random: strengthen input validation for RNDADDTOENTCNT
[linux-2.6-block.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4 252#include <linux/spinlock.h>
c84dbf61 253#include <linux/kthread.h>
1da177e4
LT
254#include <linux/percpu.h>
255#include <linux/cryptohash.h>
5b739ef8 256#include <linux/fips.h>
775f4b29 257#include <linux/ptrace.h>
e6d4947b 258#include <linux/kmemcheck.h>
6265e169 259#include <linux/workqueue.h>
0244ad00 260#include <linux/irq.h>
c6e9d6f3
TT
261#include <linux/syscalls.h>
262#include <linux/completion.h>
8da4b8c4 263#include <linux/uuid.h>
e192be9d 264#include <crypto/chacha20.h>
d178a1eb 265
1da177e4
LT
266#include <asm/processor.h>
267#include <asm/uaccess.h>
268#include <asm/irq.h>
775f4b29 269#include <asm/irq_regs.h>
1da177e4
LT
270#include <asm/io.h>
271
00ce1db1
TT
272#define CREATE_TRACE_POINTS
273#include <trace/events/random.h>
274
43759d4f
TT
275/* #define ADD_INTERRUPT_BENCH */
276
1da177e4
LT
277/*
278 * Configuration information
279 */
30e37ec5
PA
280#define INPUT_POOL_SHIFT 12
281#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
282#define OUTPUT_POOL_SHIFT 10
283#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
284#define SEC_XFER_SIZE 512
285#define EXTRACT_SIZE 10
1da177e4 286
392a546d 287#define DEBUG_RANDOM_BOOT 0
1da177e4 288
d2e7c96a
PA
289#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
290
a283b5c4 291/*
95b709b6
TT
292 * To allow fractional bits to be tracked, the entropy_count field is
293 * denominated in units of 1/8th bits.
30e37ec5
PA
294 *
295 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
296 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
297 */
298#define ENTROPY_SHIFT 3
299#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
300
1da177e4
LT
301/*
302 * The minimum number of bits of entropy before we wake up a read on
303 * /dev/random. Should be enough to do a significant reseed.
304 */
2132a96f 305static int random_read_wakeup_bits = 64;
1da177e4
LT
306
307/*
308 * If the entropy count falls under this number of bits, then we
309 * should wake up processes which are selecting or polling on write
310 * access to /dev/random.
311 */
2132a96f 312static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4
LT
313
314/*
dfd38750 315 * The minimum number of seconds between urandom pool reseeding. We
f5c2742c
TT
316 * do this to limit the amount of entropy that can be drained from the
317 * input pool even if there are heavy demands on /dev/urandom.
1da177e4 318 */
f5c2742c 319static int random_min_urandom_seed = 60;
1da177e4
LT
320
321/*
6e9fa2c8
TT
322 * Originally, we used a primitive polynomial of degree .poolwords
323 * over GF(2). The taps for various sizes are defined below. They
324 * were chosen to be evenly spaced except for the last tap, which is 1
325 * to get the twisting happening as fast as possible.
326 *
327 * For the purposes of better mixing, we use the CRC-32 polynomial as
328 * well to make a (modified) twisted Generalized Feedback Shift
329 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
330 * generators. ACM Transactions on Modeling and Computer Simulation
331 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 332 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
333 * Simulation 4:254-266)
334 *
335 * Thanks to Colin Plumb for suggesting this.
336 *
337 * The mixing operation is much less sensitive than the output hash,
338 * where we use SHA-1. All that we want of mixing operation is that
339 * it be a good non-cryptographic hash; i.e. it not produce collisions
340 * when fed "random" data of the sort we expect to see. As long as
341 * the pool state differs for different inputs, we have preserved the
342 * input entropy and done a good job. The fact that an intelligent
343 * attacker can construct inputs that will produce controlled
344 * alterations to the pool's state is not important because we don't
345 * consider such inputs to contribute any randomness. The only
346 * property we need with respect to them is that the attacker can't
347 * increase his/her knowledge of the pool's state. Since all
348 * additions are reversible (knowing the final state and the input,
349 * you can reconstruct the initial state), if an attacker has any
350 * uncertainty about the initial state, he/she can only shuffle that
351 * uncertainty about, but never cause any collisions (which would
352 * decrease the uncertainty).
