random: avoid checking crng_ready() twice in random_init()
[linux-block.git] / drivers / char / random.c
CommitLineData
a07fdae3 1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
1da177e4 2/*
9f9eff85 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5f75d9f3
JD
5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6 *
7 * This driver produces cryptographically secure pseudorandom data. It is divided
8 * into roughly six sections, each with a section header:
9 *
10 * - Initialization and readiness waiting.
11 * - Fast key erasure RNG, the "crng".
12 * - Entropy accumulation and extraction routines.
13 * - Entropy collection routines.
14 * - Userspace reader/writer interfaces.
15 * - Sysctl interface.
16 *
17 * The high level overview is that there is one input pool, into which
e85c0fc1
JD
18 * various pieces of data are hashed. Prior to initialization, some of that
19 * data is then "credited" as having a certain number of bits of entropy.
20 * When enough bits of entropy are available, the hash is finalized and
21 * handed as a key to a stream cipher that expands it indefinitely for
22 * various consumers. This key is periodically refreshed as the various
23 * entropy collectors, described below, add data to the input pool.
1da177e4
LT
24 */
25
12cd53af
YL
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
1da177e4 28#include <linux/utsname.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/major.h>
32#include <linux/string.h>
33#include <linux/fcntl.h>
34#include <linux/slab.h>
35#include <linux/random.h>
36#include <linux/poll.h>
37#include <linux/init.h>
38#include <linux/fs.h>
322cbb50 39#include <linux/blkdev.h>
1da177e4 40#include <linux/interrupt.h>
27ac792c 41#include <linux/mm.h>
dd0f0cf5 42#include <linux/nodemask.h>
1da177e4 43#include <linux/spinlock.h>
c84dbf61 44#include <linux/kthread.h>
1da177e4 45#include <linux/percpu.h>
775f4b29 46#include <linux/ptrace.h>
6265e169 47#include <linux/workqueue.h>
0244ad00 48#include <linux/irq.h>
4e00b339 49#include <linux/ratelimit.h>
c6e9d6f3
TT
50#include <linux/syscalls.h>
51#include <linux/completion.h>
8da4b8c4 52#include <linux/uuid.h>
87e7d5ab 53#include <linux/uaccess.h>
b7b67d13 54#include <linux/suspend.h>
e73aaae2 55#include <linux/siphash.h>
1ca1b917 56#include <crypto/chacha.h>
9f9eff85 57#include <crypto/blake2s.h>
1da177e4 58#include <asm/processor.h>
1da177e4 59#include <asm/irq.h>
775f4b29 60#include <asm/irq_regs.h>
1da177e4
LT
61#include <asm/io.h>
62
5f1bb112
JD
63/*********************************************************************
64 *
65 * Initialization and readiness waiting.
66 *
67 * Much of the RNG infrastructure is devoted to various dependencies
68 * being able to wait until the RNG has collected enough entropy and
69 * is ready for safe consumption.
70 *
71 *********************************************************************/
205a525c 72
e192be9d 73/*
5f1bb112 74 * crng_init is protected by base_crng->lock, and only increases
e3d2c5e7 75 * its value (from empty->early->ready).
e192be9d 76 */
e3d2c5e7
JD
77static enum {
78 CRNG_EMPTY = 0, /* Little to no entropy collected */
79 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
80 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */
f5bda35f
JD
81} crng_init __read_mostly = CRNG_EMPTY;
82static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
83#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
e3d2c5e7 84/* Various types of waiters for crng_init->CRNG_READY transition. */
5f1bb112
JD
85static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
86static struct fasync_struct *fasync;
e192be9d 87
5f1bb112 88/* Control how we warn userspace. */
0313bc27
LT
89static struct ratelimit_state urandom_warning =
90 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
cc1e127b
JD
91static int ratelimit_disable __read_mostly =
92 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
4e00b339
TT
93module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
94MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
95
5f1bb112
JD
96/*
97 * Returns whether or not the input pool has been seeded and thus guaranteed
0313bc27
LT
98 * to supply cryptographically secure random numbers. This applies to: the
99 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
100 * ,u64,int,long} family of functions.
5f1bb112
JD
101 *
102 * Returns: true if the input pool has been seeded.
103 * false if the input pool has not been seeded.
104 */
105bool rng_is_initialized(void)
106{
107 return crng_ready();
108}
109EXPORT_SYMBOL(rng_is_initialized);
110
560181c2 111static void __cold crng_set_ready(struct work_struct *work)
f5bda35f
JD
112{
113 static_branch_enable(&crng_is_ready);
114}
115
5f1bb112
JD
116/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
117static void try_to_generate_entropy(void);
118
119/*
120 * Wait for the input pool to be seeded and thus guaranteed to supply
0313bc27
LT
121 * cryptographically secure random numbers. This applies to: the /dev/urandom
122 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
123 * family of functions. Using any of these functions without first calling
124 * this function forfeits the guarantee of security.
5f1bb112
JD
125 *
126 * Returns: 0 if the input pool has been seeded.
127 * -ERESTARTSYS if the function was interrupted by a signal.
128 */
129int wait_for_random_bytes(void)
130{
a96cfe2d 131 while (!crng_ready()) {
5f1bb112 132 int ret;
3e504d20
JD
133
134 try_to_generate_entropy();
5f1bb112
JD
135 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
136 if (ret)
137 return ret > 0 ? 0 : ret;
a96cfe2d 138 }
5f1bb112
JD
139 return 0;
140}
141EXPORT_SYMBOL(wait_for_random_bytes);
142
cc1e127b 143#define warn_unseeded_randomness() \
560181c2
JD
144 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
145 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
146 __func__, (void *)_RET_IP_, crng_init)
5f1bb112
JD
147
148
3655adc7 149/*********************************************************************
1da177e4 150 *
3655adc7 151 * Fast key erasure RNG, the "crng".
1da177e4 152 *
3655adc7
JD
153 * These functions expand entropy from the entropy extractor into
154 * long streams for external consumption using the "fast key erasure"
155 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
e192be9d 156 *
3655adc7
JD
157 * There are a few exported interfaces for use by other drivers:
158 *
a1940263 159 * void get_random_bytes(void *buf, size_t len)
3655adc7
JD
160 * u32 get_random_u32()
161 * u64 get_random_u64()
162 * unsigned int get_random_int()
163 * unsigned long get_random_long()
164 *
165 * These interfaces will return the requested number of random bytes
0313bc27 166 * into the given buffer or as a return value. This is equivalent to
dd7aa36e
JD
167 * a read from /dev/urandom. The u32, u64, int, and long family of
168 * functions may be higher performance for one-off random integers,
169 * because they do a bit of buffering and do not invoke reseeding
170 * until the buffer is emptied.
e192be9d
TT
171 *
172 *********************************************************************/
173
e85c0fc1
JD
174enum {
175 CRNG_RESEED_START_INTERVAL = HZ,
176 CRNG_RESEED_INTERVAL = 60 * HZ
177};
186873c5
JD
178
179static struct {
180 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
181 unsigned long birth;
182 unsigned long generation;
183 spinlock_t lock;
184} base_crng = {
185 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
186};
187
188struct crng {
189 u8 key[CHACHA_KEY_SIZE];
190 unsigned long generation;
191 local_lock_t lock;
192};
193
194static DEFINE_PER_CPU(struct crng, crngs) = {
195 .generation = ULONG_MAX,
196 .lock = INIT_LOCAL_LOCK(crngs.lock),
197};
e192be9d 198
e85c0fc1 199/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
a1940263 200static void extract_entropy(void *buf, size_t len);
e192be9d 201
e85c0fc1
JD
202/* This extracts a new crng key from the input pool. */
203static void crng_reseed(void)
e192be9d 204{
248045b8 205 unsigned long flags;
186873c5
JD
206 unsigned long next_gen;
207 u8 key[CHACHA_KEY_SIZE];
e192be9d 208
e85c0fc1 209 extract_entropy(key, sizeof(key));
a9412d51 210
186873c5
JD
211 /*
212 * We copy the new key into the base_crng, overwriting the old one,
213 * and update the generation counter. We avoid hitting ULONG_MAX,
214 * because the per-cpu crngs are initialized to ULONG_MAX, so this
215 * forces new CPUs that come online to always initialize.
