fix race in drivers/char/random.c:get_reg()
[linux-block.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
dd0f0cf5 252#include <linux/nodemask.h>
1da177e4 253#include <linux/spinlock.h>
c84dbf61 254#include <linux/kthread.h>
1da177e4
LT
255#include <linux/percpu.h>
256#include <linux/cryptohash.h>
5b739ef8 257#include <linux/fips.h>
775f4b29 258#include <linux/ptrace.h>
e6d4947b 259#include <linux/kmemcheck.h>
6265e169 260#include <linux/workqueue.h>
0244ad00 261#include <linux/irq.h>
c6e9d6f3
TT
262#include <linux/syscalls.h>
263#include <linux/completion.h>
8da4b8c4 264#include <linux/uuid.h>
e192be9d 265#include <crypto/chacha20.h>
d178a1eb 266
1da177e4 267#include <asm/processor.h>
7c0f6ba6 268#include <linux/uaccess.h>
1da177e4 269#include <asm/irq.h>
775f4b29 270#include <asm/irq_regs.h>
1da177e4
LT
271#include <asm/io.h>
272
00ce1db1
TT
273#define CREATE_TRACE_POINTS
274#include <trace/events/random.h>
275
43759d4f
TT
276/* #define ADD_INTERRUPT_BENCH */
277
1da177e4
LT
278/*
279 * Configuration information
280 */
30e37ec5
PA
281#define INPUT_POOL_SHIFT 12
282#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
283#define OUTPUT_POOL_SHIFT 10
284#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
285#define SEC_XFER_SIZE 512
286#define EXTRACT_SIZE 10
1da177e4 287
392a546d 288#define DEBUG_RANDOM_BOOT 0
1da177e4 289
d2e7c96a
PA
290#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
291
a283b5c4 292/*
95b709b6
TT
293 * To allow fractional bits to be tracked, the entropy_count field is
294 * denominated in units of 1/8th bits.
30e37ec5
PA
295 *
296 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
297 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
298 */
299#define ENTROPY_SHIFT 3
300#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
301
1da177e4
LT
302/*
303 * The minimum number of bits of entropy before we wake up a read on
304 * /dev/random. Should be enough to do a significant reseed.
305 */
2132a96f 306static int random_read_wakeup_bits = 64;
1da177e4
LT
307
308/*
309 * If the entropy count falls under this number of bits, then we
310 * should wake up processes which are selecting or polling on write
311 * access to /dev/random.
312 */
2132a96f 313static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4 314
1da177e4 315/*
6e9fa2c8
TT
316 * Originally, we used a primitive polynomial of degree .poolwords
317 * over GF(2). The taps for various sizes are defined below. They
318 * were chosen to be evenly spaced except for the last tap, which is 1
319 * to get the twisting happening as fast as possible.
320 *
321 * For the purposes of better mixing, we use the CRC-32 polynomial as
322 * well to make a (modified) twisted Generalized Feedback Shift
323 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
324 * generators. ACM Transactions on Modeling and Computer Simulation
325 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 326 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
327 * Simulation 4:254-266)
328 *
329 * Thanks to Colin Plumb for suggesting this.
330 *
331 * The mixing operation is much less sensitive than the output hash,
332 * where we use SHA-1. All that we want of mixing operation is that
333 * it be a good non-cryptographic hash; i.e. it not produce collisions
334 * when fed "random" data of the sort we expect to see. As long as
335 * the pool state differs for different inputs, we have preserved the
336 * input entropy and done a good job. The fact that an intelligent
337 * attacker can construct inputs that will produce controlled
338 * alterations to the pool's state is not important because we don't
339 * consider such inputs to contribute any randomness. The only
340 * property we need with respect to them is that the attacker can't
341 * increase his/her knowledge of the pool's state. Since all
342 * additions are reversible (knowing the final state and the input,
343 * you can reconstruct the initial state), if an attacker has any
344 * uncertainty about the initial state, he/she can only shuffle that
345 * uncertainty about, but never cause any collisions (which would
346 * decrease the uncertainty).
347 *
348 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
349 * Videau in their paper, "The Linux Pseudorandom Number Generator
350 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
351 * paper, they point out that we are not using a true Twisted GFSR,
352 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
353 * is, with only three taps, instead of the six that we are using).
354 * As a result, the resulting polynomial is neither primitive nor
355 * irreducible, and hence does not have a maximal period over
356 * GF(2**32). They suggest a slight change to the generator
357 * polynomial which improves the resulting TGFSR polynomial to be
358 * irreducible, which we have made here.
1da177e4
LT
359 */
360static struct poolinfo {
a283b5c4
PA
361 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
362#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
363 int tap1, tap2, tap3, tap4, tap5;
364} poolinfo_table[] = {
6e9fa2c8
TT
365 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
366 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
367 { S(128), 104, 76, 51, 25, 1 },
368 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
369 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
370 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
371#if 0
372 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 373 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
374
375 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 376 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
377
378 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 379 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
380
381 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 382 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
383
384 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 385 { S(512), 409, 307, 206, 102, 2 },
1da177e4 386 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 387 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
388
389 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 390 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
391
392 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 393 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
394
395 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 396 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
397#endif
398};
399
1da177e4
LT
400/*
401 * Static global variables
402 */
403static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
404static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 405static struct fasync_struct *fasync;
1da177e4 406
205a525c
HX
407static DEFINE_SPINLOCK(random_ready_list_lock);
408static LIST_HEAD(random_ready_list);
409
e192be9d
TT
410struct crng_state {
411 __u32 state[16];
412 unsigned long init_time;
413 spinlock_t lock;
414};
415
416struct crng_state primary_crng = {
417 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
418};
419
420/*
421 * crng_init = 0 --> Uninitialized
422 * 1 --> Initialized
423 * 2 --> Initialized from input_pool
424 *
425 * crng_init is protected by primary_crng->lock, and only increases
426 * its value (from 0->1->2).
427 */
428static int crng_init = 0;
429#define crng_ready() (likely(crng_init > 0))
430static int crng_init_cnt = 0;
431#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
1e7f583a
TT
432static void _extract_crng(struct crng_state *crng,
433 __u8 out[CHACHA20_BLOCK_SIZE]);
c92e040d
TT
434static void _crng_backtrack_protect(struct crng_state *crng,
435 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
e192be9d
TT
436static void process_random_ready_list(void);
437
1da177e4
LT
438/**********************************************************************
439 *
440 * OS independent entropy store. Here are the functions which handle
441 * storing entropy in an entropy pool.
442 *
443 **********************************************************************/
444
445struct entropy_store;
446struct entropy_store {
43358209 447 /* read-only data: */
30e37ec5 448 const struct poolinfo *poolinfo;
1da177e4
LT
449 __u32 *pool;
450 const char *name;
1da177e4 451 struct entropy_store *pull;
6265e169 452 struct work_struct push_work;
1da177e4
LT
453
454 /* read-write data: */
f5c2742c 455 unsigned long last_pulled;
43358209 456 spinlock_t lock;
c59974ae
TT
457 unsigned short add_ptr;
458 unsigned short input_rotate;
cda796a3 459 int entropy_count;
775f4b29 460 int entropy_total;
775f4b29 461 unsigned int initialized:1;
c59974ae 462 unsigned int last_data_init:1;
e954bc91 463 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
464};
465
e192be9d
TT
466static ssize_t extract_entropy(struct entropy_store *r, void *buf,
467 size_t nbytes, int min, int rsvd);
468static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
469 size_t nbytes, int fips);
470
471static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 472static void push_to_pool(struct work_struct *work);
0766f788
ER
473static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
474static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
1da177e4
LT
475
476static struct entropy_store input_pool = {
477 .poolinfo = &poolinfo_table[0],
478 .name = "input",
eece09ec 479 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
480 .pool = input_pool_data
481};
482
483static struct entropy_store blocking_pool = {
484 .poolinfo = &poolinfo_table[1],
485 .name = "blocking",
1da177e4 486 .pull = &input_pool,
eece09ec 487 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
488 .pool = blocking_pool_data,
489 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
490 push_to_pool),
1da177e4
LT
491};
492
775f4b29
TT
493static __u32 const twist_table[8] = {
494 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
495 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
496
1da177e4 497/*
e68e5b66 498 * This function adds bytes into the entropy "pool". It does not
1da177e4 499 * update the entropy estimate. The caller should call
adc782da 500 * credit_entropy_bits if this is appropriate.