353 *
354 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
355 * Videau in their paper, "The Linux Pseudorandom Number Generator
356 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
357 * paper, they point out that we are not using a true Twisted GFSR,
358 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
359 * is, with only three taps, instead of the six that we are using).
360 * As a result, the resulting polynomial is neither primitive nor
361 * irreducible, and hence does not have a maximal period over
362 * GF(2**32). They suggest a slight change to the generator
363 * polynomial which improves the resulting TGFSR polynomial to be
364 * irreducible, which we have made here.
1da177e4
LT
365 */
366static struct poolinfo {
a283b5c4
PA
367 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
368#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
369 int tap1, tap2, tap3, tap4, tap5;
370} poolinfo_table[] = {
6e9fa2c8
TT
371 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
372 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
373 { S(128), 104, 76, 51, 25, 1 },
374 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
375 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
376 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
377#if 0
378 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 379 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
380
381 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 382 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
383
384 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 385 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
386
387 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 388 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
389
390 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 391 { S(512), 409, 307, 206, 102, 2 },
1da177e4 392 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 393 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
394
395 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 396 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
397
398 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 399 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
400
401 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 402 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
403#endif
404};
405
1da177e4
LT
406/*
407 * Static global variables
408 */
409static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
410static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
c6e9d6f3 411static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
9a6f70bb 412static struct fasync_struct *fasync;
1da177e4 413
205a525c
HX
414static DEFINE_SPINLOCK(random_ready_list_lock);
415static LIST_HEAD(random_ready_list);
416
e192be9d
TT
417struct crng_state {
418 __u32 state[16];
419 unsigned long init_time;
420 spinlock_t lock;
421};
422
423struct crng_state primary_crng = {
424 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
425};
426
427/*
428 * crng_init = 0 --> Uninitialized
429 * 1 --> Initialized
430 * 2 --> Initialized from input_pool
431 *
432 * crng_init is protected by primary_crng->lock, and only increases
433 * its value (from 0->1->2).
434 */
435static int crng_init = 0;
436#define crng_ready() (likely(crng_init > 0))
437static int crng_init_cnt = 0;
438#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
1e7f583a
TT
439static void _extract_crng(struct crng_state *crng,
440 __u8 out[CHACHA20_BLOCK_SIZE]);
c92e040d
TT
441static void _crng_backtrack_protect(struct crng_state *crng,
442 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
e192be9d
TT
443static void process_random_ready_list(void);
444
1da177e4
LT
445/**********************************************************************
446 *
447 * OS independent entropy store. Here are the functions which handle
448 * storing entropy in an entropy pool.
449 *
450 **********************************************************************/
451
452struct entropy_store;
453struct entropy_store {
43358209 454 /* read-only data: */
30e37ec5 455 const struct poolinfo *poolinfo;
1da177e4
LT
456 __u32 *pool;
457 const char *name;
1da177e4 458 struct entropy_store *pull;
6265e169 459 struct work_struct push_work;
1da177e4
LT
460
461 /* read-write data: */
f5c2742c 462 unsigned long last_pulled;
43358209 463 spinlock_t lock;
c59974ae
TT
464 unsigned short add_ptr;
465 unsigned short input_rotate;
cda796a3 466 int entropy_count;
775f4b29 467 int entropy_total;
775f4b29 468 unsigned int initialized:1;
c59974ae
TT
469 unsigned int limit:1;
470 unsigned int last_data_init:1;
e954bc91 471 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
472};
473
e192be9d
TT
474static ssize_t extract_entropy(struct entropy_store *r, void *buf,
475 size_t nbytes, int min, int rsvd);
476static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
477 size_t nbytes, int fips);
478
479static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 480static void push_to_pool(struct work_struct *work);
1da177e4
LT
481static __u32 input_pool_data[INPUT_POOL_WORDS];
482static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
1da177e4
LT
483
484static struct entropy_store input_pool = {
485 .poolinfo = &poolinfo_table[0],
486 .name = "input",
487 .limit = 1,
eece09ec 488 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
489 .pool = input_pool_data
490};
491
492static struct entropy_store blocking_pool = {
493 .poolinfo = &poolinfo_table[1],
494 .name = "blocking",
495 .limit = 1,
496 .pull = &input_pool,
eece09ec 497 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
498 .pool = blocking_pool_data,
499 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
500 push_to_pool),
1da177e4
LT
501};
502
775f4b29
TT
503static __u32 const twist_table[8] = {
504 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
505 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
506
1da177e4 507/*
e68e5b66 508 * This function adds bytes into the entropy "pool". It does not
1da177e4 509 * update the entropy estimate. The caller should call
adc782da 510 * credit_entropy_bits if this is appropriate.
