Merge branch 'for-linus' of git://git.o-hand.com/linux-mfd
[linux-2.6-block.git] / drivers / char / rio / rioboot.c
CommitLineData
1da177e4
LT
1/*
2** -----------------------------------------------------------------------------
3**
4** Perle Specialix driver for Linux
5** Ported from existing RIO Driver for SCO sources.
6 *
7 * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22**
23** Module : rioboot.c
24** SID : 1.3
25** Last Modified : 11/6/98 10:33:36
26** Retrieved : 11/6/98 10:33:48
27**
28** ident @(#)rioboot.c 1.3
29**
30** -----------------------------------------------------------------------------
31*/
32
1da177e4
LT
33#include <linux/module.h>
34#include <linux/slab.h>
b6c6b602
AC
35#include <linux/termios.h>
36#include <linux/serial.h>
655fdeab 37#include <linux/vmalloc.h>
b6c6b602 38#include <linux/generic_serial.h>
1da177e4
LT
39#include <linux/errno.h>
40#include <linux/interrupt.h>
b6c6b602 41#include <linux/delay.h>
1da177e4
LT
42#include <asm/io.h>
43#include <asm/system.h>
44#include <asm/string.h>
b6c6b602 45#include <asm/uaccess.h>
1da177e4
LT
46
47
48#include "linux_compat.h"
49#include "rio_linux.h"
1da177e4
LT
50#include "pkt.h"
51#include "daemon.h"
52#include "rio.h"
53#include "riospace.h"
1da177e4
LT
54#include "cmdpkt.h"
55#include "map.h"
1da177e4
LT
56#include "rup.h"
57#include "port.h"
58#include "riodrvr.h"
59#include "rioinfo.h"
60#include "func.h"
61#include "errors.h"
62#include "pci.h"
63
64#include "parmmap.h"
65#include "unixrup.h"
66#include "board.h"
67#include "host.h"
1da177e4
LT
68#include "phb.h"
69#include "link.h"
70#include "cmdblk.h"
71#include "route.h"
72
d886cb58 73static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP);
3b8e3f1e 74
b6c6b602 75static const unsigned char RIOAtVec2Ctrl[] = {
3b8e3f1e
AC
76 /* 0 */ INTERRUPT_DISABLE,
77 /* 1 */ INTERRUPT_DISABLE,
78 /* 2 */ INTERRUPT_DISABLE,
79 /* 3 */ INTERRUPT_DISABLE,
80 /* 4 */ INTERRUPT_DISABLE,
81 /* 5 */ INTERRUPT_DISABLE,
82 /* 6 */ INTERRUPT_DISABLE,
83 /* 7 */ INTERRUPT_DISABLE,
84 /* 8 */ INTERRUPT_DISABLE,
85 /* 9 */ IRQ_9 | INTERRUPT_ENABLE,
1da177e4 86 /* 10 */ INTERRUPT_DISABLE,
3b8e3f1e
AC
87 /* 11 */ IRQ_11 | INTERRUPT_ENABLE,
88 /* 12 */ IRQ_12 | INTERRUPT_ENABLE,
1da177e4
LT
89 /* 13 */ INTERRUPT_DISABLE,
90 /* 14 */ INTERRUPT_DISABLE,
3b8e3f1e 91 /* 15 */ IRQ_15 | INTERRUPT_ENABLE
1da177e4
LT
92};
93
b6c6b602
AC
94/**
95 * RIOBootCodeRTA - Load RTA boot code
96 * @p: RIO to load
97 * @rbp: Download descriptor
98 *
99 * Called when the user process initiates booting of the card firmware.
100 * Lads the firmware
101 */
102
103int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp)
1da177e4
LT
104{
105 int offset;
106
3b8e3f1e 107 func_enter();
1da177e4 108
b6c6b602 109 rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP);
1da177e4
LT
110
111 /*
3b8e3f1e
AC
112 ** Check that we have set asside enough memory for this
113 */
114 if (rbp->Count > SIXTY_FOUR_K) {
115 rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
1da177e4 116 p->RIOError.Error = HOST_FILE_TOO_LARGE;
3b8e3f1e 117 func_exit();
1da177e4
LT
118 return -ENOMEM;
119 }
120
3b8e3f1e
AC
121 if (p->RIOBooting) {
122 rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
1da177e4 123 p->RIOError.Error = BOOT_IN_PROGRESS;
3b8e3f1e 124 func_exit();
1da177e4
LT
125 return -EBUSY;
126 }
127
128 /*
3b8e3f1e
AC
129 ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
130 ** so calculate how far we have to move the data up the buffer
131 ** to achieve this.
132 */
133 offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE;
1da177e4
LT
134
135 /*
3b8e3f1e
AC
136 ** Be clean, and clear the 'unused' portion of the boot buffer,
137 ** because it will (eventually) be part of the Rta run time environment
138 ** and so should be zeroed.
139 */
b6c6b602 140 memset(p->RIOBootPackets, 0, offset);
1da177e4
LT
141
142 /*
b6c6b602 143 ** Copy the data from user space into the array
3b8e3f1e 144 */
1da177e4 145
b6c6b602 146 if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) {
3b8e3f1e 147 rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n");
1da177e4 148 p->RIOError.Error = COPYIN_FAILED;
3b8e3f1e 149 func_exit();
1da177e4
LT
150 return -EFAULT;
151 }
152
153 /*
3b8e3f1e
AC
154 ** Make sure that our copy of the size includes that offset we discussed
155 ** earlier.