216 */
217 spin_lock_irqsave(&base_crng.lock, flags);
218 memcpy(base_crng.key, key, sizeof(base_crng.key));
219 next_gen = base_crng.generation + 1;
220 if (next_gen == ULONG_MAX)
221 ++next_gen;
222 WRITE_ONCE(base_crng.generation, next_gen);
223 WRITE_ONCE(base_crng.birth, jiffies);
f5bda35f 224 if (!static_branch_likely(&crng_is_ready))
e3d2c5e7 225 crng_init = CRNG_READY;
7191c628
DB
226 spin_unlock_irqrestore(&base_crng.lock, flags);
227 memzero_explicit(key, sizeof(key));
e192be9d
TT
228}
229
186873c5 230/*
3655adc7
JD
231 * This generates a ChaCha block using the provided key, and then
232 * immediately overwites that key with half the block. It returns
233 * the resultant ChaCha state to the user, along with the second
234 * half of the block containing 32 bytes of random data that may
235 * be used; random_data_len may not be greater than 32.
8717627d
JD
236 *
237 * The returned ChaCha state contains within it a copy of the old
238 * key value, at index 4, so the state should always be zeroed out
239 * immediately after using in order to maintain forward secrecy.
240 * If the state cannot be erased in a timely manner, then it is
241 * safer to set the random_data parameter to &chacha_state[4] so
242 * that this function overwrites it before returning.
186873c5
JD
243 */
244static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
245 u32 chacha_state[CHACHA_STATE_WORDS],
246 u8 *random_data, size_t random_data_len)
e192be9d 247{
186873c5 248 u8 first_block[CHACHA_BLOCK_SIZE];
009ba856 249
186873c5
JD
250 BUG_ON(random_data_len > 32);
251
252 chacha_init_consts(chacha_state);
253 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
254 memset(&chacha_state[12], 0, sizeof(u32) * 4);
255 chacha20_block(chacha_state, first_block);
256
257 memcpy(key, first_block, CHACHA_KEY_SIZE);
8717627d 258 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
186873c5 259 memzero_explicit(first_block, sizeof(first_block));
1e7f583a
TT
260}
261
7a7ff644 262/*
e85c0fc1
JD
263 * Return whether the crng seed is considered to be sufficiently old
264 * that a reseeding is needed. This happens if the last reseeding
265 * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
266 * proportional to the uptime.
7a7ff644
JD
267 */
268static bool crng_has_old_seed(void)
269{
270 static bool early_boot = true;
271 unsigned long interval = CRNG_RESEED_INTERVAL;
272
273 if (unlikely(READ_ONCE(early_boot))) {
274 time64_t uptime = ktime_get_seconds();
275 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
276 WRITE_ONCE(early_boot, false);
277 else
e85c0fc1 278 interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
7a7ff644
JD
279 (unsigned int)uptime / 2 * HZ);
280 }
8a5b8a4a 281 return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
7a7ff644
JD
282}
283
c92e040d 284/*
186873c5
JD
285 * This function returns a ChaCha state that you may use for generating
286 * random data. It also returns up to 32 bytes on its own of random data
287 * that may be used; random_data_len may not be greater than 32.
c92e040d 288 */
186873c5
JD
289static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
290 u8 *random_data, size_t random_data_len)
c92e040d 291{
248045b8 292 unsigned long flags;
186873c5 293 struct crng *crng;
c92e040d 294
186873c5
JD
295 BUG_ON(random_data_len > 32);
296
297 /*
298 * For the fast path, we check whether we're ready, unlocked first, and
299 * then re-check once locked later. In the case where we're really not
5c3b747e 300 * ready, we do fast key erasure with the base_crng directly, extracting
e3d2c5e7 301 * when crng_init is CRNG_EMPTY.
186873c5 302 */
a96cfe2d 303 if (!crng_ready()) {
186873c5
JD
304 bool ready;
305
306 spin_lock_irqsave(&base_crng.lock, flags);
307 ready = crng_ready();
5c3b747e 308 if (!ready) {
e3d2c5e7 309 if (crng_init == CRNG_EMPTY)
5c3b747e 310 extract_entropy(base_crng.key, sizeof(base_crng.key));
186873c5
JD
311 crng_fast_key_erasure(base_crng.key, chacha_state,
312 random_data, random_data_len);
5c3b747e 313 }
186873c5
JD
314 spin_unlock_irqrestore(&base_crng.lock, flags);
315 if (!ready)
316 return;
c92e040d 317 }
186873c5
JD
318
319 /*
e85c0fc1
JD
320 * If the base_crng is old enough, we reseed, which in turn bumps the
321 * generation counter that we check below.
186873c5 322 */
7a7ff644 323 if (unlikely(crng_has_old_seed()))
e85c0fc1 324 crng_reseed();
186873c5
JD
325
326 local_lock_irqsave(&crngs.lock, flags);
327 crng = raw_cpu_ptr(&crngs);
328
329 /*
330 * If our per-cpu crng is older than the base_crng, then it means
331 * somebody reseeded the base_crng. In that case, we do fast key
332 * erasure on the base_crng, and use its output as the new key
333 * for our per-cpu crng. This brings us up to date with base_crng.
334 */
335 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
336 spin_lock(&base_crng.lock);
337 crng_fast_key_erasure(base_crng.key, chacha_state,
338 crng->key, sizeof(crng->key));
339 crng->generation = base_crng.generation;
340 spin_unlock(&base_crng.lock);
341 }
342
343 /*
344 * Finally, when we've made it this far, our per-cpu crng has an up
345 * to date key, and we can do fast key erasure with it to produce
346 * some random data and a ChaCha state for the caller. All other
347 * branches of this function are "unlikely", so most of the time we
348 * should wind up here immediately.
349 */
350 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
351 local_unlock_irqrestore(&crngs.lock, flags);
c92e040d
TT
352}
353
a1940263 354static void _get_random_bytes(void *buf, size_t len)
e192be9d 355{
186873c5 356 u32 chacha_state[CHACHA_STATE_WORDS];
3655adc7 357 u8 tmp[CHACHA_BLOCK_SIZE];
a1940263 358 size_t first_block_len;
3655adc7 359
a1940263 360 if (!len)
3655adc7
JD
361 return;
362
a1940263
JD
363 first_block_len = min_t(size_t, 32, len);
364 crng_make_state(chacha_state, buf, first_block_len);
365 len -= first_block_len;
366 buf += first_block_len;
3655adc7 367
a1940263
JD
368 while (len) {
369 if (len < CHACHA_BLOCK_SIZE) {
3655adc7 370 chacha20_block(chacha_state, tmp);
a1940263 371 memcpy(buf, tmp, len);
3655adc7
JD
372 memzero_explicit(tmp, sizeof(tmp));
373 break;
374 }
375
376 chacha20_block(chacha_state, buf);
377 if (unlikely(chacha_state[12] == 0))
378 ++chacha_state[13];
a1940263 379 len -= CHACHA_BLOCK_SIZE;
3655adc7
JD
380 buf += CHACHA_BLOCK_SIZE;
381 }
382
383 memzero_explicit(chacha_state, sizeof(chacha_state));
384}
385
386/*
387 * This function is the exported kernel interface. It returns some
388 * number of good random numbers, suitable for key generation, seeding
248561ad
JD
389 * TCP sequence numbers, etc. In order to ensure that the randomness
390 * by this function is okay, the function wait_for_random_bytes()
391 * should be called and return 0 at least once at any point prior.
