random: use rejection sampling for uniform bounded random integers
[linux-block.git] / drivers / char / random.c
CommitLineData
a07fdae3 1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
1da177e4 2/*
9f9eff85 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5f75d9f3
JD
5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6 *
7 * This driver produces cryptographically secure pseudorandom data. It is divided
8 * into roughly six sections, each with a section header:
9 *
10 * - Initialization and readiness waiting.
11 * - Fast key erasure RNG, the "crng".
12 * - Entropy accumulation and extraction routines.
13 * - Entropy collection routines.
14 * - Userspace reader/writer interfaces.
15 * - Sysctl interface.
16 *
17 * The high level overview is that there is one input pool, into which
e85c0fc1
JD
18 * various pieces of data are hashed. Prior to initialization, some of that
19 * data is then "credited" as having a certain number of bits of entropy.
20 * When enough bits of entropy are available, the hash is finalized and
21 * handed as a key to a stream cipher that expands it indefinitely for
22 * various consumers. This key is periodically refreshed as the various
23 * entropy collectors, described below, add data to the input pool.
1da177e4
LT
24 */
25
12cd53af
YL
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
1da177e4 28#include <linux/utsname.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/major.h>
32#include <linux/string.h>
33#include <linux/fcntl.h>
34#include <linux/slab.h>
35#include <linux/random.h>
36#include <linux/poll.h>
37#include <linux/init.h>
38#include <linux/fs.h>
322cbb50 39#include <linux/blkdev.h>
1da177e4 40#include <linux/interrupt.h>
27ac792c 41#include <linux/mm.h>
dd0f0cf5 42#include <linux/nodemask.h>
1da177e4 43#include <linux/spinlock.h>
c84dbf61 44#include <linux/kthread.h>
1da177e4 45#include <linux/percpu.h>
775f4b29 46#include <linux/ptrace.h>
6265e169 47#include <linux/workqueue.h>
0244ad00 48#include <linux/irq.h>
4e00b339 49#include <linux/ratelimit.h>
c6e9d6f3
TT
50#include <linux/syscalls.h>
51#include <linux/completion.h>
8da4b8c4 52#include <linux/uuid.h>
87e7d5ab 53#include <linux/uaccess.h>
b7b67d13 54#include <linux/suspend.h>
e73aaae2 55#include <linux/siphash.h>
1ca1b917 56#include <crypto/chacha.h>
9f9eff85 57#include <crypto/blake2s.h>
1da177e4 58#include <asm/processor.h>
1da177e4 59#include <asm/irq.h>
775f4b29 60#include <asm/irq_regs.h>
1da177e4
LT
61#include <asm/io.h>
62
5f1bb112
JD
63/*********************************************************************
64 *
65 * Initialization and readiness waiting.
66 *
67 * Much of the RNG infrastructure is devoted to various dependencies
68 * being able to wait until the RNG has collected enough entropy and
69 * is ready for safe consumption.
70 *
71 *********************************************************************/
205a525c 72
e192be9d 73/*
5f1bb112 74 * crng_init is protected by base_crng->lock, and only increases
e3d2c5e7 75 * its value (from empty->early->ready).
e192be9d 76 */
e3d2c5e7
JD
77static enum {
78 CRNG_EMPTY = 0, /* Little to no entropy collected */
79 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
80 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */
f5bda35f
JD
81} crng_init __read_mostly = CRNG_EMPTY;
82static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
83#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
e3d2c5e7 84/* Various types of waiters for crng_init->CRNG_READY transition. */
5f1bb112
JD
85static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
86static struct fasync_struct *fasync;
e192be9d 87
5f1bb112 88/* Control how we warn userspace. */
0313bc27 89static struct ratelimit_state urandom_warning =
c01d4d0a 90 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
cc1e127b
JD
91static int ratelimit_disable __read_mostly =
92 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
4e00b339
TT
93module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
94MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
95
5f1bb112
JD
96/*
97 * Returns whether or not the input pool has been seeded and thus guaranteed
0313bc27 98 * to supply cryptographically secure random numbers. This applies to: the
a890d1c6 99 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
de492c83 100 * u16,u32,u64,long} family of functions.
5f1bb112
JD
101 *
102 * Returns: true if the input pool has been seeded.
103 * false if the input pool has not been seeded.
104 */
105bool rng_is_initialized(void)
106{
107 return crng_ready();
108}
109EXPORT_SYMBOL(rng_is_initialized);
110
560181c2 111static void __cold crng_set_ready(struct work_struct *work)
f5bda35f
JD
112{
113 static_branch_enable(&crng_is_ready);
114}
115
5f1bb112
JD
116/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
117static void try_to_generate_entropy(void);
118
119/*
120 * Wait for the input pool to be seeded and thus guaranteed to supply
0313bc27 121 * cryptographically secure random numbers. This applies to: the /dev/urandom
a890d1c6
JD
122 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
123 * int,long} family of functions. Using any of these functions without first
124 * calling this function forfeits the guarantee of security.
5f1bb112
JD
125 *
126 * Returns: 0 if the input pool has been seeded.
127 * -ERESTARTSYS if the function was interrupted by a signal.
128 */
129int wait_for_random_bytes(void)
130{
a96cfe2d 131 while (!crng_ready()) {
5f1bb112 132 int ret;
3e504d20
JD
133
134 try_to_generate_entropy();
5f1bb112
JD
135 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
136 if (ret)
137 return ret > 0 ? 0 : ret;
a96cfe2d 138 }
5f1bb112
JD
139 return 0;
140}
141EXPORT_SYMBOL(wait_for_random_bytes);
142
cc1e127b 143#define warn_unseeded_randomness() \
560181c2
JD
144 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
145 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
146 __func__, (void *)_RET_IP_, crng_init)
5f1bb112
JD
147
148
3655adc7 149/*********************************************************************
1da177e4 150 *
3655adc7 151 * Fast key erasure RNG, the "crng".
1da177e4 152 *
3655adc7
JD
153 * These functions expand entropy from the entropy extractor into
154 * long streams for external consumption using the "fast key erasure"
155 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
e192be9d 156 *
3655adc7
JD
157 * There are a few exported interfaces for use by other drivers:
158 *
a1940263 159 * void get_random_bytes(void *buf, size_t len)
a890d1c6
JD
160 * u8 get_random_u8()
161 * u16 get_random_u16()
3655adc7 162 * u32 get_random_u32()
e9a688bc 163 * u32 get_random_u32_below(u32 ceil)
3655adc7 164 * u64 get_random_u64()
3655adc7
JD
165 * unsigned long get_random_long()
166 *
167 * These interfaces will return the requested number of random bytes
0313bc27 168 * into the given buffer or as a return value. This is equivalent to
de492c83
JD
169 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
170 * functions may be higher performance for one-off random integers,
171 * because they do a bit of buffering and do not invoke reseeding
172 * until the buffer is emptied.
e192be9d
TT
173 *
174 *********************************************************************/
175
e85c0fc1
JD
176enum {
177 CRNG_RESEED_START_INTERVAL = HZ,
178 CRNG_RESEED_INTERVAL = 60 * HZ
179};
186873c5
JD
180
181static struct {
182 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
183 unsigned long birth;
184 unsigned long generation;
185 spinlock_t lock;
186} base_crng = {
187 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
188};
189
190struct crng {
191 u8 key[CHACHA_KEY_SIZE];
192 unsigned long generation;
193 local_lock_t lock;
194};
195
196static DEFINE_PER_CPU(struct crng, crngs) = {
197 .generation = ULONG_MAX,
198 .lock = INIT_LOCAL_LOCK(crngs.lock),
199};
e192be9d 200
e85c0fc1 201/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
a1940263 202static void extract_entropy(void *buf, size_t len);
e192be9d 203
e85c0fc1
JD
204/* This extracts a new crng key from the input pool. */
205static void crng_reseed(void)
e192be9d 206{
248045b8 207 unsigned long flags;
186873c5
JD
208 unsigned long next_gen;
209 u8 key[CHACHA_KEY_SIZE];
e192be9d 210
e85c0fc1 211 extract_entropy(key, sizeof(key));
a9412d51 212
186873c5
JD
213 /*
214 * We copy the new key into the base_crng, overwriting the old one,
215 * and update the generation counter. We avoid hitting ULONG_MAX,
216 * because the per-cpu crngs are initialized to ULONG_MAX, so this
217 * forces new CPUs that come online to always initialize.