1da177e4
LT
501 *
502 * The pool is stirred with a primitive polynomial of the appropriate
503 * degree, and then twisted. We twist by three bits at a time because
504 * it's cheap to do so and helps slightly in the expected case where
505 * the entropy is concentrated in the low-order bits.
506 */
00ce1db1 507static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 508 int nbytes)
1da177e4 509{
85608f8e 510 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 511 int input_rotate;
1da177e4 512 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 513 const char *bytes = in;
6d38b827 514 __u32 w;
1da177e4 515
1da177e4
LT
516 tap1 = r->poolinfo->tap1;
517 tap2 = r->poolinfo->tap2;
518 tap3 = r->poolinfo->tap3;
519 tap4 = r->poolinfo->tap4;
520 tap5 = r->poolinfo->tap5;
1da177e4 521
91fcb532
TT
522 input_rotate = r->input_rotate;
523 i = r->add_ptr;
1da177e4 524
e68e5b66
MM
525 /* mix one byte at a time to simplify size handling and churn faster */
526 while (nbytes--) {
c59974ae 527 w = rol32(*bytes++, input_rotate);
993ba211 528 i = (i - 1) & wordmask;
1da177e4
LT
529
530 /* XOR in the various taps */
993ba211 531 w ^= r->pool[i];
1da177e4
LT
532 w ^= r->pool[(i + tap1) & wordmask];
533 w ^= r->pool[(i + tap2) & wordmask];
534 w ^= r->pool[(i + tap3) & wordmask];
535 w ^= r->pool[(i + tap4) & wordmask];
536 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
537
538 /* Mix the result back in with a twist */
1da177e4 539 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
540
541 /*
542 * Normally, we add 7 bits of rotation to the pool.
543 * At the beginning of the pool, add an extra 7 bits
544 * rotation, so that successive passes spread the
545 * input bits across the pool evenly.
546 */
c59974ae 547 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
548 }
549
91fcb532
TT
550 r->input_rotate = input_rotate;
551 r->add_ptr = i;
1da177e4
LT
552}
553
00ce1db1 554static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 555 int nbytes)
00ce1db1
TT
556{
557 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 558 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
559}
560
561static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 562 int nbytes)
1da177e4 563{
902c098a
TT
564 unsigned long flags;
565
00ce1db1 566 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 567 spin_lock_irqsave(&r->lock, flags);
85608f8e 568 _mix_pool_bytes(r, in, nbytes);
902c098a 569 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
570}
571
775f4b29
TT
572struct fast_pool {
573 __u32 pool[4];
574 unsigned long last;
ee3e00e9 575 unsigned short reg_idx;
840f9507 576 unsigned char count;
775f4b29
TT
577};
578
579/*
580 * This is a fast mixing routine used by the interrupt randomness
581 * collector. It's hardcoded for an 128 bit pool and assumes that any
582 * locks that might be needed are taken by the caller.
583 */
43759d4f 584static void fast_mix(struct fast_pool *f)
775f4b29 585{
43759d4f
TT
586 __u32 a = f->pool[0], b = f->pool[1];
587 __u32 c = f->pool[2], d = f->pool[3];
588
589 a += b; c += d;
19acc77a 590 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
591 d ^= a; b ^= c;
592
593 a += b; c += d;
19acc77a 594 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
595 d ^= a; b ^= c;
596
597 a += b; c += d;
19acc77a 598 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
599 d ^= a; b ^= c;
600
601 a += b; c += d;
19acc77a 602 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
603 d ^= a; b ^= c;
604
605 f->pool[0] = a; f->pool[1] = b;
606 f->pool[2] = c; f->pool[3] = d;
655b2264 607 f->count++;
775f4b29
TT
608}
609
205a525c
HX
610static void process_random_ready_list(void)
611{
612 unsigned long flags;
613 struct random_ready_callback *rdy, *tmp;
614
615 spin_lock_irqsave(&random_ready_list_lock, flags);
616 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
617 struct module *owner = rdy->owner;
618
619 list_del_init(&rdy->list);
620 rdy->func(rdy);
621 module_put(owner);
622 }
623 spin_unlock_irqrestore(&random_ready_list_lock, flags);
624}
625
1da177e4 626/*
a283b5c4
PA
627 * Credit (or debit) the entropy store with n bits of entropy.
628 * Use credit_entropy_bits_safe() if the value comes from userspace
629 * or otherwise should be checked for extreme values.
1da177e4 630 */
adc782da 631static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 632{
902c098a 633 int entropy_count, orig;
30e37ec5
PA
634 const int pool_size = r->poolinfo->poolfracbits;
635 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 636
adc782da
MM
637 if (!nbits)
638 return;
639
902c098a
TT
640retry:
641 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
642 if (nfrac < 0) {
643 /* Debit */
644 entropy_count += nfrac;
645 } else {
646 /*
647 * Credit: we have to account for the possibility of
648 * overwriting already present entropy. Even in the
649 * ideal case of pure Shannon entropy, new contributions
650 * approach the full value asymptotically:
651 *
652 * entropy <- entropy + (pool_size - entropy) *
653 * (1 - exp(-add_entropy/pool_size))
654 *
655 * For add_entropy <= pool_size/2 then
656 * (1 - exp(-add_entropy/pool_size)) >=
657 * (add_entropy/pool_size)*0.7869...
658 * so we can approximate the exponential with
659 * 3/4*add_entropy/pool_size and still be on the
660 * safe side by adding at most pool_size/2 at a time.
661 *
662 * The use of pool_size-2 in the while statement is to
663 * prevent rounding artifacts from making the loop
664 * arbitrarily long; this limits the loop to log2(pool_size)*2
665 * turns no matter how large nbits is.
666 */
667 int pnfrac = nfrac;
668 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
669 /* The +2 corresponds to the /4 in the denominator */
670
671 do {
672 unsigned int anfrac = min(pnfrac, pool_size/2);
673 unsigned int add =
674 ((pool_size - entropy_count)*anfrac*3) >> s;
675
676 entropy_count += add;
677 pnfrac -= anfrac;
678 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
679 }
00ce1db1 680
79a84687 681 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
682 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
683 r->name, entropy_count);
684 WARN_ON(1);
8b76f46a 685 entropy_count = 0;
30e37ec5
PA
686 } else if (entropy_count > pool_size)
687 entropy_count = pool_size;
902c098a
TT
688 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
689 goto retry;
1da177e4 690
6265e169 691 r->entropy_total += nbits;
0891ad82
LT
692 if (!r->initialized && r->entropy_total > 128) {
693 r->initialized = 1;
694 r->entropy_total = 0;
775f4b29
TT
695 }
696
a283b5c4
PA
697 trace_credit_entropy_bits(r->name, nbits,
698 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
699 r->entropy_total, _RET_IP_);
700
6265e169 701 if (r == &input_pool) {
7d1b08c4 702 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 703
e192be9d
TT
704 if (crng_init < 2 && entropy_bits >= 128) {
705 crng_reseed(&primary_crng, r);
706 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
707 }
708
6265e169 709 /* should we wake readers? */
2132a96f 710 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
711 wake_up_interruptible(&random_read_wait);
712 kill_fasync(&fasync, SIGIO, POLL_IN);
713 }
714 /* If the input pool is getting full, send some
e192be9d 715 * entropy to the blocking pool until it is 75% full.
