (panelp == (stlpanel_t *) NULL)
1915 continue;
1916
1917 maxoff = curoff + (panelp->nrports * MAXLINE);
1918 if (off >= maxoff) {
1919 curoff = maxoff;
1920 totalport += panelp->nrports;
1921 continue;
1922 }
1923
1924 for (portnr = 0; (portnr < panelp->nrports); portnr++,
1925 totalport++) {
1926 portp = panelp->ports[portnr];
1927 if (portp == (stlport_t *) NULL)
1928 continue;
1929 if (off >= (curoff += MAXLINE))
1930 continue;
1931 if ((pos - page + MAXLINE) > count)
1932 goto stl_readdone;
1933 pos += stl_portinfo(portp, totalport, pos);
1934 }
1935 }
1936 }
1937
1938 *eof = 1;
1939
1940stl_readdone:
1941 *start = page;
014c2544 1942 return (pos - page);
1da177e4
LT
1943}
1944
1945/*****************************************************************************/
1946
1947/*
1948 * All board interrupts are vectored through here first. This code then
1949 * calls off to the approrpriate board interrupt handlers.
1950 */
1951
1952static irqreturn_t stl_intr(int irq, void *dev_id, struct pt_regs *regs)
1953{
1954 stlbrd_t *brdp = (stlbrd_t *) dev_id;
1955
1956#ifdef DEBUG
1957 printk("stl_intr(brdp=%x,irq=%d,regs=%x)\n", (int) brdp, irq,
1958 (int) regs);
1959#endif
1960
1961 return IRQ_RETVAL((* brdp->isr)(brdp));
1962}
1963
1964/*****************************************************************************/
1965
1966/*
1967 * Interrupt service routine for EasyIO board types.
1968 */
1969
1970static int stl_eiointr(stlbrd_t *brdp)
1971{
1972 stlpanel_t *panelp;
1973 unsigned int iobase;
1974 int handled = 0;
1975
1976 panelp = brdp->panels[0];
1977 iobase = panelp->iobase;
1978 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1979 handled = 1;
1980 (* panelp->isr)(panelp, iobase);
1981 }
1982 return handled;
1983}
1984
1985/*****************************************************************************/
1986
1987/*
1988 * Interrupt service routine for ECH-AT board types.
1989 */
1990
1991static int stl_echatintr(stlbrd_t *brdp)
1992{
1993 stlpanel_t *panelp;
1994 unsigned int ioaddr;
1995 int bnknr;
1996 int handled = 0;
1997
1998 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1999
2000 while (inb(brdp->iostatus) & ECH_INTRPEND) {
2001 handled = 1;
2002 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2003 ioaddr = brdp->bnkstataddr[bnknr];
2004 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2005 panelp = brdp->bnk2panel[bnknr];
2006 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2007 }
2008 }
2009 }
2010
2011 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2012
2013 return handled;
2014}
2015
2016/*****************************************************************************/
2017
2018/*
2019 * Interrupt service routine for ECH-MCA board types.
2020 */
2021
2022static int stl_echmcaintr(stlbrd_t *brdp)
2023{
2024 stlpanel_t *panelp;
2025 unsigned int ioaddr;
2026 int bnknr;
2027 int handled = 0;
2028
2029 while (inb(brdp->iostatus) & ECH_INTRPEND) {
2030 handled = 1;
2031 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2032 ioaddr = brdp->bnkstataddr[bnknr];
2033 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2034 panelp = brdp->bnk2panel[bnknr];
2035 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2036 }
2037 }
2038 }
2039 return handled;
2040}
2041
2042/*****************************************************************************/
2043
2044/*
2045 * Interrupt service routine for ECH-PCI board types.
2046 */
2047
2048static int stl_echpciintr(stlbrd_t *brdp)
2049{
2050 stlpanel_t *panelp;
2051 unsigned int ioaddr;
2052 int bnknr, recheck;
2053 int handled = 0;
2054
2055 while (1) {
2056 recheck = 0;
2057 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2058 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
2059 ioaddr = brdp->bnkstataddr[bnknr];
2060 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2061 panelp = brdp->bnk2panel[bnknr];
2062 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2063 recheck++;
2064 handled = 1;
2065 }
2066 }
2067 if (! recheck)
2068 break;
2069 }
2070 return handled;
2071}
2072
2073/*****************************************************************************/
2074
2075/*
2076 * Interrupt service routine for ECH-8/64-PCI board types.
2077 */
2078
2079static int stl_echpci64intr(stlbrd_t *brdp)
2080{
2081 stlpanel_t *panelp;
2082 unsigned int ioaddr;
2083 int bnknr;
2084 int handled = 0;
2085
2086 while (inb(brdp->ioctrl) & 0x1) {
2087 handled = 1;
2088 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2089 ioaddr = brdp->bnkstataddr[bnknr];
2090 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2091 panelp = brdp->bnk2panel[bnknr];
2092 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2093 }
2094 }
2095 }
2096
2097 return handled;
2098}
2099
2100/*****************************************************************************/
2101
2102/*
2103 * Service an off-level request for some channel.
2104 */
2105static void stl_offintr(void *private)
2106{
2107 stlport_t *portp;
2108 struct tty_struct *tty;
2109 unsigned int oldsigs;
2110
2111 portp = private;
2112
2113#ifdef DEBUG
2114 printk("stl_offintr(portp=%x)\n", (int) portp);
2115#endif
2116
2117 if (portp == (stlport_t *) NULL)
2118 return;
2119
2120 tty = portp->tty;
2121 if (tty == (struct tty_struct *) NULL)
2122 return;
2123
2124 lock_kernel();
2125 if (test_bit(ASYI_TXLOW, &portp->istate)) {
2126 tty_wakeup(tty);
2127 }
2128 if (test_bit(ASYI_DCDCHANGE, &portp->istate)) {
2129 clear_bit(ASYI_DCDCHANGE, &portp->istate);
2130 oldsigs = portp->sigs;
2131 portp->sigs = stl_getsignals(portp);
2132 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
2133 wake_up_interruptible(&portp->open_wait);
2134 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0)) {
2135 if (portp->flags & ASYNC_CHECK_CD)
2136 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2137 }
2138 }
2139 unlock_kernel();
2140}
2141
2142/*****************************************************************************/
2143
2144/*
2145 * Initialize all the ports on a panel.
2146 */
2147
2148static int __init stl_initports(stlbrd_t *brdp, stlpanel_t *panelp)
2149{
2150 stlport_t *portp;
2151 int chipmask, i;
2152
2153#ifdef DEBUG
2154 printk("stl_initports(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
2155#endif
2156
2157 chipmask = stl_panelinit(brdp, panelp);
2158
2159/*
2160 * All UART's are initialized (if found!). Now go through and setup
2161 * each ports data structures.
2162 */
2163 for (i = 0; (i < panelp->nrports); i++) {
b0b4ed72
TK
2164 portp = kzalloc(sizeof(stlport_t), GFP_KERNEL);
2165 if (!portp) {
1da177e4
LT
2166 printk("STALLION: failed to allocate memory "
2167 "(size=%d)\n", sizeof(stlport_t));
2168 break;
2169 }
1da177e4
LT
2170
2171 portp->magic = STL_PORTMAGIC;
2172 portp->portnr = i;
2173 portp->brdnr = panelp->brdnr;
2174 portp->panelnr = panelp->panelnr;
2175 portp->uartp = panelp->uartp;
2176 portp->clk = brdp->clk;
2177 portp->baud_base = STL_BAUDBASE;
2178 portp->close_delay = STL_CLOSEDELAY;
2179 portp->closing_wait = 30 * HZ;
2180 INIT_WORK(&portp->tqueue, stl_offintr, portp);
2181 init_waitqueue_head(&portp->open_wait);
2182 init_waitqueue_head(&portp->close_wait);
2183 portp->stats.brd = portp->brdnr;
2184 portp->stats.panel = portp->panelnr;
2185 portp->stats.port = portp->portnr;
2186 panelp->ports[i] = portp;
2187 stl_portinit(brdp, panelp, portp);
2188 }
2189
2190 return(0);
2191}
2192
2193/*****************************************************************************/
2194
2195/*
2196 * Try to find and initialize an EasyIO board.
2197 */
2198
2199static inline int stl_initeio(stlbrd_t *brdp)
2200{
2201 stlpanel_t *panelp;
2202 unsigned int status;
2203 char *name;
2204 int rc;
2205
2206#ifdef DEBUG
2207 printk("stl_initeio(brdp=%x)\n", (int) brdp);
2208#endif
2209
2210 brdp->ioctrl = brdp->ioaddr1 + 1;
2211 brdp->iostatus = brdp->ioaddr1 + 2;
2212
2213 status = inb(brdp->iostatus);
2214 if ((status & EIO_IDBITMASK) == EIO_MK3)
2215 brdp->ioctrl++;
2216
2217/*
2218 * Handle board specific stuff now. The real difference is PCI
2219 * or not PCI.
2220 */
2221 if (brdp->brdtype == BRD_EASYIOPCI) {
2222 brdp->iosize1 = 0x80;
2223 brdp->iosize2 = 0x80;
2224 name = "serial(EIO-PCI)";
2225 outb(0x41, (brdp->ioaddr2 + 0x4c));
2226 } else {
2227 brdp->iosize1 = 8;
2228 name = "serial(EIO)";
2229 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2230 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2231 printk("STALLION: invalid irq=%d for brd=%d\n",
2232 brdp->irq, brdp->brdnr);
2233 return(-EINVAL);
2234 }
2235 outb((stl_vecmap[brdp->irq] | EIO_0WS |
2236 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
2237 brdp->ioctrl);
2238 }
2239
2240 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2241 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2242 "%x conflicts with another device\n", brdp->brdnr,
2243 brdp->ioaddr1);
2244 return(-EBUSY);
2245 }
2246
2247 if (brdp->iosize2 > 0)
2248 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2249 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2250 "address %x conflicts with another device\n",
2251 brdp->brdnr, brdp->ioaddr2);
2252 printk(KERN_WARNING "STALLION: Warning, also "
2253 "releasing board %d I/O address %x \n",
2254 brdp->brdnr, brdp->ioaddr1);
2255 release_region(brdp->ioaddr1, brdp->iosize1);
2256 return(-EBUSY);
2257 }
2258
2259/*
2260 * Everything looks OK, so let's go ahead and probe for the hardware.
2261 */
2262 brdp->clk = CD1400_CLK;
2263 brdp->isr = stl_eiointr;
2264
2265 switch (status & EIO_IDBITMASK) {
2266 case EIO_8PORTM:
2267 brdp->clk = CD1400_CLK8M;
2268 /* fall thru */
2269 case EIO_8PORTRS:
2270 case EIO_8PORTDI:
2271 brdp->nrports = 8;
2272 break;
2273 case EIO_4PORTRS:
2274 brdp->nrports = 4;
2275 break;
2276 case EIO_MK3:
2277 switch (status & EIO_BRDMASK) {
2278 case ID_BRD4:
2279 brdp->nrports = 4;
2280 break;
2281 case ID_BRD8:
2282 brdp->nrports = 8;
2283 break;
2284 case ID_BRD16:
2285 brdp->nrports = 16;
2286 break;
2287 default:
2288 return(-ENODEV);
2289 }
2290 break;
2291 default:
2292 return(-ENODEV);
2293 }
2294
2295/*
2296 * We have verified that the board is actually present, so now we
2297 * can complete the setup.
2298 */
2299
b0b4ed72
TK
2300 panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
2301 if (!panelp) {
1da177e4
LT
2302 printk(KERN_WARNING "STALLION: failed to allocate memory "
2303 "(size=%d)\n", sizeof(stlpanel_t));
b0b4ed72 2304 return -ENOMEM;
1da177e4 2305 }
1da177e4
LT
2306
2307 panelp->magic = STL_PANELMAGIC;
2308 panelp->brdnr = brdp->brdnr;
2309 panelp->panelnr = 0;
2310 panelp->nrports = brdp->nrports;
2311 panelp->iobase = brdp->ioaddr1;
2312 panelp->hwid = status;
2313 if ((status & EIO_IDBITMASK) == EIO_MK3) {
2314 panelp->uartp = (void *) &stl_sc26198uart;
2315 panelp->isr = stl_sc26198intr;
2316 } else {
2317 panelp->uartp = (void *) &stl_cd1400uart;
2318 panelp->isr = stl_cd1400eiointr;
2319 }
2320
2321 brdp->panels[0] = panelp;
2322 brdp->nrpanels = 1;
2323 brdp->state |= BRD_FOUND;
2324 brdp->hwid = status;
2325 if (request_irq(brdp->irq, stl_intr, SA_SHIRQ, name, brdp) != 0) {
2326 printk("STALLION: failed to register interrupt "
2327 "routine for %s irq=%d\n", name, brdp->irq);
2328 rc = -ENODEV;
2329 } else {
2330 rc = 0;
2331 }
014c2544 2332 return rc;
1da177e4
LT
2333}
2334
2335/*****************************************************************************/
2336
2337/*
2338 * Try to find an ECH board and initialize it. This code is capable of
2339 * dealing with all types of ECH board.
