random: Fix whitespace pre random-bytes work
[linux-block.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
b169c13d
JD
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
9e95ce27 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45/*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
106 *
107 * void get_random_bytes(void *buf, int nbytes);
108 *
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
111 *
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
118 *
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
124 *
125 * Exported interfaces ---- input
126 * ==============================
127 *
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
130 *
a2080a67 131 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
775f4b29 134 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 135 * void add_disk_randomness(struct gendisk *disk);
1da177e4 136 *
a2080a67
LT
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
144 *
1da177e4
LT
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
147 *
775f4b29
TT
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
151 *
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
1da177e4
LT
157 *
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
161 *
162 * Ensuring unpredictability at system startup
163 * ============================================
164 *
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
173 * sequence:
174 *
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
181 * else
182 * touch $random_seed
183 * fi
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
186 *
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
189 *
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
194 * touch $random_seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
197 *
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202 *
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
210 * the system.
211 *
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
214 *
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
219 *
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
222 *
223 * Acknowledgements:
224 * =================
225 *
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
232 *
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
235 *
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
239 */
240
241#include <linux/utsname.h>
1da177e4
LT
242#include <linux/module.h>
243#include <linux/kernel.h>
244#include <linux/major.h>
245#include <linux/string.h>
246#include <linux/fcntl.h>
247#include <linux/slab.h>
248#include <linux/random.h>
249#include <linux/poll.h>
250#include <linux/init.h>
251#include <linux/fs.h>
252#include <linux/genhd.h>
253#include <linux/interrupt.h>
27ac792c 254#include <linux/mm.h>
dd0f0cf5 255#include <linux/nodemask.h>
1da177e4 256#include <linux/spinlock.h>
c84dbf61 257#include <linux/kthread.h>
1da177e4
LT
258#include <linux/percpu.h>
259#include <linux/cryptohash.h>
5b739ef8 260#include <linux/fips.h>
775f4b29 261#include <linux/ptrace.h>
6265e169 262#include <linux/workqueue.h>
0244ad00 263#include <linux/irq.h>
4e00b339 264#include <linux/ratelimit.h>
c6e9d6f3
TT
265#include <linux/syscalls.h>
266#include <linux/completion.h>
8da4b8c4 267#include <linux/uuid.h>
e192be9d 268#include <crypto/chacha20.h>
d178a1eb 269
1da177e4 270#include <asm/processor.h>
7c0f6ba6 271#include <linux/uaccess.h>
1da177e4 272#include <asm/irq.h>
775f4b29 273#include <asm/irq_regs.h>
1da177e4
LT
274#include <asm/io.h>
275
00ce1db1
TT
276#define CREATE_TRACE_POINTS
277#include <trace/events/random.h>
278
43759d4f
TT
279/* #define ADD_INTERRUPT_BENCH */
280
1da177e4
LT
281/*
282 * Configuration information
283 */
30e37ec5
PA
284#define INPUT_POOL_SHIFT 12
285#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286#define OUTPUT_POOL_SHIFT 10
287#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288#define SEC_XFER_SIZE 512
289#define EXTRACT_SIZE 10
1da177e4 290
1da177e4 291
d2e7c96a
PA
292#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293
a283b5c4 294/*
95b709b6
TT
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
30e37ec5
PA
297 *
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
300 */
301#define ENTROPY_SHIFT 3
302#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303
1da177e4
LT
304/*
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
307 */
2132a96f 308static int random_read_wakeup_bits = 64;
1da177e4
LT
309
310/*
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
314 */
2132a96f 315static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4 316
1da177e4 317/*
6e9fa2c8
TT
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
322 *
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 328 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
329 * Simulation 4:254-266)
330 *
331 * Thanks to Colin Plumb for suggesting this.
332 *
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
349 *
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
1da177e4
LT
361 */
362static struct poolinfo {
a283b5c4
PA
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
365 int tap1, tap2, tap3, tap4, tap5;
366} poolinfo_table[] = {
6e9fa2c8
TT
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
373#if 0
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 375 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
376
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 378 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
379
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 381 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
382
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 384 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
385
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 387 { S(512), 409, 307, 206, 102, 2 },
1da177e4 388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 389 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
390
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 392 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
393
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 395 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
396
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 398 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
399#endif
400};
401
1da177e4
LT
402/*
403 * Static global variables
404 */
a11e1d43
LT
405static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 407static struct fasync_struct *fasync;
1da177e4 408
205a525c
HX
409static DEFINE_SPINLOCK(random_ready_list_lock);
410static LIST_HEAD(random_ready_list);
411
e192be9d
TT
412struct crng_state {
413 __u32 state[16];
414 unsigned long init_time;
415 spinlock_t lock;
416};
417
418struct crng_state primary_crng = {
419 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420};
421
422/*
423 * crng_init = 0 --> Uninitialized
424 * 1 --> Initialized
425 * 2 --> Initialized from input_pool
426 *
427 * crng_init is protected by primary_crng->lock, and only increases
428 * its value (from 0->1->2).
429 */
430static int crng_init = 0;
43838a23 431#define crng_ready() (likely(crng_init > 1))
e192be9d 432static int crng_init_cnt = 0;
d848e5f8 433static unsigned long crng_global_init_time = 0;
e192be9d 434#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
1e7f583a 435static void _extract_crng(struct crng_state *crng,
9f480fae 436 __u32 out[CHACHA20_BLOCK_WORDS]);
c92e040d 437static void _crng_backtrack_protect(struct crng_state *crng,
9f480fae 438 __u32 tmp[CHACHA20_BLOCK_WORDS], int used);
e192be9d 439static void process_random_ready_list(void);
eecabf56 440static void _get_random_bytes(void *buf, int nbytes);
e192be9d 441
4e00b339
TT
442static struct ratelimit_state unseeded_warning =
443 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
444static struct ratelimit_state urandom_warning =
445 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
446
447static int ratelimit_disable __read_mostly;
448
449module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
450MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
451
1da177e4
LT
452/**********************************************************************
453 *
454 * OS independent entropy store. Here are the functions which handle
455 * storing entropy in an entropy pool.
456 *
457 **********************************************************************/
458
459struct entropy_store;
460struct entropy_store {
43358209 461 /* read-only data: */
30e37ec5 462 const struct poolinfo *poolinfo;
1da177e4
LT
463 __u32 *pool;
464 const char *name;
1da177e4 465 struct entropy_store *pull;
6265e169 466 struct work_struct push_work;
1da177e4
LT
467
468 /* read-write data: */
f5c2742c 469 unsigned long last_pulled;
43358209 470 spinlock_t lock;
c59974ae
TT
471 unsigned short add_ptr;
472 unsigned short input_rotate;
cda796a3 473 int entropy_count;
775f4b29 474 int entropy_total;
775f4b29 475 unsigned int initialized:1;
c59974ae 476 unsigned int last_data_init:1;
e954bc91 477 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
478};
479
e192be9d
TT
480static ssize_t extract_entropy(struct entropy_store *r, void *buf,
481 size_t nbytes, int min, int rsvd);
482static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
483 size_t nbytes, int fips);
484
485static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 486static void push_to_pool(struct work_struct *work);
0766f788
ER
487static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
488static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
1da177e4
LT
489
490static struct entropy_store input_pool = {
491 .poolinfo = &poolinfo_table[0],
492 .name = "input",
eece09ec 493 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
494 .pool = input_pool_data
495};
496
497static struct entropy_store blocking_pool = {
498 .poolinfo = &poolinfo_table[1],
499 .name = "blocking",
1da177e4 500 .pull = &input_pool,
eece09ec 501 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
502 .pool = blocking_pool_data,
503 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
504 push_to_pool),
1da177e4
LT
505};
506
775f4b29
TT
507static __u32 const twist_table[8] = {
508 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
509 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
510
1da177e4 511/*
e68e5b66 512 * This function adds bytes into the entropy "pool". It does not
1da177e4 513 * update the entropy estimate. The caller should call
adc782da 514 * credit_entropy_bits if this is appropriate.
1da177e4
LT
515 *
516 * The pool is stirred with a primitive polynomial of the appropriate
517 * degree, and then twisted. We twist by three bits at a time because
518 * it's cheap to do so and helps slightly in the expected case where
519 * the entropy is concentrated in the low-order bits.