156 */
157 p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE;
158 p->RIOBootCount = rbp->Count;
1da177e4 159
1da177e4
LT
160 func_exit();
161 return 0;
162}
163
b6c6b602
AC
164/**
165 * rio_start_card_running - host card start
166 * @HostP: The RIO to kick off
167 *
168 * Start a RIO processor unit running. Encapsulates the knowledge
169 * of the card type.
170 */
171
3b8e3f1e 172void rio_start_card_running(struct Host *HostP)
1da177e4 173{
3b8e3f1e 174 switch (HostP->Type) {
1da177e4 175 case RIO_AT:
3b8e3f1e 176 rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n");
b6c6b602 177 writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control);
1da177e4 178 break;
1da177e4 179 case RIO_PCI:
3b8e3f1e
AC
180 /*
181 ** PCI is much the same as MCA. Everything is once again memory
182 ** mapped, so we are writing to memory registers instead of io
183 ** ports.
184 */
185 rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n");
b6c6b602 186 writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control);
1da177e4
LT
187 break;
188 default:
3b8e3f1e 189 rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
1da177e4
LT
190 break;
191 }
1da177e4
LT
192 return;
193}
194
195/*
196** Load in the host boot code - load it directly onto all halted hosts
197** of the correct type.
198**
199** Put your rubber pants on before messing with this code - even the magic
200** numbers have trouble understanding what they are doing here.
201*/
b6c6b602
AC
202
203int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp)
1da177e4 204{
b6c6b602 205 struct Host *HostP;
d886cb58
AV
206 u8 __iomem *Cad;
207 PARM_MAP __iomem *ParmMapP;
b6c6b602 208 int RupN;
1da177e4 209 int PortN;
b6c6b602 210 unsigned int host;
d886cb58
AV
211 u8 __iomem *StartP;
212 u8 __iomem *DestP;
1da177e4 213 int wait_count;
b6c6b602
AC
214 u16 OldParmMap;
215 u16 offset; /* It is very important that this is a u16 */
216 u8 *DownCode = NULL;
1da177e4
LT
217 unsigned long flags;
218
3b8e3f1e 219 HostP = NULL; /* Assure the compiler we've initialized it */
b6c6b602
AC
220
221
222 /* Walk the hosts */
3b8e3f1e
AC
223 for (host = 0; host < p->RIONumHosts; host++) {
224 rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host);
1da177e4 225 HostP = &p->RIOHosts[host];
1da177e4 226
3b8e3f1e 227 rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
1da177e4 228
b6c6b602 229 /* Don't boot hosts already running */
3b8e3f1e
AC
230 if ((HostP->Flags & RUN_STATE) != RC_WAITING) {
231 rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host);
1da177e4
LT
232 continue;
233 }
234
235 /*
b6c6b602 236 ** Grab a pointer to the card (ioremapped)
3b8e3f1e 237 */
1da177e4
LT
238 Cad = HostP->Caddr;
239
240 /*
3b8e3f1e
AC
241 ** We are going to (try) and load in rbp->Count bytes.
242 ** The last byte will reside at p->RIOConf.HostLoadBase-1;
243 ** Therefore, we need to start copying at address
244 ** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
245 */
b6c6b602 246 StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count];
3b8e3f1e 247
b6c6b602
AC
248 rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad);
249 rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP);
3b8e3f1e
AC
250 rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
251 rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
252
b6c6b602 253 /* Make sure it fits */
3b8e3f1e
AC
254 if (p->RIOConf.HostLoadBase < rbp->Count) {
255 rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n");
1da177e4 256 p->RIOError.Error = HOST_FILE_TOO_LARGE;
3b8e3f1e 257 func_exit();
1da177e4
LT
258 return -EFBIG;
259 }
260 /*
3b8e3f1e
AC
261 ** Ensure that the host really is stopped.
262 ** Disable it's external bus & twang its reset line.
263 */
d886cb58 264 RIOHostReset(HostP->Type, HostP->CardP, HostP->Slot);
1da177e4
LT
265
266 /*
3b8e3f1e
AC
267 ** Copy the data directly from user space to the SRAM.
268 ** This ain't going to be none too clever if the download
269 ** code is bigger than this segment.
270 */
271 rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n");
1da177e4 272
b6c6b602
AC
273 /* Buffer to local memory as we want to use I/O space and
274 some cards only do 8 or 16 bit I/O */
1da177e4 275
b6c6b602
AC
276 DownCode = vmalloc(rbp->Count);
277 if (!DownCode) {
278 p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
279 func_exit();
280 return -ENOMEM;
281 }
c7c0d0a1 282 if (copy_from_user(DownCode, rbp->DataP, rbp->Count)) {
b6c6b602 283 kfree(DownCode);
1da177e4 284 p->RIOError.Error = COPYIN_FAILED;
3b8e3f1e 285 func_exit();
1da177e4
LT
286 return -EFAULT;
287 }
b6c6b602
AC
288 HostP->Copy(DownCode, StartP, rbp->Count);
289 vfree(DownCode);
1da177e4 290
3b8e3f1e 291 rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n");
1da177e4
LT
292
293 /*
3b8e3f1e
AC
294 ** S T O P !