2340 */
2341
2342static inline int stl_initech(stlbrd_t *brdp)
2343{
2344 stlpanel_t *panelp;
2345 unsigned int status, nxtid, ioaddr, conflict;
2346 int panelnr, banknr, i;
2347 char *name;
2348
2349#ifdef DEBUG
2350 printk("stl_initech(brdp=%x)\n", (int) brdp);
2351#endif
2352
2353 status = 0;
2354 conflict = 0;
2355
2356/*
2357 * Set up the initial board register contents for boards. This varies a
2358 * bit between the different board types. So we need to handle each
2359 * separately. Also do a check that the supplied IRQ is good.
2360 */
2361 switch (brdp->brdtype) {
2362
2363 case BRD_ECH:
2364 brdp->isr = stl_echatintr;
2365 brdp->ioctrl = brdp->ioaddr1 + 1;
2366 brdp->iostatus = brdp->ioaddr1 + 1;
2367 status = inb(brdp->iostatus);
2368 if ((status & ECH_IDBITMASK) != ECH_ID)
2369 return(-ENODEV);
2370 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2371 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2372 printk("STALLION: invalid irq=%d for brd=%d\n",
2373 brdp->irq, brdp->brdnr);
2374 return(-EINVAL);
2375 }
2376 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2377 status |= (stl_vecmap[brdp->irq] << 1);
2378 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2379 brdp->ioctrlval = ECH_INTENABLE |
2380 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2381 for (i = 0; (i < 10); i++)
2382 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2383 brdp->iosize1 = 2;
2384 brdp->iosize2 = 32;
2385 name = "serial(EC8/32)";
2386 outb(status, brdp->ioaddr1);
2387 break;
2388
2389 case BRD_ECHMC:
2390 brdp->isr = stl_echmcaintr;
2391 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2392 brdp->iostatus = brdp->ioctrl;
2393 status = inb(brdp->iostatus);
2394 if ((status & ECH_IDBITMASK) != ECH_ID)
2395 return(-ENODEV);
2396 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2397 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2398 printk("STALLION: invalid irq=%d for brd=%d\n",
2399 brdp->irq, brdp->brdnr);
2400 return(-EINVAL);
2401 }
2402 outb(ECHMC_BRDRESET, brdp->ioctrl);
2403 outb(ECHMC_INTENABLE, brdp->ioctrl);
2404 brdp->iosize1 = 64;
2405 name = "serial(EC8/32-MC)";
2406 break;
2407
2408 case BRD_ECHPCI:
2409 brdp->isr = stl_echpciintr;
2410 brdp->ioctrl = brdp->ioaddr1 + 2;
2411 brdp->iosize1 = 4;
2412 brdp->iosize2 = 8;
2413 name = "serial(EC8/32-PCI)";
2414 break;
2415
2416 case BRD_ECH64PCI:
2417 brdp->isr = stl_echpci64intr;
2418 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2419 outb(0x43, (brdp->ioaddr1 + 0x4c));
2420 brdp->iosize1 = 0x80;
2421 brdp->iosize2 = 0x80;
2422 name = "serial(EC8/64-PCI)";
2423 break;
2424
2425 default:
2426 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2427 return(-EINVAL);
2428 break;
2429 }
2430
2431/*
2432 * Check boards for possible IO address conflicts and return fail status
2433 * if an IO conflict found.
2434 */
2435 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2436 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2437 "%x conflicts with another device\n", brdp->brdnr,
2438 brdp->ioaddr1);
2439 return(-EBUSY);
2440 }
2441
2442 if (brdp->iosize2 > 0)
2443 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2444 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2445 "address %x conflicts with another device\n",
2446 brdp->brdnr, brdp->ioaddr2);
2447 printk(KERN_WARNING "STALLION: Warning, also "
2448 "releasing board %d I/O address %x \n",
2449 brdp->brdnr, brdp->ioaddr1);
2450 release_region(brdp->ioaddr1, brdp->iosize1);
2451 return(-EBUSY);
2452 }
2453
2454/*
2455 * Scan through the secondary io address space looking for panels.
2456 * As we find'em allocate and initialize panel structures for each.
2457 */
2458 brdp->clk = CD1400_CLK;
2459 brdp->hwid = status;
2460
2461 ioaddr = brdp->ioaddr2;
2462 banknr = 0;
2463 panelnr = 0;
2464 nxtid = 0;
2465
2466 for (i = 0; (i < STL_MAXPANELS); i++) {
2467 if (brdp->brdtype == BRD_ECHPCI) {
2468 outb(nxtid, brdp->ioctrl);
2469 ioaddr = brdp->ioaddr2;
2470 }
2471 status = inb(ioaddr + ECH_PNLSTATUS);
2472 if ((status & ECH_PNLIDMASK) != nxtid)
2473 break;
b0b4ed72
TK
2474 panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
2475 if (!panelp) {
1da177e4
LT
2476 printk("STALLION: failed to allocate memory "
2477 "(size=%d)\n", sizeof(stlpanel_t));
2478 break;
2479 }
1da177e4
LT
2480 panelp->magic = STL_PANELMAGIC;
2481 panelp->brdnr = brdp->brdnr;
2482 panelp->panelnr = panelnr;
2483 panelp->iobase = ioaddr;
2484 panelp->pagenr = nxtid;
2485 panelp->hwid = status;
2486 brdp->bnk2panel[banknr] = panelp;
2487 brdp->bnkpageaddr[banknr] = nxtid;
2488 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2489
2490 if (status & ECH_PNLXPID) {
2491 panelp->uartp = (void *) &stl_sc26198uart;
2492 panelp->isr = stl_sc26198intr;
2493 if (status & ECH_PNL16PORT) {
2494 panelp->nrports = 16;
2495 brdp->bnk2panel[banknr] = panelp;
2496 brdp->bnkpageaddr[banknr] = nxtid;
2497 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2498 ECH_PNLSTATUS;
2499 } else {
2500 panelp->nrports = 8;
2501 }
2502 } else {
2503 panelp->uartp = (void *) &stl_cd1400uart;
2504 panelp->isr = stl_cd1400echintr;
2505 if (status & ECH_PNL16PORT) {
2506 panelp->nrports = 16;
2507 panelp->ackmask = 0x80;
2508 if (brdp->brdtype != BRD_ECHPCI)
2509 ioaddr += EREG_BANKSIZE;
2510 brdp->bnk2panel[banknr] = panelp;
2511 brdp->bnkpageaddr[banknr] = ++nxtid;
2512 brdp->bnkstataddr[banknr++] = ioaddr +
2513 ECH_PNLSTATUS;
2514 } else {
2515 panelp->nrports = 8;
2516 panelp->ackmask = 0xc0;
2517 }
2518 }
2519
2520 nxtid++;
2521 ioaddr += EREG_BANKSIZE;
2522 brdp->nrports += panelp->nrports;
2523 brdp->panels[panelnr++] = panelp;
2524 if ((brdp->brdtype != BRD_ECHPCI) &&
2525 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2)))
2526 break;
2527 }
2528
2529 brdp->nrpanels = panelnr;
2530 brdp->nrbnks = banknr;
2531 if (brdp->brdtype == BRD_ECH)
2532 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2533
2534 brdp->state |= BRD_FOUND;
2535 if (request_irq(brdp->irq, stl_intr, SA_SHIRQ, name, brdp) != 0) {
2536 printk("STALLION: failed to register interrupt "
2537 "routine for %s irq=%d\n", name, brdp->irq);
2538 i = -ENODEV;
2539 } else {
2540 i = 0;
2541 }
2542
2543 return(i);
2544}
2545
2546/*****************************************************************************/
2547
2548/*
2549 * Initialize and configure the specified board.
2550 * Scan through all the boards in the configuration and see what we
2551 * can find. Handle EIO and the ECH boards a little differently here
2552 * since the initial search and setup is very different.
2553 */
2554
2555static int __init stl_brdinit(stlbrd_t *brdp)
2556{
2557 int i;
2558
2559#ifdef DEBUG
2560 printk("stl_brdinit(brdp=%x)\n", (int) brdp);
2561#endif
2562
2563 switch (brdp->brdtype) {
2564 case BRD_EASYIO:
2565 case BRD_EASYIOPCI:
2566 stl_initeio(brdp);
2567 break;
2568 case BRD_ECH:
2569 case BRD_ECHMC:
2570 case BRD_ECHPCI:
2571 case BRD_ECH64PCI:
2572 stl_initech(brdp);
2573 break;
2574 default:
2575 printk("STALLION: board=%d is unknown board type=%d\n",
2576 brdp->brdnr, brdp->brdtype);
2577 return(ENODEV);
2578 }
2579
2580 stl_brds[brdp->brdnr] = brdp;
2581 if ((brdp->state & BRD_FOUND) == 0) {
2582 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2583 stl_brdnames[brdp->brdtype], brdp->brdnr,
2584 brdp->ioaddr1, brdp->irq);
2585 return(ENODEV);
2586 }
2587
2588 for (i = 0; (i < STL_MAXPANELS); i++)
2589 if (brdp->panels[i] != (stlpanel_t *) NULL)
2590 stl_initports(brdp, brdp->panels[i]);
2591
2592 printk("STALLION: %s found, board=%d io=%x irq=%d "
2593 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2594 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2595 brdp->nrports);
2596 return(0);
2597}
2598
2599/*****************************************************************************/
2600
2601/*
2602 * Find the next available board number that is free.
2603 */
2604
2605static inline int stl_getbrdnr(void)
2606{
2607 int i;
2608
2609 for (i = 0; (i < STL_MAXBRDS); i++) {
2610 if (stl_brds[i] == (stlbrd_t *) NULL) {
2611 if (i >= stl_nrbrds)
2612 stl_nrbrds = i + 1;
2613 return(i);
2614 }
2615 }
2616 return(-1);
2617}
2618
2619/*****************************************************************************/
2620
2621#ifdef CONFIG_PCI
2622
2623/*
2624 * We have a Stallion board. Allocate a board structure and
2625 * initialize it. Read its IO and IRQ resources from PCI
2626 * configuration space.
2627 */
2628
2629static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp)
2630{
2631 stlbrd_t *brdp;
2632
2633#ifdef DEBUG
2634 printk("stl_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n", brdtype,
2635 devp->bus->number, devp->devfn);
2636#endif
2637
2638 if (pci_enable_device(devp))
2639 return(-EIO);
2640 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2641 return(-ENOMEM);
2642 if ((brdp->brdnr = stl_getbrdnr()) < 0) {
2643 printk("STALLION: too many boards found, "
2644 "maximum supported %d\n", STL_MAXBRDS);
2645 return(0);
2646 }
2647 brdp->brdtype = brdtype;
2648
2649/*
2650 * Different Stallion boards use the BAR registers in different ways,
2651 * so set up io addresses based on board type.
2652 */
2653#ifdef DEBUG
2654 printk("%s(%d): BAR[]=%x,%x,%x,%x IRQ=%x\n", __FILE__, __LINE__,
2655 pci_resource_start(devp, 0), pci_resource_start(devp, 1),
2656 pci_resource_start(devp, 2), pci_resource_start(devp, 3), devp->irq);
2657#endif
2658
2659/*
2660 * We have all resources from the board, so let's setup the actual
2661 * board structure now.
2662 */
2663 switch (brdtype) {
2664 case BRD_ECHPCI:
2665 brdp->ioaddr2 = pci_resource_start(devp, 0);
2666 brdp->ioaddr1 = pci_resource_start(devp, 1);
2667 break;
2668 case BRD_ECH64PCI:
2669 brdp->ioaddr2 = pci_resource_start(devp, 2);
2670 brdp->ioaddr1 = pci_resource_start(devp, 1);
2671 break;
2672 case BRD_EASYIOPCI:
2673 brdp->ioaddr1 = pci_resource_start(devp, 2);
2674 brdp->ioaddr2 = pci_resource_start(devp, 1);
2675 break;
2676 default:
2677 printk("STALLION: unknown PCI board type=%d\n", brdtype);
2678 break;
2679 }
2680
2681 brdp->irq = devp->irq;
2682 stl_brdinit(brdp);
2683
2684 return(0);
2685}
2686
2687/*****************************************************************************/
2688
2689/*
2690 * Find all Stallion PCI boards that might be installed. Initialize each
2691 * one as it is found.
2692 */
2693
2694
2695static inline int stl_findpcibrds(void)
2696{
2697 struct pci_dev *dev = NULL;
2698 int i, rc;
2699
2700#ifdef DEBUG
2701 printk("stl_findpcibrds()\n");
2702#endif
2703
2704 for (i = 0; (i < stl_nrpcibrds); i++)
2705 while ((dev = pci_find_device(stl_pcibrds[i].vendid,
2706 stl_pcibrds[i].devid, dev))) {
2707
2708/*
2709 * Found a device on the PCI bus that has our vendor and
2710 * device ID. Need to check now that it is really us.
2711 */
2712 if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2713 continue;
2714
2715 rc = stl_initpcibrd(stl_pcibrds[i].brdtype, dev);
2716 if (rc)
2717 return(rc);
2718 }
2719
2720 return(0);
2721}
2722
2723#endif
2724
2725/*****************************************************************************/
2726
2727/*
2728 * Scan through all the boards in the configuration and see what we
2729 * can find. Handle EIO and the ECH boards a little differently here
2730 * since the initial search and setup is too different.