520 */
00ce1db1 521static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 522 int nbytes)
1da177e4 523{
85608f8e 524 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 525 int input_rotate;
1da177e4 526 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 527 const char *bytes = in;
6d38b827 528 __u32 w;
1da177e4 529
1da177e4
LT
530 tap1 = r->poolinfo->tap1;
531 tap2 = r->poolinfo->tap2;
532 tap3 = r->poolinfo->tap3;
533 tap4 = r->poolinfo->tap4;
534 tap5 = r->poolinfo->tap5;
1da177e4 535
91fcb532
TT
536 input_rotate = r->input_rotate;
537 i = r->add_ptr;
1da177e4 538
e68e5b66
MM
539 /* mix one byte at a time to simplify size handling and churn faster */
540 while (nbytes--) {
c59974ae 541 w = rol32(*bytes++, input_rotate);
993ba211 542 i = (i - 1) & wordmask;
1da177e4
LT
543
544 /* XOR in the various taps */
993ba211 545 w ^= r->pool[i];
1da177e4
LT
546 w ^= r->pool[(i + tap1) & wordmask];
547 w ^= r->pool[(i + tap2) & wordmask];
548 w ^= r->pool[(i + tap3) & wordmask];
549 w ^= r->pool[(i + tap4) & wordmask];
550 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
551
552 /* Mix the result back in with a twist */
1da177e4 553 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
554
555 /*
556 * Normally, we add 7 bits of rotation to the pool.
557 * At the beginning of the pool, add an extra 7 bits
558 * rotation, so that successive passes spread the
559 * input bits across the pool evenly.
560 */
c59974ae 561 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
562 }
563
91fcb532
TT
564 r->input_rotate = input_rotate;
565 r->add_ptr = i;
1da177e4
LT
566}
567
00ce1db1 568static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 569 int nbytes)
00ce1db1
TT
570{
571 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 572 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
573}
574
575static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 576 int nbytes)
1da177e4 577{
902c098a
TT
578 unsigned long flags;
579
00ce1db1 580 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 581 spin_lock_irqsave(&r->lock, flags);
85608f8e 582 _mix_pool_bytes(r, in, nbytes);
902c098a 583 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
584}
585
775f4b29
TT
586struct fast_pool {
587 __u32 pool[4];
588 unsigned long last;
ee3e00e9 589 unsigned short reg_idx;
840f9507 590 unsigned char count;
775f4b29
TT
591};
592
593/*
594 * This is a fast mixing routine used by the interrupt randomness
595 * collector. It's hardcoded for an 128 bit pool and assumes that any
596 * locks that might be needed are taken by the caller.
597 */
43759d4f 598static void fast_mix(struct fast_pool *f)
775f4b29 599{
43759d4f
TT
600 __u32 a = f->pool[0], b = f->pool[1];
601 __u32 c = f->pool[2], d = f->pool[3];
602
603 a += b; c += d;
19acc77a 604 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
605 d ^= a; b ^= c;
606
607 a += b; c += d;
19acc77a 608 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
609 d ^= a; b ^= c;
610
611 a += b; c += d;
19acc77a 612 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
613 d ^= a; b ^= c;
614
615 a += b; c += d;
19acc77a 616 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
617 d ^= a; b ^= c;
618
619 f->pool[0] = a; f->pool[1] = b;
620 f->pool[2] = c; f->pool[3] = d;
655b2264 621 f->count++;
775f4b29
TT
622}
623
205a525c
HX
624static void process_random_ready_list(void)
625{
626 unsigned long flags;
627 struct random_ready_callback *rdy, *tmp;
628
629 spin_lock_irqsave(&random_ready_list_lock, flags);
630 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
631 struct module *owner = rdy->owner;
632
633 list_del_init(&rdy->list);
634 rdy->func(rdy);
635 module_put(owner);
636 }
637 spin_unlock_irqrestore(&random_ready_list_lock, flags);
638}
639
1da177e4 640/*
a283b5c4
PA
641 * Credit (or debit) the entropy store with n bits of entropy.
642 * Use credit_entropy_bits_safe() if the value comes from userspace
643 * or otherwise should be checked for extreme values.
1da177e4 644 */
adc782da 645static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 646{
902c098a 647 int entropy_count, orig;
30e37ec5
PA
648 const int pool_size = r->poolinfo->poolfracbits;
649 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 650
adc782da
MM
651 if (!nbits)
652 return;
653
902c098a 654retry:
6aa7de05 655 entropy_count = orig = READ_ONCE(r->entropy_count);
30e37ec5
PA
656 if (nfrac < 0) {
657 /* Debit */
658 entropy_count += nfrac;
659 } else {
660 /*
661 * Credit: we have to account for the possibility of
662 * overwriting already present entropy. Even in the
663 * ideal case of pure Shannon entropy, new contributions
664 * approach the full value asymptotically:
665 *
666 * entropy <- entropy + (pool_size - entropy) *
667 * (1 - exp(-add_entropy/pool_size))
668 *
669 * For add_entropy <= pool_size/2 then
670 * (1 - exp(-add_entropy/pool_size)) >=
671 * (add_entropy/pool_size)*0.7869...
672 * so we can approximate the exponential with
673 * 3/4*add_entropy/pool_size and still be on the
674 * safe side by adding at most pool_size/2 at a time.
675 *
676 * The use of pool_size-2 in the while statement is to
677 * prevent rounding artifacts from making the loop
678 * arbitrarily long; this limits the loop to log2(pool_size)*2
679 * turns no matter how large nbits is.
680 */
681 int pnfrac = nfrac;
682 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
683 /* The +2 corresponds to the /4 in the denominator */
684
685 do {
686 unsigned int anfrac = min(pnfrac, pool_size/2);
687 unsigned int add =
688 ((pool_size - entropy_count)*anfrac*3) >> s;
689
690 entropy_count += add;
691 pnfrac -= anfrac;
692 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
693 }
00ce1db1 694
79a84687 695 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
696 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
697 r->name, entropy_count);
698 WARN_ON(1);
8b76f46a 699 entropy_count = 0;
30e37ec5
PA
700 } else if (entropy_count > pool_size)
701 entropy_count = pool_size;
902c098a
TT
702 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
703 goto retry;
1da177e4 704
6265e169 705 r->entropy_total += nbits;
0891ad82
LT
706 if (!r->initialized && r->entropy_total > 128) {
707 r->initialized = 1;
708 r->entropy_total = 0;
775f4b29
TT
709 }
710
a283b5c4
PA
711 trace_credit_entropy_bits(r->name, nbits,
712 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
713 r->entropy_total, _RET_IP_);
714
6265e169 715 if (r == &input_pool) {
7d1b08c4 716 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 717
e192be9d
TT
718 if (crng_init < 2 && entropy_bits >= 128) {
719 crng_reseed(&primary_crng, r);
720 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
721 }
722
6265e169 723 /* should we wake readers? */
e8e8a2e4 724 if (entropy_bits >= random_read_wakeup_bits &&
a11e1d43
LT
725 wq_has_sleeper(&random_read_wait)) {
726 wake_up_interruptible(&random_read_wait);
6265e169
TT
727 kill_fasync(&fasync, SIGIO, POLL_IN);
728 }
729 /* If the input pool is getting full, send some
e192be9d 730 * entropy to the blocking pool until it is 75% full.
6265e169 731 */
2132a96f 732 if (entropy_bits > random_write_wakeup_bits &&
6265e169 733 r->initialized &&
2132a96f 734 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
735 struct entropy_store *other = &blocking_pool;
736
6265e169 737 if (other->entropy_count <=
e192be9d
TT
738 3 * other->poolinfo->poolfracbits / 4) {
739 schedule_work(&other->push_work);
6265e169
TT
740 r->entropy_total = 0;
741 }
742 }
9a6f70bb 743 }
1da177e4
LT
744}
745
86a574de 746static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4 747{
9f886f4d 748 const int nbits_max = r->poolinfo->poolwords * 32;
a283b5c4 749
86a574de
TT
750 if (nbits < 0)
751 return -EINVAL;
752
a283b5c4
PA
753 /* Cap the value to avoid overflows */
754 nbits = min(nbits, nbits_max);
a283b5c4
PA
755
756 credit_entropy_bits(r, nbits);
86a574de 757 return 0;
a283b5c4
PA
758}
759
e192be9d
TT
760/*********************************************************************
761 *
762 * CRNG using CHACHA20
763 *
764 *********************************************************************/
765
766#define CRNG_RESEED_INTERVAL (300*HZ)
767
768static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
769
1e7f583a
TT
770#ifdef CONFIG_NUMA
771/*
772 * Hack to deal with crazy userspace progams when they are all trying
773 * to access /dev/urandom in parallel. The programs are almost
774 * certainly doing something terribly wrong, but we'll work around
775 * their brain damage.