218 */
219 spin_lock_irqsave(&base_crng.lock, flags);
220 memcpy(base_crng.key, key, sizeof(base_crng.key));
221 next_gen = base_crng.generation + 1;
222 if (next_gen == ULONG_MAX)
223 ++next_gen;
224 WRITE_ONCE(base_crng.generation, next_gen);
225 WRITE_ONCE(base_crng.birth, jiffies);
f5bda35f 226 if (!static_branch_likely(&crng_is_ready))
e3d2c5e7 227 crng_init = CRNG_READY;
7191c628
DB
228 spin_unlock_irqrestore(&base_crng.lock, flags);
229 memzero_explicit(key, sizeof(key));
e192be9d
TT
230}
231
186873c5 232/*
3655adc7 233 * This generates a ChaCha block using the provided key, and then
7f637be4 234 * immediately overwrites that key with half the block. It returns
3655adc7
JD
235 * the resultant ChaCha state to the user, along with the second
236 * half of the block containing 32 bytes of random data that may
237 * be used; random_data_len may not be greater than 32.
8717627d
JD
238 *
239 * The returned ChaCha state contains within it a copy of the old
240 * key value, at index 4, so the state should always be zeroed out
241 * immediately after using in order to maintain forward secrecy.
242 * If the state cannot be erased in a timely manner, then it is
243 * safer to set the random_data parameter to &chacha_state[4] so
244 * that this function overwrites it before returning.
186873c5
JD
245 */
246static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
247 u32 chacha_state[CHACHA_STATE_WORDS],
248 u8 *random_data, size_t random_data_len)
e192be9d 249{
186873c5 250 u8 first_block[CHACHA_BLOCK_SIZE];
009ba856 251
186873c5
JD
252 BUG_ON(random_data_len > 32);
253
254 chacha_init_consts(chacha_state);
255 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
256 memset(&chacha_state[12], 0, sizeof(u32) * 4);
257 chacha20_block(chacha_state, first_block);
258
259 memcpy(key, first_block, CHACHA_KEY_SIZE);
8717627d 260 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
186873c5 261 memzero_explicit(first_block, sizeof(first_block));
1e7f583a
TT
262}
263
7a7ff644 264/*
745558f9
DB
265 * Return the interval until the next reseeding, which is normally
266 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
e85c0fc1 267 * proportional to the uptime.
7a7ff644 268 */
745558f9 269static unsigned int crng_reseed_interval(void)
7a7ff644
JD
270{
271 static bool early_boot = true;
7a7ff644
JD
272
273 if (unlikely(READ_ONCE(early_boot))) {
274 time64_t uptime = ktime_get_seconds();
275 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
276 WRITE_ONCE(early_boot, false);
277 else
745558f9
DB
278 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
279 (unsigned int)uptime / 2 * HZ);
7a7ff644 280 }
745558f9 281 return CRNG_RESEED_INTERVAL;
7a7ff644
JD
282}
283
c92e040d 284/*
186873c5
JD
285 * This function returns a ChaCha state that you may use for generating
286 * random data. It also returns up to 32 bytes on its own of random data
287 * that may be used; random_data_len may not be greater than 32.
c92e040d 288 */
186873c5
JD
289static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
290 u8 *random_data, size_t random_data_len)
c92e040d 291{
248045b8 292 unsigned long flags;
186873c5 293 struct crng *crng;
c92e040d 294
186873c5
JD
295 BUG_ON(random_data_len > 32);
296
297 /*
298 * For the fast path, we check whether we're ready, unlocked first, and
299 * then re-check once locked later. In the case where we're really not
5c3b747e 300 * ready, we do fast key erasure with the base_crng directly, extracting
e3d2c5e7 301 * when crng_init is CRNG_EMPTY.
186873c5 302 */
a96cfe2d 303 if (!crng_ready()) {
186873c5
JD
304 bool ready;
305
306 spin_lock_irqsave(&base_crng.lock, flags);
307 ready = crng_ready();
5c3b747e 308 if (!ready) {
e3d2c5e7 309 if (crng_init == CRNG_EMPTY)
5c3b747e 310 extract_entropy(base_crng.key, sizeof(base_crng.key));
186873c5
JD
311 crng_fast_key_erasure(base_crng.key, chacha_state,
312 random_data, random_data_len);
5c3b747e 313 }
186873c5
JD
314 spin_unlock_irqrestore(&base_crng.lock, flags);
315 if (!ready)
316 return;
c92e040d 317 }
186873c5
JD
318
319 /*
e85c0fc1
JD
320 * If the base_crng is old enough, we reseed, which in turn bumps the
321 * generation counter that we check below.
186873c5 322 */
745558f9 323 if (unlikely(time_is_before_jiffies(READ_ONCE(base_crng.birth) + crng_reseed_interval())))
e85c0fc1 324 crng_reseed();
186873c5
JD
325
326 local_lock_irqsave(&crngs.lock, flags);
327 crng = raw_cpu_ptr(&crngs);
328
329 /*
330 * If our per-cpu crng is older than the base_crng, then it means
331 * somebody reseeded the base_crng. In that case, we do fast key
332 * erasure on the base_crng, and use its output as the new key
333 * for our per-cpu crng. This brings us up to date with base_crng.
334 */
335 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
336 spin_lock(&base_crng.lock);
337 crng_fast_key_erasure(base_crng.key, chacha_state,
338 crng->key, sizeof(crng->key));
339 crng->generation = base_crng.generation;
340 spin_unlock(&base_crng.lock);
341 }
342
343 /*
344 * Finally, when we've made it this far, our per-cpu crng has an up
345 * to date key, and we can do fast key erasure with it to produce
346 * some random data and a ChaCha state for the caller. All other
347 * branches of this function are "unlikely", so most of the time we
348 * should wind up here immediately.
349 */
350 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
351 local_unlock_irqrestore(&crngs.lock, flags);
c92e040d
TT
352}
353
a1940263 354static void _get_random_bytes(void *buf, size_t len)
e192be9d 355{
186873c5 356 u32 chacha_state[CHACHA_STATE_WORDS];
3655adc7 357 u8 tmp[CHACHA_BLOCK_SIZE];
a1940263 358 size_t first_block_len;
3655adc7 359
a1940263 360 if (!len)
3655adc7
JD
361 return;
362
a1940263
JD
363 first_block_len = min_t(size_t, 32, len);
364 crng_make_state(chacha_state, buf, first_block_len);
365 len -= first_block_len;
366 buf += first_block_len;
3655adc7 367
a1940263
JD
368 while (len) {
369 if (len < CHACHA_BLOCK_SIZE) {
3655adc7 370 chacha20_block(chacha_state, tmp);
a1940263 371 memcpy(buf, tmp, len);
3655adc7
JD
372 memzero_explicit(tmp, sizeof(tmp));
373 break;
374 }
375
376 chacha20_block(chacha_state, buf);
377 if (unlikely(chacha_state[12] == 0))
378 ++chacha_state[13];
a1940263 379 len -= CHACHA_BLOCK_SIZE;
3655adc7
JD
380 buf += CHACHA_BLOCK_SIZE;
381 }
382
383 memzero_explicit(chacha_state, sizeof(chacha_state));
384}
385
386/*
d687772e
WZ
387 * This function is the exported kernel interface. It returns some number of
388 * good random numbers, suitable for key generation, seeding TCP sequence
389 * numbers, etc. In order to ensure that the randomness returned by this
390 * function is okay, the function wait_for_random_bytes() should be called and
391 * return 0 at least once at any point prior.