1da177e4
LT
511 *
512 * The pool is stirred with a primitive polynomial of the appropriate
513 * degree, and then twisted. We twist by three bits at a time because
514 * it's cheap to do so and helps slightly in the expected case where
515 * the entropy is concentrated in the low-order bits.
516 */
00ce1db1 517static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 518 int nbytes)
1da177e4 519{
85608f8e 520 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 521 int input_rotate;
1da177e4 522 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 523 const char *bytes = in;
6d38b827 524 __u32 w;
1da177e4 525
1da177e4
LT
526 tap1 = r->poolinfo->tap1;
527 tap2 = r->poolinfo->tap2;
528 tap3 = r->poolinfo->tap3;
529 tap4 = r->poolinfo->tap4;
530 tap5 = r->poolinfo->tap5;
1da177e4 531
91fcb532
TT
532 input_rotate = r->input_rotate;
533 i = r->add_ptr;
1da177e4 534
e68e5b66
MM
535 /* mix one byte at a time to simplify size handling and churn faster */
536 while (nbytes--) {
c59974ae 537 w = rol32(*bytes++, input_rotate);
993ba211 538 i = (i - 1) & wordmask;
1da177e4
LT
539
540 /* XOR in the various taps */
993ba211 541 w ^= r->pool[i];
1da177e4
LT
542 w ^= r->pool[(i + tap1) & wordmask];
543 w ^= r->pool[(i + tap2) & wordmask];
544 w ^= r->pool[(i + tap3) & wordmask];
545 w ^= r->pool[(i + tap4) & wordmask];
546 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
547
548 /* Mix the result back in with a twist */
1da177e4 549 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
550
551 /*
552 * Normally, we add 7 bits of rotation to the pool.
553 * At the beginning of the pool, add an extra 7 bits
554 * rotation, so that successive passes spread the
555 * input bits across the pool evenly.
556 */
c59974ae 557 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
558 }
559
91fcb532
TT
560 r->input_rotate = input_rotate;
561 r->add_ptr = i;
1da177e4
LT
562}
563
00ce1db1 564static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 565 int nbytes)
00ce1db1
TT
566{
567 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 568 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
569}
570
571static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 572 int nbytes)
1da177e4 573{
902c098a
TT
574 unsigned long flags;
575
00ce1db1 576 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 577 spin_lock_irqsave(&r->lock, flags);
85608f8e 578 _mix_pool_bytes(r, in, nbytes);
902c098a 579 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
580}
581
775f4b29
TT
582struct fast_pool {
583 __u32 pool[4];
584 unsigned long last;
ee3e00e9 585 unsigned short reg_idx;
840f9507 586 unsigned char count;
775f4b29
TT
587};
588
589/*
590 * This is a fast mixing routine used by the interrupt randomness
591 * collector. It's hardcoded for an 128 bit pool and assumes that any
592 * locks that might be needed are taken by the caller.
593 */
43759d4f 594static void fast_mix(struct fast_pool *f)
775f4b29 595{
43759d4f
TT
596 __u32 a = f->pool[0], b = f->pool[1];
597 __u32 c = f->pool[2], d = f->pool[3];
598
599 a += b; c += d;
19acc77a 600 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
601 d ^= a; b ^= c;
602
603 a += b; c += d;
19acc77a 604 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
605 d ^= a; b ^= c;
606
607 a += b; c += d;
19acc77a 608 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
609 d ^= a; b ^= c;
610
611 a += b; c += d;
19acc77a 612 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
613 d ^= a; b ^= c;
614
615 f->pool[0] = a; f->pool[1] = b;
616 f->pool[2] = c; f->pool[3] = d;
655b2264 617 f->count++;
775f4b29
TT
618}
619
205a525c
HX
620static void process_random_ready_list(void)
621{
622 unsigned long flags;
623 struct random_ready_callback *rdy, *tmp;
624
625 spin_lock_irqsave(&random_ready_list_lock, flags);
626 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
627 struct module *owner = rdy->owner;
628
629 list_del_init(&rdy->list);
630 rdy->func(rdy);
631 module_put(owner);
632 }
633 spin_unlock_irqrestore(&random_ready_list_lock, flags);
634}
635
1da177e4 636/*
a283b5c4
PA
637 * Credit (or debit) the entropy store with n bits of entropy.
