random: convert DEBUG_ENT to tracepoints
[linux-block.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4
LT
252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
5b739ef8 255#include <linux/fips.h>
775f4b29 256#include <linux/ptrace.h>
e6d4947b 257#include <linux/kmemcheck.h>
6265e169 258#include <linux/workqueue.h>
1da177e4 259
d178a1eb
YL
260#ifdef CONFIG_GENERIC_HARDIRQS
261# include <linux/irq.h>
262#endif
263
1da177e4
LT
264#include <asm/processor.h>
265#include <asm/uaccess.h>
266#include <asm/irq.h>
775f4b29 267#include <asm/irq_regs.h>
1da177e4
LT
268#include <asm/io.h>
269
00ce1db1
TT
270#define CREATE_TRACE_POINTS
271#include <trace/events/random.h>
272
1da177e4
LT
273/*
274 * Configuration information
275 */
30e37ec5
PA
276#define INPUT_POOL_SHIFT 12
277#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
278#define OUTPUT_POOL_SHIFT 10
279#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
280#define SEC_XFER_SIZE 512
281#define EXTRACT_SIZE 10
1da177e4 282
d2e7c96a
PA
283#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
284
a283b5c4 285/*
95b709b6
TT
286 * To allow fractional bits to be tracked, the entropy_count field is
287 * denominated in units of 1/8th bits.
30e37ec5
PA
288 *
289 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
290 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
291 */
292#define ENTROPY_SHIFT 3
293#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
294
1da177e4
LT
295/*
296 * The minimum number of bits of entropy before we wake up a read on
297 * /dev/random. Should be enough to do a significant reseed.
298 */
299static int random_read_wakeup_thresh = 64;
300
301/*
302 * If the entropy count falls under this number of bits, then we
303 * should wake up processes which are selecting or polling on write
304 * access to /dev/random.
305 */
6265e169 306static int random_write_wakeup_thresh = 28 * OUTPUT_POOL_WORDS;
1da177e4 307
f5c2742c
TT
308/*
309 * The minimum number of seconds between urandom pool resending. We
310 * do this to limit the amount of entropy that can be drained from the
311 * input pool even if there are heavy demands on /dev/urandom.
312 */
313static int random_min_urandom_seed = 60;
314
1da177e4 315/*
6e9fa2c8
TT
316 * Originally, we used a primitive polynomial of degree .poolwords
317 * over GF(2). The taps for various sizes are defined below. They
318 * were chosen to be evenly spaced except for the last tap, which is 1
319 * to get the twisting happening as fast as possible.
320 *
321 * For the purposes of better mixing, we use the CRC-32 polynomial as
322 * well to make a (modified) twisted Generalized Feedback Shift
323 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
324 * generators. ACM Transactions on Modeling and Computer Simulation
325 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
326 * GFSR generators II. ACM Transactions on Mdeling and Computer
327 * Simulation 4:254-266)
328 *
329 * Thanks to Colin Plumb for suggesting this.
330 *
331 * The mixing operation is much less sensitive than the output hash,
332 * where we use SHA-1. All that we want of mixing operation is that
333 * it be a good non-cryptographic hash; i.e. it not produce collisions
334 * when fed "random" data of the sort we expect to see. As long as
335 * the pool state differs for different inputs, we have preserved the
336 * input entropy and done a good job. The fact that an intelligent
337 * attacker can construct inputs that will produce controlled
338 * alterations to the pool's state is not important because we don't
339 * consider such inputs to contribute any randomness. The only
340 * property we need with respect to them is that the attacker can't
341 * increase his/her knowledge of the pool's state. Since all
342 * additions are reversible (knowing the final state and the input,
343 * you can reconstruct the initial state), if an attacker has any
344 * uncertainty about the initial state, he/she can only shuffle that
345 * uncertainty about, but never cause any collisions (which would
346 * decrease the uncertainty).
347 *
348 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
349 * Videau in their paper, "The Linux Pseudorandom Number Generator
350 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
351 * paper, they point out that we are not using a true Twisted GFSR,
352 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
353 * is, with only three taps, instead of the six that we are using).
354 * As a result, the resulting polynomial is neither primitive nor
355 * irreducible, and hence does not have a maximal period over
356 * GF(2**32). They suggest a slight change to the generator
357 * polynomial which improves the resulting TGFSR polynomial to be
358 * irreducible, which we have made here.
1da177e4
LT
359 */
360static struct poolinfo {
a283b5c4
PA
361 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
362#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
363 int tap1, tap2, tap3, tap4, tap5;
364} poolinfo_table[] = {
6e9fa2c8
TT
365 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
366 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
367 { S(128), 104, 76, 51, 25, 1 },
368 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
369 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
370 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
371#if 0
372 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 373 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
374
375 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 376 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
377
378 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 379 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
380
381 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 382 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
383
384 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 385 { S(512), 409, 307, 206, 102, 2 },
1da177e4 386 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 387 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
388
389 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 390 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
391
392 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 393 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
394
395 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 396 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
397#endif
398};
399
1da177e4
LT
400/*
401 * Static global variables
402 */
403static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
404static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 405static struct fasync_struct *fasync;
1da177e4 406
1da177e4
LT
407/**********************************************************************
408 *
409 * OS independent entropy store. Here are the functions which handle
410 * storing entropy in an entropy pool.