3655adc7 392 */
a1940263 393void get_random_bytes(void *buf, size_t len)
3655adc7 394{
cc1e127b 395 warn_unseeded_randomness();
a1940263 396 _get_random_bytes(buf, len);
3655adc7
JD
397}
398EXPORT_SYMBOL(get_random_bytes);
399
1b388e77 400static ssize_t get_random_bytes_user(struct iov_iter *iter)
3655adc7 401{
3655adc7 402 u32 chacha_state[CHACHA_STATE_WORDS];
1b388e77
JA
403 u8 block[CHACHA_BLOCK_SIZE];
404 size_t ret = 0, copied;
3655adc7 405
1b388e77 406 if (unlikely(!iov_iter_count(iter)))
3655adc7
JD
407 return 0;
408
aba120cc
JD
409 /*
410 * Immediately overwrite the ChaCha key at index 4 with random
63b8ea5e 411 * bytes, in case userspace causes copy_to_iter() below to sleep
aba120cc
JD
412 * forever, so that we still retain forward secrecy in that case.
413 */
414 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
415 /*
416 * However, if we're doing a read of len <= 32, we don't need to
417 * use chacha_state after, so we can simply return those bytes to
418 * the user directly.
419 */
1b388e77
JA
420 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
421 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
aba120cc
JD
422 goto out_zero_chacha;
423 }
3655adc7 424
5209aed5 425 for (;;) {
1b388e77 426 chacha20_block(chacha_state, block);
3655adc7
JD
427 if (unlikely(chacha_state[12] == 0))
428 ++chacha_state[13];
429
1b388e77
JA
430 copied = copy_to_iter(block, sizeof(block), iter);
431 ret += copied;
432 if (!iov_iter_count(iter) || copied != sizeof(block))
5209aed5 433 break;
e3c1c4fd 434
1b388e77 435 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
5209aed5 436 if (ret % PAGE_SIZE == 0) {
e3c1c4fd
JD
437 if (signal_pending(current))
438 break;
439 cond_resched();
440 }
5209aed5 441 }
3655adc7 442
1b388e77 443 memzero_explicit(block, sizeof(block));
aba120cc
JD
444out_zero_chacha:
445 memzero_explicit(chacha_state, sizeof(chacha_state));
5209aed5 446 return ret ? ret : -EFAULT;
3655adc7
JD
447}
448
449/*
450 * Batched entropy returns random integers. The quality of the random
451 * number is good as /dev/urandom. In order to ensure that the randomness
452 * provided by this function is okay, the function wait_for_random_bytes()
453 * should be called and return 0 at least once at any point prior.
454 */
3655adc7 455
3092adce
JD
456#define DEFINE_BATCHED_ENTROPY(type) \
457struct batch_ ##type { \
458 /* \
459 * We make this 1.5x a ChaCha block, so that we get the \
460 * remaining 32 bytes from fast key erasure, plus one full \
461 * block from the detached ChaCha state. We can increase \
462 * the size of this later if needed so long as we keep the \
463 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \
464 */ \
465 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
466 local_lock_t lock; \
467 unsigned long generation; \
468 unsigned int position; \
469}; \
470 \
471static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
472 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \
473 .position = UINT_MAX \
474}; \
475 \
476type get_random_ ##type(void) \
477{ \
478 type ret; \
479 unsigned long flags; \
480 struct batch_ ##type *batch; \
481 unsigned long next_gen; \
482 \
483 warn_unseeded_randomness(); \
484 \
485 if (!crng_ready()) { \
486 _get_random_bytes(&ret, sizeof(ret)); \
487 return ret; \
488 } \
489 \
490 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \
491 batch = raw_cpu_ptr(&batched_entropy_##type); \
492 \
493 next_gen = READ_ONCE(base_crng.generation); \
494 if (batch->position >= ARRAY_SIZE(batch->entropy) || \
495 next_gen != batch->generation) { \
496 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
497 batch->position = 0; \
498 batch->generation = next_gen; \
499 } \
500 \
501 ret = batch->entropy[batch->position]; \
502 batch->entropy[batch->position] = 0; \
503 ++batch->position; \
504 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \
505 return ret; \
506} \
507EXPORT_SYMBOL(get_random_ ##type);
508
585cd5fe 509DEFINE_BATCHED_ENTROPY(u8)
a890d1c6
JD
510DEFINE_BATCHED_ENTROPY(u16)
511DEFINE_BATCHED_ENTROPY(u32)
512DEFINE_BATCHED_ENTROPY(u64)
3655adc7 513
e9a688bc
JD
514u32 __get_random_u32_below(u32 ceil)
515{
516 /*
517 * This is the slow path for variable ceil. It is still fast, most of
518 * the time, by doing traditional reciprocal multiplication and
519 * opportunistically comparing the lower half to ceil itself, before
520 * falling back to computing a larger bound, and then rejecting samples
521 * whose lower half would indicate a range indivisible by ceil. The use
522 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
523 * in 32-bits.
524 */
525 u64 mult = (u64)ceil * get_random_u32();
526 if (unlikely((u32)mult < ceil)) {
527 u32 bound = -ceil % ceil;
528 while (unlikely((u32)mult < bound))
529 mult = (u64)ceil * get_random_u32();
530 }
531 return mult >> 32;
532}
533EXPORT_SYMBOL(__get_random_u32_below);
534
3191dd5a
JD
535#ifdef CONFIG_SMP
536/*
537 * This function is called when the CPU is coming up, with entry
538 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
539 */
560181c2 540int __cold random_prepare_cpu(unsigned int cpu)
3191dd5a
JD
541{
542 /*
543 * When the cpu comes back online, immediately invalidate both
544 * the per-cpu crng and all batches, so that we serve fresh
545 * randomness.
546 */
547 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
a890d1c6
JD
548 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
549 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
3191dd5a
JD
550 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
551 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
552 return 0;
553}
554#endif
555
a5ed7cb1
JD
556
557/**********************************************************************
558 *
559 * Entropy accumulation and extraction routines.
560 *
561 * Callers may add entropy via:
562 *
a1940263 563 * static void mix_pool_bytes(const void *buf, size_t len)
a5ed7cb1
JD
564 *
565 * After which, if added entropy should be credited:
566 *
a1940263 567 * static void credit_init_bits(size_t bits)
a5ed7cb1 568 *
e85c0fc1 569 * Finally, extract entropy via:
a5ed7cb1 570 *
a1940263 571 * static void extract_entropy(void *buf, size_t len)
a5ed7cb1
JD
572 *
573 **********************************************************************/
574
3655adc7
JD
575enum {
576 POOL_BITS = BLAKE2S_HASH_SIZE * 8,
e3d2c5e7
JD
577 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
578 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
3655adc7
JD
579};
580
3655adc7
JD
581static struct {
582 struct blake2s_state hash;
583 spinlock_t lock;
e85c0fc1 584 unsigned int init_bits;
3655adc7
JD
585} input_pool = {
586 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
587 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
588 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
589 .hash.outlen = BLAKE2S_HASH_SIZE,
590 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
591};
592
a1940263 593static void _mix_pool_bytes(const void *buf, size_t len)
a5ed7cb1 594{
a1940263 595 blake2s_update(&input_pool.hash, buf, len);
a5ed7cb1 596}
3655adc7
JD
597
598/*
e85c0fc1
JD
599 * This function adds bytes into the input pool. It does not
600 * update the initialization bit counter; the caller should call
601 * credit_init_bits if this is appropriate.
3655adc7 602 */
a1940263 603static void mix_pool_bytes(const void *buf, size_t len)
3655adc7 604{
a5ed7cb1
JD
605 unsigned long flags;
606
607 spin_lock_irqsave(&input_pool.lock, flags);
a1940263 608 _mix_pool_bytes(buf, len);
a5ed7cb1 609 spin_unlock_irqrestore(&input_pool.lock, flags);
3655adc7
JD
610}
611
a5ed7cb1
JD
612/*
613 * This is an HKDF-like construction for using the hashed collected entropy
614 * as a PRF key, that's then expanded block-by-block.