295 **
296 ** Upto this point the code has been fairly rational, and possibly
297 ** even straight forward. What follows is a pile of crud that will
298 ** magically turn into six bytes of transputer assembler. Normally
299 ** you would expect an array or something, but, being me, I have
300 ** chosen [been told] to use a technique whereby the startup code
301 ** will be correct if we change the loadbase for the code. Which
302 ** brings us onto another issue - the loadbase is the *end* of the
303 ** code, not the start.
304 **
305 ** If I were you I wouldn't start from here.
306 */
1da177e4
LT
307
308 /*
3b8e3f1e
AC
309 ** We now need to insert a short boot section into
310 ** the memory at the end of Sram2. This is normally (de)composed
311 ** of the last eight bytes of the download code. The
312 ** download has been assembled/compiled to expect to be
313 ** loaded from 0x7FFF downwards. We have loaded it
314 ** at some other address. The startup code goes into the small
315 ** ram window at Sram2, in the last 8 bytes, which are really
316 ** at addresses 0x7FF8-0x7FFF.
317 **
318 ** If the loadbase is, say, 0x7C00, then we need to branch to
319 ** address 0x7BFE to run the host.bin startup code. We assemble
320 ** this jump manually.
321 **
322 ** The two byte sequence 60 08 is loaded into memory at address
323 ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
324 ** which adds '0' to the .O register, complements .O, and then shifts
325 ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
326 ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
327 ** location. Now, the branch starts from the value of .PC (or .IP or
328 ** whatever the bloody register is called on this chip), and the .PC
329 ** will be pointing to the location AFTER the branch, in this case
330 ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
331 **
332 ** A long branch is coded at 0x7FF8. This consists of loading a four
333 ** byte offset into .O using nfix (as above) and pfix operators. The
334 ** pfix operates in exactly the same way as the nfix operator, but
335 ** without the complement operation. The offset, of course, must be
336 ** relative to the address of the byte AFTER the branch instruction,
337 ** which will be (urm) 0x7FFC, so, our final destination of the branch
338 ** (loadbase-2), has to be reached from here. Imagine that the loadbase
339 ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
340 ** is the first byte of the initial two byte short local branch of the
341 ** download code).
342 **
343 ** To code a jump from 0x7FFC (which is where the branch will start
344 ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
345 ** 0x7BFE.
346 ** This will be coded as four bytes:
347 ** 60 2C 20 02
348 ** being nfix .O+0
349 ** pfix .O+C
350 ** pfix .O+0
351 ** jump .O+2
352 **
353 ** The nfix operator is used, so that the startup code will be
354 ** compatible with the whole Tp family. (lies, damn lies, it'll never
355 ** work in a month of Sundays).
356 **
357 ** The nfix nyble is the 1s complement of the nyble value you
358 ** want to load - in this case we wanted 'F' so we nfix loaded '0'.
359 */
1da177e4
LT
360
361
362 /*
3b8e3f1e
AC
363 ** Dest points to the top 8 bytes of Sram2. The Tp jumps
364 ** to 0x7FFE at reset time, and starts executing. This is
365 ** a short branch to 0x7FF8, where a long branch is coded.
366 */
1da177e4 367
d886cb58 368 DestP = &Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */
1da177e4
LT
369
370#define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */
371#define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */
3b8e3f1e 372#define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */
1da177e4
LT
373
374 /*
3b8e3f1e
AC
375 ** 0x7FFC is the address of the location following the last byte of
376 ** the four byte jump instruction.
377 ** READ THE ABOVE COMMENTS
378 **
379 ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
380 ** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
381 ** cos I don't understand 2's complement).
382 */
383 offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC;
3b8e3f1e 384
554b7c80 385 writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP);
b6c6b602
AC
386 writeb(PFIX((offset >> 8) & 0xF), DestP + 1);
387 writeb(PFIX((offset >> 4) & 0xF), DestP + 2);
388 writeb(JUMP(offset & 0xF), DestP + 3);
389
390 writeb(NFIX(0), DestP + 6);
391 writeb(JUMP(8), DestP + 7);
3b8e3f1e
AC
392
393 rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
394 rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset);
1da177e4
LT
395
396 /*
3b8e3f1e
AC
397 ** Flag what is going on
398 */
1da177e4
LT
399 HostP->Flags &= ~RUN_STATE;
400 HostP->Flags |= RC_STARTUP;
401
402 /*
3b8e3f1e
AC
403 ** Grab a copy of the current ParmMap pointer, so we
404 ** can tell when it has changed.
405 */
b6c6b602 406 OldParmMap = readw(&HostP->__ParmMapR);
1da177e4 407
3b8e3f1e 408 rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap);
1da177e4
LT
409
410 /*
3b8e3f1e
AC
411 ** And start it running (I hope).
412 ** As there is nothing dodgy or obscure about the
413 ** above code, this is guaranteed to work every time.