776 */
777static struct crng_state **crng_node_pool __read_mostly;
778#endif
779
b169c13d
JD
780static void invalidate_batched_entropy(void);
781
e192be9d
TT
782static void crng_initialize(struct crng_state *crng)
783{
784 int i;
785 unsigned long rv;
786
787 memcpy(&crng->state[0], "expand 32-byte k", 16);
788 if (crng == &primary_crng)
789 _extract_entropy(&input_pool, &crng->state[4],
790 sizeof(__u32) * 12, 0);
791 else
eecabf56 792 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
e192be9d
TT
793 for (i = 4; i < 16; i++) {
794 if (!arch_get_random_seed_long(&rv) &&
795 !arch_get_random_long(&rv))
796 rv = random_get_entropy();
797 crng->state[i] ^= rv;
798 }
799 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
800}
801
8ef35c86 802#ifdef CONFIG_NUMA
6c1e851c 803static void do_numa_crng_init(struct work_struct *work)
8ef35c86
TT
804{
805 int i;
806 struct crng_state *crng;
807 struct crng_state **pool;
808
809 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
810 for_each_online_node(i) {
811 crng = kmalloc_node(sizeof(struct crng_state),
812 GFP_KERNEL | __GFP_NOFAIL, i);
813 spin_lock_init(&crng->lock);
814 crng_initialize(crng);
815 pool[i] = crng;
816 }
817 mb();
818 if (cmpxchg(&crng_node_pool, NULL, pool)) {
819 for_each_node(i)
820 kfree(pool[i]);
821 kfree(pool);
822 }
823}
6c1e851c
TT
824
825static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
826
827static void numa_crng_init(void)
828{
829 schedule_work(&numa_crng_init_work);
830}
8ef35c86
TT
831#else
832static void numa_crng_init(void) {}
833#endif
834
dc12baac
TT
835/*
836 * crng_fast_load() can be called by code in the interrupt service
837 * path. So we can't afford to dilly-dally.
838 */
e192be9d
TT
839static int crng_fast_load(const char *cp, size_t len)
840{
841 unsigned long flags;
842 char *p;
843
844 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
845 return 0;
43838a23 846 if (crng_init != 0) {
e192be9d
TT
847 spin_unlock_irqrestore(&primary_crng.lock, flags);
848 return 0;
849 }
850 p = (unsigned char *) &primary_crng.state[4];
851 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
852 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
853 cp++; crng_init_cnt++; len--;
854 }
4a072c71 855 spin_unlock_irqrestore(&primary_crng.lock, flags);
e192be9d 856 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
b169c13d 857 invalidate_batched_entropy();
e192be9d
TT
858 crng_init = 1;
859 wake_up_interruptible(&crng_init_wait);
860 pr_notice("random: fast init done\n");
861 }
e192be9d
TT
862 return 1;
863}
864
dc12baac
TT
865/*
866 * crng_slow_load() is called by add_device_randomness, which has two
867 * attributes. (1) We can't trust the buffer passed to it is
868 * guaranteed to be unpredictable (so it might not have any entropy at
869 * all), and (2) it doesn't have the performance constraints of
870 * crng_fast_load().
871 *
872 * So we do something more comprehensive which is guaranteed to touch
873 * all of the primary_crng's state, and which uses a LFSR with a
874 * period of 255 as part of the mixing algorithm. Finally, we do
875 * *not* advance crng_init_cnt since buffer we may get may be something
876 * like a fixed DMI table (for example), which might very well be
877 * unique to the machine, but is otherwise unvarying.
878 */
879static int crng_slow_load(const char *cp, size_t len)
880{
881 unsigned long flags;
882 static unsigned char lfsr = 1;
883 unsigned char tmp;
884 unsigned i, max = CHACHA20_KEY_SIZE;
885 const char * src_buf = cp;
886 char * dest_buf = (char *) &primary_crng.state[4];
887
888 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
889 return 0;
890 if (crng_init != 0) {
891 spin_unlock_irqrestore(&primary_crng.lock, flags);
892 return 0;
893 }
894 if (len > max)
895 max = len;
896
897 for (i = 0; i < max ; i++) {
898 tmp = lfsr;
899 lfsr >>= 1;
900 if (tmp & 1)
901 lfsr ^= 0xE1;
902 tmp = dest_buf[i % CHACHA20_KEY_SIZE];
903 dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
904 lfsr += (tmp << 3) | (tmp >> 5);
905 }
906 spin_unlock_irqrestore(&primary_crng.lock, flags);
907 return 1;
908}
909
e192be9d
TT
910static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
911{
912 unsigned long flags;
913 int i, num;
914 union {
9f480fae 915 __u32 block[CHACHA20_BLOCK_WORDS];
e192be9d
TT
916 __u32 key[8];
917 } buf;
918
919 if (r) {
920 num = extract_entropy(r, &buf, 32, 16, 0);
921 if (num == 0)
922 return;
c92e040d 923 } else {
1e7f583a 924 _extract_crng(&primary_crng, buf.block);
c92e040d
TT
925 _crng_backtrack_protect(&primary_crng, buf.block,
926 CHACHA20_KEY_SIZE);
927 }
0bb29a84 928 spin_lock_irqsave(&crng->lock, flags);
e192be9d
TT
929 for (i = 0; i < 8; i++) {
930 unsigned long rv;
931 if (!arch_get_random_seed_long(&rv) &&
932 !arch_get_random_long(&rv))
933 rv = random_get_entropy();
934 crng->state[i+4] ^= buf.key[i] ^ rv;
935 }
936 memzero_explicit(&buf, sizeof(buf));
937 crng->init_time = jiffies;
0bb29a84 938 spin_unlock_irqrestore(&crng->lock, flags);
e192be9d 939 if (crng == &primary_crng && crng_init < 2) {
b169c13d 940 invalidate_batched_entropy();
8ef35c86 941 numa_crng_init();
e192be9d
TT
942 crng_init = 2;
943 process_random_ready_list();
944 wake_up_interruptible(&crng_init_wait);
945 pr_notice("random: crng init done\n");
4e00b339
TT
946 if (unseeded_warning.missed) {
947 pr_notice("random: %d get_random_xx warning(s) missed "
948 "due to ratelimiting\n",
949 unseeded_warning.missed);
950 unseeded_warning.missed = 0;
951 }
952 if (urandom_warning.missed) {
953 pr_notice("random: %d urandom warning(s) missed "
954 "due to ratelimiting\n",
955 urandom_warning.missed);
956 urandom_warning.missed = 0;
957 }
e192be9d 958 }
e192be9d
TT
959}
960
1e7f583a 961static void _extract_crng(struct crng_state *crng,
9f480fae 962 __u32 out[CHACHA20_BLOCK_WORDS])
e192be9d
TT
963{
964 unsigned long v, flags;
e192be9d 965
43838a23 966 if (crng_ready() &&
d848e5f8
TT
967 (time_after(crng_global_init_time, crng->init_time) ||
968 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1e7f583a 969 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
970 spin_lock_irqsave(&crng->lock, flags);
971 if (arch_get_random_long(&v))
972 crng->state[14] ^= v;
973 chacha20_block(&crng->state[0], out);
974 if (crng->state[12] == 0)
975 crng->state[13]++;
976 spin_unlock_irqrestore(&crng->lock, flags);
977}
978
9f480fae 979static void extract_crng(__u32 out[CHACHA20_BLOCK_WORDS])
1e7f583a
TT
980{
981 struct crng_state *crng = NULL;
982
983#ifdef CONFIG_NUMA
984 if (crng_node_pool)
985 crng = crng_node_pool[numa_node_id()];
986 if (crng == NULL)
987#endif
988 crng = &primary_crng;
989 _extract_crng(crng, out);
990}
991
c92e040d
TT
992/*
993 * Use the leftover bytes from the CRNG block output (if there is
994 * enough) to mutate the CRNG key to provide backtracking protection.
995 */
996static void _crng_backtrack_protect(struct crng_state *crng,
9f480fae 997 __u32 tmp[CHACHA20_BLOCK_WORDS], int used)
c92e040d
TT
998{
999 unsigned long flags;
1000 __u32 *s, *d;
1001 int i;
1002
1003 used = round_up(used, sizeof(__u32));
1004 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
1005 extract_crng(tmp);
1006 used = 0;
1007 }
1008 spin_lock_irqsave(&crng->lock, flags);
9f480fae 1009 s = &tmp[used / sizeof(__u32)];
c92e040d
TT
1010 d = &crng->state[4];
1011 for (i=0; i < 8; i++)
1012 *d++ ^= *s++;
1013 spin_unlock_irqrestore(&crng->lock, flags);
1014}
1015
9f480fae 1016static void crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS], int used)
c92e040d
TT
1017{
1018 struct crng_state *crng = NULL;
1019
1020#ifdef CONFIG_NUMA
1021 if (crng_node_pool)
1022 crng = crng_node_pool[numa_node_id()];
1023 if (crng == NULL)
1024#endif
1025 crng = &primary_crng;
1026 _crng_backtrack_protect(crng, tmp, used);
1027}
1028
e192be9d
TT
1029static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1030{
c92e040d 1031 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
9f480fae 1032 __u32 tmp[CHACHA20_BLOCK_WORDS];
e192be9d
TT
1033 int large_request = (nbytes > 256);
1034
1035 while (nbytes) {
1036 if (large_request && need_resched()) {
1037 if (signal_pending(current)) {
1038 if (ret == 0)
1039 ret = -ERESTARTSYS;
1040 break;
1041 }
1042 schedule();
1043 }
1044
1045 extract_crng(tmp);
1046 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1047 if (copy_to_user(buf, tmp, i)) {
1048 ret = -EFAULT;
1049 break;
1050 }
1051
1052 nbytes -= i;
1053 buf += i;
1054 ret += i;
1055 }
c92e040d 1056 crng_backtrack_protect(tmp, i);
e192be9d
TT
1057
1058 /* Wipe data just written to memory */
1059 memzero_explicit(tmp, sizeof(tmp));
1060
1061 return ret;
1062}
1063
1064
1da177e4
LT
1065/*********************************************************************
1066 *
1067 * Entropy input management
1068 *
1069 *********************************************************************/
1070
1071/* There is one of these per entropy source */
1072struct timer_rand_state {
1073 cycles_t last_time;
90b75ee5 1074 long last_delta, last_delta2;
1da177e4
LT
1075};
1076
644008df
TT
1077#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1078
a2080a67 1079/*
e192be9d
TT
1080 * Add device- or boot-specific data to the input pool to help
1081 * initialize it.