615 */
a1940263 616static void extract_entropy(void *buf, size_t len)
3655adc7
JD
617{
618 unsigned long flags;
a5ed7cb1
JD
619 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
620 struct {
621 unsigned long rdseed[32 / sizeof(long)];
622 size_t counter;
623 } block;
d349ab99 624 size_t i, longs;
a5ed7cb1 625
d349ab99
JD
626 for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
627 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
628 if (longs) {
629 i += longs;
630 continue;
631 }
632 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
633 if (longs) {
634 i += longs;
635 continue;
636 }
637 block.rdseed[i++] = random_get_entropy();
a5ed7cb1 638 }
3655adc7
JD
639
640 spin_lock_irqsave(&input_pool.lock, flags);
a5ed7cb1
JD
641
642 /* seed = HASHPRF(last_key, entropy_input) */
643 blake2s_final(&input_pool.hash, seed);
644
645 /* next_key = HASHPRF(seed, RDSEED || 0) */
646 block.counter = 0;
647 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
648 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
649
3655adc7 650 spin_unlock_irqrestore(&input_pool.lock, flags);
a5ed7cb1
JD
651 memzero_explicit(next_key, sizeof(next_key));
652
a1940263
JD
653 while (len) {
654 i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
a5ed7cb1
JD
655 /* output = HASHPRF(seed, RDSEED || ++counter) */
656 ++block.counter;
657 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
a1940263 658 len -= i;
a5ed7cb1
JD
659 buf += i;
660 }
661
662 memzero_explicit(seed, sizeof(seed));
663 memzero_explicit(&block, sizeof(block));
664}
665
560181c2
JD
666#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
667
668static void __cold _credit_init_bits(size_t bits)
5c3b747e 669{
f5bda35f 670 static struct execute_work set_ready;
fed7ef06 671 unsigned int new, orig, add;
5c3b747e
JD
672 unsigned long flags;
673
560181c2 674 if (!bits)
5c3b747e
JD
675 return;
676
a1940263 677 add = min_t(size_t, bits, POOL_BITS);
5c3b747e 678
b7a68f67 679 orig = READ_ONCE(input_pool.init_bits);
5c3b747e 680 do {
fed7ef06 681 new = min_t(unsigned int, POOL_BITS, orig + add);
b7a68f67 682 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
5c3b747e 683
68c9c8b1
JD
684 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
685 crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
60e5b288
JD
686 if (static_key_initialized)
687 execute_in_process_context(crng_set_ready, &set_ready);
68c9c8b1
JD
688 wake_up_interruptible(&crng_init_wait);
689 kill_fasync(&fasync, SIGIO, POLL_IN);
690 pr_notice("crng init done\n");
cc1e127b 691 if (urandom_warning.missed)
68c9c8b1
JD
692 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
693 urandom_warning.missed);
68c9c8b1 694 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
5c3b747e 695 spin_lock_irqsave(&base_crng.lock, flags);
68c9c8b1 696 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
e3d2c5e7 697 if (crng_init == CRNG_EMPTY) {
5c3b747e 698 extract_entropy(base_crng.key, sizeof(base_crng.key));
e3d2c5e7 699 crng_init = CRNG_EARLY;
5c3b747e
JD
700 }
701 spin_unlock_irqrestore(&base_crng.lock, flags);
702 }
703}
704
92c653cf
JD
705
706/**********************************************************************
707 *
708 * Entropy collection routines.
709 *
710 * The following exported functions are used for pushing entropy into
711 * the above entropy accumulation routines:
712 *
a1940263
JD
713 * void add_device_randomness(const void *buf, size_t len);
714 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
715 * void add_bootloader_randomness(const void *buf, size_t len);
716 * void add_vmfork_randomness(const void *unique_vm_id, size_t len);
92c653cf 717 * void add_interrupt_randomness(int irq);
a1940263 718 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
a4b5c26b 719 * void add_disk_randomness(struct gendisk *disk);
92c653cf
JD
720 *
721 * add_device_randomness() adds data to the input pool that
722 * is likely to differ between two devices (or possibly even per boot).
723 * This would be things like MAC addresses or serial numbers, or the
724 * read-out of the RTC. This does *not* credit any actual entropy to
725 * the pool, but it initializes the pool to different values for devices
726 * that might otherwise be identical and have very little entropy
727 * available to them (particularly common in the embedded world).
728 *
92c653cf
JD
729 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
730 * entropy as specified by the caller. If the entropy pool is full it will
731 * block until more entropy is needed.
732 *
5c3b747e
JD
733 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
734 * and device tree, and credits its input depending on whether or not the
735 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
92c653cf 736 *
ae099e8e
JD
737 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
738 * representing the current instance of a VM to the pool, without crediting,
739 * and then force-reseeds the crng so that it takes effect immediately.
740 *
92c653cf
JD
741 * add_interrupt_randomness() uses the interrupt timing as random
742 * inputs to the entropy pool. Using the cycle counters and the irq source
743 * as inputs, it feeds the input pool roughly once a second or after 64
744 * interrupts, crediting 1 bit of entropy for whichever comes first.
745 *
a4b5c26b
JD
746 * add_input_randomness() uses the input layer interrupt timing, as well
747 * as the event type information from the hardware.
748 *
749 * add_disk_randomness() uses what amounts to the seek time of block
750 * layer request events, on a per-disk_devt basis, as input to the
751 * entropy pool. Note that high-speed solid state drives with very low
752 * seek times do not make for good sources of entropy, as their seek
753 * times are usually fairly consistent.
754 *
755 * The last two routines try to estimate how many bits of entropy
756 * to credit. They do this by keeping track of the first and second
757 * order deltas of the event timings.
758 *
92c653cf
JD
759 **********************************************************************/
760
39e0f991
JD
761static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
762static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
92c653cf
JD
763static int __init parse_trust_cpu(char *arg)
764{
765 return kstrtobool(arg, &trust_cpu);
766}
d97c68d1
JD
767static int __init parse_trust_bootloader(char *arg)
768{
769 return kstrtobool(arg, &trust_bootloader);
770}
92c653cf 771early_param("random.trust_cpu", parse_trust_cpu);
d97c68d1 772early_param("random.trust_bootloader", parse_trust_bootloader);
3655adc7 773
b7b67d13
JD
774static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
775{
776 unsigned long flags, entropy = random_get_entropy();
777
778 /*
779 * Encode a representation of how long the system has been suspended,
780 * in a way that is distinct from prior system suspends.
781 */
782 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
783
784 spin_lock_irqsave(&input_pool.lock, flags);
785 _mix_pool_bytes(&action, sizeof(action));
786 _mix_pool_bytes(stamps, sizeof(stamps));
787 _mix_pool_bytes(&entropy, sizeof(entropy));
788 spin_unlock_irqrestore(&input_pool.lock, flags);
789
790 if (crng_ready() && (action == PM_RESTORE_PREPARE ||
261e224d
KS
791 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
792 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
e85c0fc1 793 crng_reseed();
b7b67d13
JD
794 pr_notice("crng reseeded on system resumption\n");
795 }
796 return 0;
797}
798
799static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
800
3655adc7 801/*
f6238499
JD
802 * This is called extremely early, before time keeping functionality is
803 * available, but arch randomness is. Interrupts are not yet enabled.