411 *
412 **********************************************************************/
413
414struct entropy_store;
415struct entropy_store {
43358209 416 /* read-only data: */
30e37ec5 417 const struct poolinfo *poolinfo;
1da177e4
LT
418 __u32 *pool;
419 const char *name;
1da177e4 420 struct entropy_store *pull;
6265e169 421 struct work_struct push_work;
1da177e4
LT
422
423 /* read-write data: */
f5c2742c 424 unsigned long last_pulled;
43358209 425 spinlock_t lock;
c59974ae
TT
426 unsigned short add_ptr;
427 unsigned short input_rotate;
cda796a3 428 int entropy_count;
775f4b29 429 int entropy_total;
775f4b29 430 unsigned int initialized:1;
c59974ae
TT
431 unsigned int limit:1;
432 unsigned int last_data_init:1;
e954bc91 433 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
434};
435
6265e169 436static void push_to_pool(struct work_struct *work);
1da177e4
LT
437static __u32 input_pool_data[INPUT_POOL_WORDS];
438static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
439static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
440
441static struct entropy_store input_pool = {
442 .poolinfo = &poolinfo_table[0],
443 .name = "input",
444 .limit = 1,
eece09ec 445 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
446 .pool = input_pool_data
447};
448
449static struct entropy_store blocking_pool = {
450 .poolinfo = &poolinfo_table[1],
451 .name = "blocking",
452 .limit = 1,
453 .pull = &input_pool,
eece09ec 454 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
455 .pool = blocking_pool_data,
456 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
457 push_to_pool),
1da177e4
LT
458};
459
460static struct entropy_store nonblocking_pool = {
461 .poolinfo = &poolinfo_table[1],
462 .name = "nonblocking",
463 .pull = &input_pool,
eece09ec 464 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
6265e169
TT
465 .pool = nonblocking_pool_data,
466 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
467 push_to_pool),
1da177e4
LT
468};
469
775f4b29
TT
470static __u32 const twist_table[8] = {
471 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
472 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
473
1da177e4 474/*
e68e5b66 475 * This function adds bytes into the entropy "pool". It does not
1da177e4 476 * update the entropy estimate. The caller should call
adc782da 477 * credit_entropy_bits if this is appropriate.
1da177e4
LT
478 *
479 * The pool is stirred with a primitive polynomial of the appropriate
480 * degree, and then twisted. We twist by three bits at a time because
481 * it's cheap to do so and helps slightly in the expected case where
482 * the entropy is concentrated in the low-order bits.
483 */
00ce1db1
TT
484static void _mix_pool_bytes(struct entropy_store *r, const void *in,
485 int nbytes, __u8 out[64])
1da177e4 486{
993ba211 487 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
feee7697 488 int input_rotate;
1da177e4 489 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 490 const char *bytes = in;
6d38b827 491 __u32 w;
1da177e4 492
1da177e4
LT
493 tap1 = r->poolinfo->tap1;
494 tap2 = r->poolinfo->tap2;
495 tap3 = r->poolinfo->tap3;
496 tap4 = r->poolinfo->tap4;
497 tap5 = r->poolinfo->tap5;
1da177e4 498
902c098a
TT
499 smp_rmb();
500 input_rotate = ACCESS_ONCE(r->input_rotate);
501 i = ACCESS_ONCE(r->add_ptr);
1da177e4 502
e68e5b66
MM
503 /* mix one byte at a time to simplify size handling and churn faster */
504 while (nbytes--) {
c59974ae 505 w = rol32(*bytes++, input_rotate);
993ba211 506 i = (i - 1) & wordmask;
1da177e4
LT
507
508 /* XOR in the various taps */
993ba211 509 w ^= r->pool[i];
1da177e4
LT
510 w ^= r->pool[(i + tap1) & wordmask];
511 w ^= r->pool[(i + tap2) & wordmask];
512 w ^= r->pool[(i + tap3) & wordmask];
513 w ^= r->pool[(i + tap4) & wordmask];
514 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
515
516 /* Mix the result back in with a twist */
1da177e4 517 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
518
519 /*
520 * Normally, we add 7 bits of rotation to the pool.
521 * At the beginning of the pool, add an extra 7 bits
522 * rotation, so that successive passes spread the
523 * input bits across the pool evenly.
524 */
c59974ae 525 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
526 }
527
902c098a
TT
528 ACCESS_ONCE(r->input_rotate) = input_rotate;
529 ACCESS_ONCE(r->add_ptr) = i;
530 smp_wmb();
1da177e4 531
993ba211
MM
532 if (out)
533 for (j = 0; j < 16; j++)
e68e5b66 534 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
1da177e4
LT
535}
536
00ce1db1 537static void __mix_pool_bytes(struct entropy_store *r, const void *in,
902c098a 538 int nbytes, __u8 out[64])
00ce1db1
TT
539{
540 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
541 _mix_pool_bytes(r, in, nbytes, out);
542}
543
544static void mix_pool_bytes(struct entropy_store *r, const void *in,
545 int nbytes, __u8 out[64])
1da177e4 546{
902c098a
TT
547 unsigned long flags;
548
00ce1db1 549 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 550 spin_lock_irqsave(&r->lock, flags);
00ce1db1 551 _mix_pool_bytes(r, in, nbytes, out);
902c098a 552 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
553}
554
775f4b29
TT
555struct fast_pool {
556 __u32 pool[4];
557 unsigned long last;
558 unsigned short count;
559 unsigned char rotate;
560 unsigned char last_timer_intr;
561};
562
563/*
564 * This is a fast mixing routine used by the interrupt randomness
565 * collector. It's hardcoded for an 128 bit pool and assumes that any
566 * locks that might be needed are taken by the caller.
567 */
655b2264 568static void fast_mix(struct fast_pool *f, __u32 input[4])
775f4b29 569{
775f4b29 570 __u32 w;
775f4b29
TT
571 unsigned input_rotate = f->rotate;
572
655b2264
TT
573 w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
574 f->pool[0] = (w >> 3) ^ twist_table[w & 7];
575 input_rotate = (input_rotate + 14) & 31;
576 w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
577 f->pool[1] = (w >> 3) ^ twist_table[w & 7];
578 input_rotate = (input_rotate + 7) & 31;
579 w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
580 f->pool[2] = (w >> 3) ^ twist_table[w & 7];
581 input_rotate = (input_rotate + 7) & 31;
582 w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
583 f->pool[3] = (w >> 3) ^ twist_table[w & 7];
584 input_rotate = (input_rotate + 7) & 31;
585
775f4b29 586 f->rotate = input_rotate;
655b2264 587 f->count++;
775f4b29
TT
588}
589
1da177e4 590/*
a283b5c4
PA
591 * Credit (or debit) the entropy store with n bits of entropy.
592 * Use credit_entropy_bits_safe() if the value comes from userspace
593 * or otherwise should be checked for extreme values.
