random: reseed in delayed work rather than on-demand
[linux-block.git] / drivers / char / random.c
CommitLineData
a07fdae3 1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
1da177e4 2/*
9f9eff85 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5f75d9f3
JD
5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6 *
7 * This driver produces cryptographically secure pseudorandom data. It is divided
8 * into roughly six sections, each with a section header:
9 *
10 * - Initialization and readiness waiting.
11 * - Fast key erasure RNG, the "crng".
12 * - Entropy accumulation and extraction routines.
13 * - Entropy collection routines.
14 * - Userspace reader/writer interfaces.
15 * - Sysctl interface.
16 *
17 * The high level overview is that there is one input pool, into which
e85c0fc1
JD
18 * various pieces of data are hashed. Prior to initialization, some of that
19 * data is then "credited" as having a certain number of bits of entropy.
20 * When enough bits of entropy are available, the hash is finalized and
21 * handed as a key to a stream cipher that expands it indefinitely for
22 * various consumers. This key is periodically refreshed as the various
23 * entropy collectors, described below, add data to the input pool.
1da177e4
LT
24 */
25
12cd53af
YL
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
1da177e4 28#include <linux/utsname.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/major.h>
32#include <linux/string.h>
33#include <linux/fcntl.h>
34#include <linux/slab.h>
35#include <linux/random.h>
36#include <linux/poll.h>
37#include <linux/init.h>
38#include <linux/fs.h>
322cbb50 39#include <linux/blkdev.h>
1da177e4 40#include <linux/interrupt.h>
27ac792c 41#include <linux/mm.h>
dd0f0cf5 42#include <linux/nodemask.h>
1da177e4 43#include <linux/spinlock.h>
c84dbf61 44#include <linux/kthread.h>
1da177e4 45#include <linux/percpu.h>
775f4b29 46#include <linux/ptrace.h>
6265e169 47#include <linux/workqueue.h>
0244ad00 48#include <linux/irq.h>
4e00b339 49#include <linux/ratelimit.h>
c6e9d6f3
TT
50#include <linux/syscalls.h>
51#include <linux/completion.h>
8da4b8c4 52#include <linux/uuid.h>
87e7d5ab 53#include <linux/uaccess.h>
b7b67d13 54#include <linux/suspend.h>
e73aaae2 55#include <linux/siphash.h>
1ca1b917 56#include <crypto/chacha.h>
9f9eff85 57#include <crypto/blake2s.h>
1da177e4 58#include <asm/processor.h>
1da177e4 59#include <asm/irq.h>
775f4b29 60#include <asm/irq_regs.h>
1da177e4
LT
61#include <asm/io.h>
62
5f1bb112
JD
63/*********************************************************************
64 *
65 * Initialization and readiness waiting.
66 *
67 * Much of the RNG infrastructure is devoted to various dependencies
68 * being able to wait until the RNG has collected enough entropy and
69 * is ready for safe consumption.
70 *
71 *********************************************************************/
205a525c 72
e192be9d 73/*
5f1bb112 74 * crng_init is protected by base_crng->lock, and only increases
e3d2c5e7 75 * its value (from empty->early->ready).
e192be9d 76 */
e3d2c5e7
JD
77static enum {
78 CRNG_EMPTY = 0, /* Little to no entropy collected */
79 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
80 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */
f5bda35f
JD
81} crng_init __read_mostly = CRNG_EMPTY;
82static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
83#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
e3d2c5e7 84/* Various types of waiters for crng_init->CRNG_READY transition. */
5f1bb112
JD
85static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
86static struct fasync_struct *fasync;
e192be9d 87
5f1bb112 88/* Control how we warn userspace. */
0313bc27 89static struct ratelimit_state urandom_warning =
c01d4d0a 90 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
cc1e127b
JD
91static int ratelimit_disable __read_mostly =
92 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
4e00b339
TT
93module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
94MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
95
5f1bb112
JD
96/*
97 * Returns whether or not the input pool has been seeded and thus guaranteed
0313bc27 98 * to supply cryptographically secure random numbers. This applies to: the
a890d1c6 99 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
de492c83 100 * u16,u32,u64,long} family of functions.
5f1bb112
JD
101 *
102 * Returns: true if the input pool has been seeded.
103 * false if the input pool has not been seeded.
104 */
105bool rng_is_initialized(void)
106{
107 return crng_ready();
108}
109EXPORT_SYMBOL(rng_is_initialized);
110
560181c2 111static void __cold crng_set_ready(struct work_struct *work)
f5bda35f
JD
112{
113 static_branch_enable(&crng_is_ready);
114}
115
5f1bb112
JD
116/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
117static void try_to_generate_entropy(void);
118
119/*
120 * Wait for the input pool to be seeded and thus guaranteed to supply
0313bc27 121 * cryptographically secure random numbers. This applies to: the /dev/urandom
a890d1c6 122 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
b240bab5 123 * long} family of functions. Using any of these functions without first
a890d1c6 124 * calling this function forfeits the guarantee of security.
5f1bb112
JD
125 *
126 * Returns: 0 if the input pool has been seeded.
127 * -ERESTARTSYS if the function was interrupted by a signal.
128 */
129int wait_for_random_bytes(void)
130{
a96cfe2d 131 while (!crng_ready()) {
5f1bb112 132 int ret;
3e504d20
JD
133
134 try_to_generate_entropy();
5f1bb112
JD
135 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
136 if (ret)
137 return ret > 0 ? 0 : ret;
a96cfe2d 138 }
5f1bb112
JD
139 return 0;
140}
141EXPORT_SYMBOL(wait_for_random_bytes);
142
cc1e127b 143#define warn_unseeded_randomness() \
560181c2
JD
144 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
145 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
146 __func__, (void *)_RET_IP_, crng_init)
5f1bb112
JD
147
148
3655adc7 149/*********************************************************************
1da177e4 150 *
3655adc7 151 * Fast key erasure RNG, the "crng".
1da177e4 152 *
3655adc7
JD
153 * These functions expand entropy from the entropy extractor into
154 * long streams for external consumption using the "fast key erasure"
155 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
e192be9d 156 *
3655adc7
JD
157 * There are a few exported interfaces for use by other drivers:
158 *
a1940263 159 * void get_random_bytes(void *buf, size_t len)
a890d1c6
JD
160 * u8 get_random_u8()
161 * u16 get_random_u16()
3655adc7 162 * u32 get_random_u32()
e9a688bc 163 * u32 get_random_u32_below(u32 ceil)
7f576b25
JD
164 * u32 get_random_u32_above(u32 floor)
165 * u32 get_random_u32_inclusive(u32 floor, u32 ceil)
3655adc7 166 * u64 get_random_u64()
3655adc7
JD
167 * unsigned long get_random_long()
168 *
169 * These interfaces will return the requested number of random bytes
0313bc27 170 * into the given buffer or as a return value. This is equivalent to
de492c83
JD
171 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
172 * functions may be higher performance for one-off random integers,
173 * because they do a bit of buffering and do not invoke reseeding
174 * until the buffer is emptied.
e192be9d
TT
175 *
176 *********************************************************************/
177
e85c0fc1
JD
178enum {
179 CRNG_RESEED_START_INTERVAL = HZ,
180 CRNG_RESEED_INTERVAL = 60 * HZ
181};
186873c5
JD
182
183static struct {
184 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
186873c5
JD
185 unsigned long generation;
186 spinlock_t lock;
187} base_crng = {
188 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
189};
190
191struct crng {
192 u8 key[CHACHA_KEY_SIZE];
193 unsigned long generation;
194 local_lock_t lock;
195};
196
197static DEFINE_PER_CPU(struct crng, crngs) = {
198 .generation = ULONG_MAX,
199 .lock = INIT_LOCAL_LOCK(crngs.lock),
200};
e192be9d 201
9148de31
JD
202/*
203 * Return the interval until the next reseeding, which is normally
204 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
205 * proportional to the uptime.