3655adc7 804 */
f6238499 805void __init random_init_early(const char *command_line)
3655adc7 806{
d349ab99 807 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
f6238499 808 size_t i, longs, arch_bits;
186873c5 809
1754abb3
JD
810#if defined(LATENT_ENTROPY_PLUGIN)
811 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
812 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
813#endif
814
d349ab99 815 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
f5e4ec15 816 longs = arch_get_random_seed_longs_early(entropy, ARRAY_SIZE(entropy) - i);
d349ab99
JD
817 if (longs) {
818 _mix_pool_bytes(entropy, sizeof(*entropy) * longs);
819 i += longs;
820 continue;
821 }
f5e4ec15 822 longs = arch_get_random_longs_early(entropy, ARRAY_SIZE(entropy) - i);
d349ab99
JD
823 if (longs) {
824 _mix_pool_bytes(entropy, sizeof(*entropy) * longs);
825 i += longs;
826 continue;
92c653cf 827 }
d349ab99
JD
828 arch_bits -= sizeof(*entropy) * 8;
829 ++i;
92c653cf 830 }
f6238499 831
dd54fd7d 832 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
2f14062b 833 _mix_pool_bytes(command_line, strlen(command_line));
f6238499
JD
834
835 /* Reseed if already seeded by earlier phases. */
836 if (crng_ready())
837 crng_reseed();
838 else if (trust_cpu)
839 _credit_init_bits(arch_bits);
840}
841
842/*
843 * This is called a little bit after the prior function, and now there is
844 * access to timestamps counters. Interrupts are not yet enabled.
845 */
846void __init random_init(void)
847{
848 unsigned long entropy = random_get_entropy();
849 ktime_t now = ktime_get_real();
850
f6238499
JD
851 _mix_pool_bytes(&now, sizeof(now));
852 _mix_pool_bytes(&entropy, sizeof(entropy));
2f14062b 853 add_latent_entropy();
186873c5 854
60e5b288 855 /*
f6238499
JD
856 * If we were initialized by the cpu or bootloader before jump labels
857 * are initialized, then we should enable the static branch here, where
60e5b288
JD
858 * it's guaranteed that jump labels have been initialized.
859 */
860 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
861 crng_set_ready(NULL);
862
f6238499 863 /* Reseed if already seeded by earlier phases. */
e85c0fc1
JD
864 if (crng_ready())
865 crng_reseed();
e192be9d 866
b7b67d13
JD
867 WARN_ON(register_pm_notifier(&pm_notifier));
868
f6238499
JD
869 WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
870 "entropy collection will consequently suffer.");
3655adc7 871}
e192be9d 872
a2080a67 873/*
e192be9d
TT
874 * Add device- or boot-specific data to the input pool to help
875 * initialize it.
a2080a67 876 *
e192be9d
TT
877 * None of this adds any entropy; it is meant to avoid the problem of
878 * the entropy pool having similar initial state across largely
879 * identical devices.
a2080a67 880 */
a1940263 881void add_device_randomness(const void *buf, size_t len)
a2080a67 882{
4b758eda
JD
883 unsigned long entropy = random_get_entropy();
884 unsigned long flags;
a2080a67 885
3ef4cb2d 886 spin_lock_irqsave(&input_pool.lock, flags);
4b758eda 887 _mix_pool_bytes(&entropy, sizeof(entropy));
a1940263 888 _mix_pool_bytes(buf, len);
3ef4cb2d 889 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
890}
891EXPORT_SYMBOL(add_device_randomness);
892
92c653cf
JD
893/*
894 * Interface for in-kernel drivers of true hardware RNGs.
895 * Those devices may produce endless random bits and will be throttled
896 * when our pool is full.
897 */
a1940263 898void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
92c653cf 899{
a1940263 900 mix_pool_bytes(buf, len);
e85c0fc1
JD
901 credit_init_bits(entropy);
902
92c653cf 903 /*
745558f9 904 * Throttle writing to once every reseed interval, unless we're not yet
d775335e 905 * initialized or no entropy is credited.
92c653cf 906 */
d775335e 907 if (!kthread_should_stop() && (crng_ready() || !entropy))
745558f9 908 schedule_timeout_interruptible(crng_reseed_interval());
92c653cf
JD
909}
910EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
911
912/*
5c3b747e
JD
913 * Handle random seed passed by bootloader, and credit it if
914 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
92c653cf 915 */
39e0f991 916void __init add_bootloader_randomness(const void *buf, size_t len)
92c653cf 917{
a1940263 918 mix_pool_bytes(buf, len);
d97c68d1 919 if (trust_bootloader)
a1940263 920 credit_init_bits(len * 8);
92c653cf 921}
92c653cf 922
a4107d34 923#if IS_ENABLED(CONFIG_VMGENID)
f3c2682b
JD
924static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
925
ae099e8e
JD
926/*
927 * Handle a new unique VM ID, which is unique, not secret, so we
928 * don't credit it, but we do immediately force a reseed after so
929 * that it's used by the crng posthaste.
930 */
560181c2 931void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
ae099e8e 932{
a1940263 933 add_device_randomness(unique_vm_id, len);
ae099e8e 934 if (crng_ready()) {
e85c0fc1 935 crng_reseed();
ae099e8e
JD
936 pr_notice("crng reseeded due to virtual machine fork\n");
937 }
f3c2682b 938 blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
ae099e8e 939}
a4107d34 940#if IS_MODULE(CONFIG_VMGENID)
ae099e8e 941EXPORT_SYMBOL_GPL(add_vmfork_randomness);
a4107d34 942#endif
f3c2682b 943
560181c2 944int __cold register_random_vmfork_notifier(struct notifier_block *nb)
f3c2682b
JD
945{
946 return blocking_notifier_chain_register(&vmfork_chain, nb);
947}
948EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
949
560181c2 950int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
f3c2682b
JD
951{
952 return blocking_notifier_chain_unregister(&vmfork_chain, nb);
953}
954EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
a4107d34 955#endif
ae099e8e 956
92c653cf 957struct fast_pool {
f5eab0e2 958 unsigned long pool[4];
92c653cf 959 unsigned long last;
3191dd5a 960 unsigned int count;
748bc4dd 961 struct timer_list mix;
92c653cf
JD
962};
963
748bc4dd
JD
964static void mix_interrupt_randomness(struct timer_list *work);
965
f5eab0e2
JD
966static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
967#ifdef CONFIG_64BIT
e73aaae2 968#define FASTMIX_PERM SIPHASH_PERMUTATION
748bc4dd 969 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
f5eab0e2 970#else
e73aaae2 971#define FASTMIX_PERM HSIPHASH_PERMUTATION
748bc4dd 972 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
f5eab0e2 973#endif
748bc4dd 974 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
f5eab0e2
JD
975};
976
92c653cf 977/*
f5eab0e2
JD
978 * This is [Half]SipHash-1-x, starting from an empty key. Because
979 * the key is fixed, it assumes that its inputs are non-malicious,
980 * and therefore this has no security on its own. s represents the
4b758eda 981 * four-word SipHash state, while v represents a two-word input.
92c653cf 982 */
791332b3 983static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
92c653cf 984{
791332b3 985 s[3] ^= v1;
e73aaae2 986 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
791332b3
JD
987 s[0] ^= v1;
988 s[3] ^= v2;
e73aaae2 989 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
791332b3 990 s[0] ^= v2;
92c653cf
JD
991}
992
3191dd5a
JD
993#ifdef CONFIG_SMP
994/*
995 * This function is called when the CPU has just come online, with
996 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
997 */
560181c2 998int __cold random_online_cpu(unsigned int cpu)
3191dd5a
JD
999{
1000 /*
1001 * During CPU shutdown and before CPU onlining, add_interrupt_
1002 * randomness() may schedule mix_interrupt_randomness(), and
1003 * set the MIX_INFLIGHT flag. However, because the worker can
1004 * be scheduled on a different CPU during this period, that
1005 * flag will never be cleared. For that reason, we zero out
1006 * the flag here, which runs just after workqueues are onlined
1007 * for the CPU again. This also has the effect of setting the
1008 * irq randomness count to zero so that new accumulated irqs
1009 * are fresh.