1da177e4 594 */
adc782da 595static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 596{
902c098a 597 int entropy_count, orig;
30e37ec5
PA
598 const int pool_size = r->poolinfo->poolfracbits;
599 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 600
adc782da
MM
601 if (!nbits)
602 return;
603
902c098a
TT
604retry:
605 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
606 if (nfrac < 0) {
607 /* Debit */
608 entropy_count += nfrac;
609 } else {
610 /*
611 * Credit: we have to account for the possibility of
612 * overwriting already present entropy. Even in the
613 * ideal case of pure Shannon entropy, new contributions
614 * approach the full value asymptotically:
615 *
616 * entropy <- entropy + (pool_size - entropy) *
617 * (1 - exp(-add_entropy/pool_size))
618 *
619 * For add_entropy <= pool_size/2 then
620 * (1 - exp(-add_entropy/pool_size)) >=
621 * (add_entropy/pool_size)*0.7869...
622 * so we can approximate the exponential with
623 * 3/4*add_entropy/pool_size and still be on the
624 * safe side by adding at most pool_size/2 at a time.
625 *
626 * The use of pool_size-2 in the while statement is to
627 * prevent rounding artifacts from making the loop
628 * arbitrarily long; this limits the loop to log2(pool_size)*2
629 * turns no matter how large nbits is.
630 */
631 int pnfrac = nfrac;
632 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
633 /* The +2 corresponds to the /4 in the denominator */
634
635 do {
636 unsigned int anfrac = min(pnfrac, pool_size/2);
637 unsigned int add =
638 ((pool_size - entropy_count)*anfrac*3) >> s;
639
640 entropy_count += add;
641 pnfrac -= anfrac;
642 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
643 }
00ce1db1 644
8b76f46a 645 if (entropy_count < 0) {
f80bbd8b
TT
646 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
647 r->name, entropy_count);
648 WARN_ON(1);
8b76f46a 649 entropy_count = 0;
30e37ec5
PA
650 } else if (entropy_count > pool_size)
651 entropy_count = pool_size;
902c098a
TT
652 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
653 goto retry;
1da177e4 654
6265e169 655 r->entropy_total += nbits;
775f4b29 656 if (!r->initialized && nbits > 0) {
6265e169 657 if (r->entropy_total > 128) {
775f4b29 658 r->initialized = 1;
6265e169
TT
659 r->entropy_total = 0;
660 }
775f4b29
TT
661 }
662
a283b5c4
PA
663 trace_credit_entropy_bits(r->name, nbits,
664 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
665 r->entropy_total, _RET_IP_);
666
6265e169
TT
667 if (r == &input_pool) {
668 int entropy_bytes = entropy_count >> ENTROPY_SHIFT;
669
670 /* should we wake readers? */
671 if (entropy_bytes >= random_read_wakeup_thresh) {
672 wake_up_interruptible(&random_read_wait);
673 kill_fasync(&fasync, SIGIO, POLL_IN);
674 }
675 /* If the input pool is getting full, send some
676 * entropy to the two output pools, flipping back and
677 * forth between them, until the output pools are 75%
678 * full.
679 */
680 if (entropy_bytes > random_write_wakeup_thresh &&
681 r->initialized &&
682 r->entropy_total >= 2*random_read_wakeup_thresh) {
683 static struct entropy_store *last = &blocking_pool;
684 struct entropy_store *other = &blocking_pool;
685
686 if (last == &blocking_pool)
687 other = &nonblocking_pool;
688 if (other->entropy_count <=
689 3 * other->poolinfo->poolfracbits / 4)
690 last = other;
691 if (last->entropy_count <=
692 3 * last->poolinfo->poolfracbits / 4) {
693 schedule_work(&last->push_work);
694 r->entropy_total = 0;
695 }
696 }
9a6f70bb 697 }
1da177e4
LT
698}
699
a283b5c4
PA
700static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
701{
702 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
703
704 /* Cap the value to avoid overflows */
705 nbits = min(nbits, nbits_max);
706 nbits = max(nbits, -nbits_max);
707
708 credit_entropy_bits(r, nbits);
709}
710
1da177e4
LT
711/*********************************************************************
712 *
713 * Entropy input management
714 *
715 *********************************************************************/
716
717/* There is one of these per entropy source */
718struct timer_rand_state {
719 cycles_t last_time;
90b75ee5 720 long last_delta, last_delta2;
1da177e4
LT
721 unsigned dont_count_entropy:1;
722};
723
a2080a67
LT
724/*
725 * Add device- or boot-specific data to the input and nonblocking
726 * pools to help initialize them to unique values.
727 *
728 * None of this adds any entropy, it is meant to avoid the
729 * problem of the nonblocking pool having similar initial state
730 * across largely identical devices.
731 */
732void add_device_randomness(const void *buf, unsigned int size)
733{
61875f30 734 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 735 unsigned long flags;
a2080a67 736
5910895f 737 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d
TT
738 spin_lock_irqsave(&input_pool.lock, flags);
739 _mix_pool_bytes(&input_pool, buf, size, NULL);
740 _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
741 spin_unlock_irqrestore(&input_pool.lock, flags);
742
743 spin_lock_irqsave(&nonblocking_pool.lock, flags);
744 _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
745 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
746 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
a2080a67
LT
747}
748EXPORT_SYMBOL(add_device_randomness);
749
3060d6fe
YL
750static struct timer_rand_state input_timer_state;
751
1da177e4
LT
752/*
753 * This function adds entropy to the entropy "pool" by using timing
754 * delays. It uses the timer_rand_state structure to make an estimate
755 * of how many bits of entropy this call has added to the pool.
756 *
757 * The number "num" is also added to the pool - it should somehow describe
758 * the type of event which just happened. This is currently 0-255 for
759 * keyboard scan codes, and 256 upwards for interrupts.
760 *
761 */
762static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
763{
764 struct {
1da177e4 765 long jiffies;
cf833d0b 766 unsigned cycles;
1da177e4
LT
767 unsigned num;
768 } sample;
769 long delta, delta2, delta3;
770
771 preempt_disable();
1da177e4
LT
772
773 sample.jiffies = jiffies;
61875f30 774 sample.cycles = random_get_entropy();
1da177e4 775 sample.num = num;
902c098a 776 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
1da177e4
LT
777
778 /*
779 * Calculate number of bits of randomness we probably added.