2731 */
2732
2733static inline int stl_initbrds(void)
2734{
2735 stlbrd_t *brdp;
2736 stlconf_t *confp;
2737 int i;
2738
2739#ifdef DEBUG
2740 printk("stl_initbrds()\n");
2741#endif
2742
2743 if (stl_nrbrds > STL_MAXBRDS) {
2744 printk("STALLION: too many boards in configuration table, "
2745 "truncating to %d\n", STL_MAXBRDS);
2746 stl_nrbrds = STL_MAXBRDS;
2747 }
2748
2749/*
2750 * Firstly scan the list of static boards configured. Allocate
2751 * resources and initialize the boards as found.
2752 */
2753 for (i = 0; (i < stl_nrbrds); i++) {
2754 confp = &stl_brdconf[i];
2755 stl_parsebrd(confp, stl_brdsp[i]);
2756 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2757 return(-ENOMEM);
2758 brdp->brdnr = i;
2759 brdp->brdtype = confp->brdtype;
2760 brdp->ioaddr1 = confp->ioaddr1;
2761 brdp->ioaddr2 = confp->ioaddr2;
2762 brdp->irq = confp->irq;
2763 brdp->irqtype = confp->irqtype;
2764 stl_brdinit(brdp);
2765 }
2766
2767/*
2768 * Find any dynamically supported boards. That is via module load
2769 * line options or auto-detected on the PCI bus.
2770 */
2771 stl_argbrds();
2772#ifdef CONFIG_PCI
2773 stl_findpcibrds();
2774#endif
2775
2776 return(0);
2777}
2778
2779/*****************************************************************************/
2780
2781/*
2782 * Return the board stats structure to user app.
2783 */
2784
2785static int stl_getbrdstats(combrd_t __user *bp)
2786{
2787 stlbrd_t *brdp;
2788 stlpanel_t *panelp;
2789 int i;
2790
2791 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2792 return -EFAULT;
2793 if (stl_brdstats.brd >= STL_MAXBRDS)
2794 return(-ENODEV);
2795 brdp = stl_brds[stl_brdstats.brd];
2796 if (brdp == (stlbrd_t *) NULL)
2797 return(-ENODEV);
2798
2799 memset(&stl_brdstats, 0, sizeof(combrd_t));
2800 stl_brdstats.brd = brdp->brdnr;
2801 stl_brdstats.type = brdp->brdtype;
2802 stl_brdstats.hwid = brdp->hwid;
2803 stl_brdstats.state = brdp->state;
2804 stl_brdstats.ioaddr = brdp->ioaddr1;
2805 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2806 stl_brdstats.irq = brdp->irq;
2807 stl_brdstats.nrpanels = brdp->nrpanels;
2808 stl_brdstats.nrports = brdp->nrports;
2809 for (i = 0; (i < brdp->nrpanels); i++) {
2810 panelp = brdp->panels[i];
2811 stl_brdstats.panels[i].panel = i;
2812 stl_brdstats.panels[i].hwid = panelp->hwid;
2813 stl_brdstats.panels[i].nrports = panelp->nrports;
2814 }
2815
2816 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2817}
2818
2819/*****************************************************************************/
2820
2821/*
2822 * Resolve the referenced port number into a port struct pointer.
2823 */
2824
2825static stlport_t *stl_getport(int brdnr, int panelnr, int portnr)
2826{
2827 stlbrd_t *brdp;
2828 stlpanel_t *panelp;
2829
2830 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
2831 return((stlport_t *) NULL);
2832 brdp = stl_brds[brdnr];
2833 if (brdp == (stlbrd_t *) NULL)
2834 return((stlport_t *) NULL);
2835 if ((panelnr < 0) || (panelnr >= brdp->nrpanels))
2836 return((stlport_t *) NULL);
2837 panelp = brdp->panels[panelnr];
2838 if (panelp == (stlpanel_t *) NULL)
2839 return((stlport_t *) NULL);
2840 if ((portnr < 0) || (portnr >= panelp->nrports))
2841 return((stlport_t *) NULL);
2842 return(panelp->ports[portnr]);
2843}
2844
2845/*****************************************************************************/
2846
2847/*
2848 * Return the port stats structure to user app. A NULL port struct
2849 * pointer passed in means that we need to find out from the app
2850 * what port to get stats for (used through board control device).
2851 */
2852
2853static int stl_getportstats(stlport_t *portp, comstats_t __user *cp)
2854{
2855 unsigned char *head, *tail;
2856 unsigned long flags;
2857
2858 if (!portp) {
2859 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2860 return -EFAULT;
2861 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2862 stl_comstats.port);
2863 if (portp == (stlport_t *) NULL)
2864 return(-ENODEV);
2865 }
2866
2867 portp->stats.state = portp->istate;
2868 portp->stats.flags = portp->flags;
2869 portp->stats.hwid = portp->hwid;
2870
2871 portp->stats.ttystate = 0;
2872 portp->stats.cflags = 0;
2873 portp->stats.iflags = 0;
2874 portp->stats.oflags = 0;
2875 portp->stats.lflags = 0;
2876 portp->stats.rxbuffered = 0;
2877
2878 save_flags(flags);
2879 cli();
2880 if (portp->tty != (struct tty_struct *) NULL) {
2881 if (portp->tty->driver_data == portp) {
2882 portp->stats.ttystate = portp->tty->flags;
33f0f88f
AC
2883 /* No longer available as a statistic */
2884 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
1da177e4
LT
2885 if (portp->tty->termios != (struct termios *) NULL) {
2886 portp->stats.cflags = portp->tty->termios->c_cflag;
2887 portp->stats.iflags = portp->tty->termios->c_iflag;
2888 portp->stats.oflags = portp->tty->termios->c_oflag;
2889 portp->stats.lflags = portp->tty->termios->c_lflag;
2890 }
2891 }
2892 }
2893 restore_flags(flags);
2894
2895 head = portp->tx.head;
2896 tail = portp->tx.tail;
2897 portp->stats.txbuffered = ((head >= tail) ? (head - tail) :
2898 (STL_TXBUFSIZE - (tail - head)));
2899
2900 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2901
2902 return copy_to_user(cp, &portp->stats,
2903 sizeof(comstats_t)) ? -EFAULT : 0;
2904}
2905
2906/*****************************************************************************/
2907
2908/*
2909 * Clear the port stats structure. We also return it zeroed out...
2910 */
2911
2912static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp)
2913{
2914 if (!portp) {
2915 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2916 return -EFAULT;
2917 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2918 stl_comstats.port);
2919 if (portp == (stlport_t *) NULL)
2920 return(-ENODEV);
2921 }
2922
2923 memset(&portp->stats, 0, sizeof(comstats_t));
2924 portp->stats.brd = portp->brdnr;
2925 portp->stats.panel = portp->panelnr;
2926 portp->stats.port = portp->portnr;
2927 return copy_to_user(cp, &portp->stats,
2928 sizeof(comstats_t)) ? -EFAULT : 0;
2929}
2930
2931/*****************************************************************************/
2932
2933/*
2934 * Return the entire driver ports structure to a user app.
2935 */
2936
2937static int stl_getportstruct(stlport_t __user *arg)
2938{
2939 stlport_t *portp;
2940
2941 if (copy_from_user(&stl_dummyport, arg, sizeof(stlport_t)))
2942 return -EFAULT;
2943 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2944 stl_dummyport.portnr);
2945 if (!portp)
2946 return -ENODEV;
2947 return copy_to_user(arg, portp, sizeof(stlport_t)) ? -EFAULT : 0;
2948}
2949
2950/*****************************************************************************/
2951
2952/*
2953 * Return the entire driver board structure to a user app.
2954 */
2955
2956static int stl_getbrdstruct(stlbrd_t __user *arg)
2957{
2958 stlbrd_t *brdp;
2959
2960 if (copy_from_user(&stl_dummybrd, arg, sizeof(stlbrd_t)))
2961 return -EFAULT;
2962 if ((stl_dummybrd.brdnr < 0) || (stl_dummybrd.brdnr >= STL_MAXBRDS))
2963 return -ENODEV;
2964 brdp = stl_brds[stl_dummybrd.brdnr];
2965 if (!brdp)
2966 return(-ENODEV);
2967 return copy_to_user(arg, brdp, sizeof(stlbrd_t)) ? -EFAULT : 0;
2968}
2969
2970/*****************************************************************************/
2971
2972/*
2973 * The "staliomem" device is also required to do some special operations
2974 * on the board and/or ports. In this driver it is mostly used for stats
2975 * collection.
2976 */
2977
2978static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2979{
2980 int brdnr, rc;
2981 void __user *argp = (void __user *)arg;
2982
2983#ifdef DEBUG
2984 printk("stl_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n", (int) ip,
2985 (int) fp, cmd, (int) arg);
2986#endif
2987
2988 brdnr = iminor(ip);
2989 if (brdnr >= STL_MAXBRDS)
2990 return(-ENODEV);
2991 rc = 0;
2992
2993 switch (cmd) {
2994 case COM_GETPORTSTATS:
2995 rc = stl_getportstats(NULL, argp);
2996 break;
2997 case COM_CLRPORTSTATS:
2998 rc = stl_clrportstats(NULL, argp);
2999 break;
3000 case COM_GETBRDSTATS:
3001 rc = stl_getbrdstats(argp);
3002 break;
3003 case COM_READPORT:
3004 rc = stl_getportstruct(argp);
3005 break;
3006 case COM_READBOARD:
3007 rc = stl_getbrdstruct(argp);
3008 break;
3009 default:
3010 rc = -ENOIOCTLCMD;
3011 break;
3012 }
3013
3014 return(rc);
3015}
3016
3017static struct tty_operations stl_ops = {
3018 .open = stl_open,
3019 .close = stl_close,
3020 .write = stl_write,
3021 .put_char = stl_putchar,
3022 .flush_chars = stl_flushchars,
3023 .write_room = stl_writeroom,
3024 .chars_in_buffer = stl_charsinbuffer,
3025 .ioctl = stl_ioctl,
3026 .set_termios = stl_settermios,
3027 .throttle = stl_throttle,
3028 .unthrottle = stl_unthrottle,
3029 .stop = stl_stop,
3030 .start = stl_start,
3031 .hangup = stl_hangup,
3032 .flush_buffer = stl_flushbuffer,
3033 .break_ctl = stl_breakctl,
3034 .wait_until_sent = stl_waituntilsent,
3035 .send_xchar = stl_sendxchar,
3036 .read_proc = stl_readproc,
3037 .tiocmget = stl_tiocmget,
3038 .tiocmset = stl_tiocmset,
3039};
3040
3041/*****************************************************************************/
3042
408b664a 3043static int __init stl_init(void)
1da177e4
LT
3044{
3045 int i;
3046 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
3047
3048 stl_initbrds();
3049
3050 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
3051 if (!stl_serial)
3052 return -1;
3053
3054/*
3055 * Allocate a temporary write buffer.
3056 */
b0b4ed72
TK
3057 stl_tmpwritebuf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
3058 if (!stl_tmpwritebuf)
1da177e4
LT
3059 printk("STALLION: failed to allocate memory (size=%d)\n",
3060 STL_TXBUFSIZE);
3061
3062/*
3063 * Set up a character driver for per board stuff. This is mainly used
3064 * to do stats ioctls on the ports.
3065 */
3066 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
3067 printk("STALLION: failed to register serial board device\n");
1da177e4 3068
ca8eca68 3069 stallion_class = class_create(THIS_MODULE, "staliomem");
7c69ef79 3070 for (i = 0; i < 4; i++)
53f46542
GKH
3071 class_device_create(stallion_class, NULL,
3072 MKDEV(STL_SIOMEMMAJOR, i), NULL,
3073 "staliomem%d", i);
1da177e4
LT
3074
3075 stl_serial->owner = THIS_MODULE;
3076 stl_serial->driver_name = stl_drvname;
3077 stl_serial->name = "ttyE";
1da177e4
LT
3078 stl_serial->major = STL_SERIALMAJOR;
3079 stl_serial->minor_start = 0;
3080 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
3081 stl_serial->subtype = SERIAL_TYPE_NORMAL;
3082 stl_serial->init_termios = stl_deftermios;
3083 stl_serial->flags = TTY_DRIVER_REAL_RAW;
3084 tty_set_operations(stl_serial, &stl_ops);
3085
3086 if (tty_register_driver(stl_serial)) {
3087 put_tty_driver(stl_serial);
3088 printk("STALLION: failed to register serial driver\n");
3089 return -1;
3090 }
3091
014c2544 3092 return 0;
1da177e4
LT
3093}
3094
3095/*****************************************************************************/
3096/* CD1400 HARDWARE FUNCTIONS */
3097/*****************************************************************************/
3098
3099/*
3100 * These functions get/set/update the registers of the cd1400 UARTs.
3101 * Access to the cd1400 registers is via an address/data io port pair.
3102 * (Maybe should make this inline...)
3103 */
3104
3105static int stl_cd1400getreg(stlport_t *portp, int regnr)
3106{
3107 outb((regnr + portp->uartaddr), portp->ioaddr);
014c2544 3108 return inb(portp->ioaddr + EREG_DATA);
1da177e4
LT
3109}
3110
3111static void stl_cd1400setreg(stlport_t *portp, int regnr, int value)
3112{
3113 outb((regnr + portp->uartaddr), portp->ioaddr);
3114 outb(value, portp->ioaddr + EREG_DATA);
3115}
3116
3117static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value)
3118{
3119 outb((regnr + portp->uartaddr), portp->ioaddr);
3120 if (inb(portp->ioaddr + EREG_DATA) != value) {
3121 outb(value, portp->ioaddr + EREG_DATA);
014c2544 3122 return 1;
1da177e4 3123 }
014c2544 3124 return 0;
1da177e4
LT
3125}
3126
3127/*****************************************************************************/
3128
3129/*
3130 * Inbitialize the UARTs in a panel. We don't care what sort of board
3131 * these ports are on - since the port io registers are almost
3132 * identical when dealing with ports.