1010 */
1011 per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1012 return 0;
1013}
1014#endif
1015
748bc4dd 1016static void mix_interrupt_randomness(struct timer_list *work)
58340f8e
JD
1017{
1018 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
f5eab0e2 1019 /*
4b758eda
JD
1020 * The size of the copied stack pool is explicitly 2 longs so that we
1021 * only ever ingest half of the siphash output each time, retaining
1022 * the other half as the next "key" that carries over. The entropy is
1023 * supposed to be sufficiently dispersed between bits so on average
1024 * we don't wind up "losing" some.
f5eab0e2 1025 */
4b758eda 1026 unsigned long pool[2];
e3e33fc2 1027 unsigned int count;
58340f8e
JD
1028
1029 /* Check to see if we're running on the wrong CPU due to hotplug. */
1030 local_irq_disable();
1031 if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1032 local_irq_enable();
58340f8e
JD
1033 return;
1034 }
1035
1036 /*
1037 * Copy the pool to the stack so that the mixer always has a
1038 * consistent view, before we reenable irqs again.
1039 */
f5eab0e2 1040 memcpy(pool, fast_pool->pool, sizeof(pool));
e3e33fc2 1041 count = fast_pool->count;
3191dd5a 1042 fast_pool->count = 0;
58340f8e
JD
1043 fast_pool->last = jiffies;
1044 local_irq_enable();
1045
5c3b747e 1046 mix_pool_bytes(pool, sizeof(pool));
e78a802a 1047 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
c2a7de4f 1048
58340f8e
JD
1049 memzero_explicit(pool, sizeof(pool));
1050}
1051
703f7066 1052void add_interrupt_randomness(int irq)
1da177e4 1053{
58340f8e 1054 enum { MIX_INFLIGHT = 1U << 31 };
4b758eda 1055 unsigned long entropy = random_get_entropy();
248045b8
JD
1056 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1057 struct pt_regs *regs = get_irq_regs();
58340f8e 1058 unsigned int new_count;
b2f408fe 1059
791332b3
JD
1060 fast_mix(fast_pool->pool, entropy,
1061 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
3191dd5a 1062 new_count = ++fast_pool->count;
3060d6fe 1063
58340f8e 1064 if (new_count & MIX_INFLIGHT)
1da177e4
LT
1065 return;
1066
534d2eaf 1067 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
91fcb532 1068 return;
83664a69 1069
3191dd5a 1070 fast_pool->count |= MIX_INFLIGHT;
748bc4dd
JD
1071 if (!timer_pending(&fast_pool->mix)) {
1072 fast_pool->mix.expires = jiffies;
1073 add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1074 }
1da177e4 1075}
4b44f2d1 1076EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1077
a4b5c26b
JD
1078/* There is one of these per entropy source */
1079struct timer_rand_state {
1080 unsigned long last_time;
1081 long last_delta, last_delta2;
1082};
1083
1084/*
1085 * This function adds entropy to the entropy "pool" by using timing
e3e33fc2
JD
1086 * delays. It uses the timer_rand_state structure to make an estimate
1087 * of how many bits of entropy this call has added to the pool. The
1088 * value "num" is also added to the pool; it should somehow describe
1089 * the type of event that just happened.
a4b5c26b
JD
1090 */
1091static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1092{
1093 unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1094 long delta, delta2, delta3;
e3e33fc2 1095 unsigned int bits;
a4b5c26b 1096
e3e33fc2
JD
1097 /*
1098 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1099 * sometime after, so mix into the fast pool.
1100 */
1101 if (in_hardirq()) {
791332b3 1102 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
e3e33fc2
JD
1103 } else {
1104 spin_lock_irqsave(&input_pool.lock, flags);
1105 _mix_pool_bytes(&entropy, sizeof(entropy));
1106 _mix_pool_bytes(&num, sizeof(num));
1107 spin_unlock_irqrestore(&input_pool.lock, flags);
1108 }
a4b5c26b
JD
1109
1110 if (crng_ready())
1111 return;
1112
1113 /*
1114 * Calculate number of bits of randomness we probably added.
1115 * We take into account the first, second and third-order deltas
1116 * in order to make our estimate.
1117 */
1118 delta = now - READ_ONCE(state->last_time);
1119 WRITE_ONCE(state->last_time, now);
1120
1121 delta2 = delta - READ_ONCE(state->last_delta);
1122 WRITE_ONCE(state->last_delta, delta);
1123
1124 delta3 = delta2 - READ_ONCE(state->last_delta2);
1125 WRITE_ONCE(state->last_delta2, delta2);
1126
1127 if (delta < 0)
1128 delta = -delta;
1129 if (delta2 < 0)
1130 delta2 = -delta2;
1131 if (delta3 < 0)
1132 delta3 = -delta3;
1133 if (delta > delta2)
1134 delta = delta2;
1135 if (delta > delta3)
1136 delta = delta3;
1137
1138 /*
e3e33fc2
JD
1139 * delta is now minimum absolute delta. Round down by 1 bit
1140 * on general principles, and limit entropy estimate to 11 bits.
1141 */
1142 bits = min(fls(delta >> 1), 11);
1143
1144 /*
1145 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1146 * will run after this, which uses a different crediting scheme of 1 bit
1147 * per every 64 interrupts. In order to let that function do accounting
1148 * close to the one in this function, we credit a full 64/64 bit per bit,
1149 * and then subtract one to account for the extra one added.
a4b5c26b 1150 */
e3e33fc2
JD
1151 if (in_hardirq())
1152 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1153 else
560181c2 1154 _credit_init_bits(bits);
a4b5c26b
JD
1155}
1156
a1940263 1157void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
a4b5c26b
JD
1158{
1159 static unsigned char last_value;
1160 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1161
1162 /* Ignore autorepeat and the like. */
1163 if (value == last_value)
1164 return;
1165
1166 last_value = value;
1167 add_timer_randomness(&input_timer_state,
1168 (type << 4) ^ code ^ (code >> 4) ^ value);
1169}
1170EXPORT_SYMBOL_GPL(add_input_randomness);
1171
1172#ifdef CONFIG_BLOCK
1173void add_disk_randomness(struct gendisk *disk)
1174{
1175 if (!disk || !disk->random)
1176 return;
1177 /* First major is 1, so we get >= 0x200 here. */
1178 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1179}
1180EXPORT_SYMBOL_GPL(add_disk_randomness);
1181
560181c2 1182void __cold rand_initialize_disk(struct gendisk *disk)
a4b5c26b
JD
1183{
1184 struct timer_rand_state *state;
1185
1186 /*
1187 * If kzalloc returns null, we just won't use that entropy
1188 * source.
1189 */
1190 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1191 if (state) {
1192 state->last_time = INITIAL_JIFFIES;
1193 disk->random = state;
1194 }
1195}
1196#endif
1197
78c768e6
JD
1198struct entropy_timer_state {
1199 unsigned long entropy;
1200 struct timer_list timer;
1201 unsigned int samples, samples_per_bit;
1202};
1203
50ee7529
LT
1204/*
1205 * Each time the timer fires, we expect that we got an unpredictable
1206 * jump in the cycle counter. Even if the timer is running on another
1207 * CPU, the timer activity will be touching the stack of the CPU that is
1208 * generating entropy..
1209 *
1210 * Note that we don't re-arm the timer in the timer itself - we are
1211 * happy to be scheduled away, since that just makes the load more
1212 * complex, but we do not want the timer to keep ticking unless the
1213 * entropy loop is running.
1214 *
1215 * So the re-arming always happens in the entropy loop itself.