206 */
207static unsigned int crng_reseed_interval(void)
208{
209 static bool early_boot = true;
210
211 if (unlikely(READ_ONCE(early_boot))) {
212 time64_t uptime = ktime_get_seconds();
213 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
214 WRITE_ONCE(early_boot, false);
215 else
216 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
217 (unsigned int)uptime / 2 * HZ);
218 }
219 return CRNG_RESEED_INTERVAL;
220}
221
e85c0fc1 222/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
a1940263 223static void extract_entropy(void *buf, size_t len);
e192be9d 224
e85c0fc1 225/* This extracts a new crng key from the input pool. */
9148de31 226static void crng_reseed(struct work_struct *work)
e192be9d 227{
9148de31 228 static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
248045b8 229 unsigned long flags;
186873c5
JD
230 unsigned long next_gen;
231 u8 key[CHACHA_KEY_SIZE];
e192be9d 232
9148de31
JD
233 /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
234 if (likely(system_unbound_wq))
235 queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
236
e85c0fc1 237 extract_entropy(key, sizeof(key));
a9412d51 238
186873c5
JD
239 /*
240 * We copy the new key into the base_crng, overwriting the old one,
241 * and update the generation counter. We avoid hitting ULONG_MAX,
242 * because the per-cpu crngs are initialized to ULONG_MAX, so this
243 * forces new CPUs that come online to always initialize.
244 */
245 spin_lock_irqsave(&base_crng.lock, flags);
246 memcpy(base_crng.key, key, sizeof(base_crng.key));
247 next_gen = base_crng.generation + 1;
248 if (next_gen == ULONG_MAX)
249 ++next_gen;
250 WRITE_ONCE(base_crng.generation, next_gen);
f5bda35f 251 if (!static_branch_likely(&crng_is_ready))
e3d2c5e7 252 crng_init = CRNG_READY;
7191c628
DB
253 spin_unlock_irqrestore(&base_crng.lock, flags);
254 memzero_explicit(key, sizeof(key));
e192be9d
TT
255}
256
186873c5 257/*
3655adc7 258 * This generates a ChaCha block using the provided key, and then
7f637be4 259 * immediately overwrites that key with half the block. It returns
3655adc7
JD
260 * the resultant ChaCha state to the user, along with the second
261 * half of the block containing 32 bytes of random data that may
262 * be used; random_data_len may not be greater than 32.
8717627d
JD
263 *
264 * The returned ChaCha state contains within it a copy of the old
265 * key value, at index 4, so the state should always be zeroed out
266 * immediately after using in order to maintain forward secrecy.
267 * If the state cannot be erased in a timely manner, then it is
268 * safer to set the random_data parameter to &chacha_state[4] so
269 * that this function overwrites it before returning.
186873c5
JD
270 */
271static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
272 u32 chacha_state[CHACHA_STATE_WORDS],
273 u8 *random_data, size_t random_data_len)
e192be9d 274{
186873c5 275 u8 first_block[CHACHA_BLOCK_SIZE];
009ba856 276
186873c5
JD
277 BUG_ON(random_data_len > 32);
278
279 chacha_init_consts(chacha_state);
280 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
281 memset(&chacha_state[12], 0, sizeof(u32) * 4);
282 chacha20_block(chacha_state, first_block);
283
284 memcpy(key, first_block, CHACHA_KEY_SIZE);
8717627d 285 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
186873c5 286 memzero_explicit(first_block, sizeof(first_block));
1e7f583a
TT
287}
288
c92e040d 289/*
186873c5
JD
290 * This function returns a ChaCha state that you may use for generating
291 * random data. It also returns up to 32 bytes on its own of random data
292 * that may be used; random_data_len may not be greater than 32.
c92e040d 293 */
186873c5
JD
294static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
295 u8 *random_data, size_t random_data_len)
c92e040d 296{
248045b8 297 unsigned long flags;
186873c5 298 struct crng *crng;
c92e040d 299
186873c5
JD
300 BUG_ON(random_data_len > 32);
301
302 /*
303 * For the fast path, we check whether we're ready, unlocked first, and
304 * then re-check once locked later. In the case where we're really not
5c3b747e 305 * ready, we do fast key erasure with the base_crng directly, extracting
e3d2c5e7 306 * when crng_init is CRNG_EMPTY.
186873c5 307 */
a96cfe2d 308 if (!crng_ready()) {
186873c5
JD
309 bool ready;
310
311 spin_lock_irqsave(&base_crng.lock, flags);
312 ready = crng_ready();
5c3b747e 313 if (!ready) {
e3d2c5e7 314 if (crng_init == CRNG_EMPTY)
5c3b747e 315 extract_entropy(base_crng.key, sizeof(base_crng.key));
186873c5
JD
316 crng_fast_key_erasure(base_crng.key, chacha_state,
317 random_data, random_data_len);
5c3b747e 318 }
186873c5
JD
319 spin_unlock_irqrestore(&base_crng.lock, flags);
320 if (!ready)
321 return;
c92e040d 322 }
186873c5 323
186873c5
JD
324 local_lock_irqsave(&crngs.lock, flags);
325 crng = raw_cpu_ptr(&crngs);
326
327 /*
328 * If our per-cpu crng is older than the base_crng, then it means
329 * somebody reseeded the base_crng. In that case, we do fast key
330 * erasure on the base_crng, and use its output as the new key
331 * for our per-cpu crng. This brings us up to date with base_crng.
332 */
333 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
334 spin_lock(&base_crng.lock);
335 crng_fast_key_erasure(base_crng.key, chacha_state,
336 crng->key, sizeof(crng->key));
337 crng->generation = base_crng.generation;
338 spin_unlock(&base_crng.lock);
339 }
340
341 /*
342 * Finally, when we've made it this far, our per-cpu crng has an up
343 * to date key, and we can do fast key erasure with it to produce
344 * some random data and a ChaCha state for the caller. All other
345 * branches of this function are "unlikely", so most of the time we
346 * should wind up here immediately.
347 */
348 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
349 local_unlock_irqrestore(&crngs.lock, flags);
c92e040d
TT
350}
351
a1940263 352static void _get_random_bytes(void *buf, size_t len)
e192be9d 353{
186873c5 354 u32 chacha_state[CHACHA_STATE_WORDS];
3655adc7 355 u8 tmp[CHACHA_BLOCK_SIZE];
a1940263 356 size_t first_block_len;
3655adc7 357
a1940263 358 if (!len)
3655adc7
JD
359 return;
360
a1940263
JD
361 first_block_len = min_t(size_t, 32, len);
362 crng_make_state(chacha_state, buf, first_block_len);
363 len -= first_block_len;
364 buf += first_block_len;
3655adc7 365
a1940263
JD
366 while (len) {
367 if (len < CHACHA_BLOCK_SIZE) {
3655adc7 368 chacha20_block(chacha_state, tmp);
a1940263 369 memcpy(buf, tmp, len);
3655adc7
JD
370 memzero_explicit(tmp, sizeof(tmp));
371 break;
372 }
373
374 chacha20_block(chacha_state, buf);
375 if (unlikely(chacha_state[12] == 0))
376 ++chacha_state[13];
a1940263 377 len -= CHACHA_BLOCK_SIZE;
3655adc7
JD
378 buf += CHACHA_BLOCK_SIZE;
379 }
380
381 memzero_explicit(chacha_state, sizeof(chacha_state));
382}
383
384/*
19258d05
JD
385 * This returns random bytes in arbitrary quantities. The quality of the
386 * random bytes is good as /dev/urandom. In order to ensure that the
387 * randomness provided by this function is okay, the function
388 * wait_for_random_bytes() should be called and return 0 at least once
389 * at any point prior.