a2080a67 1082 *
e192be9d
TT
1083 * None of this adds any entropy; it is meant to avoid the problem of
1084 * the entropy pool having similar initial state across largely
1085 * identical devices.
a2080a67
LT
1086 */
1087void add_device_randomness(const void *buf, unsigned int size)
1088{
61875f30 1089 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 1090 unsigned long flags;
a2080a67 1091
dc12baac
TT
1092 if (!crng_ready() && size)
1093 crng_slow_load(buf, size);
ee7998c5 1094
5910895f 1095 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 1096 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
1097 _mix_pool_bytes(&input_pool, buf, size);
1098 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 1099 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
1100}
1101EXPORT_SYMBOL(add_device_randomness);
1102
644008df 1103static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 1104
1da177e4
LT
1105/*
1106 * This function adds entropy to the entropy "pool" by using timing
1107 * delays. It uses the timer_rand_state structure to make an estimate
1108 * of how many bits of entropy this call has added to the pool.
1109 *
1110 * The number "num" is also added to the pool - it should somehow describe
1111 * the type of event which just happened. This is currently 0-255 for
1112 * keyboard scan codes, and 256 upwards for interrupts.
1113 *
1114 */
1115static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1116{
40db23e5 1117 struct entropy_store *r;
1da177e4 1118 struct {
1da177e4 1119 long jiffies;
cf833d0b 1120 unsigned cycles;
1da177e4
LT
1121 unsigned num;
1122 } sample;
1123 long delta, delta2, delta3;
1124
1125 preempt_disable();
1da177e4
LT
1126
1127 sample.jiffies = jiffies;
61875f30 1128 sample.cycles = random_get_entropy();
1da177e4 1129 sample.num = num;
e192be9d 1130 r = &input_pool;
85608f8e 1131 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1132
1133 /*
1134 * Calculate number of bits of randomness we probably added.
1135 * We take into account the first, second and third-order deltas
1136 * in order to make our estimate.
1137 */
5e747dd9
RV
1138 delta = sample.jiffies - state->last_time;
1139 state->last_time = sample.jiffies;
1140
1141 delta2 = delta - state->last_delta;
1142 state->last_delta = delta;
1143
1144 delta3 = delta2 - state->last_delta2;
1145 state->last_delta2 = delta2;
1146
1147 if (delta < 0)
1148 delta = -delta;
1149 if (delta2 < 0)
1150 delta2 = -delta2;
1151 if (delta3 < 0)
1152 delta3 = -delta3;
1153 if (delta > delta2)
1154 delta = delta2;
1155 if (delta > delta3)
1156 delta = delta3;
1da177e4 1157
5e747dd9
RV
1158 /*
1159 * delta is now minimum absolute delta.
1160 * Round down by 1 bit on general principles,
1161 * and limit entropy entimate to 12 bits.
1162 */
1163 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 1164
1da177e4
LT
1165 preempt_enable();
1166}
1167
d251575a 1168void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1169 unsigned int value)
1170{
1171 static unsigned char last_value;
1172
1173 /* ignore autorepeat and the like */
1174 if (value == last_value)
1175 return;
1176
1da177e4
LT
1177 last_value = value;
1178 add_timer_randomness(&input_timer_state,
1179 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1180 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1181}
80fc9f53 1182EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1183
775f4b29
TT
1184static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1185
43759d4f
TT
1186#ifdef ADD_INTERRUPT_BENCH
1187static unsigned long avg_cycles, avg_deviation;
1188
1189#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1190#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1191
1192static void add_interrupt_bench(cycles_t start)
1193{
1194 long delta = random_get_entropy() - start;
1195
1196 /* Use a weighted moving average */
1197 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1198 avg_cycles += delta;
1199 /* And average deviation */
1200 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1201 avg_deviation += delta;
1202}
1203#else
1204#define add_interrupt_bench(x)
1205#endif
1206
ee3e00e9
TT
1207static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1208{
1209 __u32 *ptr = (__u32 *) regs;
92e75428 1210 unsigned int idx;
ee3e00e9
TT
1211
1212 if (regs == NULL)
1213 return 0;
92e75428
TT
1214 idx = READ_ONCE(f->reg_idx);
1215 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1216 idx = 0;
1217 ptr += idx++;
1218 WRITE_ONCE(f->reg_idx, idx);
9dfa7bba 1219 return *ptr;
ee3e00e9
TT
1220}
1221
775f4b29 1222void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1223{
775f4b29 1224 struct entropy_store *r;
1b2a1a7e 1225 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1226 struct pt_regs *regs = get_irq_regs();
1227 unsigned long now = jiffies;
655b2264 1228 cycles_t cycles = random_get_entropy();
43759d4f 1229 __u32 c_high, j_high;
655b2264 1230 __u64 ip;
83664a69 1231 unsigned long seed;
91fcb532 1232 int credit = 0;
3060d6fe 1233
ee3e00e9
TT
1234 if (cycles == 0)
1235 cycles = get_reg(fast_pool, regs);
655b2264
TT
1236 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1237 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1238 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1239 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1240 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1241 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1242 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1243 get_reg(fast_pool, regs);
3060d6fe 1244
43759d4f 1245 fast_mix(fast_pool);
43759d4f 1246 add_interrupt_bench(cycles);
3060d6fe 1247
43838a23 1248 if (unlikely(crng_init == 0)) {
e192be9d
TT
1249 if ((fast_pool->count >= 64) &&
1250 crng_fast_load((char *) fast_pool->pool,
1251 sizeof(fast_pool->pool))) {
1252 fast_pool->count = 0;
1253 fast_pool->last = now;
1254 }
1255 return;
1256 }
1257
ee3e00e9
TT
1258 if ((fast_pool->count < 64) &&
1259 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1260 return;
1261
e192be9d 1262 r = &input_pool;
840f9507 1263 if (!spin_trylock(&r->lock))
91fcb532 1264 return;
83664a69 1265
91fcb532 1266 fast_pool->last = now;
85608f8e 1267 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1268
1269 /*
1270 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1271 * add it to the pool. For the sake of paranoia don't let the
1272 * architectural seed generator dominate the input from the
1273 * interrupt noise.
83664a69
PA
1274 */
1275 if (arch_get_random_seed_long(&seed)) {
85608f8e 1276 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1277 credit = 1;
83664a69 1278 }
91fcb532 1279 spin_unlock(&r->lock);
83664a69 1280
ee3e00e9 1281 fast_pool->count = 0;
83664a69 1282
ee3e00e9
TT
1283 /* award one bit for the contents of the fast pool */
1284 credit_entropy_bits(r, credit + 1);
1da177e4 1285}
4b44f2d1 1286EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1287
9361401e 1288#ifdef CONFIG_BLOCK
1da177e4
LT
1289void add_disk_randomness(struct gendisk *disk)
1290{
1291 if (!disk || !disk->random)
1292 return;
1293 /* first major is 1, so we get >= 0x200 here */
f331c029 1294 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1295 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1296}
bdcfa3e5 1297EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1298#endif
1da177e4 1299
1da177e4
LT
1300/*********************************************************************
1301 *
1302 * Entropy extraction routines
1303 *
1304 *********************************************************************/
1305
1da177e4 1306/*
25985edc 1307 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1308 * from the primary pool to the secondary extraction pool. We make
1309 * sure we pull enough for a 'catastrophic reseed'.
1310 */
6265e169 1311static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1312static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1313{
cff85031
TT
1314 if (!r->pull ||
1315 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1316 r->entropy_count > r->poolinfo->poolfracbits)
1317 return;
1318
cff85031 1319 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1320}
1321
1322static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1323{
1324 __u32 tmp[OUTPUT_POOL_WORDS];
1325
6265e169
TT
1326 int bytes = nbytes;
1327
2132a96f
GP
1328 /* pull at least as much as a wakeup */
1329 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1330 /* but never more than the buffer size */
1331 bytes = min_t(int, bytes, sizeof(tmp));
1332
f80bbd8b
TT
1333 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1334 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1335 bytes = extract_entropy(r->pull, tmp, bytes,
43d8a72c 1336 random_read_wakeup_bits / 8, 0);
85608f8e 1337 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1338 credit_entropy_bits(r, bytes*8);
1339}
1340
1341/*
1342 * Used as a workqueue function so that when the input pool is getting
1343 * full, we can "spill over" some entropy to the output pools. That
1344 * way the output pools can store some of the excess entropy instead
1345 * of letting it go to waste.