3655adc7 392 */
a1940263 393void get_random_bytes(void *buf, size_t len)
3655adc7 394{
cc1e127b 395 warn_unseeded_randomness();
a1940263 396 _get_random_bytes(buf, len);
3655adc7
JD
397}
398EXPORT_SYMBOL(get_random_bytes);
399
1b388e77 400static ssize_t get_random_bytes_user(struct iov_iter *iter)
3655adc7 401{
3655adc7 402 u32 chacha_state[CHACHA_STATE_WORDS];
1b388e77
JA
403 u8 block[CHACHA_BLOCK_SIZE];
404 size_t ret = 0, copied;
3655adc7 405
1b388e77 406 if (unlikely(!iov_iter_count(iter)))
3655adc7
JD
407 return 0;
408
aba120cc
JD
409 /*
410 * Immediately overwrite the ChaCha key at index 4 with random
411 * bytes, in case userspace causes copy_to_user() below to sleep
412 * forever, so that we still retain forward secrecy in that case.
413 */
414 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
415 /*
416 * However, if we're doing a read of len <= 32, we don't need to
417 * use chacha_state after, so we can simply return those bytes to
418 * the user directly.
419 */
1b388e77
JA
420 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
421 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
aba120cc
JD
422 goto out_zero_chacha;
423 }
3655adc7 424
5209aed5 425 for (;;) {
1b388e77 426 chacha20_block(chacha_state, block);
3655adc7
JD
427 if (unlikely(chacha_state[12] == 0))
428 ++chacha_state[13];
429
1b388e77
JA
430 copied = copy_to_iter(block, sizeof(block), iter);
431 ret += copied;
432 if (!iov_iter_count(iter) || copied != sizeof(block))
5209aed5 433 break;
e3c1c4fd 434
1b388e77 435 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
5209aed5 436 if (ret % PAGE_SIZE == 0) {
e3c1c4fd
JD
437 if (signal_pending(current))
438 break;
439 cond_resched();
440 }
5209aed5 441 }
3655adc7 442
1b388e77 443 memzero_explicit(block, sizeof(block));
aba120cc
JD
444out_zero_chacha:
445 memzero_explicit(chacha_state, sizeof(chacha_state));
5209aed5 446 return ret ? ret : -EFAULT;
3655adc7
JD
447}
448
449/*
450 * Batched entropy returns random integers. The quality of the random
451 * number is good as /dev/urandom. In order to ensure that the randomness
452 * provided by this function is okay, the function wait_for_random_bytes()
453 * should be called and return 0 at least once at any point prior.
454 */
3655adc7 455
3092adce
JD
456#define DEFINE_BATCHED_ENTROPY(type) \
457struct batch_ ##type { \
458 /* \
459 * We make this 1.5x a ChaCha block, so that we get the \
460 * remaining 32 bytes from fast key erasure, plus one full \
461 * block from the detached ChaCha state. We can increase \
462 * the size of this later if needed so long as we keep the \
463 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \
464 */ \
465 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
466 local_lock_t lock; \
467 unsigned long generation; \
468 unsigned int position; \
469}; \
470 \
471static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
472 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \
473 .position = UINT_MAX \
474}; \
475 \
476type get_random_ ##type(void) \
477{ \
478 type ret; \
479 unsigned long flags; \
480 struct batch_ ##type *batch; \
481 unsigned long next_gen; \
482 \
483 warn_unseeded_randomness(); \
484 \
485 if (!crng_ready()) { \
486 _get_random_bytes(&ret, sizeof(ret)); \
487 return ret; \
488 } \
489 \
490 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \
491 batch = raw_cpu_ptr(&batched_entropy_##type); \
492 \
493 next_gen = READ_ONCE(base_crng.generation); \
494 if (batch->position >= ARRAY_SIZE(batch->entropy) || \
495 next_gen != batch->generation) { \
496 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
497 batch->position = 0; \
498 batch->generation = next_gen; \
499 } \
500 \
501 ret = batch->entropy[batch->position]; \
502 batch->entropy[batch->position] = 0; \
503 ++batch->position; \
504 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \
505 return ret; \
506} \
507EXPORT_SYMBOL(get_random_ ##type);
508
509DEFINE_BATCHED_ENTROPY(u64)
510DEFINE_BATCHED_ENTROPY(u32)
3655adc7 511
3191dd5a
JD
512#ifdef CONFIG_SMP
513/*
514 * This function is called when the CPU is coming up, with entry
515 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
516 */
560181c2 517int __cold random_prepare_cpu(unsigned int cpu)
3191dd5a
JD
518{
519 /*
520 * When the cpu comes back online, immediately invalidate both
521 * the per-cpu crng and all batches, so that we serve fresh
522 * randomness.
523 */
524 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
525 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
526 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
527 return 0;
528}
529#endif
530
a5ed7cb1
JD
531
532/**********************************************************************
533 *
534 * Entropy accumulation and extraction routines.
535 *
536 * Callers may add entropy via:
537 *
a1940263 538 * static void mix_pool_bytes(const void *buf, size_t len)
a5ed7cb1
JD
539 *
540 * After which, if added entropy should be credited:
541 *
a1940263 542 * static void credit_init_bits(size_t bits)
a5ed7cb1 543 *
e85c0fc1 544 * Finally, extract entropy via:
a5ed7cb1 545 *
a1940263 546 * static void extract_entropy(void *buf, size_t len)
a5ed7cb1
JD
547 *
548 **********************************************************************/
549
3655adc7
JD
550enum {
551 POOL_BITS = BLAKE2S_HASH_SIZE * 8,
e3d2c5e7
JD
552 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
553 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
3655adc7
JD
554};
555
3655adc7
JD
556static struct {
557 struct blake2s_state hash;
558 spinlock_t lock;
e85c0fc1 559 unsigned int init_bits;
3655adc7
JD
560} input_pool = {
561 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
562 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
563 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
564 .hash.outlen = BLAKE2S_HASH_SIZE,
565 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
566};
567
a1940263 568static void _mix_pool_bytes(const void *buf, size_t len)
a5ed7cb1 569{
a1940263 570 blake2s_update(&input_pool.hash, buf, len);
a5ed7cb1 571}
3655adc7
JD
572
573/*
e85c0fc1
JD
574 * This function adds bytes into the input pool. It does not
575 * update the initialization bit counter; the caller should call
576 * credit_init_bits if this is appropriate.
3655adc7 577 */
a1940263 578static void mix_pool_bytes(const void *buf, size_t len)
3655adc7 579{
a5ed7cb1
JD
580 unsigned long flags;
581
582 spin_lock_irqsave(&input_pool.lock, flags);
a1940263 583 _mix_pool_bytes(buf, len);
a5ed7cb1 584 spin_unlock_irqrestore(&input_pool.lock, flags);
3655adc7
JD
585}
586
a5ed7cb1
JD
587/*
588 * This is an HKDF-like construction for using the hashed collected entropy
589 * as a PRF key, that's then expanded block-by-block.