3655adc7 390 */
a1940263 391void get_random_bytes(void *buf, size_t len)
3655adc7 392{
cc1e127b 393 warn_unseeded_randomness();
a1940263 394 _get_random_bytes(buf, len);
3655adc7
JD
395}
396EXPORT_SYMBOL(get_random_bytes);
397
1b388e77 398static ssize_t get_random_bytes_user(struct iov_iter *iter)
3655adc7 399{
3655adc7 400 u32 chacha_state[CHACHA_STATE_WORDS];
1b388e77
JA
401 u8 block[CHACHA_BLOCK_SIZE];
402 size_t ret = 0, copied;
3655adc7 403
1b388e77 404 if (unlikely(!iov_iter_count(iter)))
3655adc7
JD
405 return 0;
406
aba120cc
JD
407 /*
408 * Immediately overwrite the ChaCha key at index 4 with random
63b8ea5e 409 * bytes, in case userspace causes copy_to_iter() below to sleep
aba120cc
JD
410 * forever, so that we still retain forward secrecy in that case.
411 */
412 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
413 /*
414 * However, if we're doing a read of len <= 32, we don't need to
415 * use chacha_state after, so we can simply return those bytes to
416 * the user directly.
417 */
1b388e77
JA
418 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
419 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
aba120cc
JD
420 goto out_zero_chacha;
421 }
3655adc7 422
5209aed5 423 for (;;) {
1b388e77 424 chacha20_block(chacha_state, block);
3655adc7
JD
425 if (unlikely(chacha_state[12] == 0))
426 ++chacha_state[13];
427
1b388e77
JA
428 copied = copy_to_iter(block, sizeof(block), iter);
429 ret += copied;
430 if (!iov_iter_count(iter) || copied != sizeof(block))
5209aed5 431 break;
e3c1c4fd 432
1b388e77 433 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
5209aed5 434 if (ret % PAGE_SIZE == 0) {
e3c1c4fd
JD
435 if (signal_pending(current))
436 break;
437 cond_resched();
438 }
5209aed5 439 }
3655adc7 440
1b388e77 441 memzero_explicit(block, sizeof(block));
aba120cc
JD
442out_zero_chacha:
443 memzero_explicit(chacha_state, sizeof(chacha_state));
5209aed5 444 return ret ? ret : -EFAULT;
3655adc7
JD
445}
446
447/*
448 * Batched entropy returns random integers. The quality of the random
449 * number is good as /dev/urandom. In order to ensure that the randomness
450 * provided by this function is okay, the function wait_for_random_bytes()
451 * should be called and return 0 at least once at any point prior.
452 */
3655adc7 453
3092adce
JD
454#define DEFINE_BATCHED_ENTROPY(type) \
455struct batch_ ##type { \
456 /* \
457 * We make this 1.5x a ChaCha block, so that we get the \
458 * remaining 32 bytes from fast key erasure, plus one full \
459 * block from the detached ChaCha state. We can increase \
460 * the size of this later if needed so long as we keep the \
461 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \
462 */ \
463 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
464 local_lock_t lock; \
465 unsigned long generation; \
466 unsigned int position; \
467}; \
468 \
469static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
470 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \
471 .position = UINT_MAX \
472}; \
473 \
474type get_random_ ##type(void) \
475{ \
476 type ret; \
477 unsigned long flags; \
478 struct batch_ ##type *batch; \
479 unsigned long next_gen; \
480 \
481 warn_unseeded_randomness(); \
482 \
483 if (!crng_ready()) { \
484 _get_random_bytes(&ret, sizeof(ret)); \
485 return ret; \
486 } \
487 \
488 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \
489 batch = raw_cpu_ptr(&batched_entropy_##type); \
490 \
491 next_gen = READ_ONCE(base_crng.generation); \
492 if (batch->position >= ARRAY_SIZE(batch->entropy) || \
493 next_gen != batch->generation) { \
494 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
495 batch->position = 0; \
496 batch->generation = next_gen; \
497 } \
498 \
499 ret = batch->entropy[batch->position]; \
500 batch->entropy[batch->position] = 0; \
501 ++batch->position; \
502 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \
503 return ret; \
504} \
505EXPORT_SYMBOL(get_random_ ##type);
506
585cd5fe 507DEFINE_BATCHED_ENTROPY(u8)
a890d1c6
JD
508DEFINE_BATCHED_ENTROPY(u16)
509DEFINE_BATCHED_ENTROPY(u32)
510DEFINE_BATCHED_ENTROPY(u64)
3655adc7 511
e9a688bc
JD
512u32 __get_random_u32_below(u32 ceil)
513{
514 /*
515 * This is the slow path for variable ceil. It is still fast, most of
516 * the time, by doing traditional reciprocal multiplication and
517 * opportunistically comparing the lower half to ceil itself, before
518 * falling back to computing a larger bound, and then rejecting samples
519 * whose lower half would indicate a range indivisible by ceil. The use
520 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
521 * in 32-bits.
522 */
7f576b25
JD
523 u32 rand = get_random_u32();
524 u64 mult;
525
526 /*
527 * This function is technically undefined for ceil == 0, and in fact
528 * for the non-underscored constant version in the header, we build bug
529 * on that. But for the non-constant case, it's convenient to have that
530 * evaluate to being a straight call to get_random_u32(), so that
531 * get_random_u32_inclusive() can work over its whole range without
532 * undefined behavior.
533 */
534 if (unlikely(!ceil))
535 return rand;
536
537 mult = (u64)ceil * rand;
e9a688bc
JD
538 if (unlikely((u32)mult < ceil)) {
539 u32 bound = -ceil % ceil;
540 while (unlikely((u32)mult < bound))
541 mult = (u64)ceil * get_random_u32();
542 }
543 return mult >> 32;
544}
545EXPORT_SYMBOL(__get_random_u32_below);
546
3191dd5a
JD
547#ifdef CONFIG_SMP
548/*
549 * This function is called when the CPU is coming up, with entry
550 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
551 */
560181c2 552int __cold random_prepare_cpu(unsigned int cpu)
3191dd5a
JD
553{
554 /*
555 * When the cpu comes back online, immediately invalidate both
556 * the per-cpu crng and all batches, so that we serve fresh
557 * randomness.
558 */
559 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
a890d1c6
JD
560 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
561 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
3191dd5a
JD
562 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
563 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
564 return 0;
565}
566#endif
567
a5ed7cb1
JD
568
569/**********************************************************************
570 *
571 * Entropy accumulation and extraction routines.
572 *
573 * Callers may add entropy via:
574 *
a1940263 575 * static void mix_pool_bytes(const void *buf, size_t len)
a5ed7cb1
JD
576 *
577 * After which, if added entropy should be credited:
578 *
a1940263 579 * static void credit_init_bits(size_t bits)
a5ed7cb1 580 *
e85c0fc1 581 * Finally, extract entropy via:
a5ed7cb1 582 *
a1940263 583 * static void extract_entropy(void *buf, size_t len)
a5ed7cb1
JD
584 *
585 **********************************************************************/
586
3655adc7
JD
587enum {
588 POOL_BITS = BLAKE2S_HASH_SIZE * 8,
e3d2c5e7
JD
589 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
590 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
3655adc7
JD
591};
592
3655adc7
JD
593static struct {
594 struct blake2s_state hash;
595 spinlock_t lock;
e85c0fc1 596 unsigned int init_bits;
3655adc7
JD
597} input_pool = {
598 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
599 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
600 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
601 .hash.outlen = BLAKE2S_HASH_SIZE,
602 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
603};
604
a1940263 605static void _mix_pool_bytes(const void *buf, size_t len)
a5ed7cb1 606{
a1940263 607 blake2s_update(&input_pool.hash, buf, len);
a5ed7cb1 608}
3655adc7
JD
609
610/*
e85c0fc1
JD
611 * This function adds bytes into the input pool. It does not
612 * update the initialization bit counter; the caller should call
613 * credit_init_bits if this is appropriate.