3133 */
3134
3135static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
3136{
3137 unsigned int gfrcr;
3138 int chipmask, i, j;
3139 int nrchips, uartaddr, ioaddr;
3140
3141#ifdef DEBUG
3142 printk("stl_panelinit(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
3143#endif
3144
3145 BRDENABLE(panelp->brdnr, panelp->pagenr);
3146
3147/*
3148 * Check that each chip is present and started up OK.
3149 */
3150 chipmask = 0;
3151 nrchips = panelp->nrports / CD1400_PORTS;
3152 for (i = 0; (i < nrchips); i++) {
3153 if (brdp->brdtype == BRD_ECHPCI) {
3154 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
3155 ioaddr = panelp->iobase;
3156 } else {
3157 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
3158 }
3159 uartaddr = (i & 0x01) ? 0x080 : 0;
3160 outb((GFRCR + uartaddr), ioaddr);
3161 outb(0, (ioaddr + EREG_DATA));
3162 outb((CCR + uartaddr), ioaddr);
3163 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3164 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3165 outb((GFRCR + uartaddr), ioaddr);
3166 for (j = 0; (j < CCR_MAXWAIT); j++) {
3167 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
3168 break;
3169 }
3170 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
3171 printk("STALLION: cd1400 not responding, "
3172 "brd=%d panel=%d chip=%d\n",
3173 panelp->brdnr, panelp->panelnr, i);
3174 continue;
3175 }
3176 chipmask |= (0x1 << i);
3177 outb((PPR + uartaddr), ioaddr);
3178 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
3179 }
3180
3181 BRDDISABLE(panelp->brdnr);
014c2544 3182 return chipmask;
1da177e4
LT
3183}
3184
3185/*****************************************************************************/
3186
3187/*
3188 * Initialize hardware specific port registers.
3189 */
3190
3191static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
3192{
3193#ifdef DEBUG
3194 printk("stl_cd1400portinit(brdp=%x,panelp=%x,portp=%x)\n",
3195 (int) brdp, (int) panelp, (int) portp);
3196#endif
3197
3198 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
3199 (portp == (stlport_t *) NULL))
3200 return;
3201
3202 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
3203 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
3204 portp->uartaddr = (portp->portnr & 0x04) << 5;
3205 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
3206
3207 BRDENABLE(portp->brdnr, portp->pagenr);
3208 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3209 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
3210 portp->hwid = stl_cd1400getreg(portp, GFRCR);
3211 BRDDISABLE(portp->brdnr);
3212}
3213
3214/*****************************************************************************/
3215
3216/*
3217 * Wait for the command register to be ready. We will poll this,
3218 * since it won't usually take too long to be ready.
3219 */
3220
3221static void stl_cd1400ccrwait(stlport_t *portp)
3222{
3223 int i;
3224
3225 for (i = 0; (i < CCR_MAXWAIT); i++) {
3226 if (stl_cd1400getreg(portp, CCR) == 0) {
3227 return;
3228 }
3229 }
3230
3231 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
3232 portp->portnr, portp->panelnr, portp->brdnr);
3233}
3234
3235/*****************************************************************************/
3236
3237/*
3238 * Set up the cd1400 registers for a port based on the termios port
3239 * settings.
3240 */
3241
3242static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp)
3243{
3244 stlbrd_t *brdp;
3245 unsigned long flags;
3246 unsigned int clkdiv, baudrate;
3247 unsigned char cor1, cor2, cor3;
3248 unsigned char cor4, cor5, ccr;
3249 unsigned char srer, sreron, sreroff;
3250 unsigned char mcor1, mcor2, rtpr;
3251 unsigned char clk, div;
3252
3253 cor1 = 0;
3254 cor2 = 0;
3255 cor3 = 0;
3256 cor4 = 0;
3257 cor5 = 0;
3258 ccr = 0;
3259 rtpr = 0;
3260 clk = 0;
3261 div = 0;
3262 mcor1 = 0;
3263 mcor2 = 0;
3264 sreron = 0;
3265 sreroff = 0;
3266
3267 brdp = stl_brds[portp->brdnr];
3268 if (brdp == (stlbrd_t *) NULL)
3269 return;
3270
3271/*
3272 * Set up the RX char ignore mask with those RX error types we
3273 * can ignore. We can get the cd1400 to help us out a little here,
3274 * it will ignore parity errors and breaks for us.
3275 */
3276 portp->rxignoremsk = 0;
3277 if (tiosp->c_iflag & IGNPAR) {
3278 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
3279 cor1 |= COR1_PARIGNORE;
3280 }
3281 if (tiosp->c_iflag & IGNBRK) {
3282 portp->rxignoremsk |= ST_BREAK;
3283 cor4 |= COR4_IGNBRK;
3284 }
3285
3286 portp->rxmarkmsk = ST_OVERRUN;
3287 if (tiosp->c_iflag & (INPCK | PARMRK))
3288 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
3289 if (tiosp->c_iflag & BRKINT)
3290 portp->rxmarkmsk |= ST_BREAK;
3291
3292/*
3293 * Go through the char size, parity and stop bits and set all the
3294 * option register appropriately.
3295 */
3296 switch (tiosp->c_cflag & CSIZE) {
3297 case CS5:
3298 cor1 |= COR1_CHL5;
3299 break;
3300 case CS6:
3301 cor1 |= COR1_CHL6;
3302 break;
3303 case CS7:
3304 cor1 |= COR1_CHL7;
3305 break;
3306 default:
3307 cor1 |= COR1_CHL8;
3308 break;
3309 }
3310
3311 if (tiosp->c_cflag & CSTOPB)
3312 cor1 |= COR1_STOP2;
3313 else
3314 cor1 |= COR1_STOP1;
3315
3316 if (tiosp->c_cflag & PARENB) {
3317 if (tiosp->c_cflag & PARODD)
3318 cor1 |= (COR1_PARENB | COR1_PARODD);
3319 else
3320 cor1 |= (COR1_PARENB | COR1_PAREVEN);
3321 } else {
3322 cor1 |= COR1_PARNONE;
3323 }
3324
3325/*
3326 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
3327 * space for hardware flow control and the like. This should be set to
3328 * VMIN. Also here we will set the RX data timeout to 10ms - this should
3329 * really be based on VTIME.
3330 */
3331 cor3 |= FIFO_RXTHRESHOLD;
3332 rtpr = 2;
3333
3334/*
3335 * Calculate the baud rate timers. For now we will just assume that
3336 * the input and output baud are the same. Could have used a baud
3337 * table here, but this way we can generate virtually any baud rate
3338 * we like!
3339 */
3340 baudrate = tiosp->c_cflag & CBAUD;
3341 if (baudrate & CBAUDEX) {
3342 baudrate &= ~CBAUDEX;
3343 if ((baudrate < 1) || (baudrate > 4))
3344 tiosp->c_cflag &= ~CBAUDEX;
3345 else
3346 baudrate += 15;
3347 }
3348 baudrate = stl_baudrates[baudrate];
3349 if ((tiosp->c_cflag & CBAUD) == B38400) {
3350 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3351 baudrate = 57600;
3352 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3353 baudrate = 115200;
3354 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3355 baudrate = 230400;
3356 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3357 baudrate = 460800;
3358 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3359 baudrate = (portp->baud_base / portp->custom_divisor);
3360 }
3361 if (baudrate > STL_CD1400MAXBAUD)
3362 baudrate = STL_CD1400MAXBAUD;
3363
3364 if (baudrate > 0) {
3365 for (clk = 0; (clk < CD1400_NUMCLKS); clk++) {
3366 clkdiv = ((portp->clk / stl_cd1400clkdivs[clk]) / baudrate);
3367 if (clkdiv < 0x100)
3368 break;
3369 }
3370 div = (unsigned char) clkdiv;
3371 }
3372
3373/*
3374 * Check what form of modem signaling is required and set it up.
3375 */
3376 if ((tiosp->c_cflag & CLOCAL) == 0) {
3377 mcor1 |= MCOR1_DCD;
3378 mcor2 |= MCOR2_DCD;
3379 sreron |= SRER_MODEM;
3380 portp->flags |= ASYNC_CHECK_CD;
3381 } else {
3382 portp->flags &= ~ASYNC_CHECK_CD;
3383 }
3384
3385/*
3386 * Setup cd1400 enhanced modes if we can. In particular we want to
3387 * handle as much of the flow control as possible automatically. As
3388 * well as saving a few CPU cycles it will also greatly improve flow
3389 * control reliability.
3390 */
3391 if (tiosp->c_iflag & IXON) {
3392 cor2 |= COR2_TXIBE;
3393 cor3 |= COR3_SCD12;
3394 if (tiosp->c_iflag & IXANY)
3395 cor2 |= COR2_IXM;
3396 }
3397
3398 if (tiosp->c_cflag & CRTSCTS) {
3399 cor2 |= COR2_CTSAE;
3400 mcor1 |= FIFO_RTSTHRESHOLD;
3401 }
3402
3403/*
3404 * All cd1400 register values calculated so go through and set
3405 * them all up.
3406 */
3407
3408#ifdef DEBUG
3409 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3410 portp->portnr, portp->panelnr, portp->brdnr);
3411 printk(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3412 cor1, cor2, cor3, cor4, cor5);
3413 printk(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3414 mcor1, mcor2, rtpr, sreron, sreroff);
3415 printk(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3416 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3417 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3418 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3419#endif
3420
3421 save_flags(flags);
3422 cli();
3423 BRDENABLE(portp->brdnr, portp->pagenr);
3424 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3425 srer = stl_cd1400getreg(portp, SRER);
3426 stl_cd1400setreg(portp, SRER, 0);
3427 if (stl_cd1400updatereg(portp, COR1, cor1))
3428 ccr = 1;
3429 if (stl_cd1400updatereg(portp, COR2, cor2))
3430 ccr = 1;
3431 if (stl_cd1400updatereg(portp, COR3, cor3))
3432 ccr = 1;
3433 if (ccr) {
3434 stl_cd1400ccrwait(portp);
3435 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3436 }
3437 stl_cd1400setreg(portp, COR4, cor4);
3438 stl_cd1400setreg(portp, COR5, cor5);
3439 stl_cd1400setreg(portp, MCOR1, mcor1);
3440 stl_cd1400setreg(portp, MCOR2, mcor2);
3441 if (baudrate > 0) {
3442 stl_cd1400setreg(portp, TCOR, clk);
3443 stl_cd1400setreg(portp, TBPR, div);
3444 stl_cd1400setreg(portp, RCOR, clk);
3445 stl_cd1400setreg(portp, RBPR, div);
3446 }
3447 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3448 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3449 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3450 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3451 stl_cd1400setreg(portp, RTPR, rtpr);
3452 mcor1 = stl_cd1400getreg(portp, MSVR1);
3453 if (mcor1 & MSVR1_DCD)
3454 portp->sigs |= TIOCM_CD;
3455 else
3456 portp->sigs &= ~TIOCM_CD;
3457 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3458 BRDDISABLE(portp->brdnr);
3459 restore_flags(flags);
3460}
3461
3462/*****************************************************************************/
3463
3464/*
3465 * Set the state of the DTR and RTS signals.
3466 */
3467
3468static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts)
3469{
3470 unsigned char msvr1, msvr2;
3471 unsigned long flags;
3472
3473#ifdef DEBUG
3474 printk("stl_cd1400setsignals(portp=%x,dtr=%d,rts=%d)\n",
3475 (int) portp, dtr, rts);
3476#endif
3477
3478 msvr1 = 0;
3479 msvr2 = 0;
3480 if (dtr > 0)
3481 msvr1 = MSVR1_DTR;
3482 if (rts > 0)
3483 msvr2 = MSVR2_RTS;
3484
3485 save_flags(flags);
3486 cli();
3487 BRDENABLE(portp->brdnr, portp->pagenr);
3488 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3489 if (rts >= 0)
3490 stl_cd1400setreg(portp, MSVR2, msvr2);
3491 if (dtr >= 0)
3492 stl_cd1400setreg(portp, MSVR1, msvr1);
3493 BRDDISABLE(portp->brdnr);
3494 restore_flags(flags);
3495}
3496
3497/*****************************************************************************/
3498
3499/*
3500 * Return the state of the signals.
3501 */
3502
3503static int stl_cd1400getsignals(stlport_t *portp)
3504{
3505 unsigned char msvr1, msvr2;
3506 unsigned long flags;
3507 int sigs;
3508
3509#ifdef DEBUG
3510 printk("stl_cd1400getsignals(portp=%x)\n", (int) portp);
3511#endif
3512
3513 save_flags(flags);
3514 cli();
3515 BRDENABLE(portp->brdnr, portp->pagenr);
3516 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3517 msvr1 = stl_cd1400getreg(portp, MSVR1);
3518 msvr2 = stl_cd1400getreg(portp, MSVR2);
3519 BRDDISABLE(portp->brdnr);
3520 restore_flags(flags);
3521
3522 sigs = 0;
3523 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3524 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3525 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3526 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3527#if 0
3528 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3529 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3530#else
3531 sigs |= TIOCM_DSR;
3532#endif
014c2544 3533 return sigs;
1da177e4
LT
3534}
3535
3536/*****************************************************************************/
3537
3538/*
3539 * Enable/Disable the Transmitter and/or Receiver.