1346 */
1347static void push_to_pool(struct work_struct *work)
1348{
1349 struct entropy_store *r = container_of(work, struct entropy_store,
1350 push_work);
1351 BUG_ON(!r);
2132a96f 1352 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1353 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1354 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1355}
1356
1357/*
19fa5be1
GP
1358 * This function decides how many bytes to actually take from the
1359 * given pool, and also debits the entropy count accordingly.
1da177e4 1360 */
1da177e4
LT
1361static size_t account(struct entropy_store *r, size_t nbytes, int min,
1362 int reserved)
1363{
43d8a72c 1364 int entropy_count, orig, have_bytes;
79a84687 1365 size_t ibytes, nfrac;
1da177e4 1366
a283b5c4 1367 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1368
1369 /* Can we pull enough? */
10b3a32d 1370retry:
6aa7de05 1371 entropy_count = orig = READ_ONCE(r->entropy_count);
a283b5c4 1372 ibytes = nbytes;
43d8a72c
SM
1373 /* never pull more than available */
1374 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
e33ba5fa 1375
43d8a72c
SM
1376 if ((have_bytes -= reserved) < 0)
1377 have_bytes = 0;
1378 ibytes = min_t(size_t, ibytes, have_bytes);
0fb7a01a 1379 if (ibytes < min)
a283b5c4 1380 ibytes = 0;
79a84687
HFS
1381
1382 if (unlikely(entropy_count < 0)) {
1383 pr_warn("random: negative entropy count: pool %s count %d\n",
1384 r->name, entropy_count);
1385 WARN_ON(1);
1386 entropy_count = 0;
1387 }
1388 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1389 if ((size_t) entropy_count > nfrac)
1390 entropy_count -= nfrac;
1391 else
e33ba5fa 1392 entropy_count = 0;
f9c6d498 1393
0fb7a01a
GP
1394 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1395 goto retry;
1da177e4 1396
f80bbd8b 1397 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1398 if (ibytes &&
2132a96f 1399 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
a11e1d43 1400 wake_up_interruptible(&random_write_wait);
b9809552
TT
1401 kill_fasync(&fasync, SIGIO, POLL_OUT);
1402 }
1403
a283b5c4 1404 return ibytes;
1da177e4
LT
1405}
1406
19fa5be1
GP
1407/*
1408 * This function does the actual extraction for extract_entropy and
1409 * extract_entropy_user.
1410 *
1411 * Note: we assume that .poolwords is a multiple of 16 words.
1412 */
1da177e4
LT
1413static void extract_buf(struct entropy_store *r, __u8 *out)
1414{
602b6aee 1415 int i;
d2e7c96a
PA
1416 union {
1417 __u32 w[5];
85a1f777 1418 unsigned long l[LONGS(20)];
d2e7c96a
PA
1419 } hash;
1420 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1421 unsigned long flags;
1da177e4 1422
85a1f777 1423 /*
dfd38750 1424 * If we have an architectural hardware random number
46884442 1425 * generator, use it for SHA's initial vector
85a1f777 1426 */
46884442 1427 sha_init(hash.w);
85a1f777
TT
1428 for (i = 0; i < LONGS(20); i++) {
1429 unsigned long v;
1430 if (!arch_get_random_long(&v))
1431 break;
46884442 1432 hash.l[i] = v;
85a1f777
TT
1433 }
1434
46884442
TT
1435 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1436 spin_lock_irqsave(&r->lock, flags);
1437 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1438 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1439
1da177e4 1440 /*
1c0ad3d4
MM
1441 * We mix the hash back into the pool to prevent backtracking
1442 * attacks (where the attacker knows the state of the pool
1443 * plus the current outputs, and attempts to find previous
1444 * ouputs), unless the hash function can be inverted. By
1445 * mixing at least a SHA1 worth of hash data back, we make
1446 * brute-forcing the feedback as hard as brute-forcing the
1447 * hash.
1da177e4 1448 */
85608f8e 1449 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1450 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1451
d4c5efdb 1452 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1453
1454 /*
1c0ad3d4
MM
1455 * In case the hash function has some recognizable output
1456 * pattern, we fold it in half. Thus, we always feed back
1457 * twice as much data as we output.
1da177e4 1458 */
d2e7c96a
PA
1459 hash.w[0] ^= hash.w[3];
1460 hash.w[1] ^= hash.w[4];
1461 hash.w[2] ^= rol32(hash.w[2], 16);
1462
d2e7c96a 1463 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1464 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1465}
1466
e192be9d
TT
1467static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1468 size_t nbytes, int fips)
1469{
1470 ssize_t ret = 0, i;
1471 __u8 tmp[EXTRACT_SIZE];
1472 unsigned long flags;
1473
1474 while (nbytes) {
1475 extract_buf(r, tmp);
1476
1477 if (fips) {
1478 spin_lock_irqsave(&r->lock, flags);
1479 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1480 panic("Hardware RNG duplicated output!\n");
1481 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1482 spin_unlock_irqrestore(&r->lock, flags);
1483 }
1484 i = min_t(int, nbytes, EXTRACT_SIZE);
1485 memcpy(buf, tmp, i);
1486 nbytes -= i;
1487 buf += i;
1488 ret += i;
1489 }
1490
1491 /* Wipe data just returned from memory */
1492 memzero_explicit(tmp, sizeof(tmp));
1493
1494 return ret;
1495}
1496
19fa5be1
GP
1497/*
1498 * This function extracts randomness from the "entropy pool", and
1499 * returns it in a buffer.
1500 *
1501 * The min parameter specifies the minimum amount we can pull before
1502 * failing to avoid races that defeat catastrophic reseeding while the
1503 * reserved parameter indicates how much entropy we must leave in the
1504 * pool after each pull to avoid starving other readers.
1505 */
90b75ee5 1506static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1507 size_t nbytes, int min, int reserved)
1da177e4 1508{
1da177e4 1509 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1510 unsigned long flags;
1da177e4 1511
ec8f02da 1512 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1513 if (fips_enabled) {
1514 spin_lock_irqsave(&r->lock, flags);
1515 if (!r->last_data_init) {
c59974ae 1516 r->last_data_init = 1;
1e7e2e05
JW
1517 spin_unlock_irqrestore(&r->lock, flags);
1518 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1519 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1520 xfer_secondary_pool(r, EXTRACT_SIZE);
1521 extract_buf(r, tmp);
1522 spin_lock_irqsave(&r->lock, flags);
1523 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1524 }
1525 spin_unlock_irqrestore(&r->lock, flags);
1526 }
ec8f02da 1527
a283b5c4 1528 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1529 xfer_secondary_pool(r, nbytes);
1530 nbytes = account(r, nbytes, min, reserved);
1531
e192be9d 1532 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1533}
1534
19fa5be1
GP
1535/*
1536 * This function extracts randomness from the "entropy pool", and
1537 * returns it in a userspace buffer.
1538 */
1da177e4
LT
1539static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1540 size_t nbytes)
1541{
1542 ssize_t ret = 0, i;
1543 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1544 int large_request = (nbytes > 256);
1da177e4 1545
a283b5c4 1546 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1547 xfer_secondary_pool(r, nbytes);
1548 nbytes = account(r, nbytes, 0, 0);
1549
1550 while (nbytes) {
c6e9d6f3 1551 if (large_request && need_resched()) {
1da177e4
LT
1552 if (signal_pending(current)) {
1553 if (ret == 0)
1554 ret = -ERESTARTSYS;
1555 break;
1556 }
1557 schedule();
1558 }
1559
1560 extract_buf(r, tmp);
1561 i = min_t(int, nbytes, EXTRACT_SIZE);
1562 if (copy_to_user(buf, tmp, i)) {
1563 ret = -EFAULT;
1564 break;
1565 }
1566
1567 nbytes -= i;
1568 buf += i;
1569 ret += i;
1570 }
1571
1572 /* Wipe data just returned from memory */
d4c5efdb 1573 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1574
1575 return ret;
1576}
1577
eecabf56
TT
1578#define warn_unseeded_randomness(previous) \
1579 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1580
1581static void _warn_unseeded_randomness(const char *func_name, void *caller,
1582 void **previous)
1583{
1584#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1585 const bool print_once = false;
1586#else
1587 static bool print_once __read_mostly;
1588#endif
1589
1590 if (print_once ||
1591 crng_ready() ||
1592 (previous && (caller == READ_ONCE(*previous))))
1593 return;
1594 WRITE_ONCE(*previous, caller);
1595#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1596 print_once = true;
1597#endif
4e00b339
TT
1598 if (__ratelimit(&unseeded_warning))
1599 pr_notice("random: %s called from %pS with crng_init=%d\n",
1600 func_name, caller, crng_init);
eecabf56
TT
1601}
1602
1da177e4
LT
1603/*
1604 * This function is the exported kernel interface. It returns some
c2557a30 1605 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1606 * TCP sequence numbers, etc. It does not rely on the hardware random
1607 * number generator. For random bytes direct from the hardware RNG
e297a783
JD
1608 * (when available), use get_random_bytes_arch(). In order to ensure
1609 * that the randomness provided by this function is okay, the function
1610 * wait_for_random_bytes() should be called and return 0 at least once
1611 * at any point prior.