3655adc7 614 */
a1940263 615static void mix_pool_bytes(const void *buf, size_t len)
3655adc7 616{
a5ed7cb1
JD
617 unsigned long flags;
618
619 spin_lock_irqsave(&input_pool.lock, flags);
a1940263 620 _mix_pool_bytes(buf, len);
a5ed7cb1 621 spin_unlock_irqrestore(&input_pool.lock, flags);
3655adc7
JD
622}
623
a5ed7cb1
JD
624/*
625 * This is an HKDF-like construction for using the hashed collected entropy
626 * as a PRF key, that's then expanded block-by-block.
627 */
a1940263 628static void extract_entropy(void *buf, size_t len)
3655adc7
JD
629{
630 unsigned long flags;
a5ed7cb1
JD
631 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
632 struct {
633 unsigned long rdseed[32 / sizeof(long)];
634 size_t counter;
635 } block;
d349ab99 636 size_t i, longs;
a5ed7cb1 637
d349ab99
JD
638 for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
639 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
640 if (longs) {
641 i += longs;
642 continue;
643 }
644 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
645 if (longs) {
646 i += longs;
647 continue;
648 }
649 block.rdseed[i++] = random_get_entropy();
a5ed7cb1 650 }
3655adc7
JD
651
652 spin_lock_irqsave(&input_pool.lock, flags);
a5ed7cb1
JD
653
654 /* seed = HASHPRF(last_key, entropy_input) */
655 blake2s_final(&input_pool.hash, seed);
656
657 /* next_key = HASHPRF(seed, RDSEED || 0) */
658 block.counter = 0;
659 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
660 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
661
3655adc7 662 spin_unlock_irqrestore(&input_pool.lock, flags);
a5ed7cb1
JD
663 memzero_explicit(next_key, sizeof(next_key));
664
a1940263
JD
665 while (len) {
666 i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
a5ed7cb1
JD
667 /* output = HASHPRF(seed, RDSEED || ++counter) */
668 ++block.counter;
669 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
a1940263 670 len -= i;
a5ed7cb1
JD
671 buf += i;
672 }
673
674 memzero_explicit(seed, sizeof(seed));
675 memzero_explicit(&block, sizeof(block));
676}
677
560181c2
JD
678#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
679
680static void __cold _credit_init_bits(size_t bits)
5c3b747e 681{
f5bda35f 682 static struct execute_work set_ready;
fed7ef06 683 unsigned int new, orig, add;
5c3b747e
JD
684 unsigned long flags;
685
560181c2 686 if (!bits)
5c3b747e
JD
687 return;
688
a1940263 689 add = min_t(size_t, bits, POOL_BITS);
5c3b747e 690
b7a68f67 691 orig = READ_ONCE(input_pool.init_bits);
5c3b747e 692 do {
fed7ef06 693 new = min_t(unsigned int, POOL_BITS, orig + add);
b7a68f67 694 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
5c3b747e 695
68c9c8b1 696 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
9148de31 697 crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
60e5b288
JD
698 if (static_key_initialized)
699 execute_in_process_context(crng_set_ready, &set_ready);
68c9c8b1
JD
700 wake_up_interruptible(&crng_init_wait);
701 kill_fasync(&fasync, SIGIO, POLL_IN);
702 pr_notice("crng init done\n");
cc1e127b 703 if (urandom_warning.missed)
68c9c8b1
JD
704 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
705 urandom_warning.missed);
68c9c8b1 706 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
5c3b747e 707 spin_lock_irqsave(&base_crng.lock, flags);
68c9c8b1 708 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
e3d2c5e7 709 if (crng_init == CRNG_EMPTY) {
5c3b747e 710 extract_entropy(base_crng.key, sizeof(base_crng.key));
e3d2c5e7 711 crng_init = CRNG_EARLY;
5c3b747e
JD
712 }
713 spin_unlock_irqrestore(&base_crng.lock, flags);
714 }
715}
716
92c653cf
JD
717
718/**********************************************************************
719 *
720 * Entropy collection routines.
721 *
722 * The following exported functions are used for pushing entropy into
723 * the above entropy accumulation routines:
724 *
a1940263 725 * void add_device_randomness(const void *buf, size_t len);
db516da9 726 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
a1940263
JD
727 * void add_bootloader_randomness(const void *buf, size_t len);
728 * void add_vmfork_randomness(const void *unique_vm_id, size_t len);
92c653cf 729 * void add_interrupt_randomness(int irq);
a1940263 730 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
a4b5c26b 731 * void add_disk_randomness(struct gendisk *disk);
92c653cf
JD
732 *
733 * add_device_randomness() adds data to the input pool that
734 * is likely to differ between two devices (or possibly even per boot).
735 * This would be things like MAC addresses or serial numbers, or the
736 * read-out of the RTC. This does *not* credit any actual entropy to
737 * the pool, but it initializes the pool to different values for devices
738 * that might otherwise be identical and have very little entropy
739 * available to them (particularly common in the embedded world).
740 *
92c653cf
JD
741 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
742 * entropy as specified by the caller. If the entropy pool is full it will
743 * block until more entropy is needed.
744 *
5c3b747e
JD
745 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
746 * and device tree, and credits its input depending on whether or not the
b9b01a56 747 * command line option 'random.trust_bootloader'.
92c653cf 748 *
ae099e8e
JD
749 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
750 * representing the current instance of a VM to the pool, without crediting,
751 * and then force-reseeds the crng so that it takes effect immediately.
752 *
92c653cf
JD
753 * add_interrupt_randomness() uses the interrupt timing as random
754 * inputs to the entropy pool. Using the cycle counters and the irq source
755 * as inputs, it feeds the input pool roughly once a second or after 64
756 * interrupts, crediting 1 bit of entropy for whichever comes first.
757 *
a4b5c26b
JD
758 * add_input_randomness() uses the input layer interrupt timing, as well
759 * as the event type information from the hardware.
760 *
761 * add_disk_randomness() uses what amounts to the seek time of block
762 * layer request events, on a per-disk_devt basis, as input to the
763 * entropy pool. Note that high-speed solid state drives with very low
764 * seek times do not make for good sources of entropy, as their seek
765 * times are usually fairly consistent.
766 *
767 * The last two routines try to estimate how many bits of entropy
768 * to credit. They do this by keeping track of the first and second
769 * order deltas of the event timings.
770 *
92c653cf
JD
771 **********************************************************************/
772
b9b01a56
JD
773static bool trust_cpu __initdata = true;
774static bool trust_bootloader __initdata = true;
92c653cf
JD
775static int __init parse_trust_cpu(char *arg)
776{
777 return kstrtobool(arg, &trust_cpu);
778}
d97c68d1
JD
779static int __init parse_trust_bootloader(char *arg)
780{
781 return kstrtobool(arg, &trust_bootloader);
782}
92c653cf 783early_param("random.trust_cpu", parse_trust_cpu);
d97c68d1 784early_param("random.trust_bootloader", parse_trust_bootloader);
3655adc7 785
b7b67d13
JD
786static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
787{
788 unsigned long flags, entropy = random_get_entropy();
789
790 /*
791 * Encode a representation of how long the system has been suspended,
792 * in a way that is distinct from prior system suspends.
793 */
794 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
795
796 spin_lock_irqsave(&input_pool.lock, flags);
797 _mix_pool_bytes(&action, sizeof(action));
798 _mix_pool_bytes(stamps, sizeof(stamps));
799 _mix_pool_bytes(&entropy, sizeof(entropy));
800 spin_unlock_irqrestore(&input_pool.lock, flags);
801
802 if (crng_ready() && (action == PM_RESTORE_PREPARE ||
261e224d
KS
803 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
804 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
9148de31 805 crng_reseed(NULL);
b7b67d13
JD
806 pr_notice("crng reseeded on system resumption\n");
807 }
808 return 0;
809}
810
811static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
812
3655adc7 813/*
f6238499
JD
814 * This is called extremely early, before time keeping functionality is
815 * available, but arch randomness is. Interrupts are not yet enabled.