3540 */
3541
3542static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx)
3543{
3544 unsigned char ccr;
3545 unsigned long flags;
3546
3547#ifdef DEBUG
3548 printk("stl_cd1400enablerxtx(portp=%x,rx=%d,tx=%d)\n",
3549 (int) portp, rx, tx);
3550#endif
3551 ccr = 0;
3552
3553 if (tx == 0)
3554 ccr |= CCR_TXDISABLE;
3555 else if (tx > 0)
3556 ccr |= CCR_TXENABLE;
3557 if (rx == 0)
3558 ccr |= CCR_RXDISABLE;
3559 else if (rx > 0)
3560 ccr |= CCR_RXENABLE;
3561
3562 save_flags(flags);
3563 cli();
3564 BRDENABLE(portp->brdnr, portp->pagenr);
3565 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3566 stl_cd1400ccrwait(portp);
3567 stl_cd1400setreg(portp, CCR, ccr);
3568 stl_cd1400ccrwait(portp);
3569 BRDDISABLE(portp->brdnr);
3570 restore_flags(flags);
3571}
3572
3573/*****************************************************************************/
3574
3575/*
3576 * Start/stop the Transmitter and/or Receiver.
3577 */
3578
3579static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx)
3580{
3581 unsigned char sreron, sreroff;
3582 unsigned long flags;
3583
3584#ifdef DEBUG
3585 printk("stl_cd1400startrxtx(portp=%x,rx=%d,tx=%d)\n",
3586 (int) portp, rx, tx);
3587#endif
3588
3589 sreron = 0;
3590 sreroff = 0;
3591 if (tx == 0)
3592 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3593 else if (tx == 1)
3594 sreron |= SRER_TXDATA;
3595 else if (tx >= 2)
3596 sreron |= SRER_TXEMPTY;
3597 if (rx == 0)
3598 sreroff |= SRER_RXDATA;
3599 else if (rx > 0)
3600 sreron |= SRER_RXDATA;
3601
3602 save_flags(flags);
3603 cli();
3604 BRDENABLE(portp->brdnr, portp->pagenr);
3605 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3606 stl_cd1400setreg(portp, SRER,
3607 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3608 BRDDISABLE(portp->brdnr);
3609 if (tx > 0)
3610 set_bit(ASYI_TXBUSY, &portp->istate);
3611 restore_flags(flags);
3612}
3613
3614/*****************************************************************************/
3615
3616/*
3617 * Disable all interrupts from this port.
3618 */
3619
3620static void stl_cd1400disableintrs(stlport_t *portp)
3621{
3622 unsigned long flags;
3623
3624#ifdef DEBUG
3625 printk("stl_cd1400disableintrs(portp=%x)\n", (int) portp);
3626#endif
3627 save_flags(flags);
3628 cli();
3629 BRDENABLE(portp->brdnr, portp->pagenr);
3630 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3631 stl_cd1400setreg(portp, SRER, 0);
3632 BRDDISABLE(portp->brdnr);
3633 restore_flags(flags);
3634}
3635
3636/*****************************************************************************/
3637
3638static void stl_cd1400sendbreak(stlport_t *portp, int len)
3639{
3640 unsigned long flags;
3641
3642#ifdef DEBUG
3643 printk("stl_cd1400sendbreak(portp=%x,len=%d)\n", (int) portp, len);
3644#endif
3645
3646 save_flags(flags);
3647 cli();
3648 BRDENABLE(portp->brdnr, portp->pagenr);
3649 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3650 stl_cd1400setreg(portp, SRER,
3651 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3652 SRER_TXEMPTY));
3653 BRDDISABLE(portp->brdnr);
3654 portp->brklen = len;
3655 if (len == 1)
3656 portp->stats.txbreaks++;
3657 restore_flags(flags);
3658}
3659
3660/*****************************************************************************/
3661
3662/*
3663 * Take flow control actions...
3664 */
3665
3666static void stl_cd1400flowctrl(stlport_t *portp, int state)
3667{
3668 struct tty_struct *tty;
3669 unsigned long flags;
3670
3671#ifdef DEBUG
3672 printk("stl_cd1400flowctrl(portp=%x,state=%x)\n", (int) portp, state);
3673#endif
3674
3675 if (portp == (stlport_t *) NULL)
3676 return;
3677 tty = portp->tty;
3678 if (tty == (struct tty_struct *) NULL)
3679 return;
3680
3681 save_flags(flags);
3682 cli();
3683 BRDENABLE(portp->brdnr, portp->pagenr);
3684 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3685
3686 if (state) {
3687 if (tty->termios->c_iflag & IXOFF) {
3688 stl_cd1400ccrwait(portp);
3689 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3690 portp->stats.rxxon++;
3691 stl_cd1400ccrwait(portp);
3692 }
3693/*
3694 * Question: should we return RTS to what it was before? It may
3695 * have been set by an ioctl... Suppose not, since if you have
3696 * hardware flow control set then it is pretty silly to go and
3697 * set the RTS line by hand.
3698 */
3699 if (tty->termios->c_cflag & CRTSCTS) {
3700 stl_cd1400setreg(portp, MCOR1,
3701 (stl_cd1400getreg(portp, MCOR1) |
3702 FIFO_RTSTHRESHOLD));
3703 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3704 portp->stats.rxrtson++;
3705 }
3706 } else {
3707 if (tty->termios->c_iflag & IXOFF) {
3708 stl_cd1400ccrwait(portp);
3709 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3710 portp->stats.rxxoff++;
3711 stl_cd1400ccrwait(portp);
3712 }
3713 if (tty->termios->c_cflag & CRTSCTS) {
3714 stl_cd1400setreg(portp, MCOR1,
3715 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3716 stl_cd1400setreg(portp, MSVR2, 0);
3717 portp->stats.rxrtsoff++;
3718 }
3719 }
3720
3721 BRDDISABLE(portp->brdnr);
3722 restore_flags(flags);
3723}
3724
3725/*****************************************************************************/
3726
3727/*
3728 * Send a flow control character...
3729 */
3730
3731static void stl_cd1400sendflow(stlport_t *portp, int state)
3732{
3733 struct tty_struct *tty;
3734 unsigned long flags;
3735
3736#ifdef DEBUG
3737 printk("stl_cd1400sendflow(portp=%x,state=%x)\n", (int) portp, state);
3738#endif
3739
3740 if (portp == (stlport_t *) NULL)
3741 return;
3742 tty = portp->tty;
3743 if (tty == (struct tty_struct *) NULL)
3744 return;
3745
3746 save_flags(flags);
3747 cli();
3748 BRDENABLE(portp->brdnr, portp->pagenr);
3749 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3750 if (state) {
3751 stl_cd1400ccrwait(portp);
3752 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3753 portp->stats.rxxon++;
3754 stl_cd1400ccrwait(portp);
3755 } else {
3756 stl_cd1400ccrwait(portp);
3757 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3758 portp->stats.rxxoff++;
3759 stl_cd1400ccrwait(portp);
3760 }
3761 BRDDISABLE(portp->brdnr);
3762 restore_flags(flags);
3763}
3764
3765/*****************************************************************************/
3766
3767static void stl_cd1400flush(stlport_t *portp)
3768{
3769 unsigned long flags;
3770
3771#ifdef DEBUG
3772 printk("stl_cd1400flush(portp=%x)\n", (int) portp);
3773#endif
3774
3775 if (portp == (stlport_t *) NULL)
3776 return;
3777
3778 save_flags(flags);
3779 cli();
3780 BRDENABLE(portp->brdnr, portp->pagenr);
3781 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3782 stl_cd1400ccrwait(portp);
3783 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3784 stl_cd1400ccrwait(portp);
3785 portp->tx.tail = portp->tx.head;
3786 BRDDISABLE(portp->brdnr);
3787 restore_flags(flags);
3788}
3789
3790/*****************************************************************************/
3791
3792/*
3793 * Return the current state of data flow on this port. This is only
3794 * really interresting when determining if data has fully completed
3795 * transmission or not... This is easy for the cd1400, it accurately
3796 * maintains the busy port flag.
3797 */
3798
3799static int stl_cd1400datastate(stlport_t *portp)
3800{
3801#ifdef DEBUG
3802 printk("stl_cd1400datastate(portp=%x)\n", (int) portp);
3803#endif
3804
3805 if (portp == (stlport_t *) NULL)
014c2544 3806 return 0;
1da177e4 3807
014c2544 3808 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
1da177e4
LT
3809}
3810
3811/*****************************************************************************/
3812
3813/*
3814 * Interrupt service routine for cd1400 EasyIO boards.
3815 */
3816
3817static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase)
3818{
3819 unsigned char svrtype;
3820
3821#ifdef DEBUG
3822 printk("stl_cd1400eiointr(panelp=%x,iobase=%x)\n",
3823 (int) panelp, iobase);
3824#endif
3825
3826 outb(SVRR, iobase);
3827 svrtype = inb(iobase + EREG_DATA);
3828 if (panelp->nrports > 4) {
3829 outb((SVRR + 0x80), iobase);
3830 svrtype |= inb(iobase + EREG_DATA);
3831 }
3832
3833 if (svrtype & SVRR_RX)
3834 stl_cd1400rxisr(panelp, iobase);
3835 else if (svrtype & SVRR_TX)
3836 stl_cd1400txisr(panelp, iobase);
3837 else if (svrtype & SVRR_MDM)
3838 stl_cd1400mdmisr(panelp, iobase);
3839}
3840
3841/*****************************************************************************/
3842
3843/*
3844 * Interrupt service routine for cd1400 panels.
3845 */
3846
3847static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase)
3848{
3849 unsigned char svrtype;
3850
3851#ifdef DEBUG
3852 printk("stl_cd1400echintr(panelp=%x,iobase=%x)\n", (int) panelp,
3853 iobase);
3854#endif
3855
3856 outb(SVRR, iobase);
3857 svrtype = inb(iobase + EREG_DATA);
3858 outb((SVRR + 0x80), iobase);
3859 svrtype |= inb(iobase + EREG_DATA);
3860 if (svrtype & SVRR_RX)
3861 stl_cd1400rxisr(panelp, iobase);
3862 else if (svrtype & SVRR_TX)
3863 stl_cd1400txisr(panelp, iobase);
3864 else if (svrtype & SVRR_MDM)
3865 stl_cd1400mdmisr(panelp, iobase);
3866}
3867
3868
3869/*****************************************************************************/
3870
3871/*
3872 * Unfortunately we need to handle breaks in the TX data stream, since
3873 * this is the only way to generate them on the cd1400.
3874 */
3875
3876static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr)
3877{
3878 if (portp->brklen == 1) {
3879 outb((COR2 + portp->uartaddr), ioaddr);
3880 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3881 (ioaddr + EREG_DATA));
3882 outb((TDR + portp->uartaddr), ioaddr);
3883 outb(ETC_CMD, (ioaddr + EREG_DATA));
3884 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3885 outb((SRER + portp->uartaddr), ioaddr);
3886 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3887 (ioaddr + EREG_DATA));
014c2544 3888 return 1;
1da177e4
LT
3889 } else if (portp->brklen > 1) {
3890 outb((TDR + portp->uartaddr), ioaddr);
3891 outb(ETC_CMD, (ioaddr + EREG_DATA));
3892 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3893 portp->brklen = -1;
014c2544 3894 return 1;
1da177e4
LT
3895 } else {
3896 outb((COR2 + portp->uartaddr), ioaddr);
3897 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3898 (ioaddr + EREG_DATA));
3899 portp->brklen = 0;
3900 }
014c2544 3901 return 0;
1da177e4
LT
3902}
3903
3904/*****************************************************************************/
3905
3906/*
3907 * Transmit interrupt handler. This has gotta be fast! Handling TX
3908 * chars is pretty simple, stuff as many as possible from the TX buffer
3909 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3910 * are embedded as commands in the data stream. Oh no, had to use a goto!
3911 * This could be optimized more, will do when I get time...
3912 * In practice it is possible that interrupts are enabled but that the
3913 * port has been hung up. Need to handle not having any TX buffer here,
3914 * this is done by using the side effect that head and tail will also
3915 * be NULL if the buffer has been freed.
3916 */
3917
3918static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr)
3919{
3920 stlport_t *portp;
3921 int len, stlen;
3922 char *head, *tail;
3923 unsigned char ioack, srer;
3924
3925#ifdef DEBUG
3926 printk("stl_cd1400txisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
3927#endif
3928
3929 ioack = inb(ioaddr + EREG_TXACK);
3930 if (((ioack & panelp->ackmask) != 0) ||
3931 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3932 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3933 return;
3934 }
3935 portp = panelp->ports[(ioack >> 3)];
3936
3937/*
3938 * Unfortunately we need to handle breaks in the data stream, since
3939 * this is the only way to generate them on the cd1400. Do it now if
3940 * a break is to be sent.