414 */
415 rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
1da177e4
LT
416
417 rio_start_card_running(HostP);
418
3b8e3f1e 419 rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n");
1da177e4
LT
420
421 /*
3b8e3f1e
AC
422 ** Now, wait for upto five seconds for the Tp to setup the parmmap
423 ** pointer:
424 */
b6c6b602
AC
425 for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) {
426 rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR));
427 mdelay(100);
1da177e4
LT
428
429 }
430
431 /*
3b8e3f1e
AC
432 ** If the parmmap pointer is unchanged, then the host code
433 ** has crashed & burned in a really spectacular way
434 */
b6c6b602
AC
435 if (readw(&HostP->__ParmMapR) == OldParmMap) {
436 rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR));
3b8e3f1e
AC
437 rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
438 HostP->Flags &= ~RUN_STATE;
439 HostP->Flags |= RC_STUFFED;
d886cb58 440 RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
b6c6b602
AC
441 continue;
442 }
3b8e3f1e 443
b6c6b602 444 rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR));
1da177e4
LT
445
446 /*
3b8e3f1e
AC
447 ** Well, the board thought it was OK, and setup its parmmap
448 ** pointer. For the time being, we will pretend that this
449 ** board is running, and check out what the error flag says.
450 */
1da177e4
LT
451
452 /*
3b8e3f1e
AC
453 ** Grab a 32 bit pointer to the parmmap structure
454 */
d886cb58 455 ParmMapP = (PARM_MAP __iomem *) RIO_PTR(Cad, readw(&HostP->__ParmMapR));
b6c6b602 456 rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
d886cb58 457 ParmMapP = (PARM_MAP __iomem *)(Cad + readw(&HostP->__ParmMapR));
b6c6b602 458 rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
1da177e4
LT
459
460 /*
3b8e3f1e
AC
461 ** The links entry should be 0xFFFF; we set it up
462 ** with a mask to say how many PHBs to use, and
463 ** which links to use.
464 */
b6c6b602 465 if (readw(&ParmMapP->links) != 0xFFFF) {
3b8e3f1e 466 rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
b6c6b602 467 rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links));
3b8e3f1e
AC
468 HostP->Flags &= ~RUN_STATE;
469 HostP->Flags |= RC_STUFFED;
d886cb58 470 RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
b6c6b602
AC
471 continue;
472 }
3b8e3f1e 473
b6c6b602 474 writew(RIO_LINK_ENABLE, &ParmMapP->links);
1da177e4
LT
475
476 /*
3b8e3f1e
AC
477 ** now wait for the card to set all the parmmap->XXX stuff
478 ** this is a wait of upto two seconds....
479 */
480 rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime);
1da177e4 481 HostP->timeout_id = 0;
b6c6b602 482 for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) {
3b8e3f1e 483 rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n");
b6c6b602 484 mdelay(100);
1da177e4 485 }
3b8e3f1e 486 rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n");
1da177e4 487
b6c6b602 488 if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) {
3b8e3f1e
AC
489 rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
490 rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
491 HostP->Flags &= ~RUN_STATE;
492 HostP->Flags |= RC_STUFFED;
d886cb58 493 RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
b6c6b602
AC
494 continue;
495 }
1da177e4 496
3b8e3f1e 497 rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n");
1da177e4
LT
498
499 /*
3b8e3f1e
AC
500 ** It runs! It runs!
501 */
502 rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum);
1da177e4
LT
503
504 /*
3b8e3f1e
AC
505 ** set the time period between interrupts.
506 */
b6c6b602 507 writew(p->RIOConf.Timer, &ParmMapP->timer);
1da177e4
LT
508
509 /*
3b8e3f1e 510 ** Translate all the 16 bit pointers in the __ParmMapR into
b6c6b602 511 ** 32 bit pointers for the driver in ioremap space.
3b8e3f1e
AC
512 */
513 HostP->ParmMapP = ParmMapP;
d886cb58
AV
514 HostP->PhbP = (struct PHB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr));
515 HostP->RupP = (struct RUP __iomem *) RIO_PTR(Cad, readw(&ParmMapP->rups));
516 HostP->PhbNumP = (unsigned short __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr));
517 HostP->LinkStrP = (struct LPB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr));
1da177e4
LT
518
519 /*
3b8e3f1e
AC
520 ** point the UnixRups at the real Rups
521 */
522 for (RupN = 0; RupN < MAX_RUP; RupN++) {
523 HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
524 HostP->UnixRups[RupN].Id = RupN + 1;
1da177e4
LT
525 HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
526 spin_lock_init(&HostP->UnixRups[RupN].RupLock);
527 }
528
3b8e3f1e
AC
529 for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) {
530 HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
531 HostP->UnixRups[RupN + MAX_RUP].Id = 0;
532 HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT;
533 spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock);
1da177e4
LT
534 }
535
536 /*
3b8e3f1e
AC
537 ** point the PortP->Phbs at the real Phbs
538 */
539 for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) {
540 if (p->RIOPortp[PortN]->HostP == HostP) {
1da177e4 541 struct Port *PortP = p->RIOPortp[PortN];
d886cb58 542 struct PHB __iomem *PhbP;
1da177e4
LT
543 /* int oldspl; */
544
3b8e3f1e 545 if (!PortP->Mapped)
1da177e4
LT
546 continue;
547
548 PhbP = &HostP->PhbP[PortP->HostPort];
549 rio_spin_lock_irqsave(&PortP->portSem, flags);
550
551 PortP->PhbP = PhbP;
552
d886cb58
AV
553 PortP->TxAdd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_add));
554 PortP->TxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_start));
555 PortP->TxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_end));
556 PortP->RxRemove = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_remove));
557 PortP->RxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_start));
558 PortP->RxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_end));
1da177e4
LT
559
560 rio_spin_unlock_irqrestore(&PortP->portSem, flags);
561 /*
3b8e3f1e
AC
562 ** point the UnixRup at the base SysPort
563 */
564 if (!(PortN % PORTS_PER_RTA))
1da177e4
LT
565 HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
566 }
567 }
568
3b8e3f1e 569 rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n");
1da177e4 570 /*
3b8e3f1e
AC
571 ** last thing - show the world that everything is in place
572 */
1da177e4
LT
573 HostP->Flags &= ~RUN_STATE;
574 HostP->Flags |= RC_RUNNING;
575 }
576 /*
3b8e3f1e
AC
577 ** MPX always uses a poller. This is actually patched into the system
578 ** configuration and called directly from each clock tick.