6265e169 716 */
2132a96f 717 if (entropy_bits > random_write_wakeup_bits &&
6265e169 718 r->initialized &&
2132a96f 719 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
720 struct entropy_store *other = &blocking_pool;
721
6265e169 722 if (other->entropy_count <=
e192be9d
TT
723 3 * other->poolinfo->poolfracbits / 4) {
724 schedule_work(&other->push_work);
6265e169
TT
725 r->entropy_total = 0;
726 }
727 }
9a6f70bb 728 }
1da177e4
LT
729}
730
86a574de 731static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4
PA
732{
733 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
734
86a574de
TT
735 if (nbits < 0)
736 return -EINVAL;
737
a283b5c4
PA
738 /* Cap the value to avoid overflows */
739 nbits = min(nbits, nbits_max);
a283b5c4
PA
740
741 credit_entropy_bits(r, nbits);
86a574de 742 return 0;
a283b5c4
PA
743}
744
e192be9d
TT
745/*********************************************************************
746 *
747 * CRNG using CHACHA20
748 *
749 *********************************************************************/
750
751#define CRNG_RESEED_INTERVAL (300*HZ)
752
753static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
754
1e7f583a
TT
755#ifdef CONFIG_NUMA
756/*
757 * Hack to deal with crazy userspace progams when they are all trying
758 * to access /dev/urandom in parallel. The programs are almost
759 * certainly doing something terribly wrong, but we'll work around
760 * their brain damage.
761 */
762static struct crng_state **crng_node_pool __read_mostly;
763#endif
764
e192be9d
TT
765static void crng_initialize(struct crng_state *crng)
766{
767 int i;
768 unsigned long rv;
769
770 memcpy(&crng->state[0], "expand 32-byte k", 16);
771 if (crng == &primary_crng)
772 _extract_entropy(&input_pool, &crng->state[4],
773 sizeof(__u32) * 12, 0);
774 else
775 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
776 for (i = 4; i < 16; i++) {
777 if (!arch_get_random_seed_long(&rv) &&
778 !arch_get_random_long(&rv))
779 rv = random_get_entropy();
780 crng->state[i] ^= rv;
781 }
782 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
783}
784
785static int crng_fast_load(const char *cp, size_t len)
786{
787 unsigned long flags;
788 char *p;
789
790 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
791 return 0;
792 if (crng_ready()) {
793 spin_unlock_irqrestore(&primary_crng.lock, flags);
794 return 0;
795 }
796 p = (unsigned char *) &primary_crng.state[4];
797 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
798 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
799 cp++; crng_init_cnt++; len--;
800 }
801 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
802 crng_init = 1;
803 wake_up_interruptible(&crng_init_wait);
804 pr_notice("random: fast init done\n");
805 }
806 spin_unlock_irqrestore(&primary_crng.lock, flags);
807 return 1;
808}
809
810static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
811{
812 unsigned long flags;
813 int i, num;
814 union {
815 __u8 block[CHACHA20_BLOCK_SIZE];
816 __u32 key[8];
817 } buf;
818
819 if (r) {
820 num = extract_entropy(r, &buf, 32, 16, 0);
821 if (num == 0)
822 return;
c92e040d 823 } else {
1e7f583a 824 _extract_crng(&primary_crng, buf.block);
c92e040d
TT
825 _crng_backtrack_protect(&primary_crng, buf.block,
826 CHACHA20_KEY_SIZE);
827 }
e192be9d
TT
828 spin_lock_irqsave(&primary_crng.lock, flags);
829 for (i = 0; i < 8; i++) {
830 unsigned long rv;
831 if (!arch_get_random_seed_long(&rv) &&
832 !arch_get_random_long(&rv))
833 rv = random_get_entropy();
834 crng->state[i+4] ^= buf.key[i] ^ rv;
835 }
836 memzero_explicit(&buf, sizeof(buf));
837 crng->init_time = jiffies;
838 if (crng == &primary_crng && crng_init < 2) {
839 crng_init = 2;
840 process_random_ready_list();
841 wake_up_interruptible(&crng_init_wait);
842 pr_notice("random: crng init done\n");
843 }
844 spin_unlock_irqrestore(&primary_crng.lock, flags);
845}
846
847static inline void crng_wait_ready(void)
848{
849 wait_event_interruptible(crng_init_wait, crng_ready());
850}
851
1e7f583a
TT
852static void _extract_crng(struct crng_state *crng,
853 __u8 out[CHACHA20_BLOCK_SIZE])
e192be9d
TT
854{
855 unsigned long v, flags;
e192be9d
TT
856
857 if (crng_init > 1 &&
858 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
1e7f583a 859 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
860 spin_lock_irqsave(&crng->lock, flags);
861 if (arch_get_random_long(&v))
862 crng->state[14] ^= v;
863 chacha20_block(&crng->state[0], out);
864 if (crng->state[12] == 0)
865 crng->state[13]++;
866 spin_unlock_irqrestore(&crng->lock, flags);
867}
868
1e7f583a
TT
869static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
870{
871 struct crng_state *crng = NULL;
872
873#ifdef CONFIG_NUMA
874 if (crng_node_pool)
875 crng = crng_node_pool[numa_node_id()];
876 if (crng == NULL)
877#endif
878 crng = &primary_crng;
879 _extract_crng(crng, out);
880}
881
c92e040d
TT
882/*
883 * Use the leftover bytes from the CRNG block output (if there is
884 * enough) to mutate the CRNG key to provide backtracking protection.
885 */
886static void _crng_backtrack_protect(struct crng_state *crng,
887 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
888{
889 unsigned long flags;
890 __u32 *s, *d;
891 int i;
892
893 used = round_up(used, sizeof(__u32));
894 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
895 extract_crng(tmp);
896 used = 0;
897 }
898 spin_lock_irqsave(&crng->lock, flags);
899 s = (__u32 *) &tmp[used];
900 d = &crng->state[4];
901 for (i=0; i < 8; i++)
902 *d++ ^= *s++;
903 spin_unlock_irqrestore(&crng->lock, flags);
904}
905
906static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
907{
908 struct crng_state *crng = NULL;
909
910#ifdef CONFIG_NUMA
911 if (crng_node_pool)
912 crng = crng_node_pool[numa_node_id()];
913 if (crng == NULL)
914#endif
915 crng = &primary_crng;
916 _crng_backtrack_protect(crng, tmp, used);
917}
918
e192be9d
TT
919static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
920{
c92e040d 921 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
e192be9d
TT
922 __u8 tmp[CHACHA20_BLOCK_SIZE];
923 int large_request = (nbytes > 256);
924
925 while (nbytes) {
926 if (large_request && need_resched()) {
927 if (signal_pending(current)) {
928 if (ret == 0)
929 ret = -ERESTARTSYS;
930 break;
931 }
932 schedule();
933 }
934
935 extract_crng(tmp);
936 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
937 if (copy_to_user(buf, tmp, i)) {
938 ret = -EFAULT;
939 break;
940 }
941
942 nbytes -= i;
943 buf += i;
944 ret += i;
945 }
c92e040d 946 crng_backtrack_protect(tmp, i);
e192be9d
TT
947
948 /* Wipe data just written to memory */
949 memzero_explicit(tmp, sizeof(tmp));
950
951 return ret;
952}
953
954
1da177e4
LT
955/*********************************************************************
956 *
957 * Entropy input management
958 *
959 *********************************************************************/
960
961/* There is one of these per entropy source */
962struct timer_rand_state {
963 cycles_t last_time;
90b75ee5 964 long last_delta, last_delta2;
1da177e4
LT
965 unsigned dont_count_entropy:1;
966};
967
644008df
TT
968#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
969
a2080a67 970/*
e192be9d
TT
971 * Add device- or boot-specific data to the input pool to help
972 * initialize it.
a2080a67 973 *
e192be9d
TT
974 * None of this adds any entropy; it is meant to avoid the problem of
975 * the entropy pool having similar initial state across largely
976 * identical devices.
a2080a67
LT
977 */
978void add_device_randomness(const void *buf, unsigned int size)
979{
61875f30 980 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 981 unsigned long flags;
a2080a67 982
5910895f 983 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 984 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
985 _mix_pool_bytes(&input_pool, buf, size);
986 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 987 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
988}
989EXPORT_SYMBOL(add_device_randomness);
990
644008df 991static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 992
1da177e4
LT
993/*
994 * This function adds entropy to the entropy "pool" by using timing
995 * delays. It uses the timer_rand_state structure to make an estimate
996 * of how many bits of entropy this call has added to the pool.