590 */
a1940263 591static void extract_entropy(void *buf, size_t len)
3655adc7
JD
592{
593 unsigned long flags;
a5ed7cb1
JD
594 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
595 struct {
596 unsigned long rdseed[32 / sizeof(long)];
597 size_t counter;
598 } block;
599 size_t i;
600
601 for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
602 if (!arch_get_random_seed_long(&block.rdseed[i]) &&
603 !arch_get_random_long(&block.rdseed[i]))
604 block.rdseed[i] = random_get_entropy();
605 }
3655adc7
JD
606
607 spin_lock_irqsave(&input_pool.lock, flags);
a5ed7cb1
JD
608
609 /* seed = HASHPRF(last_key, entropy_input) */
610 blake2s_final(&input_pool.hash, seed);
611
612 /* next_key = HASHPRF(seed, RDSEED || 0) */
613 block.counter = 0;
614 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
615 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
616
3655adc7 617 spin_unlock_irqrestore(&input_pool.lock, flags);
a5ed7cb1
JD
618 memzero_explicit(next_key, sizeof(next_key));
619
a1940263
JD
620 while (len) {
621 i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
a5ed7cb1
JD
622 /* output = HASHPRF(seed, RDSEED || ++counter) */
623 ++block.counter;
624 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
a1940263 625 len -= i;
a5ed7cb1
JD
626 buf += i;
627 }
628
629 memzero_explicit(seed, sizeof(seed));
630 memzero_explicit(&block, sizeof(block));
631}
632
560181c2
JD
633#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
634
635static void __cold _credit_init_bits(size_t bits)
5c3b747e 636{
f5bda35f 637 static struct execute_work set_ready;
fed7ef06 638 unsigned int new, orig, add;
5c3b747e
JD
639 unsigned long flags;
640
560181c2 641 if (!bits)
5c3b747e
JD
642 return;
643
a1940263 644 add = min_t(size_t, bits, POOL_BITS);
5c3b747e
JD
645
646 do {
e85c0fc1 647 orig = READ_ONCE(input_pool.init_bits);
fed7ef06
JD
648 new = min_t(unsigned int, POOL_BITS, orig + add);
649 } while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
5c3b747e 650
68c9c8b1
JD
651 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
652 crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
f5bda35f 653 execute_in_process_context(crng_set_ready, &set_ready);
68c9c8b1
JD
654 wake_up_interruptible(&crng_init_wait);
655 kill_fasync(&fasync, SIGIO, POLL_IN);
656 pr_notice("crng init done\n");
cc1e127b 657 if (urandom_warning.missed)
68c9c8b1
JD
658 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
659 urandom_warning.missed);
68c9c8b1 660 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
5c3b747e 661 spin_lock_irqsave(&base_crng.lock, flags);
68c9c8b1 662 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
e3d2c5e7 663 if (crng_init == CRNG_EMPTY) {
5c3b747e 664 extract_entropy(base_crng.key, sizeof(base_crng.key));
e3d2c5e7 665 crng_init = CRNG_EARLY;
5c3b747e
JD
666 }
667 spin_unlock_irqrestore(&base_crng.lock, flags);
668 }
669}
670
92c653cf
JD
671
672/**********************************************************************
673 *
674 * Entropy collection routines.
675 *
676 * The following exported functions are used for pushing entropy into
677 * the above entropy accumulation routines:
678 *
a1940263
JD
679 * void add_device_randomness(const void *buf, size_t len);
680 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
681 * void add_bootloader_randomness(const void *buf, size_t len);
682 * void add_vmfork_randomness(const void *unique_vm_id, size_t len);
92c653cf 683 * void add_interrupt_randomness(int irq);
a1940263 684 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
a4b5c26b 685 * void add_disk_randomness(struct gendisk *disk);
92c653cf
JD
686 *
687 * add_device_randomness() adds data to the input pool that
688 * is likely to differ between two devices (or possibly even per boot).
689 * This would be things like MAC addresses or serial numbers, or the
690 * read-out of the RTC. This does *not* credit any actual entropy to
691 * the pool, but it initializes the pool to different values for devices
692 * that might otherwise be identical and have very little entropy
693 * available to them (particularly common in the embedded world).
694 *
92c653cf
JD
695 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
696 * entropy as specified by the caller. If the entropy pool is full it will
697 * block until more entropy is needed.
698 *
5c3b747e
JD
699 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
700 * and device tree, and credits its input depending on whether or not the
701 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
92c653cf 702 *
ae099e8e
JD
703 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
704 * representing the current instance of a VM to the pool, without crediting,
705 * and then force-reseeds the crng so that it takes effect immediately.
706 *
92c653cf
JD
707 * add_interrupt_randomness() uses the interrupt timing as random
708 * inputs to the entropy pool. Using the cycle counters and the irq source
709 * as inputs, it feeds the input pool roughly once a second or after 64
710 * interrupts, crediting 1 bit of entropy for whichever comes first.
711 *
a4b5c26b
JD
712 * add_input_randomness() uses the input layer interrupt timing, as well
713 * as the event type information from the hardware.
714 *
715 * add_disk_randomness() uses what amounts to the seek time of block
716 * layer request events, on a per-disk_devt basis, as input to the
717 * entropy pool. Note that high-speed solid state drives with very low
718 * seek times do not make for good sources of entropy, as their seek
719 * times are usually fairly consistent.
720 *
721 * The last two routines try to estimate how many bits of entropy
722 * to credit. They do this by keeping track of the first and second
723 * order deltas of the event timings.
724 *
92c653cf
JD
725 **********************************************************************/
726
248561ad 727static bool used_arch_random;
92c653cf 728static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
d97c68d1 729static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
92c653cf
JD
730static int __init parse_trust_cpu(char *arg)
731{
732 return kstrtobool(arg, &trust_cpu);
733}
d97c68d1
JD
734static int __init parse_trust_bootloader(char *arg)
735{
736 return kstrtobool(arg, &trust_bootloader);
737}
92c653cf 738early_param("random.trust_cpu", parse_trust_cpu);
d97c68d1 739early_param("random.trust_bootloader", parse_trust_bootloader);
3655adc7 740
b7b67d13
JD
741static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
742{
743 unsigned long flags, entropy = random_get_entropy();
744
745 /*
746 * Encode a representation of how long the system has been suspended,
747 * in a way that is distinct from prior system suspends.
748 */
749 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
750
751 spin_lock_irqsave(&input_pool.lock, flags);
752 _mix_pool_bytes(&action, sizeof(action));
753 _mix_pool_bytes(stamps, sizeof(stamps));
754 _mix_pool_bytes(&entropy, sizeof(entropy));
755 spin_unlock_irqrestore(&input_pool.lock, flags);
756
757 if (crng_ready() && (action == PM_RESTORE_PREPARE ||
758 (action == PM_POST_SUSPEND &&
759 !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && !IS_ENABLED(CONFIG_ANDROID)))) {
e85c0fc1 760 crng_reseed();
b7b67d13
JD
761 pr_notice("crng reseeded on system resumption\n");
762 }
763 return 0;
764}
765
766static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
767
3655adc7 768/*
92c653cf 769 * The first collection of entropy occurs at system boot while interrupts
2f14062b
JD
770 * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
771 * utsname(), and the command line. Depending on the above configuration knob,
772 * RDSEED may be considered sufficient for initialization. Note that much
773 * earlier setup may already have pushed entropy into the input pool by the
774 * time we get here.