579 **
580 */
1da177e4
LT
581 p->RIOPolling = 1;
582
583 p->RIOSystemUp++;
3b8e3f1e
AC
584
585 rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
586 func_exit();
1da177e4
LT
587 return 0;
588}
589
590
591
b6c6b602
AC
592/**
593 * RIOBootRup - Boot an RTA
594 * @p: rio we are working with
595 * @Rup: Rup number
596 * @HostP: host object
597 * @PacketP: packet to use
598 *
599 * If we have successfully processed this boot, then
600 * return 1. If we havent, then return 0.
601 */
602
d886cb58 603int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem *PacketP)
1da177e4 604{
d886cb58 605 struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data;
1da177e4
LT
606 struct PktCmd_M *PktReplyP;
607 struct CmdBlk *CmdBlkP;
b6c6b602 608 unsigned int sequence;
1da177e4 609
1da177e4 610 /*
3b8e3f1e
AC
611 ** If we haven't been told what to boot, we can't boot it.
612 */
613 if (p->RIONumBootPkts == 0) {
614 rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n");
1da177e4
LT
615 return 0;
616 }
617
1da177e4 618 /*
3b8e3f1e
AC
619 ** Special case of boot completed - if we get one of these then we
620 ** don't need a command block. For all other cases we do, so handle
621 ** this first and then get a command block, then handle every other
622 ** case, relinquishing the command block if disaster strikes!
623 */
b6c6b602 624 if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED))
3b8e3f1e 625 return RIOBootComplete(p, HostP, Rup, PktCmdP);
1da177e4
LT
626
627 /*
b6c6b602 628 ** Try to allocate a command block. This is in kernel space
3b8e3f1e
AC
629 */
630 if (!(CmdBlkP = RIOGetCmdBlk())) {
631 rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
1da177e4
LT
632 return 0;
633 }
634
635 /*
3b8e3f1e
AC
636 ** Fill in the default info on the command block
637 */
554b7c80 638 CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0;
1da177e4 639 CmdBlkP->Packet.dest_port = BOOT_RUP;
3b8e3f1e
AC
640 CmdBlkP->Packet.src_unit = 0;
641 CmdBlkP->Packet.src_port = BOOT_RUP;
1da177e4
LT
642
643 CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
3b8e3f1e 644 PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;
1da177e4
LT
645
646 /*
3b8e3f1e
AC
647 ** process COMMANDS on the boot rup!
648 */
b6c6b602 649 if (readb(&PacketP->len) & PKT_CMD_BIT) {
1da177e4 650 /*
3b8e3f1e
AC
651 ** We only expect one type of command - a BOOT_REQUEST!
652 */
b6c6b602
AC
653 if (readb(&PktCmdP->Command) != BOOT_REQUEST) {
654 rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts);
3b8e3f1e 655 RIOFreeCmdBlk(CmdBlkP);
1da177e4
LT
656 return 1;
657 }
658
659 /*
3b8e3f1e
AC
660 ** Build a Boot Sequence command block
661 **
3b8e3f1e
AC
662 ** We no longer need to use "Boot Mode", we'll always allow
663 ** boot requests - the boot will not complete if the device
664 ** appears in the bindings table.
3b8e3f1e
AC
665 **
666 ** We'll just (always) set the command field in packet reply
667 ** to allow an attempted boot sequence :
668 */
1da177e4
LT
669 PktReplyP->Command = BOOT_SEQUENCE;
670
671 PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
3b8e3f1e
AC
672 PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
673 PktReplyP->BootSequence.CodeSize = p->RIOBootCount;
1da177e4 674
3b8e3f1e 675 CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
1da177e4 676
b6c6b602 677 memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4);
1da177e4 678
b6c6b602 679 rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase);
1da177e4
LT
680
681 /*
3b8e3f1e
AC
682 ** If this host is in slave mode, send the RTA an invalid boot
683 ** sequence command block to force it to kill the boot. We wait
684 ** for half a second before sending this packet to prevent the RTA
685 ** attempting to boot too often. The master host should then grab
686 ** the RTA and make it its own.