3655adc7 816 */
f6238499 817void __init random_init_early(const char *command_line)
3655adc7 818{
d349ab99 819 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
f6238499 820 size_t i, longs, arch_bits;
186873c5 821
1754abb3
JD
822#if defined(LATENT_ENTROPY_PLUGIN)
823 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
824 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
825#endif
826
d349ab99 827 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
2c03e16f 828 longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
d349ab99
JD
829 if (longs) {
830 _mix_pool_bytes(entropy, sizeof(*entropy) * longs);
831 i += longs;
832 continue;
833 }
2c03e16f 834 longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
d349ab99
JD
835 if (longs) {
836 _mix_pool_bytes(entropy, sizeof(*entropy) * longs);
837 i += longs;
838 continue;
92c653cf 839 }
d349ab99
JD
840 arch_bits -= sizeof(*entropy) * 8;
841 ++i;
92c653cf 842 }
f6238499 843
dd54fd7d 844 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
2f14062b 845 _mix_pool_bytes(command_line, strlen(command_line));
f6238499
JD
846
847 /* Reseed if already seeded by earlier phases. */
848 if (crng_ready())
9148de31 849 crng_reseed(NULL);
f6238499
JD
850 else if (trust_cpu)
851 _credit_init_bits(arch_bits);
852}
853
854/*
855 * This is called a little bit after the prior function, and now there is
856 * access to timestamps counters. Interrupts are not yet enabled.
857 */
858void __init random_init(void)
859{
860 unsigned long entropy = random_get_entropy();
861 ktime_t now = ktime_get_real();
862
f6238499
JD
863 _mix_pool_bytes(&now, sizeof(now));
864 _mix_pool_bytes(&entropy, sizeof(entropy));
2f14062b 865 add_latent_entropy();
186873c5 866
60e5b288 867 /*
f6238499
JD
868 * If we were initialized by the cpu or bootloader before jump labels
869 * are initialized, then we should enable the static branch here, where
60e5b288
JD
870 * it's guaranteed that jump labels have been initialized.
871 */
872 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
873 crng_set_ready(NULL);
874
f6238499 875 /* Reseed if already seeded by earlier phases. */
e85c0fc1 876 if (crng_ready())
9148de31 877 crng_reseed(NULL);
e192be9d 878
b7b67d13
JD
879 WARN_ON(register_pm_notifier(&pm_notifier));
880
f6238499
JD
881 WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
882 "entropy collection will consequently suffer.");
3655adc7 883}
e192be9d 884
a2080a67 885/*
e192be9d
TT
886 * Add device- or boot-specific data to the input pool to help
887 * initialize it.
a2080a67 888 *
e192be9d
TT
889 * None of this adds any entropy; it is meant to avoid the problem of
890 * the entropy pool having similar initial state across largely
891 * identical devices.
a2080a67 892 */
a1940263 893void add_device_randomness(const void *buf, size_t len)
a2080a67 894{
4b758eda
JD
895 unsigned long entropy = random_get_entropy();
896 unsigned long flags;
a2080a67 897
3ef4cb2d 898 spin_lock_irqsave(&input_pool.lock, flags);
4b758eda 899 _mix_pool_bytes(&entropy, sizeof(entropy));
a1940263 900 _mix_pool_bytes(buf, len);
3ef4cb2d 901 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
902}
903EXPORT_SYMBOL(add_device_randomness);
904
92c653cf 905/*
db516da9
JD
906 * Interface for in-kernel drivers of true hardware RNGs. Those devices
907 * may produce endless random bits, so this function will sleep for
908 * some amount of time after, if the sleep_after parameter is true.
92c653cf 909 */
db516da9 910void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
92c653cf 911{
a1940263 912 mix_pool_bytes(buf, len);
e85c0fc1
JD
913 credit_init_bits(entropy);
914
92c653cf 915 /*
745558f9 916 * Throttle writing to once every reseed interval, unless we're not yet
d775335e 917 * initialized or no entropy is credited.
92c653cf 918 */
db516da9 919 if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
745558f9 920 schedule_timeout_interruptible(crng_reseed_interval());
92c653cf
JD
921}
922EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
923
924/*
b9b01a56
JD
925 * Handle random seed passed by bootloader, and credit it depending
926 * on the command line option 'random.trust_bootloader'.
92c653cf 927 */
39e0f991 928void __init add_bootloader_randomness(const void *buf, size_t len)
92c653cf 929{
a1940263 930 mix_pool_bytes(buf, len);
d97c68d1 931 if (trust_bootloader)
a1940263 932 credit_init_bits(len * 8);
92c653cf 933}
92c653cf 934
a4107d34 935#if IS_ENABLED(CONFIG_VMGENID)
f3c2682b
JD
936static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
937
ae099e8e
JD
938/*
939 * Handle a new unique VM ID, which is unique, not secret, so we
940 * don't credit it, but we do immediately force a reseed after so
941 * that it's used by the crng posthaste.
942 */
560181c2 943void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
ae099e8e 944{
a1940263 945 add_device_randomness(unique_vm_id, len);
ae099e8e 946 if (crng_ready()) {
9148de31 947 crng_reseed(NULL);
ae099e8e
JD
948 pr_notice("crng reseeded due to virtual machine fork\n");
949 }
f3c2682b 950 blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
ae099e8e 951}
a4107d34 952#if IS_MODULE(CONFIG_VMGENID)
ae099e8e 953EXPORT_SYMBOL_GPL(add_vmfork_randomness);
a4107d34 954#endif
f3c2682b 955
560181c2 956int __cold register_random_vmfork_notifier(struct notifier_block *nb)
f3c2682b
JD
957{
958 return blocking_notifier_chain_register(&vmfork_chain, nb);
959}
960EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
961
560181c2 962int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
f3c2682b
JD
963{
964 return blocking_notifier_chain_unregister(&vmfork_chain, nb);
965}
966EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
a4107d34 967#endif
ae099e8e 968
92c653cf 969struct fast_pool {
f5eab0e2 970 unsigned long pool[4];
92c653cf 971 unsigned long last;
3191dd5a 972 unsigned int count;
748bc4dd 973 struct timer_list mix;
92c653cf
JD
974};
975
748bc4dd
JD
976static void mix_interrupt_randomness(struct timer_list *work);
977
f5eab0e2
JD
978static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
979#ifdef CONFIG_64BIT
e73aaae2 980#define FASTMIX_PERM SIPHASH_PERMUTATION
748bc4dd 981 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
f5eab0e2 982#else
e73aaae2 983#define FASTMIX_PERM HSIPHASH_PERMUTATION
748bc4dd 984 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
f5eab0e2 985#endif
748bc4dd 986 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
f5eab0e2
JD
987};
988
92c653cf 989/*
f5eab0e2
JD
990 * This is [Half]SipHash-1-x, starting from an empty key. Because
991 * the key is fixed, it assumes that its inputs are non-malicious,
992 * and therefore this has no security on its own. s represents the
4b758eda 993 * four-word SipHash state, while v represents a two-word input.
92c653cf 994 */
791332b3 995static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
92c653cf 996{
791332b3 997 s[3] ^= v1;
e73aaae2 998 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
791332b3
JD
999 s[0] ^= v1;
1000 s[3] ^= v2;
e73aaae2 1001 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
791332b3 1002 s[0] ^= v2;
92c653cf
JD
1003}
1004
3191dd5a
JD
1005#ifdef CONFIG_SMP
1006/*
1007 * This function is called when the CPU has just come online, with
1008 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1009 */
560181c2 1010int __cold random_online_cpu(unsigned int cpu)
3191dd5a
JD
1011{
1012 /*
1013 * During CPU shutdown and before CPU onlining, add_interrupt_
1014 * randomness() may schedule mix_interrupt_randomness(), and
1015 * set the MIX_INFLIGHT flag. However, because the worker can
1016 * be scheduled on a different CPU during this period, that
1017 * flag will never be cleared. For that reason, we zero out
1018 * the flag here, which runs just after workqueues are onlined
1019 * for the CPU again. This also has the effect of setting the
1020 * irq randomness count to zero so that new accumulated irqs
1021 * are fresh.