3941 */
3942 if (portp->brklen != 0)
3943 if (stl_cd1400breakisr(portp, ioaddr))
3944 goto stl_txalldone;
3945
3946 head = portp->tx.head;
3947 tail = portp->tx.tail;
3948 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3949 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3950 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3951 set_bit(ASYI_TXLOW, &portp->istate);
3952 schedule_work(&portp->tqueue);
3953 }
3954
3955 if (len == 0) {
3956 outb((SRER + portp->uartaddr), ioaddr);
3957 srer = inb(ioaddr + EREG_DATA);
3958 if (srer & SRER_TXDATA) {
3959 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3960 } else {
3961 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3962 clear_bit(ASYI_TXBUSY, &portp->istate);
3963 }
3964 outb(srer, (ioaddr + EREG_DATA));
3965 } else {
3966 len = MIN(len, CD1400_TXFIFOSIZE);
3967 portp->stats.txtotal += len;
3968 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
3969 outb((TDR + portp->uartaddr), ioaddr);
3970 outsb((ioaddr + EREG_DATA), tail, stlen);
3971 len -= stlen;
3972 tail += stlen;
3973 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3974 tail = portp->tx.buf;
3975 if (len > 0) {
3976 outsb((ioaddr + EREG_DATA), tail, len);
3977 tail += len;
3978 }
3979 portp->tx.tail = tail;
3980 }
3981
3982stl_txalldone:
3983 outb((EOSRR + portp->uartaddr), ioaddr);
3984 outb(0, (ioaddr + EREG_DATA));
3985}
3986
3987/*****************************************************************************/
3988
3989/*
3990 * Receive character interrupt handler. Determine if we have good chars
3991 * or bad chars and then process appropriately. Good chars are easy
3992 * just shove the lot into the RX buffer and set all status byte to 0.
3993 * If a bad RX char then process as required. This routine needs to be
3994 * fast! In practice it is possible that we get an interrupt on a port
3995 * that is closed. This can happen on hangups - since they completely
3996 * shutdown a port not in user context. Need to handle this case.
3997 */
3998
3999static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr)
4000{
4001 stlport_t *portp;
4002 struct tty_struct *tty;
4003 unsigned int ioack, len, buflen;
4004 unsigned char status;
4005 char ch;
4006
4007#ifdef DEBUG
4008 printk("stl_cd1400rxisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
4009#endif
4010
4011 ioack = inb(ioaddr + EREG_RXACK);
4012 if ((ioack & panelp->ackmask) != 0) {
4013 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
4014 return;
4015 }
4016 portp = panelp->ports[(ioack >> 3)];
4017 tty = portp->tty;
4018
4019 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
4020 outb((RDCR + portp->uartaddr), ioaddr);
4021 len = inb(ioaddr + EREG_DATA);
33f0f88f 4022 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
1da177e4
LT
4023 len = MIN(len, sizeof(stl_unwanted));
4024 outb((RDSR + portp->uartaddr), ioaddr);
4025 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
4026 portp->stats.rxlost += len;
4027 portp->stats.rxtotal += len;
4028 } else {
4029 len = MIN(len, buflen);
4030 if (len > 0) {
33f0f88f 4031 unsigned char *ptr;
1da177e4 4032 outb((RDSR + portp->uartaddr), ioaddr);
33f0f88f
AC
4033 tty_prepare_flip_string(tty, &ptr, len);
4034 insb((ioaddr + EREG_DATA), ptr, len);
1da177e4
LT
4035 tty_schedule_flip(tty);
4036 portp->stats.rxtotal += len;
4037 }
4038 }
4039 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
4040 outb((RDSR + portp->uartaddr), ioaddr);
4041 status = inb(ioaddr + EREG_DATA);
4042 ch = inb(ioaddr + EREG_DATA);
4043 if (status & ST_PARITY)
4044 portp->stats.rxparity++;
4045 if (status & ST_FRAMING)
4046 portp->stats.rxframing++;
4047 if (status & ST_OVERRUN)
4048 portp->stats.rxoverrun++;
4049 if (status & ST_BREAK)
4050 portp->stats.rxbreaks++;
4051 if (status & ST_SCHARMASK) {
4052 if ((status & ST_SCHARMASK) == ST_SCHAR1)
4053 portp->stats.txxon++;
4054 if ((status & ST_SCHARMASK) == ST_SCHAR2)
4055 portp->stats.txxoff++;
4056 goto stl_rxalldone;
4057 }
33f0f88f 4058 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
1da177e4
LT
4059 if (portp->rxmarkmsk & status) {
4060 if (status & ST_BREAK) {
4061 status = TTY_BREAK;
4062 if (portp->flags & ASYNC_SAK) {
4063 do_SAK(tty);
4064 BRDENABLE(portp->brdnr, portp->pagenr);
4065 }
4066 } else if (status & ST_PARITY) {
4067 status = TTY_PARITY;
4068 } else if (status & ST_FRAMING) {
4069 status = TTY_FRAME;
4070 } else if(status & ST_OVERRUN) {
4071 status = TTY_OVERRUN;
4072 } else {
4073 status = 0;
4074 }
4075 } else {
4076 status = 0;
4077 }
33f0f88f
AC
4078 tty_insert_flip_char(tty, ch, status);
4079 tty_schedule_flip(tty);
1da177e4
LT
4080 }
4081 } else {
4082 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
4083 return;
4084 }
4085
4086stl_rxalldone:
4087 outb((EOSRR + portp->uartaddr), ioaddr);
4088 outb(0, (ioaddr + EREG_DATA));
4089}
4090
4091/*****************************************************************************/
4092
4093/*
4094 * Modem interrupt handler. The is called when the modem signal line
4095 * (DCD) has changed state. Leave most of the work to the off-level
4096 * processing routine.
4097 */
4098
4099static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr)
4100{
4101 stlport_t *portp;
4102 unsigned int ioack;
4103 unsigned char misr;
4104
4105#ifdef DEBUG
4106 printk("stl_cd1400mdmisr(panelp=%x)\n", (int) panelp);
4107#endif
4108
4109 ioack = inb(ioaddr + EREG_MDACK);
4110 if (((ioack & panelp->ackmask) != 0) ||
4111 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
4112 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
4113 return;
4114 }
4115 portp = panelp->ports[(ioack >> 3)];
4116
4117 outb((MISR + portp->uartaddr), ioaddr);
4118 misr = inb(ioaddr + EREG_DATA);
4119 if (misr & MISR_DCD) {
4120 set_bit(ASYI_DCDCHANGE, &portp->istate);
4121 schedule_work(&portp->tqueue);
4122 portp->stats.modem++;
4123 }
4124
4125 outb((EOSRR + portp->uartaddr), ioaddr);
4126 outb(0, (ioaddr + EREG_DATA));
4127}
4128
4129/*****************************************************************************/
4130/* SC26198 HARDWARE FUNCTIONS */
4131/*****************************************************************************/
4132
4133/*
4134 * These functions get/set/update the registers of the sc26198 UARTs.
4135 * Access to the sc26198 registers is via an address/data io port pair.
4136 * (Maybe should make this inline...)
4137 */
4138
4139static int stl_sc26198getreg(stlport_t *portp, int regnr)
4140{
4141 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
014c2544 4142 return inb(portp->ioaddr + XP_DATA);
1da177e4
LT
4143}
4144
4145static void stl_sc26198setreg(stlport_t *portp, int regnr, int value)
4146{
4147 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4148 outb(value, (portp->ioaddr + XP_DATA));
4149}
4150
4151static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value)
4152{
4153 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4154 if (inb(portp->ioaddr + XP_DATA) != value) {
4155 outb(value, (portp->ioaddr + XP_DATA));
014c2544 4156 return 1;
1da177e4 4157 }
014c2544 4158 return 0;
1da177e4
LT
4159}
4160
4161/*****************************************************************************/
4162
4163/*
4164 * Functions to get and set the sc26198 global registers.
4165 */
4166
4167static int stl_sc26198getglobreg(stlport_t *portp, int regnr)
4168{
4169 outb(regnr, (portp->ioaddr + XP_ADDR));
014c2544 4170 return inb(portp->ioaddr + XP_DATA);
1da177e4
LT
4171}
4172
4173#if 0
4174static void stl_sc26198setglobreg(stlport_t *portp, int regnr, int value)
4175{
4176 outb(regnr, (portp->ioaddr + XP_ADDR));
4177 outb(value, (portp->ioaddr + XP_DATA));
4178}
4179#endif
4180
4181/*****************************************************************************/
4182
4183/*
4184 * Inbitialize the UARTs in a panel. We don't care what sort of board
4185 * these ports are on - since the port io registers are almost
4186 * identical when dealing with ports.
4187 */
4188
4189static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
4190{
4191 int chipmask, i;
4192 int nrchips, ioaddr;
4193
4194#ifdef DEBUG
4195 printk("stl_sc26198panelinit(brdp=%x,panelp=%x)\n",
4196 (int) brdp, (int) panelp);
4197#endif
4198
4199 BRDENABLE(panelp->brdnr, panelp->pagenr);
4200
4201/*
4202 * Check that each chip is present and started up OK.
4203 */
4204 chipmask = 0;
4205 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
4206 if (brdp->brdtype == BRD_ECHPCI)
4207 outb(panelp->pagenr, brdp->ioctrl);
4208
4209 for (i = 0; (i < nrchips); i++) {
4210 ioaddr = panelp->iobase + (i * 4);
4211 outb(SCCR, (ioaddr + XP_ADDR));
4212 outb(CR_RESETALL, (ioaddr + XP_DATA));
4213 outb(TSTR, (ioaddr + XP_ADDR));
4214 if (inb(ioaddr + XP_DATA) != 0) {
4215 printk("STALLION: sc26198 not responding, "
4216 "brd=%d panel=%d chip=%d\n",
4217 panelp->brdnr, panelp->panelnr, i);
4218 continue;
4219 }
4220 chipmask |= (0x1 << i);
4221 outb(GCCR, (ioaddr + XP_ADDR));
4222 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
4223 outb(WDTRCR, (ioaddr + XP_ADDR));
4224 outb(0xff, (ioaddr + XP_DATA));
4225 }
4226
4227 BRDDISABLE(panelp->brdnr);
014c2544 4228 return chipmask;
1da177e4
LT
4229}
4230
4231/*****************************************************************************/
4232
4233/*
4234 * Initialize hardware specific port registers.
4235 */
4236
4237static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
4238{
4239#ifdef DEBUG
4240 printk("stl_sc26198portinit(brdp=%x,panelp=%x,portp=%x)\n",
4241 (int) brdp, (int) panelp, (int) portp);
4242#endif
4243
4244 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
4245 (portp == (stlport_t *) NULL))
4246 return;
4247
4248 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
4249 portp->uartaddr = (portp->portnr & 0x07) << 4;
4250 portp->pagenr = panelp->pagenr;
4251 portp->hwid = 0x1;
4252
4253 BRDENABLE(portp->brdnr, portp->pagenr);
4254 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
4255 BRDDISABLE(portp->brdnr);
4256}
4257
4258/*****************************************************************************/
4259
4260/*
4261 * Set up the sc26198 registers for a port based on the termios port
4262 * settings.
4263 */
4264
4265static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp)
4266{
4267 stlbrd_t *brdp;
4268 unsigned long flags;
4269 unsigned int baudrate;
4270 unsigned char mr0, mr1, mr2, clk;
4271 unsigned char imron, imroff, iopr, ipr;
4272
4273 mr0 = 0;
4274 mr1 = 0;
4275 mr2 = 0;
4276 clk = 0;
4277 iopr = 0;
4278 imron = 0;
4279 imroff = 0;
4280
4281 brdp = stl_brds[portp->brdnr];
4282 if (brdp == (stlbrd_t *) NULL)
4283 return;
4284
4285/*
4286 * Set up the RX char ignore mask with those RX error types we
4287 * can ignore.
4288 */
4289 portp->rxignoremsk = 0;
4290 if (tiosp->c_iflag & IGNPAR)
4291 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
4292 SR_RXOVERRUN);
4293 if (tiosp->c_iflag & IGNBRK)
4294 portp->rxignoremsk |= SR_RXBREAK;
4295
4296 portp->rxmarkmsk = SR_RXOVERRUN;
4297 if (tiosp->c_iflag & (INPCK | PARMRK))
4298 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
4299 if (tiosp->c_iflag & BRKINT)
4300 portp->rxmarkmsk |= SR_RXBREAK;
4301
4302/*
4303 * Go through the char size, parity and stop bits and set all the
4304 * option register appropriately.
4305 */
4306 switch (tiosp->c_cflag & CSIZE) {
4307 case CS5:
4308 mr1 |= MR1_CS5;
4309 break;
4310 case CS6:
4311 mr1 |= MR1_CS6;
4312 break;
4313 case CS7:
4314 mr1 |= MR1_CS7;
4315 break;
4316 default:
4317 mr1 |= MR1_CS8;
4318 break;
4319 }
4320
4321 if (tiosp->c_cflag & CSTOPB)
4322 mr2 |= MR2_STOP2;
4323 else
4324 mr2 |= MR2_STOP1;
4325
4326 if (tiosp->c_cflag & PARENB) {
4327 if (tiosp->c_cflag & PARODD)
4328 mr1 |= (MR1_PARENB | MR1_PARODD);
4329 else
4330 mr1 |= (MR1_PARENB | MR1_PAREVEN);
4331 } else {
4332 mr1 |= MR1_PARNONE;
4333 }
4334
4335 mr1 |= MR1_ERRBLOCK;
4336
4337/*
4338 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
4339 * space for hardware flow control and the like. This should be set to
4340 * VMIN.