1216 */
560181c2 1217static void __cold entropy_timer(struct timer_list *timer)
50ee7529 1218{
78c768e6
JD
1219 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1220
1221 if (++state->samples == state->samples_per_bit) {
e85c0fc1 1222 credit_init_bits(1);
78c768e6
JD
1223 state->samples = 0;
1224 }
50ee7529
LT
1225}
1226
1227/*
1228 * If we have an actual cycle counter, see if we can
1229 * generate enough entropy with timing noise
1230 */
560181c2 1231static void __cold try_to_generate_entropy(void)
50ee7529 1232{
12273347 1233 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
78c768e6
JD
1234 struct entropy_timer_state stack;
1235 unsigned int i, num_different = 0;
1236 unsigned long last = random_get_entropy();
50ee7529 1237
78c768e6
JD
1238 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1239 stack.entropy = random_get_entropy();
1240 if (stack.entropy != last)
1241 ++num_different;
1242 last = stack.entropy;
1243 }
1244 stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1245 if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
50ee7529
LT
1246 return;
1247
78c768e6 1248 stack.samples = 0;
50ee7529 1249 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
3e504d20 1250 while (!crng_ready() && !signal_pending(current)) {
50ee7529 1251 if (!timer_pending(&stack.timer))
12273347 1252 mod_timer(&stack.timer, jiffies);
4b758eda 1253 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
50ee7529 1254 schedule();
4b758eda 1255 stack.entropy = random_get_entropy();
50ee7529
LT
1256 }
1257
1258 del_timer_sync(&stack.timer);
1259 destroy_timer_on_stack(&stack.timer);
4b758eda 1260 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
50ee7529
LT
1261}
1262
a6adf8e7
JD
1263
1264/**********************************************************************
1265 *
1266 * Userspace reader/writer interfaces.
1267 *
1268 * getrandom(2) is the primary modern interface into the RNG and should
1269 * be used in preference to anything else.
1270 *
0313bc27
LT
1271 * Reading from /dev/random has the same functionality as calling
1272 * getrandom(2) with flags=0. In earlier versions, however, it had
1273 * vastly different semantics and should therefore be avoided, to
1274 * prevent backwards compatibility issues.
1275 *
1276 * Reading from /dev/urandom has the same functionality as calling
1277 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1278 * waiting for the RNG to be ready, it should not be used.
a6adf8e7
JD
1279 *
1280 * Writing to either /dev/random or /dev/urandom adds entropy to
1281 * the input pool but does not credit it.
1282 *
0313bc27
LT
1283 * Polling on /dev/random indicates when the RNG is initialized, on
1284 * the read side, and when it wants new entropy, on the write side.
a6adf8e7
JD
1285 *
1286 * Both /dev/random and /dev/urandom have the same set of ioctls for
1287 * adding entropy, getting the entropy count, zeroing the count, and
1288 * reseeding the crng.
1289 *
1290 **********************************************************************/
1291
a1940263 1292SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1da177e4 1293{
1b388e77
JA
1294 struct iov_iter iter;
1295 struct iovec iov;
1296 int ret;
1297
a6adf8e7
JD
1298 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1299 return -EINVAL;
301f0595 1300
a6adf8e7
JD
1301 /*
1302 * Requesting insecure and blocking randomness at the same time makes
1303 * no sense.
1304 */
1305 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1306 return -EINVAL;
c6f1deb1 1307
f5bda35f 1308 if (!crng_ready() && !(flags & GRND_INSECURE)) {
a6adf8e7
JD
1309 if (flags & GRND_NONBLOCK)
1310 return -EAGAIN;
1311 ret = wait_for_random_bytes();
1312 if (unlikely(ret))
1313 return ret;
1314 }
1b388e77
JA
1315
1316 ret = import_single_range(READ, ubuf, len, &iov, &iter);
1317 if (unlikely(ret))
1318 return ret;
1319 return get_random_bytes_user(&iter);
30c08efe
AL
1320}
1321
248045b8 1322static __poll_t random_poll(struct file *file, poll_table *wait)
1da177e4 1323{
30c08efe 1324 poll_wait(file, &crng_init_wait, wait);
e85c0fc1 1325 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1da177e4
LT
1326}
1327
1ce6c8d6 1328static ssize_t write_pool_user(struct iov_iter *iter)
1da177e4 1329{
04ec96b7 1330 u8 block[BLAKE2S_BLOCK_SIZE];
22b0a222
JA
1331 ssize_t ret = 0;
1332 size_t copied;
1da177e4 1333
22b0a222
JA
1334 if (unlikely(!iov_iter_count(iter)))
1335 return 0;
1336
1337 for (;;) {
1338 copied = copy_from_iter(block, sizeof(block), iter);
1339 ret += copied;
1340 mix_pool_bytes(block, copied);
1341 if (!iov_iter_count(iter) || copied != sizeof(block))
1342 break;
1ce6c8d6
JD
1343
1344 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1345 if (ret % PAGE_SIZE == 0) {
1346 if (signal_pending(current))
1347 break;
1348 cond_resched();
1349 }
1da177e4 1350 }
7f397dcd 1351
7b5164fb 1352 memzero_explicit(block, sizeof(block));
22b0a222 1353 return ret ? ret : -EFAULT;
7f397dcd
MM
1354}
1355
22b0a222 1356static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
7f397dcd 1357{
1ce6c8d6 1358 return write_pool_user(iter);
1da177e4
LT
1359}
1360
1b388e77 1361static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
0313bc27
LT
1362{
1363 static int maxwarn = 10;
1364
48bff105
JD
1365 /*
1366 * Opportunistically attempt to initialize the RNG on platforms that
1367 * have fast cycle counters, but don't (for now) require it to succeed.
1368 */
1369 if (!crng_ready())
1370 try_to_generate_entropy();
1371
cc1e127b
JD
1372 if (!crng_ready()) {
1373 if (!ratelimit_disable && maxwarn <= 0)
1374 ++urandom_warning.missed;
1375 else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1376 --maxwarn;
1b388e77
JA
1377 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1378 current->comm, iov_iter_count(iter));
cc1e127b 1379 }
0313bc27
LT
1380 }
1381
1b388e77 1382 return get_random_bytes_user(iter);
0313bc27
LT
1383}
1384
1b388e77 1385static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
a6adf8e7
JD
1386{
1387 int ret;
1388
cd4f24ae
JD
1389 if (!crng_ready() &&
1390 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1391 (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1392 return -EAGAIN;
1393
a6adf8e7
JD
1394 ret = wait_for_random_bytes();
1395 if (ret != 0)
1396 return ret;
1b388e77 1397 return get_random_bytes_user(iter);
a6adf8e7
JD
1398}
1399
43ae4860 1400static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4 1401{
1da177e4 1402 int __user *p = (int __user *)arg;
22b0a222 1403 int ent_count;
1da177e4
LT
1404
1405 switch (cmd) {
1406 case RNDGETENTCNT:
a6adf8e7 1407 /* Inherently racy, no point locking. */
e85c0fc1 1408 if (put_user(input_pool.init_bits, p))
1da177e4
LT
1409 return -EFAULT;
1410 return 0;
1411 case RNDADDTOENTCNT:
1412 if (!capable(CAP_SYS_ADMIN))
1413 return -EPERM;
1414 if (get_user(ent_count, p))
1415 return -EFAULT;
a49c010e
JD
1416 if (ent_count < 0)
1417 return -EINVAL;
e85c0fc1 1418 credit_init_bits(ent_count);
a49c010e 1419 return 0;
22b0a222
JA
1420 case RNDADDENTROPY: {
1421 struct iov_iter iter;
1422 struct iovec iov;