3655adc7 775 */
2f14062b 776int __init random_init(const char *command_line)
3655adc7 777{
92c653cf 778 ktime_t now = ktime_get_real();
12e45a2a 779 unsigned int i, arch_bytes;
a1940263 780 unsigned long entropy;
186873c5 781
1754abb3
JD
782#if defined(LATENT_ENTROPY_PLUGIN)
783 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
784 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
785#endif
786
12e45a2a 787 for (i = 0, arch_bytes = BLAKE2S_BLOCK_SIZE;
a1940263
JD
788 i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {
789 if (!arch_get_random_seed_long_early(&entropy) &&
790 !arch_get_random_long_early(&entropy)) {
791 entropy = random_get_entropy();
792 arch_bytes -= sizeof(entropy);
92c653cf 793 }
a1940263 794 _mix_pool_bytes(&entropy, sizeof(entropy));
92c653cf 795 }
afba0b80
JD
796 _mix_pool_bytes(&now, sizeof(now));
797 _mix_pool_bytes(utsname(), sizeof(*(utsname())));
2f14062b
JD
798 _mix_pool_bytes(command_line, strlen(command_line));
799 add_latent_entropy();
186873c5 800
e85c0fc1
JD
801 if (crng_ready())
802 crng_reseed();
12e45a2a 803 else if (trust_cpu)
9b29b6b2 804 _credit_init_bits(arch_bytes * 8);
248561ad 805 used_arch_random = arch_bytes * 8 >= POOL_READY_BITS;
e192be9d 806
b7b67d13
JD
807 WARN_ON(register_pm_notifier(&pm_notifier));
808
4b758eda
JD
809 WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG "
810 "entropy collection will consequently suffer.");
92c653cf 811 return 0;
3655adc7 812}
e192be9d 813
248561ad
JD
814/*
815 * Returns whether arch randomness has been mixed into the initial
816 * state of the RNG, regardless of whether or not that randomness
817 * was credited. Knowing this is only good for a very limited set
818 * of uses, such as early init printk pointer obfuscation.
819 */
820bool rng_has_arch_random(void)
821{
822 return used_arch_random;
823}
824
a2080a67 825/*
e192be9d
TT
826 * Add device- or boot-specific data to the input pool to help
827 * initialize it.
a2080a67 828 *
e192be9d
TT
829 * None of this adds any entropy; it is meant to avoid the problem of
830 * the entropy pool having similar initial state across largely
831 * identical devices.
a2080a67 832 */
a1940263 833void add_device_randomness(const void *buf, size_t len)
a2080a67 834{
4b758eda
JD
835 unsigned long entropy = random_get_entropy();
836 unsigned long flags;
a2080a67 837
3ef4cb2d 838 spin_lock_irqsave(&input_pool.lock, flags);
4b758eda 839 _mix_pool_bytes(&entropy, sizeof(entropy));
a1940263 840 _mix_pool_bytes(buf, len);
3ef4cb2d 841 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
842}
843EXPORT_SYMBOL(add_device_randomness);
844
92c653cf
JD
845/*
846 * Interface for in-kernel drivers of true hardware RNGs.
847 * Those devices may produce endless random bits and will be throttled
848 * when our pool is full.
849 */
a1940263 850void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
92c653cf 851{
a1940263 852 mix_pool_bytes(buf, len);
e85c0fc1
JD
853 credit_init_bits(entropy);
854
92c653cf 855 /*
e85c0fc1
JD
856 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
857 * we're not yet initialized.
92c653cf 858 */
e85c0fc1
JD
859 if (!kthread_should_stop() && crng_ready())
860 schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
92c653cf
JD
861}
862EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
863
864/*
5c3b747e
JD
865 * Handle random seed passed by bootloader, and credit it if
866 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
92c653cf 867 */
560181c2 868void __cold add_bootloader_randomness(const void *buf, size_t len)
92c653cf 869{
a1940263 870 mix_pool_bytes(buf, len);
d97c68d1 871 if (trust_bootloader)
a1940263 872 credit_init_bits(len * 8);
92c653cf
JD
873}
874EXPORT_SYMBOL_GPL(add_bootloader_randomness);
875
a4107d34 876#if IS_ENABLED(CONFIG_VMGENID)
f3c2682b
JD
877static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
878
ae099e8e
JD
879/*
880 * Handle a new unique VM ID, which is unique, not secret, so we
881 * don't credit it, but we do immediately force a reseed after so
882 * that it's used by the crng posthaste.
883 */
560181c2 884void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
ae099e8e 885{
a1940263 886 add_device_randomness(unique_vm_id, len);
ae099e8e 887 if (crng_ready()) {
e85c0fc1 888 crng_reseed();
ae099e8e
JD
889 pr_notice("crng reseeded due to virtual machine fork\n");
890 }
f3c2682b 891 blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
ae099e8e 892}
a4107d34 893#if IS_MODULE(CONFIG_VMGENID)
ae099e8e 894EXPORT_SYMBOL_GPL(add_vmfork_randomness);
a4107d34 895#endif
f3c2682b 896
560181c2 897int __cold register_random_vmfork_notifier(struct notifier_block *nb)
f3c2682b
JD
898{
899 return blocking_notifier_chain_register(&vmfork_chain, nb);
900}
901EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
902
560181c2 903int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
f3c2682b
JD
904{
905 return blocking_notifier_chain_unregister(&vmfork_chain, nb);
906}
907EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
a4107d34 908#endif
ae099e8e 909
92c653cf 910struct fast_pool {
58340f8e 911 struct work_struct mix;
f5eab0e2 912 unsigned long pool[4];
92c653cf 913 unsigned long last;
3191dd5a 914 unsigned int count;
92c653cf
JD
915};
916
f5eab0e2
JD
917static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
918#ifdef CONFIG_64BIT
e73aaae2
JD
919#define FASTMIX_PERM SIPHASH_PERMUTATION
920 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }
f5eab0e2 921#else
e73aaae2
JD
922#define FASTMIX_PERM HSIPHASH_PERMUTATION
923 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }
f5eab0e2
JD
924#endif
925};
926
92c653cf 927/*
f5eab0e2
JD
928 * This is [Half]SipHash-1-x, starting from an empty key. Because
929 * the key is fixed, it assumes that its inputs are non-malicious,
930 * and therefore this has no security on its own. s represents the
4b758eda 931 * four-word SipHash state, while v represents a two-word input.
92c653cf 932 */
791332b3 933static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
92c653cf 934{
791332b3 935 s[3] ^= v1;
e73aaae2 936 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
791332b3
JD
937 s[0] ^= v1;
938 s[3] ^= v2;
e73aaae2 939 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
791332b3 940 s[0] ^= v2;
92c653cf
JD
941}
942
3191dd5a
JD
943#ifdef CONFIG_SMP
944/*
945 * This function is called when the CPU has just come online, with
946 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
947 */
560181c2 948int __cold random_online_cpu(unsigned int cpu)
3191dd5a
JD
949{
950 /*
951 * During CPU shutdown and before CPU onlining, add_interrupt_
952 * randomness() may schedule mix_interrupt_randomness(), and
953 * set the MIX_INFLIGHT flag. However, because the worker can
954 * be scheduled on a different CPU during this period, that
955 * flag will never be cleared. For that reason, we zero out
956 * the flag here, which runs just after workqueues are onlined
957 * for the CPU again. This also has the effect of setting the
958 * irq randomness count to zero so that new accumulated irqs
959 * are fresh.
960 */
961 per_cpu_ptr(&irq_randomness, cpu)->count = 0;
962 return 0;
963}
964#endif
965
58340f8e
JD
966static void mix_interrupt_randomness(struct work_struct *work)
967{
968 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
f5eab0e2 969 /*
4b758eda
JD
970 * The size of the copied stack pool is explicitly 2 longs so that we
971 * only ever ingest half of the siphash output each time, retaining
972 * the other half as the next "key" that carries over. The entropy is
973 * supposed to be sufficiently dispersed between bits so on average
974 * we don't wind up "losing" some.
f5eab0e2 975 */
4b758eda 976 unsigned long pool[2];
e3e33fc2 977 unsigned int count;
58340f8e
JD
978
979 /* Check to see if we're running on the wrong CPU due to hotplug. */
980 local_irq_disable();
981 if (fast_pool != this_cpu_ptr(&irq_randomness)) {
982 local_irq_enable();
58340f8e
JD
983 return;
984 }
985
986 /*
987 * Copy the pool to the stack so that the mixer always has a
988 * consistent view, before we reenable irqs again.