4341 */
4342 mr2 |= MR2_RXFIFOHALF;
4343
4344/*
4345 * Calculate the baud rate timers. For now we will just assume that
4346 * the input and output baud are the same. The sc26198 has a fixed
4347 * baud rate table, so only discrete baud rates possible.
4348 */
4349 baudrate = tiosp->c_cflag & CBAUD;
4350 if (baudrate & CBAUDEX) {
4351 baudrate &= ~CBAUDEX;
4352 if ((baudrate < 1) || (baudrate > 4))
4353 tiosp->c_cflag &= ~CBAUDEX;
4354 else
4355 baudrate += 15;
4356 }
4357 baudrate = stl_baudrates[baudrate];
4358 if ((tiosp->c_cflag & CBAUD) == B38400) {
4359 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
4360 baudrate = 57600;
4361 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
4362 baudrate = 115200;
4363 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
4364 baudrate = 230400;
4365 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
4366 baudrate = 460800;
4367 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
4368 baudrate = (portp->baud_base / portp->custom_divisor);
4369 }
4370 if (baudrate > STL_SC26198MAXBAUD)
4371 baudrate = STL_SC26198MAXBAUD;
4372
4373 if (baudrate > 0) {
4374 for (clk = 0; (clk < SC26198_NRBAUDS); clk++) {
4375 if (baudrate <= sc26198_baudtable[clk])
4376 break;
4377 }
4378 }
4379
4380/*
4381 * Check what form of modem signaling is required and set it up.
4382 */
4383 if (tiosp->c_cflag & CLOCAL) {
4384 portp->flags &= ~ASYNC_CHECK_CD;
4385 } else {
4386 iopr |= IOPR_DCDCOS;
4387 imron |= IR_IOPORT;
4388 portp->flags |= ASYNC_CHECK_CD;
4389 }
4390
4391/*
4392 * Setup sc26198 enhanced modes if we can. In particular we want to
4393 * handle as much of the flow control as possible automatically. As
4394 * well as saving a few CPU cycles it will also greatly improve flow
4395 * control reliability.
4396 */
4397 if (tiosp->c_iflag & IXON) {
4398 mr0 |= MR0_SWFTX | MR0_SWFT;
4399 imron |= IR_XONXOFF;
4400 } else {
4401 imroff |= IR_XONXOFF;
4402 }
4403 if (tiosp->c_iflag & IXOFF)
4404 mr0 |= MR0_SWFRX;
4405
4406 if (tiosp->c_cflag & CRTSCTS) {
4407 mr2 |= MR2_AUTOCTS;
4408 mr1 |= MR1_AUTORTS;
4409 }
4410
4411/*
4412 * All sc26198 register values calculated so go through and set
4413 * them all up.
4414 */
4415
4416#ifdef DEBUG
4417 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
4418 portp->portnr, portp->panelnr, portp->brdnr);
4419 printk(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
4420 printk(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
4421 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
4422 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
4423 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
4424#endif
4425
4426 save_flags(flags);
4427 cli();
4428 BRDENABLE(portp->brdnr, portp->pagenr);
4429 stl_sc26198setreg(portp, IMR, 0);
4430 stl_sc26198updatereg(portp, MR0, mr0);
4431 stl_sc26198updatereg(portp, MR1, mr1);
4432 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
4433 stl_sc26198updatereg(portp, MR2, mr2);
4434 stl_sc26198updatereg(portp, IOPIOR,
4435 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
4436
4437 if (baudrate > 0) {
4438 stl_sc26198setreg(portp, TXCSR, clk);
4439 stl_sc26198setreg(portp, RXCSR, clk);
4440 }
4441
4442 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
4443 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
4444
4445 ipr = stl_sc26198getreg(portp, IPR);
4446 if (ipr & IPR_DCD)
4447 portp->sigs &= ~TIOCM_CD;
4448 else
4449 portp->sigs |= TIOCM_CD;
4450
4451 portp->imr = (portp->imr & ~imroff) | imron;
4452 stl_sc26198setreg(portp, IMR, portp->imr);
4453 BRDDISABLE(portp->brdnr);
4454 restore_flags(flags);
4455}
4456
4457/*****************************************************************************/
4458
4459/*
4460 * Set the state of the DTR and RTS signals.
4461 */
4462
4463static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts)
4464{
4465 unsigned char iopioron, iopioroff;
4466 unsigned long flags;
4467
4468#ifdef DEBUG
4469 printk("stl_sc26198setsignals(portp=%x,dtr=%d,rts=%d)\n",
4470 (int) portp, dtr, rts);
4471#endif
4472
4473 iopioron = 0;
4474 iopioroff = 0;
4475 if (dtr == 0)
4476 iopioroff |= IPR_DTR;
4477 else if (dtr > 0)
4478 iopioron |= IPR_DTR;
4479 if (rts == 0)
4480 iopioroff |= IPR_RTS;
4481 else if (rts > 0)
4482 iopioron |= IPR_RTS;
4483
4484 save_flags(flags);
4485 cli();
4486 BRDENABLE(portp->brdnr, portp->pagenr);
4487 stl_sc26198setreg(portp, IOPIOR,
4488 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4489 BRDDISABLE(portp->brdnr);
4490 restore_flags(flags);
4491}
4492
4493/*****************************************************************************/
4494
4495/*
4496 * Return the state of the signals.
4497 */
4498
4499static int stl_sc26198getsignals(stlport_t *portp)
4500{
4501 unsigned char ipr;
4502 unsigned long flags;
4503 int sigs;
4504
4505#ifdef DEBUG
4506 printk("stl_sc26198getsignals(portp=%x)\n", (int) portp);
4507#endif
4508
4509 save_flags(flags);
4510 cli();
4511 BRDENABLE(portp->brdnr, portp->pagenr);
4512 ipr = stl_sc26198getreg(portp, IPR);
4513 BRDDISABLE(portp->brdnr);
4514 restore_flags(flags);
4515
4516 sigs = 0;
4517 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4518 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4519 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4520 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4521 sigs |= TIOCM_DSR;
014c2544 4522 return sigs;
1da177e4
LT
4523}
4524
4525/*****************************************************************************/
4526
4527/*
4528 * Enable/Disable the Transmitter and/or Receiver.
4529 */
4530
4531static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx)
4532{
4533 unsigned char ccr;
4534 unsigned long flags;
4535
4536#ifdef DEBUG
4537 printk("stl_sc26198enablerxtx(portp=%x,rx=%d,tx=%d)\n",
4538 (int) portp, rx, tx);
4539#endif
4540
4541 ccr = portp->crenable;
4542 if (tx == 0)
4543 ccr &= ~CR_TXENABLE;
4544 else if (tx > 0)
4545 ccr |= CR_TXENABLE;
4546 if (rx == 0)
4547 ccr &= ~CR_RXENABLE;
4548 else if (rx > 0)
4549 ccr |= CR_RXENABLE;
4550
4551 save_flags(flags);
4552 cli();
4553 BRDENABLE(portp->brdnr, portp->pagenr);
4554 stl_sc26198setreg(portp, SCCR, ccr);
4555 BRDDISABLE(portp->brdnr);
4556 portp->crenable = ccr;
4557 restore_flags(flags);
4558}
4559
4560/*****************************************************************************/
4561
4562/*
4563 * Start/stop the Transmitter and/or Receiver.
4564 */
4565
4566static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx)
4567{
4568 unsigned char imr;
4569 unsigned long flags;
4570
4571#ifdef DEBUG
4572 printk("stl_sc26198startrxtx(portp=%x,rx=%d,tx=%d)\n",
4573 (int) portp, rx, tx);
4574#endif
4575
4576 imr = portp->imr;
4577 if (tx == 0)
4578 imr &= ~IR_TXRDY;
4579 else if (tx == 1)
4580 imr |= IR_TXRDY;
4581 if (rx == 0)
4582 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4583 else if (rx > 0)
4584 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4585
4586 save_flags(flags);
4587 cli();
4588 BRDENABLE(portp->brdnr, portp->pagenr);
4589 stl_sc26198setreg(portp, IMR, imr);
4590 BRDDISABLE(portp->brdnr);
4591 portp->imr = imr;
4592 if (tx > 0)
4593 set_bit(ASYI_TXBUSY, &portp->istate);
4594 restore_flags(flags);
4595}
4596
4597/*****************************************************************************/
4598
4599/*
4600 * Disable all interrupts from this port.
4601 */
4602
4603static void stl_sc26198disableintrs(stlport_t *portp)
4604{
4605 unsigned long flags;
4606
4607#ifdef DEBUG
4608 printk("stl_sc26198disableintrs(portp=%x)\n", (int) portp);
4609#endif
4610
4611 save_flags(flags);
4612 cli();
4613 BRDENABLE(portp->brdnr, portp->pagenr);
4614 portp->imr = 0;
4615 stl_sc26198setreg(portp, IMR, 0);
4616 BRDDISABLE(portp->brdnr);
4617 restore_flags(flags);
4618}
4619
4620/*****************************************************************************/
4621
4622static void stl_sc26198sendbreak(stlport_t *portp, int len)
4623{
4624 unsigned long flags;
4625
4626#ifdef DEBUG
4627 printk("stl_sc26198sendbreak(portp=%x,len=%d)\n", (int) portp, len);
4628#endif
4629
4630 save_flags(flags);
4631 cli();
4632 BRDENABLE(portp->brdnr, portp->pagenr);
4633 if (len == 1) {
4634 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4635 portp->stats.txbreaks++;
4636 } else {
4637 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4638 }
4639 BRDDISABLE(portp->brdnr);
4640 restore_flags(flags);
4641}
4642
4643/*****************************************************************************/
4644
4645/*
4646 * Take flow control actions...
4647 */
4648
4649static void stl_sc26198flowctrl(stlport_t *portp, int state)
4650{
4651 struct tty_struct *tty;
4652 unsigned long flags;
4653 unsigned char mr0;
4654
4655#ifdef DEBUG
4656 printk("stl_sc26198flowctrl(portp=%x,state=%x)\n", (int) portp, state);
4657#endif
4658
4659 if (portp == (stlport_t *) NULL)
4660 return;
4661 tty = portp->tty;
4662 if (tty == (struct tty_struct *) NULL)
4663 return;
4664
4665 save_flags(flags);
4666 cli();
4667 BRDENABLE(portp->brdnr, portp->pagenr);
4668
4669 if (state) {
4670 if (tty->termios->c_iflag & IXOFF) {
4671 mr0 = stl_sc26198getreg(portp, MR0);
4672 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4673 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4674 mr0 |= MR0_SWFRX;
4675 portp->stats.rxxon++;
4676 stl_sc26198wait(portp);
4677 stl_sc26198setreg(portp, MR0, mr0);
4678 }
4679/*
4680 * Question: should we return RTS to what it was before? It may
4681 * have been set by an ioctl... Suppose not, since if you have
4682 * hardware flow control set then it is pretty silly to go and
4683 * set the RTS line by hand.
4684 */
4685 if (tty->termios->c_cflag & CRTSCTS) {
4686 stl_sc26198setreg(portp, MR1,
4687 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4688 stl_sc26198setreg(portp, IOPIOR,
4689 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4690 portp->stats.rxrtson++;
4691 }
4692 } else {
4693 if (tty->termios->c_iflag & IXOFF) {
4694 mr0 = stl_sc26198getreg(portp, MR0);
4695 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4696 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4697 mr0 &= ~MR0_SWFRX;
4698 portp->stats.rxxoff++;
4699 stl_sc26198wait(portp);
4700 stl_sc26198setreg(portp, MR0, mr0);
4701 }
4702 if (tty->termios->c_cflag & CRTSCTS) {
4703 stl_sc26198setreg(portp, MR1,
4704 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4705 stl_sc26198setreg(portp, IOPIOR,
4706 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4707 portp->stats.rxrtsoff++;
4708 }
4709 }
4710
4711 BRDDISABLE(portp->brdnr);
4712 restore_flags(flags);
4713}
4714
4715/*****************************************************************************/
4716
4717/*
4718 * Send a flow control character.