780 * We take into account the first, second and third-order deltas
781 * in order to make our estimate.
782 */
783
784 if (!state->dont_count_entropy) {
785 delta = sample.jiffies - state->last_time;
786 state->last_time = sample.jiffies;
787
788 delta2 = delta - state->last_delta;
789 state->last_delta = delta;
790
791 delta3 = delta2 - state->last_delta2;
792 state->last_delta2 = delta2;
793
794 if (delta < 0)
795 delta = -delta;
796 if (delta2 < 0)
797 delta2 = -delta2;
798 if (delta3 < 0)
799 delta3 = -delta3;
800 if (delta > delta2)
801 delta = delta2;
802 if (delta > delta3)
803 delta = delta3;
804
805 /*
806 * delta is now minimum absolute delta.
807 * Round down by 1 bit on general principles,
808 * and limit entropy entimate to 12 bits.
809 */
adc782da
MM
810 credit_entropy_bits(&input_pool,
811 min_t(int, fls(delta>>1), 11));
1da177e4 812 }
1da177e4
LT
813 preempt_enable();
814}
815
d251575a 816void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
817 unsigned int value)
818{
819 static unsigned char last_value;
820
821 /* ignore autorepeat and the like */
822 if (value == last_value)
823 return;
824
1da177e4
LT
825 last_value = value;
826 add_timer_randomness(&input_timer_state,
827 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 828 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 829}
80fc9f53 830EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 831
775f4b29
TT
832static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
833
834void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 835{
775f4b29
TT
836 struct entropy_store *r;
837 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
838 struct pt_regs *regs = get_irq_regs();
839 unsigned long now = jiffies;
655b2264
TT
840 cycles_t cycles = random_get_entropy();
841 __u32 input[4], c_high, j_high;
842 __u64 ip;
843
844 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
845 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
846 input[0] = cycles ^ j_high ^ irq;
847 input[1] = now ^ c_high;
848 ip = regs ? instruction_pointer(regs) : _RET_IP_;
849 input[2] = ip;
850 input[3] = ip >> 32;
3060d6fe 851
655b2264 852 fast_mix(fast_pool, input);
3060d6fe 853
655b2264 854 if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
1da177e4
LT
855 return;
856
775f4b29
TT
857 fast_pool->last = now;
858
859 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
902c098a 860 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
775f4b29
TT
861 /*
862 * If we don't have a valid cycle counter, and we see
863 * back-to-back timer interrupts, then skip giving credit for
864 * any entropy.
865 */
866 if (cycles == 0) {
867 if (irq_flags & __IRQF_TIMER) {
868 if (fast_pool->last_timer_intr)
869 return;
870 fast_pool->last_timer_intr = 1;
871 } else
872 fast_pool->last_timer_intr = 0;
873 }
874 credit_entropy_bits(r, 1);
1da177e4
LT
875}
876
9361401e 877#ifdef CONFIG_BLOCK
1da177e4
LT
878void add_disk_randomness(struct gendisk *disk)
879{
880 if (!disk || !disk->random)
881 return;
882 /* first major is 1, so we get >= 0x200 here */
f331c029 883 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 884 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 885}
9361401e 886#endif
1da177e4 887
1da177e4
LT
888/*********************************************************************
889 *
890 * Entropy extraction routines
891 *
892 *********************************************************************/
893
90b75ee5 894static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
895 size_t nbytes, int min, int rsvd);
896
897/*
25985edc 898 * This utility inline function is responsible for transferring entropy
1da177e4
LT
899 * from the primary pool to the secondary extraction pool. We make
900 * sure we pull enough for a 'catastrophic reseed'.
901 */
6265e169 902static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
903static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
904{
f5c2742c
TT
905 if (r->limit == 0 && random_min_urandom_seed) {
906 unsigned long now = jiffies;
907
908 if (time_before(now,
909 r->last_pulled + random_min_urandom_seed * HZ))
910 return;
911 r->last_pulled = now;
912 }
a283b5c4
PA
913 if (r->pull &&
914 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
6265e169
TT
915 r->entropy_count < r->poolinfo->poolfracbits)
916 _xfer_secondary_pool(r, nbytes);
917}
918
919static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
920{
921 __u32 tmp[OUTPUT_POOL_WORDS];
922
923 /* For /dev/random's pool, always leave two wakeup worth's BITS */
924 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
925 int bytes = nbytes;
926
927 /* pull at least as many as BYTES as wakeup BITS */
928 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
929 /* but never more than the buffer size */
930 bytes = min_t(int, bytes, sizeof(tmp));
931
f80bbd8b
TT
932 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
933 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169
TT
934 bytes = extract_entropy(r->pull, tmp, bytes,
935 random_read_wakeup_thresh / 8, rsvd);
936 mix_pool_bytes(r, tmp, bytes, NULL);
937 credit_entropy_bits(r, bytes*8);
938}
939
940/*
941 * Used as a workqueue function so that when the input pool is getting
942 * full, we can "spill over" some entropy to the output pools. That
943 * way the output pools can store some of the excess entropy instead
944 * of letting it go to waste.
945 */
946static void push_to_pool(struct work_struct *work)
947{
948 struct entropy_store *r = container_of(work, struct entropy_store,
949 push_work);
950 BUG_ON(!r);
951 _xfer_secondary_pool(r, random_read_wakeup_thresh/8);
952 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
953 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
954}
955
956/*
957 * These functions extracts randomness from the "entropy pool", and
958 * returns it in a buffer.
959 *
960 * The min parameter specifies the minimum amount we can pull before
961 * failing to avoid races that defeat catastrophic reseeding while the
962 * reserved parameter indicates how much entropy we must leave in the
963 * pool after each pull to avoid starving other readers.