989 */
f5eab0e2 990 memcpy(pool, fast_pool->pool, sizeof(pool));
e3e33fc2 991 count = fast_pool->count;
3191dd5a 992 fast_pool->count = 0;
58340f8e
JD
993 fast_pool->last = jiffies;
994 local_irq_enable();
995
5c3b747e 996 mix_pool_bytes(pool, sizeof(pool));
e3e33fc2 997 credit_init_bits(max(1u, (count & U16_MAX) / 64));
c2a7de4f 998
58340f8e
JD
999 memzero_explicit(pool, sizeof(pool));
1000}
1001
703f7066 1002void add_interrupt_randomness(int irq)
1da177e4 1003{
58340f8e 1004 enum { MIX_INFLIGHT = 1U << 31 };
4b758eda 1005 unsigned long entropy = random_get_entropy();
248045b8
JD
1006 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1007 struct pt_regs *regs = get_irq_regs();
58340f8e 1008 unsigned int new_count;
b2f408fe 1009
791332b3
JD
1010 fast_mix(fast_pool->pool, entropy,
1011 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
3191dd5a 1012 new_count = ++fast_pool->count;
3060d6fe 1013
58340f8e 1014 if (new_count & MIX_INFLIGHT)
1da177e4
LT
1015 return;
1016
5c3b747e 1017 if (new_count < 64 && !time_is_before_jiffies(fast_pool->last + HZ))
91fcb532 1018 return;
83664a69 1019
58340f8e
JD
1020 if (unlikely(!fast_pool->mix.func))
1021 INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
3191dd5a 1022 fast_pool->count |= MIX_INFLIGHT;
58340f8e 1023 queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
1da177e4 1024}
4b44f2d1 1025EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1026
a4b5c26b
JD
1027/* There is one of these per entropy source */
1028struct timer_rand_state {
1029 unsigned long last_time;
1030 long last_delta, last_delta2;
1031};
1032
1033/*
1034 * This function adds entropy to the entropy "pool" by using timing
e3e33fc2
JD
1035 * delays. It uses the timer_rand_state structure to make an estimate
1036 * of how many bits of entropy this call has added to the pool. The
1037 * value "num" is also added to the pool; it should somehow describe
1038 * the type of event that just happened.
a4b5c26b
JD
1039 */
1040static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1041{
1042 unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1043 long delta, delta2, delta3;
e3e33fc2 1044 unsigned int bits;
a4b5c26b 1045
e3e33fc2
JD
1046 /*
1047 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1048 * sometime after, so mix into the fast pool.
1049 */
1050 if (in_hardirq()) {
791332b3 1051 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
e3e33fc2
JD
1052 } else {
1053 spin_lock_irqsave(&input_pool.lock, flags);
1054 _mix_pool_bytes(&entropy, sizeof(entropy));
1055 _mix_pool_bytes(&num, sizeof(num));
1056 spin_unlock_irqrestore(&input_pool.lock, flags);
1057 }
a4b5c26b
JD
1058
1059 if (crng_ready())
1060 return;
1061
1062 /*
1063 * Calculate number of bits of randomness we probably added.
1064 * We take into account the first, second and third-order deltas
1065 * in order to make our estimate.
1066 */
1067 delta = now - READ_ONCE(state->last_time);
1068 WRITE_ONCE(state->last_time, now);
1069
1070 delta2 = delta - READ_ONCE(state->last_delta);
1071 WRITE_ONCE(state->last_delta, delta);
1072
1073 delta3 = delta2 - READ_ONCE(state->last_delta2);
1074 WRITE_ONCE(state->last_delta2, delta2);
1075
1076 if (delta < 0)
1077 delta = -delta;
1078 if (delta2 < 0)
1079 delta2 = -delta2;
1080 if (delta3 < 0)
1081 delta3 = -delta3;
1082 if (delta > delta2)
1083 delta = delta2;
1084 if (delta > delta3)
1085 delta = delta3;
1086
1087 /*
e3e33fc2
JD
1088 * delta is now minimum absolute delta. Round down by 1 bit
1089 * on general principles, and limit entropy estimate to 11 bits.
1090 */
1091 bits = min(fls(delta >> 1), 11);
1092
1093 /*
1094 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1095 * will run after this, which uses a different crediting scheme of 1 bit
1096 * per every 64 interrupts. In order to let that function do accounting
1097 * close to the one in this function, we credit a full 64/64 bit per bit,
1098 * and then subtract one to account for the extra one added.
a4b5c26b 1099 */
e3e33fc2
JD
1100 if (in_hardirq())
1101 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1102 else
560181c2 1103 _credit_init_bits(bits);
a4b5c26b
JD
1104}
1105
a1940263 1106void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
a4b5c26b
JD
1107{
1108 static unsigned char last_value;
1109 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1110
1111 /* Ignore autorepeat and the like. */
1112 if (value == last_value)
1113 return;
1114
1115 last_value = value;
1116 add_timer_randomness(&input_timer_state,
1117 (type << 4) ^ code ^ (code >> 4) ^ value);
1118}
1119EXPORT_SYMBOL_GPL(add_input_randomness);
1120
1121#ifdef CONFIG_BLOCK
1122void add_disk_randomness(struct gendisk *disk)
1123{
1124 if (!disk || !disk->random)
1125 return;
1126 /* First major is 1, so we get >= 0x200 here. */
1127 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1128}
1129EXPORT_SYMBOL_GPL(add_disk_randomness);
1130
560181c2 1131void __cold rand_initialize_disk(struct gendisk *disk)
a4b5c26b
JD
1132{
1133 struct timer_rand_state *state;
1134
1135 /*
1136 * If kzalloc returns null, we just won't use that entropy
1137 * source.
1138 */
1139 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1140 if (state) {
1141 state->last_time = INITIAL_JIFFIES;
1142 disk->random = state;
1143 }
1144}
1145#endif
1146
78c768e6
JD
1147struct entropy_timer_state {
1148 unsigned long entropy;
1149 struct timer_list timer;
1150 unsigned int samples, samples_per_bit;
1151};
1152
50ee7529
LT
1153/*
1154 * Each time the timer fires, we expect that we got an unpredictable
1155 * jump in the cycle counter. Even if the timer is running on another
1156 * CPU, the timer activity will be touching the stack of the CPU that is
1157 * generating entropy..
1158 *
1159 * Note that we don't re-arm the timer in the timer itself - we are
1160 * happy to be scheduled away, since that just makes the load more
1161 * complex, but we do not want the timer to keep ticking unless the
1162 * entropy loop is running.
1163 *
1164 * So the re-arming always happens in the entropy loop itself.