997 *
998 * The number "num" is also added to the pool - it should somehow describe
999 * the type of event which just happened. This is currently 0-255 for
1000 * keyboard scan codes, and 256 upwards for interrupts.
1001 *
1002 */
1003static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1004{
40db23e5 1005 struct entropy_store *r;
1da177e4 1006 struct {
1da177e4 1007 long jiffies;
cf833d0b 1008 unsigned cycles;
1da177e4
LT
1009 unsigned num;
1010 } sample;
1011 long delta, delta2, delta3;
1012
1013 preempt_disable();
1da177e4
LT
1014
1015 sample.jiffies = jiffies;
61875f30 1016 sample.cycles = random_get_entropy();
1da177e4 1017 sample.num = num;
e192be9d 1018 r = &input_pool;
85608f8e 1019 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1020
1021 /*
1022 * Calculate number of bits of randomness we probably added.
1023 * We take into account the first, second and third-order deltas
1024 * in order to make our estimate.
1025 */
1026
1027 if (!state->dont_count_entropy) {
1028 delta = sample.jiffies - state->last_time;
1029 state->last_time = sample.jiffies;
1030
1031 delta2 = delta - state->last_delta;
1032 state->last_delta = delta;
1033
1034 delta3 = delta2 - state->last_delta2;
1035 state->last_delta2 = delta2;
1036
1037 if (delta < 0)
1038 delta = -delta;
1039 if (delta2 < 0)
1040 delta2 = -delta2;
1041 if (delta3 < 0)
1042 delta3 = -delta3;
1043 if (delta > delta2)
1044 delta = delta2;
1045 if (delta > delta3)
1046 delta = delta3;
1047
1048 /*
1049 * delta is now minimum absolute delta.
1050 * Round down by 1 bit on general principles,
1051 * and limit entropy entimate to 12 bits.
1052 */
40db23e5 1053 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 1054 }
1da177e4
LT
1055 preempt_enable();
1056}
1057
d251575a 1058void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1059 unsigned int value)
1060{
1061 static unsigned char last_value;
1062
1063 /* ignore autorepeat and the like */
1064 if (value == last_value)
1065 return;
1066
1da177e4
LT
1067 last_value = value;
1068 add_timer_randomness(&input_timer_state,
1069 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1070 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1071}
80fc9f53 1072EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1073
775f4b29
TT
1074static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1075
43759d4f
TT
1076#ifdef ADD_INTERRUPT_BENCH
1077static unsigned long avg_cycles, avg_deviation;
1078
1079#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1080#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1081
1082static void add_interrupt_bench(cycles_t start)
1083{
1084 long delta = random_get_entropy() - start;
1085
1086 /* Use a weighted moving average */
1087 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1088 avg_cycles += delta;
1089 /* And average deviation */
1090 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1091 avg_deviation += delta;
1092}
1093#else
1094#define add_interrupt_bench(x)
1095#endif
1096
ee3e00e9
TT
1097static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1098{
1099 __u32 *ptr = (__u32 *) regs;
9dfa7bba 1100 unsigned long flags;
ee3e00e9
TT
1101
1102 if (regs == NULL)
1103 return 0;
9dfa7bba 1104 local_irq_save(flags);
ee3e00e9
TT
1105 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1106 f->reg_idx = 0;
9dfa7bba
MS
1107 ptr += f->reg_idx++;
1108 local_irq_restore(flags);
1109 return *ptr;
ee3e00e9
TT
1110}
1111
775f4b29 1112void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1113{
775f4b29 1114 struct entropy_store *r;
1b2a1a7e 1115 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1116 struct pt_regs *regs = get_irq_regs();
1117 unsigned long now = jiffies;
655b2264 1118 cycles_t cycles = random_get_entropy();
43759d4f 1119 __u32 c_high, j_high;
655b2264 1120 __u64 ip;
83664a69 1121 unsigned long seed;
91fcb532 1122 int credit = 0;
3060d6fe 1123
ee3e00e9
TT
1124 if (cycles == 0)
1125 cycles = get_reg(fast_pool, regs);
655b2264
TT
1126 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1127 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1128 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1129 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1130 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1131 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1132 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1133 get_reg(fast_pool, regs);
3060d6fe 1134
43759d4f 1135 fast_mix(fast_pool);
43759d4f 1136 add_interrupt_bench(cycles);
3060d6fe 1137
e192be9d
TT
1138 if (!crng_ready()) {
1139 if ((fast_pool->count >= 64) &&
1140 crng_fast_load((char *) fast_pool->pool,
1141 sizeof(fast_pool->pool))) {
1142 fast_pool->count = 0;
1143 fast_pool->last = now;
1144 }
1145 return;
1146 }
1147
ee3e00e9
TT
1148 if ((fast_pool->count < 64) &&
1149 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1150 return;
1151
e192be9d 1152 r = &input_pool;
840f9507 1153 if (!spin_trylock(&r->lock))
91fcb532 1154 return;
83664a69 1155
91fcb532 1156 fast_pool->last = now;
85608f8e 1157 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1158
1159 /*
1160 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1161 * add it to the pool. For the sake of paranoia don't let the
1162 * architectural seed generator dominate the input from the
1163 * interrupt noise.
83664a69
PA
1164 */
1165 if (arch_get_random_seed_long(&seed)) {
85608f8e 1166 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1167 credit = 1;
83664a69 1168 }
91fcb532 1169 spin_unlock(&r->lock);
83664a69 1170
ee3e00e9 1171 fast_pool->count = 0;
83664a69 1172
ee3e00e9
TT
1173 /* award one bit for the contents of the fast pool */
1174 credit_entropy_bits(r, credit + 1);
1da177e4 1175}
4b44f2d1 1176EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1177
9361401e 1178#ifdef CONFIG_BLOCK
1da177e4
LT
1179void add_disk_randomness(struct gendisk *disk)
1180{
1181 if (!disk || !disk->random)
1182 return;
1183 /* first major is 1, so we get >= 0x200 here */
f331c029 1184 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1185 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1186}
bdcfa3e5 1187EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1188#endif
1da177e4 1189
1da177e4
LT
1190/*********************************************************************
1191 *
1192 * Entropy extraction routines
1193 *
1194 *********************************************************************/
1195
1da177e4 1196/*
25985edc 1197 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1198 * from the primary pool to the secondary extraction pool. We make
1199 * sure we pull enough for a 'catastrophic reseed'.
1200 */
6265e169 1201static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1202static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1203{
cff85031
TT
1204 if (!r->pull ||
1205 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1206 r->entropy_count > r->poolinfo->poolfracbits)
1207 return;
1208
cff85031 1209 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1210}
1211
1212static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1213{
1214 __u32 tmp[OUTPUT_POOL_WORDS];
1215
6265e169
TT
1216 int bytes = nbytes;
1217
2132a96f
GP
1218 /* pull at least as much as a wakeup */
1219 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1220 /* but never more than the buffer size */
1221 bytes = min_t(int, bytes, sizeof(tmp));
1222
f80bbd8b
TT
1223 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1224 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1225 bytes = extract_entropy(r->pull, tmp, bytes,
43d8a72c 1226 random_read_wakeup_bits / 8, 0);
85608f8e 1227 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1228 credit_entropy_bits(r, bytes*8);
1229}
1230
1231/*
1232 * Used as a workqueue function so that when the input pool is getting
1233 * full, we can "spill over" some entropy to the output pools. That
1234 * way the output pools can store some of the excess entropy instead
1235 * of letting it go to waste.