638 * Use credit_entropy_bits_safe() if the value comes from userspace
639 * or otherwise should be checked for extreme values.
1da177e4 640 */
adc782da 641static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 642{
902c098a 643 int entropy_count, orig;
30e37ec5
PA
644 const int pool_size = r->poolinfo->poolfracbits;
645 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 646
adc782da
MM
647 if (!nbits)
648 return;
649
902c098a
TT
650retry:
651 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
652 if (nfrac < 0) {
653 /* Debit */
654 entropy_count += nfrac;
655 } else {
656 /*
657 * Credit: we have to account for the possibility of
658 * overwriting already present entropy. Even in the
659 * ideal case of pure Shannon entropy, new contributions
660 * approach the full value asymptotically:
661 *
662 * entropy <- entropy + (pool_size - entropy) *
663 * (1 - exp(-add_entropy/pool_size))
664 *
665 * For add_entropy <= pool_size/2 then
666 * (1 - exp(-add_entropy/pool_size)) >=
667 * (add_entropy/pool_size)*0.7869...
668 * so we can approximate the exponential with
669 * 3/4*add_entropy/pool_size and still be on the
670 * safe side by adding at most pool_size/2 at a time.
671 *
672 * The use of pool_size-2 in the while statement is to
673 * prevent rounding artifacts from making the loop
674 * arbitrarily long; this limits the loop to log2(pool_size)*2
675 * turns no matter how large nbits is.
676 */
677 int pnfrac = nfrac;
678 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
679 /* The +2 corresponds to the /4 in the denominator */
680
681 do {
682 unsigned int anfrac = min(pnfrac, pool_size/2);
683 unsigned int add =
684 ((pool_size - entropy_count)*anfrac*3) >> s;
685
686 entropy_count += add;
687 pnfrac -= anfrac;
688 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
689 }
00ce1db1 690
79a84687 691 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
692 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
693 r->name, entropy_count);
694 WARN_ON(1);
8b76f46a 695 entropy_count = 0;
30e37ec5
PA
696 } else if (entropy_count > pool_size)
697 entropy_count = pool_size;
902c098a
TT
698 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
699 goto retry;
1da177e4 700
6265e169 701 r->entropy_total += nbits;
0891ad82
LT
702 if (!r->initialized && r->entropy_total > 128) {
703 r->initialized = 1;
704 r->entropy_total = 0;
775f4b29
TT
705 }
706
a283b5c4
PA
707 trace_credit_entropy_bits(r->name, nbits,
708 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
709 r->entropy_total, _RET_IP_);
710
6265e169 711 if (r == &input_pool) {
7d1b08c4 712 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 713
e192be9d
TT
714 if (crng_init < 2 && entropy_bits >= 128) {
715 crng_reseed(&primary_crng, r);
716 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
717 }
718
6265e169 719 /* should we wake readers? */
2132a96f 720 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
721 wake_up_interruptible(&random_read_wait);
722 kill_fasync(&fasync, SIGIO, POLL_IN);
723 }
724 /* If the input pool is getting full, send some
e192be9d 725 * entropy to the blocking pool until it is 75% full.
6265e169 726 */
2132a96f 727 if (entropy_bits > random_write_wakeup_bits &&
6265e169 728 r->initialized &&
2132a96f 729 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
730 struct entropy_store *other = &blocking_pool;
731
6265e169 732 if (other->entropy_count <=
e192be9d
TT
733 3 * other->poolinfo->poolfracbits / 4) {
734 schedule_work(&other->push_work);
6265e169
TT
735 r->entropy_total = 0;
736 }
737 }
9a6f70bb 738 }
1da177e4
LT
739}
740
86a574de 741static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4
PA
742{
743 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
744
86a574de
TT
745 if (nbits < 0)
746 return -EINVAL;
747
a283b5c4
PA
748 /* Cap the value to avoid overflows */
749 nbits = min(nbits, nbits_max);
a283b5c4
PA
750
751 credit_entropy_bits(r, nbits);
86a574de 752 return 0;
a283b5c4
PA
753}
754
e192be9d
TT
755/*********************************************************************
756 *
757 * CRNG using CHACHA20
758 *
759 *********************************************************************/
760
761#define CRNG_RESEED_INTERVAL (300*HZ)
762
763static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
764
1e7f583a
TT
765#ifdef CONFIG_NUMA
766/*
767 * Hack to deal with crazy userspace progams when they are all trying
768 * to access /dev/urandom in parallel. The programs are almost
769 * certainly doing something terribly wrong, but we'll work around
770 * their brain damage.