1da177e4 1612 */
eecabf56 1613static void _get_random_bytes(void *buf, int nbytes)
c2557a30 1614{
9f480fae 1615 __u32 tmp[CHACHA20_BLOCK_WORDS];
e192be9d 1616
5910895f 1617 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1618
1619 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1620 extract_crng(buf);
1621 buf += CHACHA20_BLOCK_SIZE;
1622 nbytes -= CHACHA20_BLOCK_SIZE;
1623 }
1624
1625 if (nbytes > 0) {
1626 extract_crng(tmp);
1627 memcpy(buf, tmp, nbytes);
c92e040d
TT
1628 crng_backtrack_protect(tmp, nbytes);
1629 } else
1630 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1631 memzero_explicit(tmp, sizeof(tmp));
c2557a30 1632}
eecabf56
TT
1633
1634void get_random_bytes(void *buf, int nbytes)
1635{
1636 static void *previous;
1637
1638 warn_unseeded_randomness(&previous);
1639 _get_random_bytes(buf, nbytes);
1640}
c2557a30
TT
1641EXPORT_SYMBOL(get_random_bytes);
1642
e297a783
JD
1643/*
1644 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1645 * cryptographically secure random numbers. This applies to: the /dev/urandom
1646 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1647 * family of functions. Using any of these functions without first calling
1648 * this function forfeits the guarantee of security.
1649 *
1650 * Returns: 0 if the urandom pool has been seeded.
1651 * -ERESTARTSYS if the function was interrupted by a signal.
1652 */
1653int wait_for_random_bytes(void)
1654{
1655 if (likely(crng_ready()))
1656 return 0;
1657 return wait_event_interruptible(crng_init_wait, crng_ready());
1658}
1659EXPORT_SYMBOL(wait_for_random_bytes);
1660
205a525c
HX
1661/*
1662 * Add a callback function that will be invoked when the nonblocking
1663 * pool is initialised.
1664 *
1665 * returns: 0 if callback is successfully added
1666 * -EALREADY if pool is already initialised (callback not called)
1667 * -ENOENT if module for callback is not alive
1668 */
1669int add_random_ready_callback(struct random_ready_callback *rdy)
1670{
1671 struct module *owner;
1672 unsigned long flags;
1673 int err = -EALREADY;
1674
e192be9d 1675 if (crng_ready())
205a525c
HX
1676 return err;
1677
1678 owner = rdy->owner;
1679 if (!try_module_get(owner))
1680 return -ENOENT;
1681
1682 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1683 if (crng_ready())
205a525c
HX
1684 goto out;
1685
1686 owner = NULL;
1687
1688 list_add(&rdy->list, &random_ready_list);
1689 err = 0;
1690
1691out:
1692 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1693
1694 module_put(owner);
1695
1696 return err;
1697}
1698EXPORT_SYMBOL(add_random_ready_callback);
1699
1700/*
1701 * Delete a previously registered readiness callback function.
1702 */
1703void del_random_ready_callback(struct random_ready_callback *rdy)
1704{
1705 unsigned long flags;
1706 struct module *owner = NULL;
1707
1708 spin_lock_irqsave(&random_ready_list_lock, flags);
1709 if (!list_empty(&rdy->list)) {
1710 list_del_init(&rdy->list);
1711 owner = rdy->owner;
1712 }
1713 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1714
1715 module_put(owner);
1716}
1717EXPORT_SYMBOL(del_random_ready_callback);
1718
c2557a30
TT
1719/*
1720 * This function will use the architecture-specific hardware random
1721 * number generator if it is available. The arch-specific hw RNG will
1722 * almost certainly be faster than what we can do in software, but it
1723 * is impossible to verify that it is implemented securely (as
1724 * opposed, to, say, the AES encryption of a sequence number using a
1725 * key known by the NSA). So it's useful if we need the speed, but
1726 * only if we're willing to trust the hardware manufacturer not to
1727 * have put in a back door.
1728 */
1729void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1730{
63d77173
PA
1731 char *p = buf;
1732
5910895f 1733 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1734 while (nbytes) {
1735 unsigned long v;
1736 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1737
63d77173
PA
1738 if (!arch_get_random_long(&v))
1739 break;
8ddd6efa 1740
bd29e568 1741 memcpy(p, &v, chunk);
63d77173
PA
1742 p += chunk;
1743 nbytes -= chunk;
1744 }
1745
c2557a30 1746 if (nbytes)
e192be9d 1747 get_random_bytes(p, nbytes);
1da177e4 1748}
c2557a30
TT
1749EXPORT_SYMBOL(get_random_bytes_arch);
1750
1da177e4
LT
1751/*
1752 * init_std_data - initialize pool with system data
1753 *
1754 * @r: pool to initialize
1755 *
1756 * This function clears the pool's entropy count and mixes some system
1757 * data into the pool to prepare it for use. The pool is not cleared
1758 * as that can only decrease the entropy in the pool.
1759 */
1760static void init_std_data(struct entropy_store *r)
1761{
3e88bdff 1762 int i;
902c098a
TT
1763 ktime_t now = ktime_get_real();
1764 unsigned long rv;
1da177e4 1765
f5c2742c 1766 r->last_pulled = jiffies;
85608f8e 1767 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1768 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1769 if (!arch_get_random_seed_long(&rv) &&
1770 !arch_get_random_long(&rv))
ae9ecd92 1771 rv = random_get_entropy();
85608f8e 1772 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1773 }
85608f8e 1774 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1775}
1776
cbc96b75
TL
1777/*
1778 * Note that setup_arch() may call add_device_randomness()
1779 * long before we get here. This allows seeding of the pools
1780 * with some platform dependent data very early in the boot
1781 * process. But it limits our options here. We must use
1782 * statically allocated structures that already have all
1783 * initializations complete at compile time. We should also
1784 * take care not to overwrite the precious per platform data
1785 * we were given.
1786 */
53c3f63e 1787static int rand_initialize(void)
1da177e4
LT
1788{
1789 init_std_data(&input_pool);
1790 init_std_data(&blocking_pool);
e192be9d 1791 crng_initialize(&primary_crng);
d848e5f8 1792 crng_global_init_time = jiffies;
4e00b339
TT
1793 if (ratelimit_disable) {
1794 urandom_warning.interval = 0;
1795 unseeded_warning.interval = 0;
1796 }
1da177e4
LT
1797 return 0;
1798}
ae9ecd92 1799early_initcall(rand_initialize);
1da177e4 1800
9361401e 1801#ifdef CONFIG_BLOCK
1da177e4
LT
1802void rand_initialize_disk(struct gendisk *disk)
1803{
1804 struct timer_rand_state *state;
1805
1806 /*
f8595815 1807 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1808 * source.