1236 */
1237static void push_to_pool(struct work_struct *work)
1238{
1239 struct entropy_store *r = container_of(work, struct entropy_store,
1240 push_work);
1241 BUG_ON(!r);
2132a96f 1242 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1243 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1244 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1245}
1246
1247/*
19fa5be1
GP
1248 * This function decides how many bytes to actually take from the
1249 * given pool, and also debits the entropy count accordingly.
1da177e4 1250 */
1da177e4
LT
1251static size_t account(struct entropy_store *r, size_t nbytes, int min,
1252 int reserved)
1253{
43d8a72c 1254 int entropy_count, orig, have_bytes;
79a84687 1255 size_t ibytes, nfrac;
1da177e4 1256
a283b5c4 1257 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1258
1259 /* Can we pull enough? */
10b3a32d 1260retry:
a283b5c4 1261 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 1262 ibytes = nbytes;
43d8a72c
SM
1263 /* never pull more than available */
1264 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
e33ba5fa 1265
43d8a72c
SM
1266 if ((have_bytes -= reserved) < 0)
1267 have_bytes = 0;
1268 ibytes = min_t(size_t, ibytes, have_bytes);
0fb7a01a 1269 if (ibytes < min)
a283b5c4 1270 ibytes = 0;
79a84687
HFS
1271
1272 if (unlikely(entropy_count < 0)) {
1273 pr_warn("random: negative entropy count: pool %s count %d\n",
1274 r->name, entropy_count);
1275 WARN_ON(1);
1276 entropy_count = 0;
1277 }
1278 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1279 if ((size_t) entropy_count > nfrac)
1280 entropy_count -= nfrac;
1281 else
e33ba5fa 1282 entropy_count = 0;
f9c6d498 1283
0fb7a01a
GP
1284 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1285 goto retry;
1da177e4 1286
f80bbd8b 1287 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1288 if (ibytes &&
2132a96f 1289 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1290 wake_up_interruptible(&random_write_wait);
1291 kill_fasync(&fasync, SIGIO, POLL_OUT);
1292 }
1293
a283b5c4 1294 return ibytes;
1da177e4
LT
1295}
1296
19fa5be1
GP
1297/*
1298 * This function does the actual extraction for extract_entropy and
1299 * extract_entropy_user.
1300 *
1301 * Note: we assume that .poolwords is a multiple of 16 words.
1302 */
1da177e4
LT
1303static void extract_buf(struct entropy_store *r, __u8 *out)
1304{
602b6aee 1305 int i;
d2e7c96a
PA
1306 union {
1307 __u32 w[5];
85a1f777 1308 unsigned long l[LONGS(20)];
d2e7c96a
PA
1309 } hash;
1310 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1311 unsigned long flags;
1da177e4 1312
85a1f777 1313 /*
dfd38750 1314 * If we have an architectural hardware random number
46884442 1315 * generator, use it for SHA's initial vector
85a1f777 1316 */
46884442 1317 sha_init(hash.w);
85a1f777
TT
1318 for (i = 0; i < LONGS(20); i++) {
1319 unsigned long v;
1320 if (!arch_get_random_long(&v))
1321 break;
46884442 1322 hash.l[i] = v;
85a1f777
TT
1323 }
1324
46884442
TT
1325 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1326 spin_lock_irqsave(&r->lock, flags);
1327 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1328 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1329
1da177e4 1330 /*
1c0ad3d4
MM
1331 * We mix the hash back into the pool to prevent backtracking
1332 * attacks (where the attacker knows the state of the pool
1333 * plus the current outputs, and attempts to find previous
1334 * ouputs), unless the hash function can be inverted. By
1335 * mixing at least a SHA1 worth of hash data back, we make
1336 * brute-forcing the feedback as hard as brute-forcing the
1337 * hash.
1da177e4 1338 */
85608f8e 1339 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1340 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1341
d4c5efdb 1342 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1343
1344 /*
1c0ad3d4
MM
1345 * In case the hash function has some recognizable output
1346 * pattern, we fold it in half. Thus, we always feed back
1347 * twice as much data as we output.
1da177e4 1348 */
d2e7c96a
PA
1349 hash.w[0] ^= hash.w[3];
1350 hash.w[1] ^= hash.w[4];
1351 hash.w[2] ^= rol32(hash.w[2], 16);
1352
d2e7c96a 1353 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1354 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1355}
1356
e192be9d
TT
1357static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1358 size_t nbytes, int fips)
1359{
1360 ssize_t ret = 0, i;
1361 __u8 tmp[EXTRACT_SIZE];
1362 unsigned long flags;
1363
1364 while (nbytes) {
1365 extract_buf(r, tmp);
1366
1367 if (fips) {
1368 spin_lock_irqsave(&r->lock, flags);
1369 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1370 panic("Hardware RNG duplicated output!\n");
1371 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1372 spin_unlock_irqrestore(&r->lock, flags);
1373 }
1374 i = min_t(int, nbytes, EXTRACT_SIZE);
1375 memcpy(buf, tmp, i);
1376 nbytes -= i;
1377 buf += i;
1378 ret += i;
1379 }
1380
1381 /* Wipe data just returned from memory */
1382 memzero_explicit(tmp, sizeof(tmp));
1383
1384 return ret;
1385}
1386
19fa5be1
GP
1387/*
1388 * This function extracts randomness from the "entropy pool", and
1389 * returns it in a buffer.
1390 *
1391 * The min parameter specifies the minimum amount we can pull before
1392 * failing to avoid races that defeat catastrophic reseeding while the
1393 * reserved parameter indicates how much entropy we must leave in the
1394 * pool after each pull to avoid starving other readers.
1395 */
90b75ee5 1396static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1397 size_t nbytes, int min, int reserved)
1da177e4 1398{
1da177e4 1399 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1400 unsigned long flags;
1da177e4 1401
ec8f02da 1402 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1403 if (fips_enabled) {
1404 spin_lock_irqsave(&r->lock, flags);
1405 if (!r->last_data_init) {
c59974ae 1406 r->last_data_init = 1;
1e7e2e05
JW
1407 spin_unlock_irqrestore(&r->lock, flags);
1408 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1409 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1410 xfer_secondary_pool(r, EXTRACT_SIZE);
1411 extract_buf(r, tmp);
1412 spin_lock_irqsave(&r->lock, flags);
1413 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1414 }
1415 spin_unlock_irqrestore(&r->lock, flags);
1416 }
ec8f02da 1417
a283b5c4 1418 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1419 xfer_secondary_pool(r, nbytes);
1420 nbytes = account(r, nbytes, min, reserved);
1421
e192be9d 1422 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1423}
1424
19fa5be1
GP
1425/*
1426 * This function extracts randomness from the "entropy pool", and
1427 * returns it in a userspace buffer.
1428 */
1da177e4
LT
1429static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1430 size_t nbytes)
1431{
1432 ssize_t ret = 0, i;
1433 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1434 int large_request = (nbytes > 256);
1da177e4 1435
a283b5c4 1436 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1437 xfer_secondary_pool(r, nbytes);
1438 nbytes = account(r, nbytes, 0, 0);
1439
1440 while (nbytes) {
c6e9d6f3 1441 if (large_request && need_resched()) {
1da177e4
LT
1442 if (signal_pending(current)) {
1443 if (ret == 0)
1444 ret = -ERESTARTSYS;
1445 break;
1446 }
1447 schedule();
1448 }
1449
1450 extract_buf(r, tmp);
1451 i = min_t(int, nbytes, EXTRACT_SIZE);
1452 if (copy_to_user(buf, tmp, i)) {
1453 ret = -EFAULT;
1454 break;
1455 }
1456
1457 nbytes -= i;
1458 buf += i;
1459 ret += i;
1460 }
1461
1462 /* Wipe data just returned from memory */
d4c5efdb 1463 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1464
1465 return ret;
1466}
1467
1468/*
1469 * This function is the exported kernel interface. It returns some
c2557a30 1470 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1471 * TCP sequence numbers, etc. It does not rely on the hardware random
1472 * number generator. For random bytes direct from the hardware RNG
1473 * (when available), use get_random_bytes_arch().