771 */
772static struct crng_state **crng_node_pool __read_mostly;
773#endif
774
e192be9d
TT
775static void crng_initialize(struct crng_state *crng)
776{
777 int i;
778 unsigned long rv;
779
780 memcpy(&crng->state[0], "expand 32-byte k", 16);
781 if (crng == &primary_crng)
782 _extract_entropy(&input_pool, &crng->state[4],
783 sizeof(__u32) * 12, 0);
784 else
785 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
786 for (i = 4; i < 16; i++) {
787 if (!arch_get_random_seed_long(&rv) &&
788 !arch_get_random_long(&rv))
789 rv = random_get_entropy();
790 crng->state[i] ^= rv;
791 }
792 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
793}
794
795static int crng_fast_load(const char *cp, size_t len)
796{
797 unsigned long flags;
798 char *p;
799
800 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
801 return 0;
802 if (crng_ready()) {
803 spin_unlock_irqrestore(&primary_crng.lock, flags);
804 return 0;
805 }
806 p = (unsigned char *) &primary_crng.state[4];
807 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
808 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
809 cp++; crng_init_cnt++; len--;
810 }
811 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
812 crng_init = 1;
813 wake_up_interruptible(&crng_init_wait);
814 pr_notice("random: fast init done\n");
815 }
816 spin_unlock_irqrestore(&primary_crng.lock, flags);
817 return 1;
818}
819
820static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
821{
822 unsigned long flags;
823 int i, num;
824 union {
825 __u8 block[CHACHA20_BLOCK_SIZE];
826 __u32 key[8];
827 } buf;
828
829 if (r) {
830 num = extract_entropy(r, &buf, 32, 16, 0);
831 if (num == 0)
832 return;
c92e040d 833 } else {
1e7f583a 834 _extract_crng(&primary_crng, buf.block);
c92e040d
TT
835 _crng_backtrack_protect(&primary_crng, buf.block,
836 CHACHA20_KEY_SIZE);
837 }
e192be9d
TT
838 spin_lock_irqsave(&primary_crng.lock, flags);
839 for (i = 0; i < 8; i++) {
840 unsigned long rv;
841 if (!arch_get_random_seed_long(&rv) &&
842 !arch_get_random_long(&rv))
843 rv = random_get_entropy();
844 crng->state[i+4] ^= buf.key[i] ^ rv;
845 }
846 memzero_explicit(&buf, sizeof(buf));
847 crng->init_time = jiffies;
848 if (crng == &primary_crng && crng_init < 2) {
849 crng_init = 2;
850 process_random_ready_list();
851 wake_up_interruptible(&crng_init_wait);
852 pr_notice("random: crng init done\n");
853 }
854 spin_unlock_irqrestore(&primary_crng.lock, flags);
855}
856
1e7f583a
TT
857static inline void maybe_reseed_primary_crng(void)
858{
859 if (crng_init > 2 &&
860 time_after(jiffies, primary_crng.init_time + CRNG_RESEED_INTERVAL))
861 crng_reseed(&primary_crng, &input_pool);
862}
863
e192be9d
TT
864static inline void crng_wait_ready(void)
865{
866 wait_event_interruptible(crng_init_wait, crng_ready());
867}
868
1e7f583a
TT
869static void _extract_crng(struct crng_state *crng,
870 __u8 out[CHACHA20_BLOCK_SIZE])
e192be9d
TT
871{
872 unsigned long v, flags;
e192be9d
TT
873
874 if (crng_init > 1 &&
875 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
1e7f583a 876 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
877 spin_lock_irqsave(&crng->lock, flags);
878 if (arch_get_random_long(&v))
879 crng->state[14] ^= v;
880 chacha20_block(&crng->state[0], out);
881 if (crng->state[12] == 0)
882 crng->state[13]++;
883 spin_unlock_irqrestore(&crng->lock, flags);
884}
885
1e7f583a
TT
886static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
887{
888 struct crng_state *crng = NULL;
889
890#ifdef CONFIG_NUMA
891 if (crng_node_pool)
892 crng = crng_node_pool[numa_node_id()];
893 if (crng == NULL)
894#endif
895 crng = &primary_crng;
896 _extract_crng(crng, out);
897}
898
c92e040d
TT
899/*
900 * Use the leftover bytes from the CRNG block output (if there is
901 * enough) to mutate the CRNG key to provide backtracking protection.