1423 ssize_t ret;
1424 int len;
1425
1da177e4
LT
1426 if (!capable(CAP_SYS_ADMIN))
1427 return -EPERM;
1428 if (get_user(ent_count, p++))
1429 return -EFAULT;
1430 if (ent_count < 0)
1431 return -EINVAL;
22b0a222
JA
1432 if (get_user(len, p++))
1433 return -EFAULT;
1434 ret = import_single_range(WRITE, p, len, &iov, &iter);
1435 if (unlikely(ret))
1436 return ret;
1ce6c8d6 1437 ret = write_pool_user(&iter);
22b0a222
JA
1438 if (unlikely(ret < 0))
1439 return ret;
1440 /* Since we're crediting, enforce that it was all written into the pool. */
1441 if (unlikely(ret != len))
1da177e4 1442 return -EFAULT;
e85c0fc1 1443 credit_init_bits(ent_count);
a49c010e 1444 return 0;
22b0a222 1445 }
1da177e4
LT
1446 case RNDZAPENTCNT:
1447 case RNDCLEARPOOL:
e85c0fc1 1448 /* No longer has any effect. */
1da177e4
LT
1449 if (!capable(CAP_SYS_ADMIN))
1450 return -EPERM;
1da177e4 1451 return 0;
d848e5f8
TT
1452 case RNDRESEEDCRNG:
1453 if (!capable(CAP_SYS_ADMIN))
1454 return -EPERM;
a96cfe2d 1455 if (!crng_ready())
d848e5f8 1456 return -ENODATA;
e85c0fc1 1457 crng_reseed();
d848e5f8 1458 return 0;
1da177e4
LT
1459 default:
1460 return -EINVAL;
1461 }
1462}
1463
9a6f70bb
JD
1464static int random_fasync(int fd, struct file *filp, int on)
1465{
1466 return fasync_helper(fd, filp, on, &fasync);
1467}
1468
2b8693c0 1469const struct file_operations random_fops = {
1b388e77 1470 .read_iter = random_read_iter,
22b0a222 1471 .write_iter = random_write_iter,
248045b8 1472 .poll = random_poll,
43ae4860 1473 .unlocked_ioctl = random_ioctl,
507e4e2b 1474 .compat_ioctl = compat_ptr_ioctl,
9a6f70bb 1475 .fasync = random_fasync,
6038f373 1476 .llseek = noop_llseek,
79025e72
JA
1477 .splice_read = generic_file_splice_read,
1478 .splice_write = iter_file_splice_write,
1da177e4
LT
1479};
1480
0313bc27 1481const struct file_operations urandom_fops = {
1b388e77 1482 .read_iter = urandom_read_iter,
22b0a222 1483 .write_iter = random_write_iter,
0313bc27
LT
1484 .unlocked_ioctl = random_ioctl,
1485 .compat_ioctl = compat_ptr_ioctl,
1486 .fasync = random_fasync,
1487 .llseek = noop_llseek,
79025e72
JA
1488 .splice_read = generic_file_splice_read,
1489 .splice_write = iter_file_splice_write,
0313bc27
LT
1490};
1491
0deff3c4 1492
1da177e4
LT
1493/********************************************************************
1494 *
0deff3c4
JD
1495 * Sysctl interface.
1496 *
1497 * These are partly unused legacy knobs with dummy values to not break
1498 * userspace and partly still useful things. They are usually accessible
1499 * in /proc/sys/kernel/random/ and are as follows:
1500 *
1501 * - boot_id - a UUID representing the current boot.
1502 *
1503 * - uuid - a random UUID, different each time the file is read.
1504 *
1505 * - poolsize - the number of bits of entropy that the input pool can
1506 * hold, tied to the POOL_BITS constant.
1507 *
1508 * - entropy_avail - the number of bits of entropy currently in the
1509 * input pool. Always <= poolsize.
1510 *
1511 * - write_wakeup_threshold - the amount of entropy in the input pool
1512 * below which write polls to /dev/random will unblock, requesting
e3d2c5e7 1513 * more entropy, tied to the POOL_READY_BITS constant. It is writable
0deff3c4
JD
1514 * to avoid breaking old userspaces, but writing to it does not
1515 * change any behavior of the RNG.
1516 *
d0efdf35 1517 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
0deff3c4
JD
1518 * It is writable to avoid breaking old userspaces, but writing
1519 * to it does not change any behavior of the RNG.
1da177e4
LT
1520 *
1521 ********************************************************************/
1522
1523#ifdef CONFIG_SYSCTL
1524
1525#include <linux/sysctl.h>
1526
d0efdf35 1527static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
e3d2c5e7 1528static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
489c7fc4 1529static int sysctl_poolsize = POOL_BITS;
64276a99 1530static u8 sysctl_bootid[UUID_SIZE];
1da177e4
LT
1531
1532/*
f22052b2 1533 * This function is used to return both the bootid UUID, and random
64276a99 1534 * UUID. The difference is in whether table->data is NULL; if it is,
1da177e4 1535 * then a new UUID is generated and returned to the user.
1da177e4 1536 */
a1940263 1537static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
248045b8 1538 size_t *lenp, loff_t *ppos)
1da177e4 1539{
64276a99
JD
1540 u8 tmp_uuid[UUID_SIZE], *uuid;
1541 char uuid_string[UUID_STRING_LEN + 1];
1542 struct ctl_table fake_table = {
1543 .data = uuid_string,
1544 .maxlen = UUID_STRING_LEN
1545 };
1546
1547 if (write)
1548 return -EPERM;
1da177e4
LT
1549
1550 uuid = table->data;
1551 if (!uuid) {
1552 uuid = tmp_uuid;
1da177e4 1553 generate_random_uuid(uuid);
44e4360f
MD
1554 } else {
1555 static DEFINE_SPINLOCK(bootid_spinlock);
1556
1557 spin_lock(&bootid_spinlock);
1558 if (!uuid[8])
1559 generate_random_uuid(uuid);
1560 spin_unlock(&bootid_spinlock);
1561 }
1da177e4 1562
64276a99 1563 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
a1940263 1564 return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1da177e4
LT
1565}
1566
77553cf8 1567/* The same as proc_dointvec, but writes don't change anything. */
a1940263 1568static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
77553cf8
JD
1569 size_t *lenp, loff_t *ppos)
1570{
a1940263 1571 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
77553cf8
JD
1572}
1573
5475e8f0 1574static struct ctl_table random_table[] = {
1da177e4 1575 {
1da177e4
LT
1576 .procname = "poolsize",
1577 .data = &sysctl_poolsize,
1578 .maxlen = sizeof(int),
1579 .mode = 0444,
6d456111 1580 .proc_handler = proc_dointvec,
1da177e4
LT
1581 },
1582 {
1da177e4 1583 .procname = "entropy_avail",
e85c0fc1 1584 .data = &input_pool.init_bits,
1da177e4
LT
1585 .maxlen = sizeof(int),
1586 .mode = 0444,
c5704490 1587 .proc_handler = proc_dointvec,
1da177e4 1588 },
1da177e4 1589 {
1da177e4 1590 .procname = "write_wakeup_threshold",
0deff3c4 1591 .data = &sysctl_random_write_wakeup_bits,
1da177e4
LT
1592 .maxlen = sizeof(int),
1593 .mode = 0644,
77553cf8 1594 .proc_handler = proc_do_rointvec,
1da177e4 1595 },
f5c2742c
TT
1596 {
1597 .procname = "urandom_min_reseed_secs",
0deff3c4 1598 .data = &sysctl_random_min_urandom_seed,
f5c2742c
TT
1599 .maxlen = sizeof(int),
1600 .mode = 0644,
77553cf8 1601 .proc_handler = proc_do_rointvec,
f5c2742c 1602 },
1da177e4 1603 {
1da177e4
LT
1604 .procname = "boot_id",
1605 .data = &sysctl_bootid,
1da177e4 1606 .mode = 0444,
6d456111 1607 .proc_handler = proc_do_uuid,
1da177e4
LT
1608 },
1609 {
1da177e4 1610 .procname = "uuid",
1da177e4 1611 .mode = 0444,
6d456111 1612 .proc_handler = proc_do_uuid,
1da177e4 1613 },
894d2491 1614 { }
1da177e4 1615};
5475e8f0
XN
1616
1617/*
2f14062b
JD
1618 * random_init() is called before sysctl_init(),
1619 * so we cannot call register_sysctl_init() in random_init()
5475e8f0
XN
1620 */
1621static int __init random_sysctls_init(void)
1622{
1623 register_sysctl_init("kernel/random", random_table);
1624 return 0;
1625}
1626device_initcall(random_sysctls_init);
0deff3c4 1627#endif