1da177e4
LT
1474 */
1475void get_random_bytes(void *buf, int nbytes)
c2557a30 1476{
e192be9d
TT
1477 __u8 tmp[CHACHA20_BLOCK_SIZE];
1478
392a546d 1479#if DEBUG_RANDOM_BOOT > 0
e192be9d 1480 if (!crng_ready())
392a546d 1481 printk(KERN_NOTICE "random: %pF get_random_bytes called "
e192be9d 1482 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
392a546d 1483#endif
5910895f 1484 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1485
1486 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1487 extract_crng(buf);
1488 buf += CHACHA20_BLOCK_SIZE;
1489 nbytes -= CHACHA20_BLOCK_SIZE;
1490 }
1491
1492 if (nbytes > 0) {
1493 extract_crng(tmp);
1494 memcpy(buf, tmp, nbytes);
c92e040d
TT
1495 crng_backtrack_protect(tmp, nbytes);
1496 } else
1497 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1498 memzero_explicit(tmp, sizeof(tmp));
c2557a30
TT
1499}
1500EXPORT_SYMBOL(get_random_bytes);
1501
205a525c
HX
1502/*
1503 * Add a callback function that will be invoked when the nonblocking
1504 * pool is initialised.
1505 *
1506 * returns: 0 if callback is successfully added
1507 * -EALREADY if pool is already initialised (callback not called)
1508 * -ENOENT if module for callback is not alive
1509 */
1510int add_random_ready_callback(struct random_ready_callback *rdy)
1511{
1512 struct module *owner;
1513 unsigned long flags;
1514 int err = -EALREADY;
1515
e192be9d 1516 if (crng_ready())
205a525c
HX
1517 return err;
1518
1519 owner = rdy->owner;
1520 if (!try_module_get(owner))
1521 return -ENOENT;
1522
1523 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1524 if (crng_ready())
205a525c
HX
1525 goto out;
1526
1527 owner = NULL;
1528
1529 list_add(&rdy->list, &random_ready_list);
1530 err = 0;
1531
1532out:
1533 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1534
1535 module_put(owner);
1536
1537 return err;
1538}
1539EXPORT_SYMBOL(add_random_ready_callback);
1540
1541/*
1542 * Delete a previously registered readiness callback function.
1543 */
1544void del_random_ready_callback(struct random_ready_callback *rdy)
1545{
1546 unsigned long flags;
1547 struct module *owner = NULL;
1548
1549 spin_lock_irqsave(&random_ready_list_lock, flags);
1550 if (!list_empty(&rdy->list)) {
1551 list_del_init(&rdy->list);
1552 owner = rdy->owner;
1553 }
1554 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1555
1556 module_put(owner);
1557}
1558EXPORT_SYMBOL(del_random_ready_callback);
1559
c2557a30
TT
1560/*
1561 * This function will use the architecture-specific hardware random
1562 * number generator if it is available. The arch-specific hw RNG will
1563 * almost certainly be faster than what we can do in software, but it
1564 * is impossible to verify that it is implemented securely (as
1565 * opposed, to, say, the AES encryption of a sequence number using a
1566 * key known by the NSA). So it's useful if we need the speed, but
1567 * only if we're willing to trust the hardware manufacturer not to
1568 * have put in a back door.
1569 */
1570void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1571{
63d77173
PA
1572 char *p = buf;
1573
5910895f 1574 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1575 while (nbytes) {
1576 unsigned long v;
1577 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1578
63d77173
PA
1579 if (!arch_get_random_long(&v))
1580 break;
1581
bd29e568 1582 memcpy(p, &v, chunk);
63d77173
PA
1583 p += chunk;
1584 nbytes -= chunk;
1585 }
1586
c2557a30 1587 if (nbytes)
e192be9d 1588 get_random_bytes(p, nbytes);
1da177e4 1589}
c2557a30
TT
1590EXPORT_SYMBOL(get_random_bytes_arch);
1591
1da177e4
LT
1592
1593/*
1594 * init_std_data - initialize pool with system data
1595 *
1596 * @r: pool to initialize
1597 *
1598 * This function clears the pool's entropy count and mixes some system
1599 * data into the pool to prepare it for use. The pool is not cleared
1600 * as that can only decrease the entropy in the pool.
1601 */
1602static void init_std_data(struct entropy_store *r)
1603{
3e88bdff 1604 int i;
902c098a
TT
1605 ktime_t now = ktime_get_real();
1606 unsigned long rv;
1da177e4 1607
f5c2742c 1608 r->last_pulled = jiffies;
85608f8e 1609 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1610 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1611 if (!arch_get_random_seed_long(&rv) &&
1612 !arch_get_random_long(&rv))
ae9ecd92 1613 rv = random_get_entropy();
85608f8e 1614 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1615 }
85608f8e 1616 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1617}
1618
cbc96b75
TL
1619/*
1620 * Note that setup_arch() may call add_device_randomness()
1621 * long before we get here. This allows seeding of the pools
1622 * with some platform dependent data very early in the boot
1623 * process. But it limits our options here. We must use
1624 * statically allocated structures that already have all
1625 * initializations complete at compile time. We should also
1626 * take care not to overwrite the precious per platform data
1627 * we were given.
1628 */
53c3f63e 1629static int rand_initialize(void)
1da177e4 1630{
1e7f583a
TT
1631#ifdef CONFIG_NUMA
1632 int i;
1e7f583a
TT
1633 struct crng_state *crng;
1634 struct crng_state **pool;
1635#endif
1636
1da177e4
LT
1637 init_std_data(&input_pool);
1638 init_std_data(&blocking_pool);
e192be9d 1639 crng_initialize(&primary_crng);
1e7f583a
TT
1640
1641#ifdef CONFIG_NUMA
dd0f0cf5 1642 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
59b8d4f1 1643 for_each_online_node(i) {
1e7f583a
TT
1644 crng = kmalloc_node(sizeof(struct crng_state),
1645 GFP_KERNEL | __GFP_NOFAIL, i);
1646 spin_lock_init(&crng->lock);
1647 crng_initialize(crng);
1648 pool[i] = crng;
1e7f583a
TT
1649 }
1650 mb();
1651 crng_node_pool = pool;
1652#endif
1da177e4
LT
1653 return 0;
1654}
ae9ecd92 1655early_initcall(rand_initialize);
1da177e4 1656
9361401e 1657#ifdef CONFIG_BLOCK
1da177e4
LT
1658void rand_initialize_disk(struct gendisk *disk)
1659{
1660 struct timer_rand_state *state;
1661
1662 /*
f8595815 1663 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1664 * source.