687 */
1da177e4 688 p->RIOBooting++;
3b8e3f1e 689 RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
1da177e4
LT
690 return 1;
691 }
692
693 /*
3b8e3f1e
AC
694 ** It is a request for boot data.
695 */
b6c6b602 696 sequence = readw(&PktCmdP->Sequence);
1da177e4 697
b6c6b602 698 rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup);
1da177e4 699
3b8e3f1e
AC
700 if (sequence >= p->RIONumBootPkts) {
701 rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts);
1da177e4
LT
702 }
703
704 PktReplyP->Sequence = sequence;
b6c6b602 705 memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE);
1da177e4 706 CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
3b8e3f1e 707 RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
1da177e4
LT
708 return 1;
709}
710
b6c6b602
AC
711/**
712 * RIOBootComplete - RTA boot is done
713 * @p: RIO we are working with
714 * @HostP: Host structure
715 * @Rup: RUP being used
716 * @PktCmdP: Packet command that was used
717 *
718 * This function is called when an RTA been booted.
719 * If booted by a host, HostP->HostUniqueNum is the booting host.
720 * If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
721 * RtaUniq is the booted RTA.
722 */
723
d886cb58 724static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP)
1da177e4 725{
3b8e3f1e
AC
726 struct Map *MapP = NULL;
727 struct Map *MapP2 = NULL;
728 int Flag;
729 int found;
730 int host, rta;
731 int EmptySlot = -1;
732 int entry, entry2;
733 char *MyType, *MyName;
b6c6b602
AC
734 unsigned int MyLink;
735 unsigned short RtaType;
736 u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24);
1da177e4 737
1da177e4
LT
738 p->RIOBooting = 0;
739
3b8e3f1e 740 rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
1da177e4
LT
741
742 /*
3b8e3f1e
AC
743 ** Determine type of unit (16/8 port RTA).
744 */
b6c6b602 745
1da177e4 746 RtaType = GetUnitType(RtaUniq);
554b7c80 747 if (Rup >= (unsigned short) MAX_RUP)
b6c6b602
AC
748 rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
749 else
750 rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
1da177e4 751
3b8e3f1e 752 rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq);
1da177e4 753
b6c6b602 754 if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) {
3b8e3f1e 755 rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
554b7c80 756 return 1;
1da177e4
LT
757 }
758
759 /*
3b8e3f1e
AC
760 ** If this RTA has just booted an RTA which doesn't belong to this
761 ** system, or the system is in slave mode, do not attempt to create
762 ** a new table entry for it.
763 */
b6c6b602 764
3b8e3f1e 765 if (!RIOBootOk(p, HostP, RtaUniq)) {
b6c6b602
AC
766 MyLink = readb(&PktCmdP->LinkNum);
767 if (Rup < (unsigned short) MAX_RUP) {
3b8e3f1e
AC
768 /*
769 ** RtaUniq was clone booted (by this RTA). Instruct this RTA
770 ** to hold off further attempts to boot on this link for 30
771 ** seconds.
772 */
773 if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) {
774 rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink);
775 }
b6c6b602 776 } else
3b8e3f1e
AC
777 /*
778 ** RtaUniq was booted by this host. Set the booting link
779 ** to hold off for 30 seconds to give another unit a
780 ** chance to boot it.
781 */
b6c6b602 782 writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot);
3b8e3f1e 783 rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
554b7c80 784 return 1;
1da177e4
LT
785 }
786
787 /*
3b8e3f1e
AC
788 ** Check for a SLOT_IN_USE entry for this RTA attached to the
789 ** current host card in the driver table.
790 **
791 ** If it exists, make a note that we have booted it. Other parts of
792 ** the driver are interested in this information at a later date,
793 ** in particular when the booting RTA asks for an ID for this unit,
794 ** we must have set the BOOTED flag, and the NEWBOOT flag is used
795 ** to force an open on any ports that where previously open on this
796 ** unit.
797 */
798 for (entry = 0; entry < MAX_RUP; entry++) {
b6c6b602 799 unsigned int sysport;
3b8e3f1e
AC
800
801 if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
802 HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT;
3b8e3f1e
AC
803 if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) {
804 if (sysport < p->RIOFirstPortsBooted)
805 p->RIOFirstPortsBooted = sysport;
806 if (sysport > p->RIOLastPortsBooted)
807 p->RIOLastPortsBooted = sysport;
808 /*
809 ** For a 16 port RTA, check the second bank of 8 ports
810 */
811 if (RtaType == TYPE_RTA16) {
812 entry2 = HostP->Mapping[entry].ID2 - 1;
813 HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT;
3b8e3f1e
AC
814 sysport = HostP->Mapping[entry2].SysPort;
815 if (sysport < p->RIOFirstPortsBooted)
816 p->RIOFirstPortsBooted = sysport;
817 if (sysport > p->RIOLastPortsBooted)
818 p->RIOLastPortsBooted = sysport;
819 }
820 }
b6c6b602 821 if (RtaType == TYPE_RTA16)
3b8e3f1e 822 rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1);
b6c6b602 823 else
3b8e3f1e 824 rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1);
554b7c80 825 return 1;
1da177e4 826 }
1da177e4
LT
827 }
828
3b8e3f1e 829 rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n");
1da177e4 830
b6c6b602 831 if (Rup >= (unsigned short) MAX_RUP) {
3b8e3f1e
AC
832 /*
833 ** It was a host that did the booting
834 */
835 MyType = "Host";
836 MyName = HostP->Name;
837 } else {
838 /*
839 ** It was an RTA that did the booting
840 */
841 MyType = "RTA";
842 MyName = HostP->Mapping[Rup].Name;
1da177e4 843 }
b6c6b602 844 MyLink = readb(&PktCmdP->LinkNum);
1da177e4
LT
845
846 /*
3b8e3f1e
AC
847 ** There is no SLOT_IN_USE entry for this RTA attached to the current
848 ** host card in the driver table.