964 *
965 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
966 */
967
968static size_t account(struct entropy_store *r, size_t nbytes, int min,
969 int reserved)
970{
971 unsigned long flags;
b9809552 972 int wakeup_write = 0;
a283b5c4
PA
973 int have_bytes;
974 int entropy_count, orig;
975 size_t ibytes;
1da177e4 976
1da177e4
LT
977 /* Hold lock while accounting */
978 spin_lock_irqsave(&r->lock, flags);
979
a283b5c4 980 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
981
982 /* Can we pull enough? */
10b3a32d 983retry:
a283b5c4
PA
984 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
985 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
986 ibytes = nbytes;
987 if (have_bytes < min + reserved) {
988 ibytes = 0;
989 } else {
1da177e4 990 /* If limited, never pull more than available */
a283b5c4
PA
991 if (r->limit && ibytes + reserved >= have_bytes)
992 ibytes = have_bytes - reserved;
993
994 if (have_bytes >= ibytes + reserved)
995 entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
996 else
997 entropy_count = reserved << (ENTROPY_SHIFT + 3);
10b3a32d 998
a283b5c4
PA
999 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1000 goto retry;
1001
1002 if ((r->entropy_count >> ENTROPY_SHIFT)
1003 < random_write_wakeup_thresh)
b9809552 1004 wakeup_write = 1;
1da177e4 1005 }
1da177e4
LT
1006 spin_unlock_irqrestore(&r->lock, flags);
1007
f80bbd8b 1008 trace_debit_entropy(r->name, 8 * ibytes);
b9809552
TT
1009 if (wakeup_write) {
1010 wake_up_interruptible(&random_write_wait);
1011 kill_fasync(&fasync, SIGIO, POLL_OUT);
1012 }
1013
a283b5c4 1014 return ibytes;
1da177e4
LT
1015}
1016
1017static void extract_buf(struct entropy_store *r, __u8 *out)
1018{
602b6aee 1019 int i;
d2e7c96a
PA
1020 union {
1021 __u32 w[5];
85a1f777 1022 unsigned long l[LONGS(20)];
d2e7c96a
PA
1023 } hash;
1024 __u32 workspace[SHA_WORKSPACE_WORDS];
e68e5b66 1025 __u8 extract[64];
902c098a 1026 unsigned long flags;
1da177e4 1027
1c0ad3d4 1028 /* Generate a hash across the pool, 16 words (512 bits) at a time */
d2e7c96a 1029 sha_init(hash.w);
902c098a 1030 spin_lock_irqsave(&r->lock, flags);
1c0ad3d4 1031 for (i = 0; i < r->poolinfo->poolwords; i += 16)
d2e7c96a 1032 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1c0ad3d4 1033
85a1f777
TT
1034 /*
1035 * If we have a architectural hardware random number
1036 * generator, mix that in, too.
1037 */
1038 for (i = 0; i < LONGS(20); i++) {
1039 unsigned long v;
1040 if (!arch_get_random_long(&v))
1041 break;
1042 hash.l[i] ^= v;
1043 }
1044
1da177e4 1045 /*
1c0ad3d4
MM
1046 * We mix the hash back into the pool to prevent backtracking
1047 * attacks (where the attacker knows the state of the pool
1048 * plus the current outputs, and attempts to find previous
1049 * ouputs), unless the hash function can be inverted. By
1050 * mixing at least a SHA1 worth of hash data back, we make
1051 * brute-forcing the feedback as hard as brute-forcing the
1052 * hash.
1da177e4 1053 */
d2e7c96a 1054 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
902c098a 1055 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
1056
1057 /*
1c0ad3d4
MM
1058 * To avoid duplicates, we atomically extract a portion of the
1059 * pool while mixing, and hash one final time.
1da177e4 1060 */
d2e7c96a 1061 sha_transform(hash.w, extract, workspace);
ffd8d3fa
MM
1062 memset(extract, 0, sizeof(extract));
1063 memset(workspace, 0, sizeof(workspace));
1da177e4
LT
1064
1065 /*
1c0ad3d4
MM
1066 * In case the hash function has some recognizable output
1067 * pattern, we fold it in half. Thus, we always feed back
1068 * twice as much data as we output.
1da177e4 1069 */
d2e7c96a
PA
1070 hash.w[0] ^= hash.w[3];
1071 hash.w[1] ^= hash.w[4];
1072 hash.w[2] ^= rol32(hash.w[2], 16);
1073
d2e7c96a
PA
1074 memcpy(out, &hash, EXTRACT_SIZE);
1075 memset(&hash, 0, sizeof(hash));
1da177e4
LT
1076}
1077
90b75ee5 1078static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1079 size_t nbytes, int min, int reserved)
1da177e4
LT
1080{
1081 ssize_t ret = 0, i;
1082 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1083 unsigned long flags;
1da177e4 1084
ec8f02da 1085 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1086 if (fips_enabled) {
1087 spin_lock_irqsave(&r->lock, flags);
1088 if (!r->last_data_init) {
c59974ae 1089 r->last_data_init = 1;
1e7e2e05
JW
1090 spin_unlock_irqrestore(&r->lock, flags);
1091 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1092 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1093 xfer_secondary_pool(r, EXTRACT_SIZE);
1094 extract_buf(r, tmp);
1095 spin_lock_irqsave(&r->lock, flags);
1096 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1097 }
1098 spin_unlock_irqrestore(&r->lock, flags);
1099 }
ec8f02da 1100
a283b5c4 1101 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1102 xfer_secondary_pool(r, nbytes);
1103 nbytes = account(r, nbytes, min, reserved);
1104
1105 while (nbytes) {
1106 extract_buf(r, tmp);
5b739ef8 1107
e954bc91 1108 if (fips_enabled) {
5b739ef8
NH
1109 spin_lock_irqsave(&r->lock, flags);
1110 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1111 panic("Hardware RNG duplicated output!\n");
1112 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1113 spin_unlock_irqrestore(&r->lock, flags);
1114 }
1da177e4
LT
1115 i = min_t(int, nbytes, EXTRACT_SIZE);
1116 memcpy(buf, tmp, i);
1117 nbytes -= i;
1118 buf += i;
1119 ret += i;
1120 }
1121
1122 /* Wipe data just returned from memory */
1123 memset(tmp, 0, sizeof(tmp));
1124
1125 return ret;
1126}
1127
1128static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1129 size_t nbytes)
1130{
1131 ssize_t ret = 0, i;
1132 __u8 tmp[EXTRACT_SIZE];
1133
a283b5c4 1134 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1135 xfer_secondary_pool(r, nbytes);
1136 nbytes = account(r, nbytes, 0, 0);
1137
1138 while (nbytes) {
1139 if (need_resched()) {
1140 if (signal_pending(current)) {
1141 if (ret == 0)
1142 ret = -ERESTARTSYS;
1143 break;
1144 }
1145 schedule();
1146 }
1147
1148 extract_buf(r, tmp);
1149 i = min_t(int, nbytes, EXTRACT_SIZE);
1150 if (copy_to_user(buf, tmp, i)) {
1151 ret = -EFAULT;
1152 break;
1153 }
1154
1155 nbytes -= i;
1156 buf += i;
1157 ret += i;
1158 }
1159
1160 /* Wipe data just returned from memory */
1161 memset(tmp, 0, sizeof(tmp));
1162
1163 return ret;
1164}
1165
1166/*
1167 * This function is the exported kernel interface. It returns some
c2557a30
TT
1168 * number of good random numbers, suitable for key generation, seeding
1169 * TCP sequence numbers, etc. It does not use the hw random number
1170 * generator, if available; use get_random_bytes_arch() for that.