1809 */
f8595815 1810 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1811 if (state) {
1812 state->last_time = INITIAL_JIFFIES;
1da177e4 1813 disk->random = state;
644008df 1814 }
1da177e4 1815}
9361401e 1816#endif
1da177e4
LT
1817
1818static ssize_t
c6e9d6f3 1819_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1820{
12ff3a51 1821 ssize_t n;
1da177e4
LT
1822
1823 if (nbytes == 0)
1824 return 0;
1825
12ff3a51
GP
1826 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1827 while (1) {
1828 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1829 if (n < 0)
1830 return n;
f80bbd8b
TT
1831 trace_random_read(n*8, (nbytes-n)*8,
1832 ENTROPY_BITS(&blocking_pool),
1833 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1834 if (n > 0)
1835 return n;
331c6490 1836
12ff3a51 1837 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1838 if (nonblock)
12ff3a51
GP
1839 return -EAGAIN;
1840
a11e1d43 1841 wait_event_interruptible(random_read_wait,
12ff3a51 1842 ENTROPY_BITS(&input_pool) >=
2132a96f 1843 random_read_wakeup_bits);
12ff3a51
GP
1844 if (signal_pending(current))
1845 return -ERESTARTSYS;
1da177e4 1846 }
1da177e4
LT
1847}
1848
c6e9d6f3
TT
1849static ssize_t
1850random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1851{
1852 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1853}
1854
1da177e4 1855static ssize_t
90b75ee5 1856urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1857{
e192be9d 1858 unsigned long flags;
9b4d0087 1859 static int maxwarn = 10;
301f0595
TT
1860 int ret;
1861
e192be9d 1862 if (!crng_ready() && maxwarn > 0) {
9b4d0087 1863 maxwarn--;
4e00b339
TT
1864 if (__ratelimit(&urandom_warning))
1865 printk(KERN_NOTICE "random: %s: uninitialized "
1866 "urandom read (%zd bytes read)\n",
1867 current->comm, nbytes);
e192be9d
TT
1868 spin_lock_irqsave(&primary_crng.lock, flags);
1869 crng_init_cnt = 0;
1870 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1871 }
79a84687 1872 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1873 ret = extract_crng_user(buf, nbytes);
1874 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1875 return ret;
1da177e4
LT
1876}
1877
afc9a42b 1878static __poll_t
a11e1d43 1879random_poll(struct file *file, poll_table * wait)
1da177e4 1880{
a11e1d43 1881 __poll_t mask;
1da177e4 1882
a11e1d43
LT
1883 poll_wait(file, &random_read_wait, wait);
1884 poll_wait(file, &random_write_wait, wait);
1885 mask = 0;
2132a96f 1886 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
a9a08845 1887 mask |= EPOLLIN | EPOLLRDNORM;
2132a96f 1888 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
a9a08845 1889 mask |= EPOLLOUT | EPOLLWRNORM;
1da177e4
LT
1890 return mask;
1891}
1892
7f397dcd
MM
1893static int
1894write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1895{
1da177e4 1896 size_t bytes;
81e69df3 1897 __u32 t, buf[16];
1da177e4 1898 const char __user *p = buffer;
1da177e4 1899
7f397dcd 1900 while (count > 0) {
81e69df3
TT
1901 int b, i = 0;
1902
7f397dcd
MM
1903 bytes = min(count, sizeof(buf));
1904 if (copy_from_user(&buf, p, bytes))
1905 return -EFAULT;
1da177e4 1906
81e69df3
TT
1907 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1908 if (!arch_get_random_int(&t))
1909 break;
1910 buf[i] ^= t;
1911 }
1912
7f397dcd 1913 count -= bytes;
1da177e4
LT
1914 p += bytes;
1915
85608f8e 1916 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1917 cond_resched();
1da177e4 1918 }
7f397dcd
MM
1919
1920 return 0;
1921}
1922
90b75ee5
MM
1923static ssize_t random_write(struct file *file, const char __user *buffer,
1924 size_t count, loff_t *ppos)
7f397dcd
MM
1925{
1926 size_t ret;
7f397dcd 1927
e192be9d 1928 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1929 if (ret)
1930 return ret;
1931
7f397dcd 1932 return (ssize_t)count;
1da177e4
LT
1933}
1934
43ae4860 1935static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1936{
1937 int size, ent_count;
1938 int __user *p = (int __user *)arg;
1939 int retval;
1940
1941 switch (cmd) {
1942 case RNDGETENTCNT:
43ae4860 1943 /* inherently racy, no point locking */
a283b5c4
PA
1944 ent_count = ENTROPY_BITS(&input_pool);
1945 if (put_user(ent_count, p))
1da177e4
LT
1946 return -EFAULT;
1947 return 0;
1948 case RNDADDTOENTCNT:
1949 if (!capable(CAP_SYS_ADMIN))
1950 return -EPERM;
1951 if (get_user(ent_count, p))
1952 return -EFAULT;
86a574de 1953 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1954 case RNDADDENTROPY:
1955 if (!capable(CAP_SYS_ADMIN))
1956 return -EPERM;
1957 if (get_user(ent_count, p++))
1958 return -EFAULT;
1959 if (ent_count < 0)
1960 return -EINVAL;
1961 if (get_user(size, p++))
1962 return -EFAULT;
7f397dcd
MM
1963 retval = write_pool(&input_pool, (const char __user *)p,
1964 size);
1da177e4
LT
1965 if (retval < 0)
1966 return retval;
86a574de 1967 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1968 case RNDZAPENTCNT:
1969 case RNDCLEARPOOL:
ae9ecd92
TT
1970 /*
1971 * Clear the entropy pool counters. We no longer clear
1972 * the entropy pool, as that's silly.
1973 */
1da177e4
LT
1974 if (!capable(CAP_SYS_ADMIN))
1975 return -EPERM;
ae9ecd92 1976 input_pool.entropy_count = 0;
ae9ecd92 1977 blocking_pool.entropy_count = 0;
1da177e4 1978 return 0;
d848e5f8
TT
1979 case RNDRESEEDCRNG:
1980 if (!capable(CAP_SYS_ADMIN))
1981 return -EPERM;
1982 if (crng_init < 2)
1983 return -ENODATA;
1984 crng_reseed(&primary_crng, NULL);
1985 crng_global_init_time = jiffies - 1;
1986 return 0;
1da177e4
LT
1987 default:
1988 return -EINVAL;
1989 }
1990}
1991
9a6f70bb
JD
1992static int random_fasync(int fd, struct file *filp, int on)
1993{
1994 return fasync_helper(fd, filp, on, &fasync);
1995}
1996
2b8693c0 1997const struct file_operations random_fops = {
1da177e4
LT
1998 .read = random_read,
1999 .write = random_write,
a11e1d43 2000 .poll = random_poll,
43ae4860 2001 .unlocked_ioctl = random_ioctl,
9a6f70bb 2002 .fasync = random_fasync,
6038f373 2003 .llseek = noop_llseek,
1da177e4
LT
2004};
2005
2b8693c0 2006const struct file_operations urandom_fops = {
1da177e4
LT
2007 .read = urandom_read,
2008 .write = random_write,
43ae4860 2009 .unlocked_ioctl = random_ioctl,
9a6f70bb 2010 .fasync = random_fasync,
6038f373 2011 .llseek = noop_llseek,
1da177e4
LT
2012};
2013
c6e9d6f3
TT
2014SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2015 unsigned int, flags)
2016{
e297a783
JD
2017 int ret;
2018
c6e9d6f3
TT
2019 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2020 return -EINVAL;
2021
2022 if (count > INT_MAX)
2023 count = INT_MAX;
2024
2025 if (flags & GRND_RANDOM)
2026 return _random_read(flags & GRND_NONBLOCK, buf, count);
2027
e192be9d 2028 if (!crng_ready()) {
c6e9d6f3
TT
2029 if (flags & GRND_NONBLOCK)
2030 return -EAGAIN;
e297a783
JD
2031 ret = wait_for_random_bytes();
2032 if (unlikely(ret))
2033 return ret;
c6e9d6f3
TT
2034 }
2035 return urandom_read(NULL, buf, count, NULL);
2036}
2037
1da177e4
LT
2038/********************************************************************
2039 *
2040 * Sysctl interface
2041 *
2042 ********************************************************************/
2043
2044#ifdef CONFIG_SYSCTL
2045
2046#include <linux/sysctl.h>
2047
2048static int min_read_thresh = 8, min_write_thresh;
8c2aa339 2049static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4 2050static int max_write_thresh = INPUT_POOL_WORDS * 32;
db61ffe3 2051static int random_min_urandom_seed = 60;
1da177e4
LT
2052static char sysctl_bootid[16];
2053
2054/*
f22052b2 2055 * This function is used to return both the bootid UUID, and random
1da177e4
LT
2056 * UUID. The difference is in whether table->data is NULL; if it is,
2057 * then a new UUID is generated and returned to the user.
2058 *
f22052b2
GP
2059 * If the user accesses this via the proc interface, the UUID will be
2060 * returned as an ASCII string in the standard UUID format; if via the
2061 * sysctl system call, as 16 bytes of binary data.