1165 */
560181c2 1166static void __cold entropy_timer(struct timer_list *timer)
50ee7529 1167{
78c768e6
JD
1168 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1169
1170 if (++state->samples == state->samples_per_bit) {
e85c0fc1 1171 credit_init_bits(1);
78c768e6
JD
1172 state->samples = 0;
1173 }
50ee7529
LT
1174}
1175
1176/*
1177 * If we have an actual cycle counter, see if we can
1178 * generate enough entropy with timing noise
1179 */
560181c2 1180static void __cold try_to_generate_entropy(void)
50ee7529 1181{
78c768e6
JD
1182 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = 32 };
1183 struct entropy_timer_state stack;
1184 unsigned int i, num_different = 0;
1185 unsigned long last = random_get_entropy();
50ee7529 1186
78c768e6
JD
1187 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1188 stack.entropy = random_get_entropy();
1189 if (stack.entropy != last)
1190 ++num_different;
1191 last = stack.entropy;
1192 }
1193 stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1194 if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
50ee7529
LT
1195 return;
1196
78c768e6 1197 stack.samples = 0;
50ee7529 1198 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
3e504d20 1199 while (!crng_ready() && !signal_pending(current)) {
50ee7529 1200 if (!timer_pending(&stack.timer))
248045b8 1201 mod_timer(&stack.timer, jiffies + 1);
4b758eda 1202 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
50ee7529 1203 schedule();
4b758eda 1204 stack.entropy = random_get_entropy();
50ee7529
LT
1205 }
1206
1207 del_timer_sync(&stack.timer);
1208 destroy_timer_on_stack(&stack.timer);
4b758eda 1209 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
50ee7529
LT
1210}
1211
a6adf8e7
JD
1212
1213/**********************************************************************
1214 *
1215 * Userspace reader/writer interfaces.
1216 *
1217 * getrandom(2) is the primary modern interface into the RNG and should
1218 * be used in preference to anything else.
1219 *
0313bc27
LT
1220 * Reading from /dev/random has the same functionality as calling
1221 * getrandom(2) with flags=0. In earlier versions, however, it had
1222 * vastly different semantics and should therefore be avoided, to
1223 * prevent backwards compatibility issues.
1224 *
1225 * Reading from /dev/urandom has the same functionality as calling
1226 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1227 * waiting for the RNG to be ready, it should not be used.
a6adf8e7
JD
1228 *
1229 * Writing to either /dev/random or /dev/urandom adds entropy to
1230 * the input pool but does not credit it.
1231 *
0313bc27
LT
1232 * Polling on /dev/random indicates when the RNG is initialized, on
1233 * the read side, and when it wants new entropy, on the write side.
a6adf8e7
JD
1234 *
1235 * Both /dev/random and /dev/urandom have the same set of ioctls for
1236 * adding entropy, getting the entropy count, zeroing the count, and
1237 * reseeding the crng.
1238 *
1239 **********************************************************************/
1240
a1940263 1241SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1da177e4 1242{
1b388e77
JA
1243 struct iov_iter iter;
1244 struct iovec iov;
1245 int ret;
1246
a6adf8e7
JD
1247 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1248 return -EINVAL;
301f0595 1249
a6adf8e7
JD
1250 /*
1251 * Requesting insecure and blocking randomness at the same time makes
1252 * no sense.
1253 */
1254 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1255 return -EINVAL;
c6f1deb1 1256
f5bda35f 1257 if (!crng_ready() && !(flags & GRND_INSECURE)) {
a6adf8e7
JD
1258 if (flags & GRND_NONBLOCK)
1259 return -EAGAIN;
1260 ret = wait_for_random_bytes();
1261 if (unlikely(ret))
1262 return ret;
1263 }
1b388e77
JA
1264
1265 ret = import_single_range(READ, ubuf, len, &iov, &iter);
1266 if (unlikely(ret))
1267 return ret;
1268 return get_random_bytes_user(&iter);
30c08efe
AL
1269}
1270
248045b8 1271static __poll_t random_poll(struct file *file, poll_table *wait)
1da177e4 1272{
30c08efe 1273 poll_wait(file, &crng_init_wait, wait);
e85c0fc1 1274 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1da177e4
LT
1275}
1276
1ce6c8d6 1277static ssize_t write_pool_user(struct iov_iter *iter)
1da177e4 1278{
04ec96b7 1279 u8 block[BLAKE2S_BLOCK_SIZE];
22b0a222
JA
1280 ssize_t ret = 0;
1281 size_t copied;
1da177e4 1282
22b0a222
JA
1283 if (unlikely(!iov_iter_count(iter)))
1284 return 0;
1285
1286 for (;;) {
1287 copied = copy_from_iter(block, sizeof(block), iter);
1288 ret += copied;
1289 mix_pool_bytes(block, copied);
1290 if (!iov_iter_count(iter) || copied != sizeof(block))
1291 break;
1ce6c8d6
JD
1292
1293 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1294 if (ret % PAGE_SIZE == 0) {
1295 if (signal_pending(current))
1296 break;
1297 cond_resched();
1298 }
1da177e4 1299 }
7f397dcd 1300
7b5164fb 1301 memzero_explicit(block, sizeof(block));
22b0a222 1302 return ret ? ret : -EFAULT;
7f397dcd
MM
1303}
1304
22b0a222 1305static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
7f397dcd 1306{
1ce6c8d6 1307 return write_pool_user(iter);
1da177e4
LT
1308}
1309
1b388e77 1310static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
0313bc27
LT
1311{
1312 static int maxwarn = 10;
1313
48bff105
JD
1314 /*
1315 * Opportunistically attempt to initialize the RNG on platforms that
1316 * have fast cycle counters, but don't (for now) require it to succeed.
1317 */
1318 if (!crng_ready())
1319 try_to_generate_entropy();
1320
cc1e127b
JD
1321 if (!crng_ready()) {
1322 if (!ratelimit_disable && maxwarn <= 0)
1323 ++urandom_warning.missed;
1324 else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1325 --maxwarn;
1b388e77
JA
1326 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1327 current->comm, iov_iter_count(iter));
cc1e127b 1328 }
0313bc27
LT
1329 }
1330
1b388e77 1331 return get_random_bytes_user(iter);
0313bc27
LT
1332}
1333
1b388e77 1334static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
a6adf8e7
JD
1335{
1336 int ret;
1337
1338 ret = wait_for_random_bytes();
1339 if (ret != 0)
1340 return ret;
1b388e77 1341 return get_random_bytes_user(iter);
a6adf8e7
JD
1342}
1343
43ae4860 1344static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4 1345{
1da177e4 1346 int __user *p = (int __user *)arg;
22b0a222 1347 int ent_count;
1da177e4
LT
1348
1349 switch (cmd) {
1350 case RNDGETENTCNT:
a6adf8e7 1351 /* Inherently racy, no point locking. */
e85c0fc1 1352 if (put_user(input_pool.init_bits, p))
1da177e4
LT
1353 return -EFAULT;
1354 return 0;
1355 case RNDADDTOENTCNT:
1356 if (!capable(CAP_SYS_ADMIN))
1357 return -EPERM;
1358 if (get_user(ent_count, p))
1359 return -EFAULT;
a49c010e
JD
1360 if (ent_count < 0)
1361 return -EINVAL;
e85c0fc1 1362 credit_init_bits(ent_count);
a49c010e 1363 return 0;
22b0a222
JA
1364 case RNDADDENTROPY: {
1365 struct iov_iter iter;
1366 struct iovec iov;
1367 ssize_t ret;
1368 int len;
1369
1da177e4
LT
1370 if (!capable(CAP_SYS_ADMIN))
1371 return -EPERM;
1372 if (get_user(ent_count, p++))
1373 return -EFAULT;
1374 if (ent_count < 0)
1375 return -EINVAL;
22b0a222
JA
1376 if (get_user(len, p++))
1377 return -EFAULT;
1378 ret = import_single_range(WRITE, p, len, &iov, &iter);
1379 if (unlikely(ret))
1380 return ret;
1ce6c8d6 1381 ret = write_pool_user(&iter);
22b0a222
JA
1382 if (unlikely(ret < 0))
1383 return ret;
1384 /* Since we're crediting, enforce that it was all written into the pool. */
1385 if (unlikely(ret != len))
1da177e4 1386 return -EFAULT;
e85c0fc1 1387 credit_init_bits(ent_count);
a49c010e 1388 return 0;
22b0a222 1389 }
1da177e4
LT
1390 case RNDZAPENTCNT:
1391 case RNDCLEARPOOL:
e85c0fc1 1392 /* No longer has any effect. */
1da177e4
LT
1393 if (!capable(CAP_SYS_ADMIN))
1394 return -EPERM;
1da177e4 1395 return 0;
d848e5f8
TT
1396 case RNDRESEEDCRNG:
1397 if (!capable(CAP_SYS_ADMIN))
1398 return -EPERM;
a96cfe2d 1399 if (!crng_ready())
d848e5f8 1400 return -ENODATA;
e85c0fc1 1401 crng_reseed();
d848e5f8 1402 return 0;
1da177e4
LT
1403 default:
1404 return -EINVAL;
1405 }
1406}
1407
9a6f70bb
JD
1408static int random_fasync(int fd, struct file *filp, int on)
1409{
1410 return fasync_helper(fd, filp, on, &fasync);
1411}
1412
2b8693c0 1413const struct file_operations random_fops = {
1b388e77 1414 .read_iter = random_read_iter,
22b0a222 1415 .write_iter = random_write_iter,
248045b8 1416 .poll = random_poll,
43ae4860 1417 .unlocked_ioctl = random_ioctl,
507e4e2b 1418 .compat_ioctl = compat_ptr_ioctl,
9a6f70bb 1419 .fasync = random_fasync,
6038f373 1420 .llseek = noop_llseek,
79025e72
JA
1421 .splice_read = generic_file_splice_read,
1422 .splice_write = iter_file_splice_write,
1da177e4
LT
1423};
1424
0313bc27 1425const struct file_operations urandom_fops = {
1b388e77 1426 .read_iter = urandom_read_iter,
22b0a222 1427 .write_iter = random_write_iter,
0313bc27
LT
1428 .unlocked_ioctl = random_ioctl,
1429 .compat_ioctl = compat_ptr_ioctl,
1430 .fasync = random_fasync,
1431 .llseek = noop_llseek,
79025e72
JA
1432 .splice_read = generic_file_splice_read,
1433 .splice_write = iter_file_splice_write,
0313bc27
LT
1434};
1435
0deff3c4 1436
1da177e4
LT
1437/********************************************************************
1438 *
0deff3c4
JD
1439 * Sysctl interface.