1da177e4
LT
1171 */
1172void get_random_bytes(void *buf, int nbytes)
c2557a30 1173{
5910895f 1174 trace_get_random_bytes(nbytes, _RET_IP_);
c2557a30
TT
1175 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1176}
1177EXPORT_SYMBOL(get_random_bytes);
1178
1179/*
1180 * This function will use the architecture-specific hardware random
1181 * number generator if it is available. The arch-specific hw RNG will
1182 * almost certainly be faster than what we can do in software, but it
1183 * is impossible to verify that it is implemented securely (as
1184 * opposed, to, say, the AES encryption of a sequence number using a
1185 * key known by the NSA). So it's useful if we need the speed, but
1186 * only if we're willing to trust the hardware manufacturer not to
1187 * have put in a back door.
1188 */
1189void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1190{
63d77173
PA
1191 char *p = buf;
1192
5910895f 1193 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1194 while (nbytes) {
1195 unsigned long v;
1196 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1197
63d77173
PA
1198 if (!arch_get_random_long(&v))
1199 break;
1200
bd29e568 1201 memcpy(p, &v, chunk);
63d77173
PA
1202 p += chunk;
1203 nbytes -= chunk;
1204 }
1205
c2557a30
TT
1206 if (nbytes)
1207 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1da177e4 1208}
c2557a30
TT
1209EXPORT_SYMBOL(get_random_bytes_arch);
1210
1da177e4
LT
1211
1212/*
1213 * init_std_data - initialize pool with system data
1214 *
1215 * @r: pool to initialize
1216 *
1217 * This function clears the pool's entropy count and mixes some system
1218 * data into the pool to prepare it for use. The pool is not cleared
1219 * as that can only decrease the entropy in the pool.
1220 */
1221static void init_std_data(struct entropy_store *r)
1222{
3e88bdff 1223 int i;
902c098a
TT
1224 ktime_t now = ktime_get_real();
1225 unsigned long rv;
1da177e4 1226
1da177e4 1227 r->entropy_count = 0;
775f4b29 1228 r->entropy_total = 0;
c59974ae 1229 r->last_data_init = 0;
f5c2742c 1230 r->last_pulled = jiffies;
902c098a 1231 mix_pool_bytes(r, &now, sizeof(now), NULL);
9ed17b70 1232 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
902c098a 1233 if (!arch_get_random_long(&rv))
3e88bdff 1234 break;
902c098a 1235 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
3e88bdff 1236 }
902c098a 1237 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1da177e4
LT
1238}
1239
cbc96b75
TL
1240/*
1241 * Note that setup_arch() may call add_device_randomness()
1242 * long before we get here. This allows seeding of the pools
1243 * with some platform dependent data very early in the boot
1244 * process. But it limits our options here. We must use
1245 * statically allocated structures that already have all
1246 * initializations complete at compile time. We should also
1247 * take care not to overwrite the precious per platform data
1248 * we were given.
1249 */
53c3f63e 1250static int rand_initialize(void)
1da177e4
LT
1251{
1252 init_std_data(&input_pool);
1253 init_std_data(&blocking_pool);
1254 init_std_data(&nonblocking_pool);
1255 return 0;
1256}
1257module_init(rand_initialize);
1258
9361401e 1259#ifdef CONFIG_BLOCK
1da177e4
LT
1260void rand_initialize_disk(struct gendisk *disk)
1261{
1262 struct timer_rand_state *state;
1263
1264 /*
f8595815 1265 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1266 * source.