1022 */
1023 per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1024 return 0;
1025}
1026#endif
1027
748bc4dd 1028static void mix_interrupt_randomness(struct timer_list *work)
58340f8e
JD
1029{
1030 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
f5eab0e2 1031 /*
4b758eda
JD
1032 * The size of the copied stack pool is explicitly 2 longs so that we
1033 * only ever ingest half of the siphash output each time, retaining
1034 * the other half as the next "key" that carries over. The entropy is
1035 * supposed to be sufficiently dispersed between bits so on average
1036 * we don't wind up "losing" some.
f5eab0e2 1037 */
4b758eda 1038 unsigned long pool[2];
e3e33fc2 1039 unsigned int count;
58340f8e
JD
1040
1041 /* Check to see if we're running on the wrong CPU due to hotplug. */
1042 local_irq_disable();
1043 if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1044 local_irq_enable();
58340f8e
JD
1045 return;
1046 }
1047
1048 /*
1049 * Copy the pool to the stack so that the mixer always has a
1050 * consistent view, before we reenable irqs again.
1051 */
f5eab0e2 1052 memcpy(pool, fast_pool->pool, sizeof(pool));
e3e33fc2 1053 count = fast_pool->count;
3191dd5a 1054 fast_pool->count = 0;
58340f8e
JD
1055 fast_pool->last = jiffies;
1056 local_irq_enable();
1057
5c3b747e 1058 mix_pool_bytes(pool, sizeof(pool));
e78a802a 1059 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
c2a7de4f 1060
58340f8e
JD
1061 memzero_explicit(pool, sizeof(pool));
1062}
1063
703f7066 1064void add_interrupt_randomness(int irq)
1da177e4 1065{
58340f8e 1066 enum { MIX_INFLIGHT = 1U << 31 };
4b758eda 1067 unsigned long entropy = random_get_entropy();
248045b8
JD
1068 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1069 struct pt_regs *regs = get_irq_regs();
58340f8e 1070 unsigned int new_count;
b2f408fe 1071
791332b3
JD
1072 fast_mix(fast_pool->pool, entropy,
1073 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
3191dd5a 1074 new_count = ++fast_pool->count;
3060d6fe 1075
58340f8e 1076 if (new_count & MIX_INFLIGHT)
1da177e4
LT
1077 return;
1078
534d2eaf 1079 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
91fcb532 1080 return;
83664a69 1081
3191dd5a 1082 fast_pool->count |= MIX_INFLIGHT;
748bc4dd
JD
1083 if (!timer_pending(&fast_pool->mix)) {
1084 fast_pool->mix.expires = jiffies;
1085 add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1086 }
1da177e4 1087}
4b44f2d1 1088EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1089
a4b5c26b
JD
1090/* There is one of these per entropy source */
1091struct timer_rand_state {
1092 unsigned long last_time;
1093 long last_delta, last_delta2;
1094};
1095
1096/*
1097 * This function adds entropy to the entropy "pool" by using timing
e3e33fc2
JD
1098 * delays. It uses the timer_rand_state structure to make an estimate
1099 * of how many bits of entropy this call has added to the pool. The
1100 * value "num" is also added to the pool; it should somehow describe
1101 * the type of event that just happened.
a4b5c26b
JD
1102 */
1103static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1104{
1105 unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1106 long delta, delta2, delta3;
e3e33fc2 1107 unsigned int bits;
a4b5c26b 1108
e3e33fc2
JD
1109 /*
1110 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1111 * sometime after, so mix into the fast pool.
1112 */
1113 if (in_hardirq()) {
791332b3 1114 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
e3e33fc2
JD
1115 } else {
1116 spin_lock_irqsave(&input_pool.lock, flags);
1117 _mix_pool_bytes(&entropy, sizeof(entropy));
1118 _mix_pool_bytes(&num, sizeof(num));
1119 spin_unlock_irqrestore(&input_pool.lock, flags);
1120 }
a4b5c26b
JD
1121
1122 if (crng_ready())
1123 return;
1124
1125 /*
1126 * Calculate number of bits of randomness we probably added.
1127 * We take into account the first, second and third-order deltas
1128 * in order to make our estimate.
1129 */
1130 delta = now - READ_ONCE(state->last_time);
1131 WRITE_ONCE(state->last_time, now);
1132
1133 delta2 = delta - READ_ONCE(state->last_delta);
1134 WRITE_ONCE(state->last_delta, delta);
1135
1136 delta3 = delta2 - READ_ONCE(state->last_delta2);
1137 WRITE_ONCE(state->last_delta2, delta2);
1138
1139 if (delta < 0)
1140 delta = -delta;
1141 if (delta2 < 0)
1142 delta2 = -delta2;
1143 if (delta3 < 0)
1144 delta3 = -delta3;
1145 if (delta > delta2)
1146 delta = delta2;
1147 if (delta > delta3)
1148 delta = delta3;
1149
1150 /*
e3e33fc2
JD
1151 * delta is now minimum absolute delta. Round down by 1 bit
1152 * on general principles, and limit entropy estimate to 11 bits.
1153 */
1154 bits = min(fls(delta >> 1), 11);
1155
1156 /*
1157 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1158 * will run after this, which uses a different crediting scheme of 1 bit
1159 * per every 64 interrupts. In order to let that function do accounting
1160 * close to the one in this function, we credit a full 64/64 bit per bit,
1161 * and then subtract one to account for the extra one added.
a4b5c26b 1162 */
e3e33fc2
JD
1163 if (in_hardirq())
1164 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1165 else
560181c2 1166 _credit_init_bits(bits);
a4b5c26b
JD
1167}
1168
a1940263 1169void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
a4b5c26b
JD
1170{
1171 static unsigned char last_value;
1172 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1173
1174 /* Ignore autorepeat and the like. */
1175 if (value == last_value)
1176 return;
1177
1178 last_value = value;
1179 add_timer_randomness(&input_timer_state,
1180 (type << 4) ^ code ^ (code >> 4) ^ value);
1181}
1182EXPORT_SYMBOL_GPL(add_input_randomness);
1183
1184#ifdef CONFIG_BLOCK
1185void add_disk_randomness(struct gendisk *disk)
1186{
1187 if (!disk || !disk->random)
1188 return;
1189 /* First major is 1, so we get >= 0x200 here. */
1190 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1191}
1192EXPORT_SYMBOL_GPL(add_disk_randomness);
1193
560181c2 1194void __cold rand_initialize_disk(struct gendisk *disk)
a4b5c26b
JD
1195{
1196 struct timer_rand_state *state;
1197
1198 /*
1199 * If kzalloc returns null, we just won't use that entropy
1200 * source.
1201 */
1202 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1203 if (state) {
1204 state->last_time = INITIAL_JIFFIES;
1205 disk->random = state;
1206 }
1207}
1208#endif
1209
78c768e6
JD
1210struct entropy_timer_state {
1211 unsigned long entropy;
1212 struct timer_list timer;
1213 unsigned int samples, samples_per_bit;
1214};
1215
50ee7529
LT
1216/*
1217 * Each time the timer fires, we expect that we got an unpredictable
1218 * jump in the cycle counter. Even if the timer is running on another
1219 * CPU, the timer activity will be touching the stack of the CPU that is
1220 * generating entropy..
1221 *
1222 * Note that we don't re-arm the timer in the timer itself - we are
1223 * happy to be scheduled away, since that just makes the load more
1224 * complex, but we do not want the timer to keep ticking unless the
1225 * entropy loop is running.
1226 *
1227 * So the re-arming always happens in the entropy loop itself.