4719 */
4720
4721static void stl_sc26198sendflow(stlport_t *portp, int state)
4722{
4723 struct tty_struct *tty;
4724 unsigned long flags;
4725 unsigned char mr0;
4726
4727#ifdef DEBUG
4728 printk("stl_sc26198sendflow(portp=%x,state=%x)\n", (int) portp, state);
4729#endif
4730
4731 if (portp == (stlport_t *) NULL)
4732 return;
4733 tty = portp->tty;
4734 if (tty == (struct tty_struct *) NULL)
4735 return;
4736
4737 save_flags(flags);
4738 cli();
4739 BRDENABLE(portp->brdnr, portp->pagenr);
4740 if (state) {
4741 mr0 = stl_sc26198getreg(portp, MR0);
4742 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4743 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4744 mr0 |= MR0_SWFRX;
4745 portp->stats.rxxon++;
4746 stl_sc26198wait(portp);
4747 stl_sc26198setreg(portp, MR0, mr0);
4748 } else {
4749 mr0 = stl_sc26198getreg(portp, MR0);
4750 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4751 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4752 mr0 &= ~MR0_SWFRX;
4753 portp->stats.rxxoff++;
4754 stl_sc26198wait(portp);
4755 stl_sc26198setreg(portp, MR0, mr0);
4756 }
4757 BRDDISABLE(portp->brdnr);
4758 restore_flags(flags);
4759}
4760
4761/*****************************************************************************/
4762
4763static void stl_sc26198flush(stlport_t *portp)
4764{
4765 unsigned long flags;
4766
4767#ifdef DEBUG
4768 printk("stl_sc26198flush(portp=%x)\n", (int) portp);
4769#endif
4770
4771 if (portp == (stlport_t *) NULL)
4772 return;
4773
4774 save_flags(flags);
4775 cli();
4776 BRDENABLE(portp->brdnr, portp->pagenr);
4777 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4778 stl_sc26198setreg(portp, SCCR, portp->crenable);
4779 BRDDISABLE(portp->brdnr);
4780 portp->tx.tail = portp->tx.head;
4781 restore_flags(flags);
4782}
4783
4784/*****************************************************************************/
4785
4786/*
4787 * Return the current state of data flow on this port. This is only
4788 * really interresting when determining if data has fully completed
4789 * transmission or not... The sc26198 interrupt scheme cannot
4790 * determine when all data has actually drained, so we need to
4791 * check the port statusy register to be sure.
4792 */
4793
4794static int stl_sc26198datastate(stlport_t *portp)
4795{
4796 unsigned long flags;
4797 unsigned char sr;
4798
4799#ifdef DEBUG
4800 printk("stl_sc26198datastate(portp=%x)\n", (int) portp);
4801#endif
4802
4803 if (portp == (stlport_t *) NULL)
014c2544 4804 return 0;
1da177e4 4805 if (test_bit(ASYI_TXBUSY, &portp->istate))
014c2544 4806 return 1;
1da177e4
LT
4807
4808 save_flags(flags);
4809 cli();
4810 BRDENABLE(portp->brdnr, portp->pagenr);
4811 sr = stl_sc26198getreg(portp, SR);
4812 BRDDISABLE(portp->brdnr);
4813 restore_flags(flags);
4814
014c2544 4815 return (sr & SR_TXEMPTY) ? 0 : 1;
1da177e4
LT
4816}
4817
4818/*****************************************************************************/
4819
4820/*
4821 * Delay for a small amount of time, to give the sc26198 a chance
4822 * to process a command...
4823 */
4824
4825static void stl_sc26198wait(stlport_t *portp)
4826{
4827 int i;
4828
4829#ifdef DEBUG
4830 printk("stl_sc26198wait(portp=%x)\n", (int) portp);
4831#endif
4832
4833 if (portp == (stlport_t *) NULL)
4834 return;
4835
4836 for (i = 0; (i < 20); i++)
4837 stl_sc26198getglobreg(portp, TSTR);
4838}
4839
4840/*****************************************************************************/
4841
4842/*
4843 * If we are TX flow controlled and in IXANY mode then we may
4844 * need to unflow control here. We gotta do this because of the
4845 * automatic flow control modes of the sc26198.
4846 */
4847
4848static inline void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty)
4849{
4850 unsigned char mr0;
4851
4852 mr0 = stl_sc26198getreg(portp, MR0);
4853 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4854 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4855 stl_sc26198wait(portp);
4856 stl_sc26198setreg(portp, MR0, mr0);
4857 clear_bit(ASYI_TXFLOWED, &portp->istate);
4858}
4859
4860/*****************************************************************************/
4861
4862/*
4863 * Interrupt service routine for sc26198 panels.
4864 */
4865
4866static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase)
4867{
4868 stlport_t *portp;
4869 unsigned int iack;
4870
4871/*
4872 * Work around bug in sc26198 chip... Cannot have A6 address
4873 * line of UART high, else iack will be returned as 0.
4874 */
4875 outb(0, (iobase + 1));
4876
4877 iack = inb(iobase + XP_IACK);
4878 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4879
4880 if (iack & IVR_RXDATA)
4881 stl_sc26198rxisr(portp, iack);
4882 else if (iack & IVR_TXDATA)
4883 stl_sc26198txisr(portp);
4884 else
4885 stl_sc26198otherisr(portp, iack);
4886}
4887
4888/*****************************************************************************/
4889
4890/*
4891 * Transmit interrupt handler. This has gotta be fast! Handling TX
4892 * chars is pretty simple, stuff as many as possible from the TX buffer
4893 * into the sc26198 FIFO.
4894 * In practice it is possible that interrupts are enabled but that the
4895 * port has been hung up. Need to handle not having any TX buffer here,
4896 * this is done by using the side effect that head and tail will also
4897 * be NULL if the buffer has been freed.
4898 */
4899
4900static void stl_sc26198txisr(stlport_t *portp)
4901{
4902 unsigned int ioaddr;
4903 unsigned char mr0;
4904 int len, stlen;
4905 char *head, *tail;
4906
4907#ifdef DEBUG
4908 printk("stl_sc26198txisr(portp=%x)\n", (int) portp);
4909#endif
4910
4911 ioaddr = portp->ioaddr;
4912 head = portp->tx.head;
4913 tail = portp->tx.tail;
4914 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4915 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4916 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4917 set_bit(ASYI_TXLOW, &portp->istate);
4918 schedule_work(&portp->tqueue);
4919 }
4920
4921 if (len == 0) {
4922 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4923 mr0 = inb(ioaddr + XP_DATA);
4924 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4925 portp->imr &= ~IR_TXRDY;
4926 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4927 outb(portp->imr, (ioaddr + XP_DATA));
4928 clear_bit(ASYI_TXBUSY, &portp->istate);
4929 } else {
4930 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4931 outb(mr0, (ioaddr + XP_DATA));
4932 }
4933 } else {
4934 len = MIN(len, SC26198_TXFIFOSIZE);
4935 portp->stats.txtotal += len;
4936 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
4937 outb(GTXFIFO, (ioaddr + XP_ADDR));
4938 outsb((ioaddr + XP_DATA), tail, stlen);
4939 len -= stlen;
4940 tail += stlen;
4941 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4942 tail = portp->tx.buf;
4943 if (len > 0) {
4944 outsb((ioaddr + XP_DATA), tail, len);
4945 tail += len;
4946 }
4947 portp->tx.tail = tail;
4948 }
4949}
4950
4951/*****************************************************************************/
4952
4953/*
4954 * Receive character interrupt handler. Determine if we have good chars
4955 * or bad chars and then process appropriately. Good chars are easy
4956 * just shove the lot into the RX buffer and set all status byte to 0.
4957 * If a bad RX char then process as required. This routine needs to be
4958 * fast! In practice it is possible that we get an interrupt on a port
4959 * that is closed. This can happen on hangups - since they completely
4960 * shutdown a port not in user context. Need to handle this case.
4961 */
4962
4963static void stl_sc26198rxisr(stlport_t *portp, unsigned int iack)
4964{
4965 struct tty_struct *tty;
4966 unsigned int len, buflen, ioaddr;
4967
4968#ifdef DEBUG
4969 printk("stl_sc26198rxisr(portp=%x,iack=%x)\n", (int) portp, iack);
4970#endif
4971
4972 tty = portp->tty;
4973 ioaddr = portp->ioaddr;
4974 outb(GIBCR, (ioaddr + XP_ADDR));
4975 len = inb(ioaddr + XP_DATA) + 1;
4976
4977 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
33f0f88f 4978 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
1da177e4
LT
4979 len = MIN(len, sizeof(stl_unwanted));
4980 outb(GRXFIFO, (ioaddr + XP_ADDR));
4981 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4982 portp->stats.rxlost += len;
4983 portp->stats.rxtotal += len;
4984 } else {
4985 len = MIN(len, buflen);
4986 if (len > 0) {
33f0f88f 4987 unsigned char *ptr;
1da177e4 4988 outb(GRXFIFO, (ioaddr + XP_ADDR));
33f0f88f
AC
4989 tty_prepare_flip_string(tty, &ptr, len);
4990 insb((ioaddr + XP_DATA), ptr, len);
1da177e4
LT
4991 tty_schedule_flip(tty);
4992 portp->stats.rxtotal += len;
4993 }
4994 }
4995 } else {
4996 stl_sc26198rxbadchars(portp);
4997 }
4998
4999/*
5000 * If we are TX flow controlled and in IXANY mode then we may need
5001 * to unflow control here. We gotta do this because of the automatic
5002 * flow control modes of the sc26198.
5003 */
5004 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
5005 if ((tty != (struct tty_struct *) NULL) &&
5006 (tty->termios != (struct termios *) NULL) &&
5007 (tty->termios->c_iflag & IXANY)) {
5008 stl_sc26198txunflow(portp, tty);
5009 }
5010 }
5011}
5012
5013/*****************************************************************************/
5014
5015/*
5016 * Process an RX bad character.
5017 */
5018
5019static inline void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch)
5020{
5021 struct tty_struct *tty;
5022 unsigned int ioaddr;
5023
5024 tty = portp->tty;
5025 ioaddr = portp->ioaddr;
5026
5027 if (status & SR_RXPARITY)
5028 portp->stats.rxparity++;
5029 if (status & SR_RXFRAMING)
5030 portp->stats.rxframing++;
5031 if (status & SR_RXOVERRUN)
5032 portp->stats.rxoverrun++;
5033 if (status & SR_RXBREAK)
5034 portp->stats.rxbreaks++;
5035
5036 if ((tty != (struct tty_struct *) NULL) &&
5037 ((portp->rxignoremsk & status) == 0)) {
5038 if (portp->rxmarkmsk & status) {
5039 if (status & SR_RXBREAK) {
5040 status = TTY_BREAK;
5041 if (portp->flags & ASYNC_SAK) {
5042 do_SAK(tty);
5043 BRDENABLE(portp->brdnr, portp->pagenr);
5044 }
5045 } else if (status & SR_RXPARITY) {
5046 status = TTY_PARITY;
5047 } else if (status & SR_RXFRAMING) {
5048 status = TTY_FRAME;
5049 } else if(status & SR_RXOVERRUN) {
5050 status = TTY_OVERRUN;
5051 } else {
5052 status = 0;
5053 }
5054 } else {
5055 status = 0;
5056 }
5057
33f0f88f
AC
5058 tty_insert_flip_char(tty, ch, status);
5059 tty_schedule_flip(tty);
1da177e4
LT
5060
5061 if (status == 0)
5062 portp->stats.rxtotal++;
5063 }
5064}
5065
5066/*****************************************************************************/
5067
5068/*
5069 * Process all characters in the RX FIFO of the UART. Check all char
5070 * status bytes as well, and process as required. We need to check
5071 * all bytes in the FIFO, in case some more enter the FIFO while we
5072 * are here. To get the exact character error type we need to switch
5073 * into CHAR error mode (that is why we need to make sure we empty
5074 * the FIFO).
5075 */
5076
5077static void stl_sc26198rxbadchars(stlport_t *portp)
5078{
5079 unsigned char status, mr1;
5080 char ch;
5081
5082/*
5083 * To get the precise error type for each character we must switch
5084 * back into CHAR error mode.
5085 */
5086 mr1 = stl_sc26198getreg(portp, MR1);
5087 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
5088
5089 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
5090 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
5091 ch = stl_sc26198getreg(portp, RXFIFO);
5092 stl_sc26198rxbadch(portp, status, ch);
5093 }
5094
5095/*
5096 * To get correct interrupt class we must switch back into BLOCK
5097 * error mode.
5098 */
5099 stl_sc26198setreg(portp, MR1, mr1);
5100}
5101
5102/*****************************************************************************/
5103
5104/*
5105 * Other interrupt handler. This includes modem signals, flow
5106 * control actions, etc. Most stuff is left to off-level interrupt
5107 * processing time.
5108 */
5109
5110static void stl_sc26198otherisr(stlport_t *portp, unsigned int iack)
5111{
5112 unsigned char cir, ipr, xisr;
5113
5114#ifdef DEBUG
5115 printk("stl_sc26198otherisr(portp=%x,iack=%x)\n", (int) portp, iack);
5116#endif
5117
5118 cir = stl_sc26198getglobreg(portp, CIR);
5119
5120 switch (cir & CIR_SUBTYPEMASK) {
5121 case CIR_SUBCOS:
5122 ipr = stl_sc26198getreg(portp, IPR);
5123 if (ipr & IPR_DCDCHANGE) {
5124 set_bit(ASYI_DCDCHANGE, &portp->istate);
5125 schedule_work(&portp->tqueue);
5126 portp->stats.modem++;
5127 }
5128 break;
5129 case CIR_SUBXONXOFF:
5130 xisr = stl_sc26198getreg(portp, XISR);
5131 if (xisr & XISR_RXXONGOT) {
5132 set_bit(ASYI_TXFLOWED, &portp->istate);
5133 portp->stats.txxoff++;
5134 }
5135 if (xisr & XISR_RXXOFFGOT) {
5136 clear_bit(ASYI_TXFLOWED, &portp->istate);
5137 portp->stats.txxon++;
5138 }
5139 break;
5140 case CIR_SUBBREAK:
5141 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
5142 stl_sc26198rxbadchars(portp);
5143 break;
5144 default:
5145 break;
5146 }
5147}
5148
5149/*****************************************************************************/