1267 */
f8595815
ED
1268 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1269 if (state)
1da177e4 1270 disk->random = state;
1da177e4 1271}
9361401e 1272#endif
1da177e4
LT
1273
1274static ssize_t
90b75ee5 1275random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1276{
1277 ssize_t n, retval = 0, count = 0;
1278
1279 if (nbytes == 0)
1280 return 0;
1281
1282 while (nbytes > 0) {
1283 n = nbytes;
1284 if (n > SEC_XFER_SIZE)
1285 n = SEC_XFER_SIZE;
1286
1da177e4
LT
1287 n = extract_entropy_user(&blocking_pool, buf, n);
1288
8eb2ffbf
JK
1289 if (n < 0) {
1290 retval = n;
1291 break;
1292 }
1293
f80bbd8b
TT
1294 trace_random_read(n*8, (nbytes-n)*8,
1295 ENTROPY_BITS(&blocking_pool),
1296 ENTROPY_BITS(&input_pool));
1da177e4
LT
1297
1298 if (n == 0) {
1299 if (file->f_flags & O_NONBLOCK) {
1300 retval = -EAGAIN;
1301 break;
1302 }
1303
1da177e4 1304 wait_event_interruptible(random_read_wait,
a283b5c4
PA
1305 ENTROPY_BITS(&input_pool) >=
1306 random_read_wakeup_thresh);
1da177e4 1307
1da177e4
LT
1308 if (signal_pending(current)) {
1309 retval = -ERESTARTSYS;
1310 break;
1311 }
1312
1313 continue;
1314 }
1315
1da177e4
LT
1316 count += n;
1317 buf += n;
1318 nbytes -= n;
1319 break; /* This break makes the device work */
1320 /* like a named pipe */
1321 }
1322
1da177e4
LT
1323 return (count ? count : retval);
1324}
1325
1326static ssize_t
90b75ee5 1327urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1328{
f80bbd8b
TT
1329 int ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1330
1331 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1332 ENTROPY_BITS(&input_pool));
1333 return ret;
1da177e4
LT
1334}
1335
1336static unsigned int
1337random_poll(struct file *file, poll_table * wait)
1338{
1339 unsigned int mask;
1340
1341 poll_wait(file, &random_read_wait, wait);
1342 poll_wait(file, &random_write_wait, wait);
1343 mask = 0;
a283b5c4 1344 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
1da177e4 1345 mask |= POLLIN | POLLRDNORM;
a283b5c4 1346 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
1da177e4
LT
1347 mask |= POLLOUT | POLLWRNORM;
1348 return mask;
1349}
1350
7f397dcd
MM
1351static int
1352write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1353{
1da177e4
LT
1354 size_t bytes;
1355 __u32 buf[16];
1356 const char __user *p = buffer;
1da177e4 1357
7f397dcd
MM
1358 while (count > 0) {
1359 bytes = min(count, sizeof(buf));
1360 if (copy_from_user(&buf, p, bytes))
1361 return -EFAULT;
1da177e4 1362
7f397dcd 1363 count -= bytes;
1da177e4
LT
1364 p += bytes;
1365
902c098a 1366 mix_pool_bytes(r, buf, bytes, NULL);
91f3f1e3 1367 cond_resched();
1da177e4 1368 }
7f397dcd
MM
1369
1370 return 0;
1371}
1372
90b75ee5
MM
1373static ssize_t random_write(struct file *file, const char __user *buffer,
1374 size_t count, loff_t *ppos)
7f397dcd
MM
1375{
1376 size_t ret;
7f397dcd
MM
1377
1378 ret = write_pool(&blocking_pool, buffer, count);
1379 if (ret)
1380 return ret;
1381 ret = write_pool(&nonblocking_pool, buffer, count);
1382 if (ret)
1383 return ret;
1384
7f397dcd 1385 return (ssize_t)count;
1da177e4
LT
1386}
1387
43ae4860 1388static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1389{
1390 int size, ent_count;
1391 int __user *p = (int __user *)arg;
1392 int retval;
1393
1394 switch (cmd) {
1395 case RNDGETENTCNT:
43ae4860 1396 /* inherently racy, no point locking */
a283b5c4
PA
1397 ent_count = ENTROPY_BITS(&input_pool);
1398 if (put_user(ent_count, p))
1da177e4
LT
1399 return -EFAULT;
1400 return 0;
1401 case RNDADDTOENTCNT:
1402 if (!capable(CAP_SYS_ADMIN))
1403 return -EPERM;
1404 if (get_user(ent_count, p))
1405 return -EFAULT;
a283b5c4 1406 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1407 return 0;
1408 case RNDADDENTROPY:
1409 if (!capable(CAP_SYS_ADMIN))
1410 return -EPERM;
1411 if (get_user(ent_count, p++))
1412 return -EFAULT;
1413 if (ent_count < 0)
1414 return -EINVAL;
1415 if (get_user(size, p++))
1416 return -EFAULT;
7f397dcd
MM
1417 retval = write_pool(&input_pool, (const char __user *)p,
1418 size);
1da177e4
LT
1419 if (retval < 0)
1420 return retval;
a283b5c4 1421 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1422 return 0;
1423 case RNDZAPENTCNT:
1424 case RNDCLEARPOOL:
1425 /* Clear the entropy pool counters. */
1426 if (!capable(CAP_SYS_ADMIN))
1427 return -EPERM;
53c3f63e 1428 rand_initialize();
1da177e4
LT
1429 return 0;
1430 default:
1431 return -EINVAL;
1432 }
1433}
1434
9a6f70bb
JD
1435static int random_fasync(int fd, struct file *filp, int on)
1436{
1437 return fasync_helper(fd, filp, on, &fasync);
1438}
1439
2b8693c0 1440const struct file_operations random_fops = {
1da177e4
LT
1441 .read = random_read,
1442 .write = random_write,
1443 .poll = random_poll,
43ae4860 1444 .unlocked_ioctl = random_ioctl,
9a6f70bb 1445 .fasync = random_fasync,
6038f373 1446 .llseek = noop_llseek,
1da177e4
LT
1447};
1448
2b8693c0 1449const struct file_operations urandom_fops = {
1da177e4
LT
1450 .read = urandom_read,
1451 .write = random_write,
43ae4860 1452 .unlocked_ioctl = random_ioctl,
9a6f70bb 1453 .fasync = random_fasync,
6038f373 1454 .llseek = noop_llseek,
1da177e4
LT
1455};
1456
1457/***************************************************************
1458 * Random UUID interface
1459 *
1460 * Used here for a Boot ID, but can be useful for other kernel
1461 * drivers.
1462 ***************************************************************/
1463
1464/*
1465 * Generate random UUID
1466 */
1467void generate_random_uuid(unsigned char uuid_out[16])
1468{
1469 get_random_bytes(uuid_out, 16);
c41b20e7 1470 /* Set UUID version to 4 --- truly random generation */
1da177e4
LT
1471 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1472 /* Set the UUID variant to DCE */
1473 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1474}
1da177e4
LT
1475EXPORT_SYMBOL(generate_random_uuid);
1476
1477/********************************************************************
1478 *
1479 * Sysctl interface
1480 *
1481 ********************************************************************/
1482
1483#ifdef CONFIG_SYSCTL
1484
1485#include <linux/sysctl.h>
1486
1487static int min_read_thresh = 8, min_write_thresh;
1488static int max_read_thresh = INPUT_POOL_WORDS * 32;
1489static int max_write_thresh = INPUT_POOL_WORDS * 32;
1490static char sysctl_bootid[16];
1491
1492/*
1493 * These functions is used to return both the bootid UUID, and random
1494 * UUID. The difference is in whether table->data is NULL; if it is,
1495 * then a new UUID is generated and returned to the user.