1228 */
560181c2 1229static void __cold entropy_timer(struct timer_list *timer)
50ee7529 1230{
78c768e6
JD
1231 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1232
1233 if (++state->samples == state->samples_per_bit) {
e85c0fc1 1234 credit_init_bits(1);
78c768e6
JD
1235 state->samples = 0;
1236 }
50ee7529
LT
1237}
1238
1239/*
1240 * If we have an actual cycle counter, see if we can
1241 * generate enough entropy with timing noise
1242 */
560181c2 1243static void __cold try_to_generate_entropy(void)
50ee7529 1244{
12273347 1245 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
78c768e6
JD
1246 struct entropy_timer_state stack;
1247 unsigned int i, num_different = 0;
1248 unsigned long last = random_get_entropy();
50ee7529 1249
78c768e6
JD
1250 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1251 stack.entropy = random_get_entropy();
1252 if (stack.entropy != last)
1253 ++num_different;
1254 last = stack.entropy;
1255 }
1256 stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1257 if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
50ee7529
LT
1258 return;
1259
78c768e6 1260 stack.samples = 0;
50ee7529 1261 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
3e504d20 1262 while (!crng_ready() && !signal_pending(current)) {
50ee7529 1263 if (!timer_pending(&stack.timer))
12273347 1264 mod_timer(&stack.timer, jiffies);
4b758eda 1265 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
50ee7529 1266 schedule();
4b758eda 1267 stack.entropy = random_get_entropy();
50ee7529
LT
1268 }
1269
1270 del_timer_sync(&stack.timer);
1271 destroy_timer_on_stack(&stack.timer);
4b758eda 1272 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
50ee7529
LT
1273}
1274
a6adf8e7
JD
1275
1276/**********************************************************************
1277 *
1278 * Userspace reader/writer interfaces.
1279 *
1280 * getrandom(2) is the primary modern interface into the RNG and should
1281 * be used in preference to anything else.
1282 *
0313bc27
LT
1283 * Reading from /dev/random has the same functionality as calling
1284 * getrandom(2) with flags=0. In earlier versions, however, it had
1285 * vastly different semantics and should therefore be avoided, to
1286 * prevent backwards compatibility issues.
1287 *
1288 * Reading from /dev/urandom has the same functionality as calling
1289 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1290 * waiting for the RNG to be ready, it should not be used.
a6adf8e7
JD
1291 *
1292 * Writing to either /dev/random or /dev/urandom adds entropy to
1293 * the input pool but does not credit it.
1294 *
0313bc27
LT
1295 * Polling on /dev/random indicates when the RNG is initialized, on
1296 * the read side, and when it wants new entropy, on the write side.
a6adf8e7
JD
1297 *
1298 * Both /dev/random and /dev/urandom have the same set of ioctls for
1299 * adding entropy, getting the entropy count, zeroing the count, and
1300 * reseeding the crng.
1301 *
1302 **********************************************************************/
1303
a1940263 1304SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1da177e4 1305{
1b388e77
JA
1306 struct iov_iter iter;
1307 struct iovec iov;
1308 int ret;
1309
a6adf8e7
JD
1310 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1311 return -EINVAL;
301f0595 1312
a6adf8e7
JD
1313 /*
1314 * Requesting insecure and blocking randomness at the same time makes
1315 * no sense.
1316 */
1317 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1318 return -EINVAL;
c6f1deb1 1319
f5bda35f 1320 if (!crng_ready() && !(flags & GRND_INSECURE)) {
a6adf8e7
JD
1321 if (flags & GRND_NONBLOCK)
1322 return -EAGAIN;
1323 ret = wait_for_random_bytes();
1324 if (unlikely(ret))
1325 return ret;
1326 }
1b388e77
JA
1327
1328 ret = import_single_range(READ, ubuf, len, &iov, &iter);
1329 if (unlikely(ret))
1330 return ret;
1331 return get_random_bytes_user(&iter);
30c08efe
AL
1332}
1333
248045b8 1334static __poll_t random_poll(struct file *file, poll_table *wait)
1da177e4 1335{
30c08efe 1336 poll_wait(file, &crng_init_wait, wait);
e85c0fc1 1337 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1da177e4
LT
1338}
1339
1ce6c8d6 1340static ssize_t write_pool_user(struct iov_iter *iter)
1da177e4 1341{
04ec96b7 1342 u8 block[BLAKE2S_BLOCK_SIZE];
22b0a222
JA
1343 ssize_t ret = 0;
1344 size_t copied;
1da177e4 1345
22b0a222
JA
1346 if (unlikely(!iov_iter_count(iter)))
1347 return 0;
1348
1349 for (;;) {
1350 copied = copy_from_iter(block, sizeof(block), iter);
1351 ret += copied;
1352 mix_pool_bytes(block, copied);
1353 if (!iov_iter_count(iter) || copied != sizeof(block))
1354 break;
1ce6c8d6
JD
1355
1356 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1357 if (ret % PAGE_SIZE == 0) {
1358 if (signal_pending(current))
1359 break;
1360 cond_resched();
1361 }
1da177e4 1362 }
7f397dcd 1363
7b5164fb 1364 memzero_explicit(block, sizeof(block));
22b0a222 1365 return ret ? ret : -EFAULT;
7f397dcd
MM
1366}
1367
22b0a222 1368static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
7f397dcd 1369{
1ce6c8d6 1370 return write_pool_user(iter);
1da177e4
LT
1371}
1372
1b388e77 1373static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
0313bc27
LT
1374{
1375 static int maxwarn = 10;
1376
48bff105
JD
1377 /*
1378 * Opportunistically attempt to initialize the RNG on platforms that
1379 * have fast cycle counters, but don't (for now) require it to succeed.
1380 */
1381 if (!crng_ready())
1382 try_to_generate_entropy();
1383
cc1e127b
JD
1384 if (!crng_ready()) {
1385 if (!ratelimit_disable && maxwarn <= 0)
1386 ++urandom_warning.missed;
1387 else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1388 --maxwarn;
1b388e77
JA
1389 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1390 current->comm, iov_iter_count(iter));
cc1e127b 1391 }
0313bc27
LT
1392 }
1393
1b388e77 1394 return get_random_bytes_user(iter);
0313bc27
LT
1395}
1396
1b388e77 1397static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
a6adf8e7
JD
1398{
1399 int ret;
1400
cd4f24ae
JD
1401 if (!crng_ready() &&
1402 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1403 (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1404 return -EAGAIN;
1405
a6adf8e7
JD
1406 ret = wait_for_random_bytes();
1407 if (ret != 0)
1408 return ret;
1b388e77 1409 return get_random_bytes_user(iter);
a6adf8e7
JD
1410}
1411
43ae4860 1412static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4 1413{
1da177e4 1414 int __user *p = (int __user *)arg;
22b0a222 1415 int ent_count;
1da177e4
LT
1416
1417 switch (cmd) {
1418 case RNDGETENTCNT:
a6adf8e7 1419 /* Inherently racy, no point locking. */
e85c0fc1 1420 if (put_user(input_pool.init_bits, p))
1da177e4
LT
1421 return -EFAULT;
1422 return 0;
1423 case RNDADDTOENTCNT:
1424 if (!capable(CAP_SYS_ADMIN))
1425 return -EPERM;
1426 if (get_user(ent_count, p))
1427 return -EFAULT;
a49c010e
JD
1428 if (ent_count < 0)
1429 return -EINVAL;
e85c0fc1 1430 credit_init_bits(ent_count);
a49c010e 1431 return 0;
22b0a222
JA
1432 case RNDADDENTROPY: {
1433 struct iov_iter iter;
1434 struct iovec iov;