1440 *
1441 * These are partly unused legacy knobs with dummy values to not break
1442 * userspace and partly still useful things. They are usually accessible
1443 * in /proc/sys/kernel/random/ and are as follows:
1444 *
1445 * - boot_id - a UUID representing the current boot.
1446 *
1447 * - uuid - a random UUID, different each time the file is read.
1448 *
1449 * - poolsize - the number of bits of entropy that the input pool can
1450 * hold, tied to the POOL_BITS constant.
1451 *
1452 * - entropy_avail - the number of bits of entropy currently in the
1453 * input pool. Always <= poolsize.
1454 *
1455 * - write_wakeup_threshold - the amount of entropy in the input pool
1456 * below which write polls to /dev/random will unblock, requesting
e3d2c5e7 1457 * more entropy, tied to the POOL_READY_BITS constant. It is writable
0deff3c4
JD
1458 * to avoid breaking old userspaces, but writing to it does not
1459 * change any behavior of the RNG.
1460 *
d0efdf35 1461 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
0deff3c4
JD
1462 * It is writable to avoid breaking old userspaces, but writing
1463 * to it does not change any behavior of the RNG.
1da177e4
LT
1464 *
1465 ********************************************************************/
1466
1467#ifdef CONFIG_SYSCTL
1468
1469#include <linux/sysctl.h>
1470
d0efdf35 1471static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
e3d2c5e7 1472static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
489c7fc4 1473static int sysctl_poolsize = POOL_BITS;
64276a99 1474static u8 sysctl_bootid[UUID_SIZE];
1da177e4
LT
1475
1476/*
f22052b2 1477 * This function is used to return both the bootid UUID, and random
64276a99 1478 * UUID. The difference is in whether table->data is NULL; if it is,
1da177e4 1479 * then a new UUID is generated and returned to the user.
1da177e4 1480 */
a1940263 1481static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
248045b8 1482 size_t *lenp, loff_t *ppos)
1da177e4 1483{
64276a99
JD
1484 u8 tmp_uuid[UUID_SIZE], *uuid;
1485 char uuid_string[UUID_STRING_LEN + 1];
1486 struct ctl_table fake_table = {
1487 .data = uuid_string,
1488 .maxlen = UUID_STRING_LEN
1489 };
1490
1491 if (write)
1492 return -EPERM;
1da177e4
LT
1493
1494 uuid = table->data;
1495 if (!uuid) {
1496 uuid = tmp_uuid;
1da177e4 1497 generate_random_uuid(uuid);
44e4360f
MD
1498 } else {
1499 static DEFINE_SPINLOCK(bootid_spinlock);
1500
1501 spin_lock(&bootid_spinlock);
1502 if (!uuid[8])
1503 generate_random_uuid(uuid);
1504 spin_unlock(&bootid_spinlock);
1505 }
1da177e4 1506
64276a99 1507 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
a1940263 1508 return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1da177e4
LT
1509}
1510
77553cf8 1511/* The same as proc_dointvec, but writes don't change anything. */
a1940263 1512static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
77553cf8
JD
1513 size_t *lenp, loff_t *ppos)
1514{
a1940263 1515 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
77553cf8
JD
1516}
1517
5475e8f0 1518static struct ctl_table random_table[] = {
1da177e4 1519 {
1da177e4
LT
1520 .procname = "poolsize",
1521 .data = &sysctl_poolsize,
1522 .maxlen = sizeof(int),
1523 .mode = 0444,
6d456111 1524 .proc_handler = proc_dointvec,
1da177e4
LT
1525 },
1526 {
1da177e4 1527 .procname = "entropy_avail",
e85c0fc1 1528 .data = &input_pool.init_bits,
1da177e4
LT
1529 .maxlen = sizeof(int),
1530 .mode = 0444,
c5704490 1531 .proc_handler = proc_dointvec,
1da177e4 1532 },
1da177e4 1533 {
1da177e4 1534 .procname = "write_wakeup_threshold",
0deff3c4 1535 .data = &sysctl_random_write_wakeup_bits,
1da177e4
LT
1536 .maxlen = sizeof(int),
1537 .mode = 0644,
77553cf8 1538 .proc_handler = proc_do_rointvec,
1da177e4 1539 },
f5c2742c
TT
1540 {
1541 .procname = "urandom_min_reseed_secs",
0deff3c4 1542 .data = &sysctl_random_min_urandom_seed,
f5c2742c
TT
1543 .maxlen = sizeof(int),
1544 .mode = 0644,
77553cf8 1545 .proc_handler = proc_do_rointvec,
f5c2742c 1546 },
1da177e4 1547 {
1da177e4
LT
1548 .procname = "boot_id",
1549 .data = &sysctl_bootid,
1da177e4 1550 .mode = 0444,
6d456111 1551 .proc_handler = proc_do_uuid,
1da177e4
LT
1552 },
1553 {
1da177e4 1554 .procname = "uuid",
1da177e4 1555 .mode = 0444,
6d456111 1556 .proc_handler = proc_do_uuid,
1da177e4 1557 },
894d2491 1558 { }
1da177e4 1559};
5475e8f0
XN
1560
1561/*
2f14062b
JD
1562 * random_init() is called before sysctl_init(),
1563 * so we cannot call register_sysctl_init() in random_init()
5475e8f0
XN
1564 */
1565static int __init random_sysctls_init(void)
1566{
1567 register_sysctl_init("kernel/random", random_table);
1568 return 0;
1569}
1570device_initcall(random_sysctls_init);
0deff3c4 1571#endif