1da177e4 2062 */
a151427e 2063static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
2064 void __user *buffer, size_t *lenp, loff_t *ppos)
2065{
a151427e 2066 struct ctl_table fake_table;
1da177e4
LT
2067 unsigned char buf[64], tmp_uuid[16], *uuid;
2068
2069 uuid = table->data;
2070 if (!uuid) {
2071 uuid = tmp_uuid;
1da177e4 2072 generate_random_uuid(uuid);
44e4360f
MD
2073 } else {
2074 static DEFINE_SPINLOCK(bootid_spinlock);
2075
2076 spin_lock(&bootid_spinlock);
2077 if (!uuid[8])
2078 generate_random_uuid(uuid);
2079 spin_unlock(&bootid_spinlock);
2080 }
1da177e4 2081
35900771
JP
2082 sprintf(buf, "%pU", uuid);
2083
1da177e4
LT
2084 fake_table.data = buf;
2085 fake_table.maxlen = sizeof(buf);
2086
8d65af78 2087 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
2088}
2089
a283b5c4
PA
2090/*
2091 * Return entropy available scaled to integral bits
2092 */
5eb10d91 2093static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
2094 void __user *buffer, size_t *lenp, loff_t *ppos)
2095{
5eb10d91 2096 struct ctl_table fake_table;
a283b5c4
PA
2097 int entropy_count;
2098
2099 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2100
2101 fake_table.data = &entropy_count;
2102 fake_table.maxlen = sizeof(entropy_count);
2103
2104 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2105}
2106
1da177e4 2107static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
2108extern struct ctl_table random_table[];
2109struct ctl_table random_table[] = {
1da177e4 2110 {
1da177e4
LT
2111 .procname = "poolsize",
2112 .data = &sysctl_poolsize,
2113 .maxlen = sizeof(int),
2114 .mode = 0444,
6d456111 2115 .proc_handler = proc_dointvec,
1da177e4
LT
2116 },
2117 {
1da177e4
LT
2118 .procname = "entropy_avail",
2119 .maxlen = sizeof(int),
2120 .mode = 0444,
a283b5c4 2121 .proc_handler = proc_do_entropy,
1da177e4
LT
2122 .data = &input_pool.entropy_count,
2123 },
2124 {
1da177e4 2125 .procname = "read_wakeup_threshold",
2132a96f 2126 .data = &random_read_wakeup_bits,
1da177e4
LT
2127 .maxlen = sizeof(int),
2128 .mode = 0644,
6d456111 2129 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2130 .extra1 = &min_read_thresh,
2131 .extra2 = &max_read_thresh,
2132 },
2133 {
1da177e4 2134 .procname = "write_wakeup_threshold",
2132a96f 2135 .data = &random_write_wakeup_bits,
1da177e4
LT
2136 .maxlen = sizeof(int),
2137 .mode = 0644,
6d456111 2138 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2139 .extra1 = &min_write_thresh,
2140 .extra2 = &max_write_thresh,
2141 },
f5c2742c
TT
2142 {
2143 .procname = "urandom_min_reseed_secs",
2144 .data = &random_min_urandom_seed,
2145 .maxlen = sizeof(int),
2146 .mode = 0644,
2147 .proc_handler = proc_dointvec,
2148 },
1da177e4 2149 {
1da177e4
LT
2150 .procname = "boot_id",
2151 .data = &sysctl_bootid,
2152 .maxlen = 16,
2153 .mode = 0444,
6d456111 2154 .proc_handler = proc_do_uuid,
1da177e4
LT
2155 },
2156 {
1da177e4
LT
2157 .procname = "uuid",
2158 .maxlen = 16,
2159 .mode = 0444,
6d456111 2160 .proc_handler = proc_do_uuid,
1da177e4 2161 },
43759d4f
TT
2162#ifdef ADD_INTERRUPT_BENCH
2163 {
2164 .procname = "add_interrupt_avg_cycles",
2165 .data = &avg_cycles,
2166 .maxlen = sizeof(avg_cycles),
2167 .mode = 0444,
2168 .proc_handler = proc_doulongvec_minmax,
2169 },
2170 {
2171 .procname = "add_interrupt_avg_deviation",
2172 .data = &avg_deviation,
2173 .maxlen = sizeof(avg_deviation),
2174 .mode = 0444,
2175 .proc_handler = proc_doulongvec_minmax,
2176 },
2177#endif
894d2491 2178 { }
1da177e4
LT
2179};
2180#endif /* CONFIG_SYSCTL */
2181
f5b98461
JD
2182struct batched_entropy {
2183 union {
c440408c
JD
2184 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2185 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
f5b98461
JD
2186 };
2187 unsigned int position;
2188};
b169c13d 2189static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
b1132dea 2190
1da177e4 2191/*
f5b98461
JD
2192 * Get a random word for internal kernel use only. The quality of the random
2193 * number is either as good as RDRAND or as good as /dev/urandom, with the
e297a783
JD
2194 * goal of being quite fast and not depleting entropy. In order to ensure
2195 * that the randomness provided by this function is okay, the function
2196 * wait_for_random_bytes() should be called and return 0 at least once
2197 * at any point prior.
1da177e4 2198 */
c440408c
JD
2199static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2200u64 get_random_u64(void)
1da177e4 2201{
c440408c 2202 u64 ret;
72e5c740 2203 bool use_lock;
4a072c71 2204 unsigned long flags = 0;
f5b98461 2205 struct batched_entropy *batch;
eecabf56 2206 static void *previous;
8a0a9bd4 2207
c440408c
JD
2208#if BITS_PER_LONG == 64
2209 if (arch_get_random_long((unsigned long *)&ret))
63d77173 2210 return ret;
c440408c
JD
2211#else
2212 if (arch_get_random_long((unsigned long *)&ret) &&
2213 arch_get_random_long((unsigned long *)&ret + 1))
2214 return ret;
2215#endif
63d77173 2216
eecabf56 2217 warn_unseeded_randomness(&previous);
d06bfd19 2218
72e5c740 2219 use_lock = READ_ONCE(crng_init) < 2;
c440408c 2220 batch = &get_cpu_var(batched_entropy_u64);
b169c13d
JD
2221 if (use_lock)
2222 read_lock_irqsave(&batched_entropy_reset_lock, flags);
c440408c 2223 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
9f480fae 2224 extract_crng((__u32 *)batch->entropy_u64);
f5b98461
JD
2225 batch->position = 0;
2226 }
c440408c 2227 ret = batch->entropy_u64[batch->position++];
b169c13d
JD
2228 if (use_lock)
2229 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
c440408c 2230 put_cpu_var(batched_entropy_u64);
8a0a9bd4 2231 return ret;
1da177e4 2232}
c440408c 2233EXPORT_SYMBOL(get_random_u64);
1da177e4 2234
c440408c
JD
2235static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2236u32 get_random_u32(void)
f5b98461 2237{
c440408c 2238 u32 ret;
72e5c740 2239 bool use_lock;
4a072c71 2240 unsigned long flags = 0;
f5b98461 2241 struct batched_entropy *batch;
eecabf56 2242 static void *previous;
ec9ee4ac 2243
f5b98461 2244 if (arch_get_random_int(&ret))
ec9ee4ac
DC
2245 return ret;
2246
eecabf56 2247 warn_unseeded_randomness(&previous);
d06bfd19 2248
72e5c740 2249 use_lock = READ_ONCE(crng_init) < 2;
c440408c 2250 batch = &get_cpu_var(batched_entropy_u32);
b169c13d
JD
2251 if (use_lock)
2252 read_lock_irqsave(&batched_entropy_reset_lock, flags);
c440408c 2253 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
9f480fae 2254 extract_crng(batch->entropy_u32);
f5b98461
JD
2255 batch->position = 0;
2256 }
c440408c 2257 ret = batch->entropy_u32[batch->position++];
b169c13d
JD
2258 if (use_lock)
2259 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
c440408c 2260 put_cpu_var(batched_entropy_u32);
ec9ee4ac
DC
2261 return ret;
2262}
c440408c 2263EXPORT_SYMBOL(get_random_u32);
ec9ee4ac 2264
b169c13d
JD
2265/* It's important to invalidate all potential batched entropy that might
2266 * be stored before the crng is initialized, which we can do lazily by
2267 * simply resetting the counter to zero so that it's re-extracted on the
2268 * next usage. */
2269static void invalidate_batched_entropy(void)
2270{
2271 int cpu;
2272 unsigned long flags;
2273
2274 write_lock_irqsave(&batched_entropy_reset_lock, flags);
2275 for_each_possible_cpu (cpu) {
2276 per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2277 per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2278 }
2279 write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2280}
2281
99fdafde
JC
2282/**
2283 * randomize_page - Generate a random, page aligned address
2284 * @start: The smallest acceptable address the caller will take.
2285 * @range: The size of the area, starting at @start, within which the
2286 * random address must fall.
2287 *
2288 * If @start + @range would overflow, @range is capped.
2289 *
2290 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2291 * @start was already page aligned. We now align it regardless.
2292 *
2293 * Return: A page aligned address within [start, start + range). On error,
2294 * @start is returned.
2295 */
2296unsigned long
2297randomize_page(unsigned long start, unsigned long range)
2298{
2299 if (!PAGE_ALIGNED(start)) {
2300 range -= PAGE_ALIGN(start) - start;
2301 start = PAGE_ALIGN(start);
2302 }
2303
2304 if (start > ULONG_MAX - range)
2305 range = ULONG_MAX - start;
2306
2307 range >>= PAGE_SHIFT;
2308
2309 if (range == 0)
2310 return start;
2311
2312 return start + (get_random_long() % range << PAGE_SHIFT);
2313}
2314
c84dbf61
TD
2315/* Interface for in-kernel drivers of true hardware RNGs.
2316 * Those devices may produce endless random bits and will be throttled
2317 * when our pool is full.
2318 */
2319void add_hwgenerator_randomness(const char *buffer, size_t count,
2320 size_t entropy)
2321{
2322 struct entropy_store *poolp = &input_pool;
2323
43838a23 2324 if (unlikely(crng_init == 0)) {
e192be9d
TT
2325 crng_fast_load(buffer, count);
2326 return;
3371f3da 2327 }
e192be9d
TT
2328
2329 /* Suspend writing if we're above the trickle threshold.
2330 * We'll be woken up again once below random_write_wakeup_thresh,
2331 * or when the calling thread is about to terminate.
2332 */
a11e1d43 2333 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
e192be9d 2334 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2335 mix_pool_bytes(poolp, buffer, count);
2336 credit_entropy_bits(poolp, entropy);
2337}
2338EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);