1435 ssize_t ret;
1436 int len;
1437
1da177e4
LT
1438 if (!capable(CAP_SYS_ADMIN))
1439 return -EPERM;
1440 if (get_user(ent_count, p++))
1441 return -EFAULT;
1442 if (ent_count < 0)
1443 return -EINVAL;
22b0a222
JA
1444 if (get_user(len, p++))
1445 return -EFAULT;
1446 ret = import_single_range(WRITE, p, len, &iov, &iter);
1447 if (unlikely(ret))
1448 return ret;
1ce6c8d6 1449 ret = write_pool_user(&iter);
22b0a222
JA
1450 if (unlikely(ret < 0))
1451 return ret;
1452 /* Since we're crediting, enforce that it was all written into the pool. */
1453 if (unlikely(ret != len))
1da177e4 1454 return -EFAULT;
e85c0fc1 1455 credit_init_bits(ent_count);
a49c010e 1456 return 0;
22b0a222 1457 }
1da177e4
LT
1458 case RNDZAPENTCNT:
1459 case RNDCLEARPOOL:
e85c0fc1 1460 /* No longer has any effect. */
1da177e4
LT
1461 if (!capable(CAP_SYS_ADMIN))
1462 return -EPERM;
1da177e4 1463 return 0;
d848e5f8
TT
1464 case RNDRESEEDCRNG:
1465 if (!capable(CAP_SYS_ADMIN))
1466 return -EPERM;
a96cfe2d 1467 if (!crng_ready())
d848e5f8 1468 return -ENODATA;
9148de31 1469 crng_reseed(NULL);
d848e5f8 1470 return 0;
1da177e4
LT
1471 default:
1472 return -EINVAL;
1473 }
1474}
1475
9a6f70bb
JD
1476static int random_fasync(int fd, struct file *filp, int on)
1477{
1478 return fasync_helper(fd, filp, on, &fasync);
1479}
1480
2b8693c0 1481const struct file_operations random_fops = {
1b388e77 1482 .read_iter = random_read_iter,
22b0a222 1483 .write_iter = random_write_iter,
248045b8 1484 .poll = random_poll,
43ae4860 1485 .unlocked_ioctl = random_ioctl,
507e4e2b 1486 .compat_ioctl = compat_ptr_ioctl,
9a6f70bb 1487 .fasync = random_fasync,
6038f373 1488 .llseek = noop_llseek,
79025e72
JA
1489 .splice_read = generic_file_splice_read,
1490 .splice_write = iter_file_splice_write,
1da177e4
LT
1491};
1492
0313bc27 1493const struct file_operations urandom_fops = {
1b388e77 1494 .read_iter = urandom_read_iter,
22b0a222 1495 .write_iter = random_write_iter,
0313bc27
LT
1496 .unlocked_ioctl = random_ioctl,
1497 .compat_ioctl = compat_ptr_ioctl,
1498 .fasync = random_fasync,
1499 .llseek = noop_llseek,
79025e72
JA
1500 .splice_read = generic_file_splice_read,
1501 .splice_write = iter_file_splice_write,
0313bc27
LT
1502};
1503
0deff3c4 1504
1da177e4
LT
1505/********************************************************************
1506 *
0deff3c4
JD
1507 * Sysctl interface.
1508 *
1509 * These are partly unused legacy knobs with dummy values to not break
1510 * userspace and partly still useful things. They are usually accessible
1511 * in /proc/sys/kernel/random/ and are as follows:
1512 *
1513 * - boot_id - a UUID representing the current boot.
1514 *
1515 * - uuid - a random UUID, different each time the file is read.
1516 *
1517 * - poolsize - the number of bits of entropy that the input pool can
1518 * hold, tied to the POOL_BITS constant.
1519 *
1520 * - entropy_avail - the number of bits of entropy currently in the
1521 * input pool. Always <= poolsize.
1522 *
1523 * - write_wakeup_threshold - the amount of entropy in the input pool
1524 * below which write polls to /dev/random will unblock, requesting
e3d2c5e7 1525 * more entropy, tied to the POOL_READY_BITS constant. It is writable
0deff3c4
JD
1526 * to avoid breaking old userspaces, but writing to it does not
1527 * change any behavior of the RNG.
1528 *
d0efdf35 1529 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
0deff3c4
JD
1530 * It is writable to avoid breaking old userspaces, but writing
1531 * to it does not change any behavior of the RNG.
1da177e4
LT
1532 *
1533 ********************************************************************/
1534
1535#ifdef CONFIG_SYSCTL
1536
1537#include <linux/sysctl.h>
1538
d0efdf35 1539static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
e3d2c5e7 1540static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
489c7fc4 1541static int sysctl_poolsize = POOL_BITS;
64276a99 1542static u8 sysctl_bootid[UUID_SIZE];
1da177e4
LT
1543
1544/*
f22052b2 1545 * This function is used to return both the bootid UUID, and random
64276a99 1546 * UUID. The difference is in whether table->data is NULL; if it is,
1da177e4 1547 * then a new UUID is generated and returned to the user.
1da177e4 1548 */
a1940263 1549static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
248045b8 1550 size_t *lenp, loff_t *ppos)
1da177e4 1551{
64276a99
JD
1552 u8 tmp_uuid[UUID_SIZE], *uuid;
1553 char uuid_string[UUID_STRING_LEN + 1];
1554 struct ctl_table fake_table = {
1555 .data = uuid_string,
1556 .maxlen = UUID_STRING_LEN
1557 };
1558
1559 if (write)
1560 return -EPERM;
1da177e4
LT
1561
1562 uuid = table->data;
1563 if (!uuid) {
1564 uuid = tmp_uuid;
1da177e4 1565 generate_random_uuid(uuid);
44e4360f
MD
1566 } else {
1567 static DEFINE_SPINLOCK(bootid_spinlock);
1568
1569 spin_lock(&bootid_spinlock);
1570 if (!uuid[8])
1571 generate_random_uuid(uuid);
1572 spin_unlock(&bootid_spinlock);
1573 }
1da177e4 1574
64276a99 1575 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
a1940263 1576 return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1da177e4
LT
1577}
1578
77553cf8 1579/* The same as proc_dointvec, but writes don't change anything. */
a1940263 1580static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
77553cf8
JD
1581 size_t *lenp, loff_t *ppos)
1582{
a1940263 1583 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
77553cf8
JD
1584}
1585
5475e8f0 1586static struct ctl_table random_table[] = {
1da177e4 1587 {
1da177e4
LT
1588 .procname = "poolsize",
1589 .data = &sysctl_poolsize,
1590 .maxlen = sizeof(int),
1591 .mode = 0444,
6d456111 1592 .proc_handler = proc_dointvec,
1da177e4
LT
1593 },
1594 {
1da177e4 1595 .procname = "entropy_avail",
e85c0fc1 1596 .data = &input_pool.init_bits,
1da177e4
LT
1597 .maxlen = sizeof(int),
1598 .mode = 0444,
c5704490 1599 .proc_handler = proc_dointvec,
1da177e4 1600 },
1da177e4 1601 {
1da177e4 1602 .procname = "write_wakeup_threshold",
0deff3c4 1603 .data = &sysctl_random_write_wakeup_bits,
1da177e4
LT
1604 .maxlen = sizeof(int),
1605 .mode = 0644,
77553cf8 1606 .proc_handler = proc_do_rointvec,
1da177e4 1607 },
f5c2742c
TT
1608 {
1609 .procname = "urandom_min_reseed_secs",
0deff3c4 1610 .data = &sysctl_random_min_urandom_seed,
f5c2742c
TT
1611 .maxlen = sizeof(int),
1612 .mode = 0644,
77553cf8 1613 .proc_handler = proc_do_rointvec,
f5c2742c 1614 },
1da177e4 1615 {
1da177e4
LT
1616 .procname = "boot_id",
1617 .data = &sysctl_bootid,
1da177e4 1618 .mode = 0444,
6d456111 1619 .proc_handler = proc_do_uuid,
1da177e4
LT
1620 },
1621 {
1da177e4 1622 .procname = "uuid",
1da177e4 1623 .mode = 0444,
6d456111 1624 .proc_handler = proc_do_uuid,
1da177e4 1625 },
894d2491 1626 { }
1da177e4 1627};
5475e8f0
XN
1628
1629/*
2f14062b
JD
1630 * random_init() is called before sysctl_init(),
1631 * so we cannot call register_sysctl_init() in random_init()
5475e8f0
XN
1632 */
1633static int __init random_sysctls_init(void)
1634{
1635 register_sysctl_init("kernel/random", random_table);
1636 return 0;
1637}
1638device_initcall(random_sysctls_init);
0deff3c4 1639#endif