849 **
850 ** Check for a SLOT_TENTATIVE entry for this RTA attached to the
851 ** current host card in the driver table.
852 **
853 ** If we find one, then we re-use that slot.
854 */
855 for (entry = 0; entry < MAX_RUP; entry++) {
856 if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
857 if (RtaType == TYPE_RTA16) {
858 entry2 = HostP->Mapping[entry].ID2 - 1;
859 if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq))
860 rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2);
861 else
862 continue;
863 } else
864 rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry);
865 if (!p->RIONoMessage)
b6c6b602 866 printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
554b7c80 867 return 1;
1da177e4 868 }
1da177e4
LT
869 }
870
871 /*
3b8e3f1e
AC
872 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
873 ** attached to the current host card in the driver table.
874 **
875 ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
876 ** host for this RTA in the driver table.
877 **
878 ** For a SLOT_IN_USE entry on another host, we need to delete the RTA
879 ** entry from the other host and add it to this host (using some of
880 ** the functions from table.c which do this).
881 ** For a SLOT_TENTATIVE entry on another host, we must cope with the
882 ** following scenario:
883 **
884 ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
885 ** in table)
886 ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
887 ** entries)
888 ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
889 ** + Unplug RTA and plug back into host A.
890 ** + Configure RTA on host A. We now have the same RTA configured
891 ** with different ports on two different hosts.
892 */
893 rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq);
1da177e4 894 found = 0;
3b8e3f1e
AC
895 Flag = 0; /* Convince the compiler this variable is initialized */
896 for (host = 0; !found && (host < p->RIONumHosts); host++) {
897 for (rta = 0; rta < MAX_RUP; rta++) {
898 if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) {
899 Flag = p->RIOHosts[host].Mapping[rta].Flags;
900 MapP = &p->RIOHosts[host].Mapping[rta];
901 if (RtaType == TYPE_RTA16) {
902 MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
903 rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name);
904 } else
905 rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name);
906 found = 1;
907 break;
908 }
1da177e4 909 }
1da177e4
LT
910 }
911
912 /*
3b8e3f1e
AC
913 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
914 ** attached to the current host card in the driver table.
915 **
916 ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
917 ** another host for this RTA in the driver table...
918 **
919 ** Check for a SLOT_IN_USE entry for this RTA in the config table.
920 */
921 if (!MapP) {
922 rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq);
923 for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) {
924 rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum);
925
926 if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) {
927 MapP = &p->RIOSavedTable[rta];
928 Flag = p->RIOSavedTable[rta].Flags;
929 if (RtaType == TYPE_RTA16) {
930 for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) {
931 if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
932 break;
933 }
934 MapP2 = &p->RIOSavedTable[entry2];
935 rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2);
936 } else
937 rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
938 break;
939 }
1da177e4 940 }
1da177e4
LT
941 }
942
943 /*
3b8e3f1e
AC
944 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
945 ** attached to the current host card in the driver table.
946 **
947 ** We may have found a SLOT_IN_USE entry on another host for this
948 ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
949 ** on another host for this RTA in the driver table.
950 **
951 ** Check the driver table for room to fit this newly discovered RTA.
952 ** RIOFindFreeID() first looks for free slots and if it does not
953 ** find any free slots it will then attempt to oust any
954 ** tentative entry in the table.
955 */
1da177e4 956 EmptySlot = 1;
3b8e3f1e
AC
957 if (RtaType == TYPE_RTA16) {
958 if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) {
959 RIODefaultName(p, HostP, entry);
554b7c80 960 rio_fill_host_slot(entry, entry2, RtaUniq, HostP);
3b8e3f1e
AC
961 EmptySlot = 0;
962 }
963 } else {
964 if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) {
965 RIODefaultName(p, HostP, entry);
554b7c80 966 rio_fill_host_slot(entry, 0, RtaUniq, HostP);
3b8e3f1e
AC
967 EmptySlot = 0;
968 }
1da177e4
LT
969 }
970
971 /*
3b8e3f1e
AC
972 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
973 ** attached to the current host card in the driver table.
974 **
975 ** If we found a SLOT_IN_USE entry on another host for this
976 ** RTA in the config or driver table, and there are enough free
977 ** slots in the driver table, then we need to move it over and
978 ** delete it from the other host.
979 ** If we found a SLOT_TENTATIVE entry on another host for this
980 ** RTA in the driver table, just delete the other host entry.