1665 */
f8595815 1666 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1667 if (state) {
1668 state->last_time = INITIAL_JIFFIES;
1da177e4 1669 disk->random = state;
644008df 1670 }
1da177e4 1671}
9361401e 1672#endif
1da177e4
LT
1673
1674static ssize_t
c6e9d6f3 1675_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1676{
12ff3a51 1677 ssize_t n;
1da177e4
LT
1678
1679 if (nbytes == 0)
1680 return 0;
1681
12ff3a51
GP
1682 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1683 while (1) {
1684 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1685 if (n < 0)
1686 return n;
f80bbd8b
TT
1687 trace_random_read(n*8, (nbytes-n)*8,
1688 ENTROPY_BITS(&blocking_pool),
1689 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1690 if (n > 0)
1691 return n;
331c6490 1692
12ff3a51 1693 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1694 if (nonblock)
12ff3a51
GP
1695 return -EAGAIN;
1696
1697 wait_event_interruptible(random_read_wait,
1698 ENTROPY_BITS(&input_pool) >=
2132a96f 1699 random_read_wakeup_bits);
12ff3a51
GP
1700 if (signal_pending(current))
1701 return -ERESTARTSYS;
1da177e4 1702 }
1da177e4
LT
1703}
1704
c6e9d6f3
TT
1705static ssize_t
1706random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1707{
1708 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1709}
1710
1da177e4 1711static ssize_t
90b75ee5 1712urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1713{
e192be9d 1714 unsigned long flags;
9b4d0087 1715 static int maxwarn = 10;
301f0595
TT
1716 int ret;
1717
e192be9d 1718 if (!crng_ready() && maxwarn > 0) {
9b4d0087
TT
1719 maxwarn--;
1720 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
e192be9d
TT
1721 "(%zd bytes read)\n",
1722 current->comm, nbytes);
1723 spin_lock_irqsave(&primary_crng.lock, flags);
1724 crng_init_cnt = 0;
1725 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1726 }
79a84687 1727 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1728 ret = extract_crng_user(buf, nbytes);
1729 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1730 return ret;
1da177e4
LT
1731}
1732
1733static unsigned int
1734random_poll(struct file *file, poll_table * wait)
1735{
1736 unsigned int mask;
1737
1738 poll_wait(file, &random_read_wait, wait);
1739 poll_wait(file, &random_write_wait, wait);
1740 mask = 0;
2132a96f 1741 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1742 mask |= POLLIN | POLLRDNORM;
2132a96f 1743 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1744 mask |= POLLOUT | POLLWRNORM;
1745 return mask;
1746}
1747
7f397dcd
MM
1748static int
1749write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1750{
1da177e4
LT
1751 size_t bytes;
1752 __u32 buf[16];
1753 const char __user *p = buffer;
1da177e4 1754
7f397dcd
MM
1755 while (count > 0) {
1756 bytes = min(count, sizeof(buf));
1757 if (copy_from_user(&buf, p, bytes))
1758 return -EFAULT;
1da177e4 1759
7f397dcd 1760 count -= bytes;
1da177e4
LT
1761 p += bytes;
1762
85608f8e 1763 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1764 cond_resched();
1da177e4 1765 }
7f397dcd
MM
1766
1767 return 0;
1768}
1769
90b75ee5
MM
1770static ssize_t random_write(struct file *file, const char __user *buffer,
1771 size_t count, loff_t *ppos)
7f397dcd
MM
1772{
1773 size_t ret;
7f397dcd 1774
e192be9d 1775 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1776 if (ret)
1777 return ret;
1778
7f397dcd 1779 return (ssize_t)count;
1da177e4
LT
1780}
1781
43ae4860 1782static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1783{
1784 int size, ent_count;
1785 int __user *p = (int __user *)arg;
1786 int retval;
1787
1788 switch (cmd) {
1789 case RNDGETENTCNT:
43ae4860 1790 /* inherently racy, no point locking */
a283b5c4
PA
1791 ent_count = ENTROPY_BITS(&input_pool);
1792 if (put_user(ent_count, p))
1da177e4
LT
1793 return -EFAULT;
1794 return 0;
1795 case RNDADDTOENTCNT:
1796 if (!capable(CAP_SYS_ADMIN))
1797 return -EPERM;
1798 if (get_user(ent_count, p))
1799 return -EFAULT;
86a574de 1800 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1801 case RNDADDENTROPY:
1802 if (!capable(CAP_SYS_ADMIN))
1803 return -EPERM;
1804 if (get_user(ent_count, p++))
1805 return -EFAULT;
1806 if (ent_count < 0)
1807 return -EINVAL;
1808 if (get_user(size, p++))
1809 return -EFAULT;
7f397dcd
MM
1810 retval = write_pool(&input_pool, (const char __user *)p,
1811 size);
1da177e4
LT
1812 if (retval < 0)
1813 return retval;
86a574de 1814 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1815 case RNDZAPENTCNT:
1816 case RNDCLEARPOOL:
ae9ecd92
TT
1817 /*
1818 * Clear the entropy pool counters. We no longer clear
1819 * the entropy pool, as that's silly.
1820 */
1da177e4
LT
1821 if (!capable(CAP_SYS_ADMIN))
1822 return -EPERM;
ae9ecd92 1823 input_pool.entropy_count = 0;
ae9ecd92 1824 blocking_pool.entropy_count = 0;
1da177e4
LT
1825 return 0;
1826 default:
1827 return -EINVAL;
1828 }
1829}
1830
9a6f70bb
JD
1831static int random_fasync(int fd, struct file *filp, int on)
1832{
1833 return fasync_helper(fd, filp, on, &fasync);
1834}
1835
2b8693c0 1836const struct file_operations random_fops = {
1da177e4
LT
1837 .read = random_read,
1838 .write = random_write,
1839 .poll = random_poll,
43ae4860 1840 .unlocked_ioctl = random_ioctl,
9a6f70bb 1841 .fasync = random_fasync,
6038f373 1842 .llseek = noop_llseek,
1da177e4
LT
1843};
1844
2b8693c0 1845const struct file_operations urandom_fops = {
1da177e4
LT
1846 .read = urandom_read,
1847 .write = random_write,
43ae4860 1848 .unlocked_ioctl = random_ioctl,
9a6f70bb 1849 .fasync = random_fasync,
6038f373 1850 .llseek = noop_llseek,
1da177e4
LT
1851};
1852
c6e9d6f3
TT
1853SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1854 unsigned int, flags)
1855{
1856 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1857 return -EINVAL;
1858
1859 if (count > INT_MAX)
1860 count = INT_MAX;
1861
1862 if (flags & GRND_RANDOM)
1863 return _random_read(flags & GRND_NONBLOCK, buf, count);
1864
e192be9d 1865 if (!crng_ready()) {
c6e9d6f3
TT
1866 if (flags & GRND_NONBLOCK)
1867 return -EAGAIN;
e192be9d 1868 crng_wait_ready();
c6e9d6f3
TT
1869 if (signal_pending(current))
1870 return -ERESTARTSYS;
1871 }
1872 return urandom_read(NULL, buf, count, NULL);
1873}
1874
1da177e4
LT
1875/********************************************************************
1876 *
1877 * Sysctl interface
1878 *
1879 ********************************************************************/
1880
1881#ifdef CONFIG_SYSCTL
1882
1883#include <linux/sysctl.h>
1884
1885static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1886static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4 1887static int max_write_thresh = INPUT_POOL_WORDS * 32;
db61ffe3 1888static int random_min_urandom_seed = 60;
1da177e4
LT
1889static char sysctl_bootid[16];
1890
1891/*
f22052b2 1892 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1893 * UUID. The difference is in whether table->data is NULL; if it is,
1894 * then a new UUID is generated and returned to the user.
1895 *
f22052b2
GP
1896 * If the user accesses this via the proc interface, the UUID will be
1897 * returned as an ASCII string in the standard UUID format; if via the
1898 * sysctl system call, as 16 bytes of binary data.