1496 *
1497 * If the user accesses this via the proc interface, it will be returned
1498 * as an ASCII string in the standard UUID format. If accesses via the
1499 * sysctl system call, it is returned as 16 bytes of binary data.
1500 */
a151427e 1501static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1502 void __user *buffer, size_t *lenp, loff_t *ppos)
1503{
a151427e 1504 struct ctl_table fake_table;
1da177e4
LT
1505 unsigned char buf[64], tmp_uuid[16], *uuid;
1506
1507 uuid = table->data;
1508 if (!uuid) {
1509 uuid = tmp_uuid;
1da177e4 1510 generate_random_uuid(uuid);
44e4360f
MD
1511 } else {
1512 static DEFINE_SPINLOCK(bootid_spinlock);
1513
1514 spin_lock(&bootid_spinlock);
1515 if (!uuid[8])
1516 generate_random_uuid(uuid);
1517 spin_unlock(&bootid_spinlock);
1518 }
1da177e4 1519
35900771
JP
1520 sprintf(buf, "%pU", uuid);
1521
1da177e4
LT
1522 fake_table.data = buf;
1523 fake_table.maxlen = sizeof(buf);
1524
8d65af78 1525 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1526}
1527
a283b5c4
PA
1528/*
1529 * Return entropy available scaled to integral bits
1530 */
1531static int proc_do_entropy(ctl_table *table, int write,
1532 void __user *buffer, size_t *lenp, loff_t *ppos)
1533{
1534 ctl_table fake_table;
1535 int entropy_count;
1536
1537 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1538
1539 fake_table.data = &entropy_count;
1540 fake_table.maxlen = sizeof(entropy_count);
1541
1542 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1543}
1544
1da177e4 1545static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1546extern struct ctl_table random_table[];
1547struct ctl_table random_table[] = {
1da177e4 1548 {
1da177e4
LT
1549 .procname = "poolsize",
1550 .data = &sysctl_poolsize,
1551 .maxlen = sizeof(int),
1552 .mode = 0444,
6d456111 1553 .proc_handler = proc_dointvec,
1da177e4
LT
1554 },
1555 {
1da177e4
LT
1556 .procname = "entropy_avail",
1557 .maxlen = sizeof(int),
1558 .mode = 0444,
a283b5c4 1559 .proc_handler = proc_do_entropy,
1da177e4
LT
1560 .data = &input_pool.entropy_count,
1561 },
1562 {
1da177e4
LT
1563 .procname = "read_wakeup_threshold",
1564 .data = &random_read_wakeup_thresh,
1565 .maxlen = sizeof(int),
1566 .mode = 0644,
6d456111 1567 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1568 .extra1 = &min_read_thresh,
1569 .extra2 = &max_read_thresh,
1570 },
1571 {
1da177e4
LT
1572 .procname = "write_wakeup_threshold",
1573 .data = &random_write_wakeup_thresh,
1574 .maxlen = sizeof(int),
1575 .mode = 0644,
6d456111 1576 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1577 .extra1 = &min_write_thresh,
1578 .extra2 = &max_write_thresh,
1579 },
f5c2742c
TT
1580 {
1581 .procname = "urandom_min_reseed_secs",
1582 .data = &random_min_urandom_seed,
1583 .maxlen = sizeof(int),
1584 .mode = 0644,
1585 .proc_handler = proc_dointvec,
1586 },
1da177e4 1587 {
1da177e4
LT
1588 .procname = "boot_id",
1589 .data = &sysctl_bootid,
1590 .maxlen = 16,
1591 .mode = 0444,
6d456111 1592 .proc_handler = proc_do_uuid,
1da177e4
LT
1593 },
1594 {
1da177e4
LT
1595 .procname = "uuid",
1596 .maxlen = 16,
1597 .mode = 0444,
6d456111 1598 .proc_handler = proc_do_uuid,
1da177e4 1599 },
894d2491 1600 { }
1da177e4
LT
1601};
1602#endif /* CONFIG_SYSCTL */
1603
6e5714ea 1604static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 1605
47d06e53 1606int random_int_secret_init(void)
1da177e4 1607{
6e5714ea 1608 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
1609 return 0;
1610}
1da177e4
LT
1611
1612/*
1613 * Get a random word for internal kernel use only. Similar to urandom but
1614 * with the goal of minimal entropy pool depletion. As a result, the random
1615 * value is not cryptographically secure but for several uses the cost of
1616 * depleting entropy is too high
1617 */
74feec5d 1618static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1da177e4
LT
1619unsigned int get_random_int(void)
1620{
63d77173 1621 __u32 *hash;
6e5714ea 1622 unsigned int ret;
8a0a9bd4 1623
63d77173
PA
1624 if (arch_get_random_int(&ret))
1625 return ret;
1626
1627 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 1628
61875f30 1629 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
1630 md5_transform(hash, random_int_secret);
1631 ret = hash[0];
8a0a9bd4
LT
1632 put_cpu_var(get_random_int_hash);
1633
1634 return ret;
1da177e4 1635}
16c7fa05 1636EXPORT_SYMBOL(get_random_int);
1da177e4
LT
1637
1638/*
1639 * randomize_range() returns a start address such that
1640 *
1641 * [...... <range> .....]
1642 * start end
1643 *
1644 * a <range> with size "len" starting at the return value is inside in the
1645 * area defined by [start, end], but is otherwise randomized.
1646 */
1647unsigned long
1648randomize_range(unsigned long start, unsigned long end, unsigned long len)
1649{
1650 unsigned long range = end - len - start;
1651
1652 if (end <= start + len)
1653 return 0;
1654 return PAGE_ALIGN(get_random_int() % range + start);
1655}