981 */
982 if (EmptySlot == 0) {
983 if (MapP) {
984 if (Flag & SLOT_IN_USE) {
985 rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n");
986 HostP->Mapping[entry].SysPort = MapP->SysPort;
b6c6b602 987 memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN);
3b8e3f1e 988 HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
3b8e3f1e
AC
989 RIOReMapPorts(p, HostP, &HostP->Mapping[entry]);
990 if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted)
991 p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
992 if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted)
993 p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
994 rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name);
995 } else {
996 rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n");
997 HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
3b8e3f1e
AC
998 }
999 if (RtaType == TYPE_RTA16) {
1000 if (Flag & SLOT_IN_USE) {
1001 HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
3b8e3f1e
AC
1002 HostP->Mapping[entry2].SysPort = MapP2->SysPort;
1003 /*
1004 ** Map second block of ttys for 16 port RTA
1005 */
1006 RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]);
1007 if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
1008 p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
1009 if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
1010 p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
1011 rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name);
1012 } else
1013 HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
b6c6b602 1014 memset(MapP2, 0, sizeof(struct Map));
3b8e3f1e 1015 }
b6c6b602 1016 memset(MapP, 0, sizeof(struct Map));
3b8e3f1e 1017 if (!p->RIONoMessage)
b6c6b602 1018 printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A');
3b8e3f1e 1019 } else if (!p->RIONoMessage)
b6c6b602 1020 printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
3b8e3f1e 1021 RIOSetChange(p);
554b7c80 1022 return 1;
1da177e4
LT
1023 }
1024
1025 /*
3b8e3f1e
AC
1026 ** There is no room in the driver table to make an entry for the
1027 ** booted RTA. Keep a note of its Uniq Num in the overflow table,
1028 ** so we can ignore it's ID requests.
1029 */
1030 if (!p->RIONoMessage)
b6c6b602 1031 printk("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A');
3b8e3f1e
AC
1032 for (entry = 0; entry < HostP->NumExtraBooted; entry++) {
1033 if (HostP->ExtraUnits[entry] == RtaUniq) {
1034 /*
1035 ** already got it!
1036 */
554b7c80 1037 return 1;
3b8e3f1e 1038 }
1da177e4
LT
1039 }
1040 /*
3b8e3f1e
AC
1041 ** If there is room, add the unit to the list of extras
1042 */
1043 if (HostP->NumExtraBooted < MAX_EXTRA_UNITS)
1044 HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
554b7c80 1045 return 1;
1da177e4
LT
1046}
1047
1048
1049/*
1050** If the RTA or its host appears in the RIOBindTab[] structure then
554b7c80 1051** we mustn't boot the RTA and should return 0.
1da177e4
LT
1052** This operation is slightly different from the other drivers for RIO
1053** in that this is designed to work with the new utilities
1054** not config.rio and is FAR SIMPLER.
1055** We no longer support the RIOBootMode variable. It is all done from the
1056** "boot/noboot" field in the rio.cf file.
1057*/
b6c6b602 1058int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq)
1da177e4 1059{
3b8e3f1e 1060 int Entry;
b6c6b602 1061 unsigned int HostUniq = HostP->UniqueNum;
1da177e4
LT
1062
1063 /*
3b8e3f1e
AC
1064 ** Search bindings table for RTA or its parent.
1065 ** If it exists, return 0, else 1.
1066 */
1067 for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) {
1068 if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq))
1da177e4
LT
1069 return 0;
1070 }
1071 return 1;
1072}
1073
1074/*
1075** Make an empty slot tentative. If this is a 16 port RTA, make both
1076** slots tentative, and the second one RTA_SECOND_SLOT as well.
1077*/
1078
554b7c80 1079void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host)
1da177e4 1080{
3b8e3f1e 1081 int link;
1da177e4 1082
554b7c80 1083 rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq);
1da177e4 1084
554b7c80
AC
1085 host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
1086 host->Mapping[entry].SysPort = NO_PORT;
1087 host->Mapping[entry].RtaUniqueNum = rta_uniq;
1088 host->Mapping[entry].HostUniqueNum = host->UniqueNum;
1089 host->Mapping[entry].ID = entry + 1;
1090 host->Mapping[entry].ID2 = 0;
1da177e4 1091 if (entry2) {
554b7c80
AC
1092 host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT);
1093 host->Mapping[entry2].SysPort = NO_PORT;
1094 host->Mapping[entry2].RtaUniqueNum = rta_uniq;
1095 host->Mapping[entry2].HostUniqueNum = host->UniqueNum;
1096 host->Mapping[entry2].Name[0] = '\0';
1097 host->Mapping[entry2].ID = entry2 + 1;
1098 host->Mapping[entry2].ID2 = entry + 1;
1099 host->Mapping[entry].ID2 = entry2 + 1;
1da177e4
LT
1100 }
1101 /*
3b8e3f1e
AC
1102 ** Must set these up, so that utilities show
1103 ** topology of 16 port RTAs correctly
1104 */
1105 for (link = 0; link < LINKS_PER_UNIT; link++) {
554b7c80
AC
1106 host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
1107 host->Mapping[entry].Topology[link].Link = NO_LINK;
1da177e4 1108 if (entry2) {
554b7c80
AC
1109 host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
1110 host->Mapping[entry2].Topology[link].Link = NO_LINK;
1da177e4
LT
1111 }
1112 }
1113}