1da177e4 1899 */
a151427e 1900static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1901 void __user *buffer, size_t *lenp, loff_t *ppos)
1902{
a151427e 1903 struct ctl_table fake_table;
1da177e4
LT
1904 unsigned char buf[64], tmp_uuid[16], *uuid;
1905
1906 uuid = table->data;
1907 if (!uuid) {
1908 uuid = tmp_uuid;
1da177e4 1909 generate_random_uuid(uuid);
44e4360f
MD
1910 } else {
1911 static DEFINE_SPINLOCK(bootid_spinlock);
1912
1913 spin_lock(&bootid_spinlock);
1914 if (!uuid[8])
1915 generate_random_uuid(uuid);
1916 spin_unlock(&bootid_spinlock);
1917 }
1da177e4 1918
35900771
JP
1919 sprintf(buf, "%pU", uuid);
1920
1da177e4
LT
1921 fake_table.data = buf;
1922 fake_table.maxlen = sizeof(buf);
1923
8d65af78 1924 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1925}
1926
a283b5c4
PA
1927/*
1928 * Return entropy available scaled to integral bits
1929 */
5eb10d91 1930static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1931 void __user *buffer, size_t *lenp, loff_t *ppos)
1932{
5eb10d91 1933 struct ctl_table fake_table;
a283b5c4
PA
1934 int entropy_count;
1935
1936 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1937
1938 fake_table.data = &entropy_count;
1939 fake_table.maxlen = sizeof(entropy_count);
1940
1941 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1942}
1943
1da177e4 1944static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1945extern struct ctl_table random_table[];
1946struct ctl_table random_table[] = {
1da177e4 1947 {
1da177e4
LT
1948 .procname = "poolsize",
1949 .data = &sysctl_poolsize,
1950 .maxlen = sizeof(int),
1951 .mode = 0444,
6d456111 1952 .proc_handler = proc_dointvec,
1da177e4
LT
1953 },
1954 {
1da177e4
LT
1955 .procname = "entropy_avail",
1956 .maxlen = sizeof(int),
1957 .mode = 0444,
a283b5c4 1958 .proc_handler = proc_do_entropy,
1da177e4
LT
1959 .data = &input_pool.entropy_count,
1960 },
1961 {
1da177e4 1962 .procname = "read_wakeup_threshold",
2132a96f 1963 .data = &random_read_wakeup_bits,
1da177e4
LT
1964 .maxlen = sizeof(int),
1965 .mode = 0644,
6d456111 1966 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1967 .extra1 = &min_read_thresh,
1968 .extra2 = &max_read_thresh,
1969 },
1970 {
1da177e4 1971 .procname = "write_wakeup_threshold",
2132a96f 1972 .data = &random_write_wakeup_bits,
1da177e4
LT
1973 .maxlen = sizeof(int),
1974 .mode = 0644,
6d456111 1975 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1976 .extra1 = &min_write_thresh,
1977 .extra2 = &max_write_thresh,
1978 },
f5c2742c
TT
1979 {
1980 .procname = "urandom_min_reseed_secs",
1981 .data = &random_min_urandom_seed,
1982 .maxlen = sizeof(int),
1983 .mode = 0644,
1984 .proc_handler = proc_dointvec,
1985 },
1da177e4 1986 {
1da177e4
LT
1987 .procname = "boot_id",
1988 .data = &sysctl_bootid,
1989 .maxlen = 16,
1990 .mode = 0444,
6d456111 1991 .proc_handler = proc_do_uuid,
1da177e4
LT
1992 },
1993 {
1da177e4
LT
1994 .procname = "uuid",
1995 .maxlen = 16,
1996 .mode = 0444,
6d456111 1997 .proc_handler = proc_do_uuid,
1da177e4 1998 },
43759d4f
TT
1999#ifdef ADD_INTERRUPT_BENCH
2000 {
2001 .procname = "add_interrupt_avg_cycles",
2002 .data = &avg_cycles,
2003 .maxlen = sizeof(avg_cycles),
2004 .mode = 0444,
2005 .proc_handler = proc_doulongvec_minmax,
2006 },
2007 {
2008 .procname = "add_interrupt_avg_deviation",
2009 .data = &avg_deviation,
2010 .maxlen = sizeof(avg_deviation),
2011 .mode = 0444,
2012 .proc_handler = proc_doulongvec_minmax,
2013 },
2014#endif
894d2491 2015 { }
1da177e4
LT
2016};
2017#endif /* CONFIG_SYSCTL */
2018
f5b98461
JD
2019struct batched_entropy {
2020 union {
c440408c
JD
2021 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2022 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
f5b98461
JD
2023 };
2024 unsigned int position;
2025};
b1132dea 2026
1da177e4 2027/*
f5b98461
JD
2028 * Get a random word for internal kernel use only. The quality of the random
2029 * number is either as good as RDRAND or as good as /dev/urandom, with the
2030 * goal of being quite fast and not depleting entropy.
1da177e4 2031 */
c440408c
JD
2032static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2033u64 get_random_u64(void)
1da177e4 2034{
c440408c 2035 u64 ret;
f5b98461 2036 struct batched_entropy *batch;
8a0a9bd4 2037
c440408c
JD
2038#if BITS_PER_LONG == 64
2039 if (arch_get_random_long((unsigned long *)&ret))
63d77173 2040 return ret;
c440408c
JD
2041#else
2042 if (arch_get_random_long((unsigned long *)&ret) &&
2043 arch_get_random_long((unsigned long *)&ret + 1))
2044 return ret;
2045#endif
63d77173 2046
c440408c
JD
2047 batch = &get_cpu_var(batched_entropy_u64);
2048 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2049 extract_crng((u8 *)batch->entropy_u64);
f5b98461
JD
2050 batch->position = 0;
2051 }
c440408c
JD
2052 ret = batch->entropy_u64[batch->position++];
2053 put_cpu_var(batched_entropy_u64);
8a0a9bd4 2054 return ret;
1da177e4 2055}
c440408c 2056EXPORT_SYMBOL(get_random_u64);
1da177e4 2057
c440408c
JD
2058static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2059u32 get_random_u32(void)
f5b98461 2060{
c440408c 2061 u32 ret;
f5b98461 2062 struct batched_entropy *batch;
ec9ee4ac 2063
f5b98461 2064 if (arch_get_random_int(&ret))
ec9ee4ac
DC
2065 return ret;
2066
c440408c
JD
2067 batch = &get_cpu_var(batched_entropy_u32);
2068 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2069 extract_crng((u8 *)batch->entropy_u32);
f5b98461
JD
2070 batch->position = 0;
2071 }
c440408c
JD
2072 ret = batch->entropy_u32[batch->position++];
2073 put_cpu_var(batched_entropy_u32);
ec9ee4ac
DC
2074 return ret;
2075}
c440408c 2076EXPORT_SYMBOL(get_random_u32);
ec9ee4ac 2077
99fdafde
JC
2078/**
2079 * randomize_page - Generate a random, page aligned address
2080 * @start: The smallest acceptable address the caller will take.
2081 * @range: The size of the area, starting at @start, within which the
2082 * random address must fall.
2083 *
2084 * If @start + @range would overflow, @range is capped.
2085 *
2086 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2087 * @start was already page aligned. We now align it regardless.
2088 *
2089 * Return: A page aligned address within [start, start + range). On error,
2090 * @start is returned.
2091 */
2092unsigned long
2093randomize_page(unsigned long start, unsigned long range)
2094{
2095 if (!PAGE_ALIGNED(start)) {
2096 range -= PAGE_ALIGN(start) - start;
2097 start = PAGE_ALIGN(start);
2098 }
2099
2100 if (start > ULONG_MAX - range)
2101 range = ULONG_MAX - start;
2102
2103 range >>= PAGE_SHIFT;
2104
2105 if (range == 0)
2106 return start;
2107
2108 return start + (get_random_long() % range << PAGE_SHIFT);
2109}
2110
c84dbf61
TD
2111/* Interface for in-kernel drivers of true hardware RNGs.
2112 * Those devices may produce endless random bits and will be throttled
2113 * when our pool is full.
2114 */
2115void add_hwgenerator_randomness(const char *buffer, size_t count,
2116 size_t entropy)
2117{
2118 struct entropy_store *poolp = &input_pool;
2119
e192be9d
TT
2120 if (!crng_ready()) {
2121 crng_fast_load(buffer, count);
2122 return;
3371f3da 2123 }
e192be9d
TT
2124
2125 /* Suspend writing if we're above the trickle threshold.
2126 * We'll be woken up again once below random_write_wakeup_thresh,
2127 * or when the calling thread is about to terminate.
2128 */
2129 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2130 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2131 mix_pool_bytes(poolp, buffer, count);
2132 credit_entropy_bits(poolp, entropy);
2133}
2134EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);