902 */
903static void _crng_backtrack_protect(struct crng_state *crng,
904 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
905{
906 unsigned long flags;
907 __u32 *s, *d;
908 int i;
909
910 used = round_up(used, sizeof(__u32));
911 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
912 extract_crng(tmp);
913 used = 0;
914 }
915 spin_lock_irqsave(&crng->lock, flags);
916 s = (__u32 *) &tmp[used];
917 d = &crng->state[4];
918 for (i=0; i < 8; i++)
919 *d++ ^= *s++;
920 spin_unlock_irqrestore(&crng->lock, flags);
921}
922
923static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
924{
925 struct crng_state *crng = NULL;
926
927#ifdef CONFIG_NUMA
928 if (crng_node_pool)
929 crng = crng_node_pool[numa_node_id()];
930 if (crng == NULL)
931#endif
932 crng = &primary_crng;
933 _crng_backtrack_protect(crng, tmp, used);
934}
935
e192be9d
TT
936static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
937{
c92e040d 938 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
e192be9d
TT
939 __u8 tmp[CHACHA20_BLOCK_SIZE];
940 int large_request = (nbytes > 256);
941
942 while (nbytes) {
943 if (large_request && need_resched()) {
944 if (signal_pending(current)) {
945 if (ret == 0)
946 ret = -ERESTARTSYS;
947 break;
948 }
949 schedule();
950 }
951
952 extract_crng(tmp);
953 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
954 if (copy_to_user(buf, tmp, i)) {
955 ret = -EFAULT;
956 break;
957 }
958
959 nbytes -= i;
960 buf += i;
961 ret += i;
962 }
c92e040d 963 crng_backtrack_protect(tmp, i);
e192be9d
TT
964
965 /* Wipe data just written to memory */
966 memzero_explicit(tmp, sizeof(tmp));
967
968 return ret;
969}
970
971
1da177e4
LT
972/*********************************************************************
973 *
974 * Entropy input management
975 *
976 *********************************************************************/
977
978/* There is one of these per entropy source */
979struct timer_rand_state {
980 cycles_t last_time;
90b75ee5 981 long last_delta, last_delta2;
1da177e4
LT
982 unsigned dont_count_entropy:1;
983};
984
644008df
TT
985#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
986
a2080a67 987/*
e192be9d
TT
988 * Add device- or boot-specific data to the input pool to help
989 * initialize it.
a2080a67 990 *
e192be9d
TT
991 * None of this adds any entropy; it is meant to avoid the problem of
992 * the entropy pool having similar initial state across largely
993 * identical devices.
a2080a67
LT
994 */
995void add_device_randomness(const void *buf, unsigned int size)
996{
61875f30 997 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 998 unsigned long flags;
a2080a67 999
5910895f 1000 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 1001 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
1002 _mix_pool_bytes(&input_pool, buf, size);
1003 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 1004 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
1005}
1006EXPORT_SYMBOL(add_device_randomness);
1007
644008df 1008static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 1009
1da177e4
LT
1010/*
1011 * This function adds entropy to the entropy "pool" by using timing
1012 * delays. It uses the timer_rand_state structure to make an estimate
1013 * of how many bits of entropy this call has added to the pool.
1014 *
1015 * The number "num" is also added to the pool - it should somehow describe
1016 * the type of event which just happened. This is currently 0-255 for
1017 * keyboard scan codes, and 256 upwards for interrupts.
1018 *
1019 */
1020static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1021{
40db23e5 1022 struct entropy_store *r;
1da177e4 1023 struct {
1da177e4 1024 long jiffies;
cf833d0b 1025 unsigned cycles;
1da177e4
LT
1026 unsigned num;
1027 } sample;
1028 long delta, delta2, delta3;
1029
1030 preempt_disable();
1da177e4
LT
1031
1032 sample.jiffies = jiffies;
61875f30 1033 sample.cycles = random_get_entropy();
1da177e4 1034 sample.num = num;
e192be9d 1035 r = &input_pool;
85608f8e 1036 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1037
1038 /*
1039 * Calculate number of bits of randomness we probably added.
1040 * We take into account the first, second and third-order deltas
1041 * in order to make our estimate.
1042 */
1043
1044 if (!state->dont_count_entropy) {
1045 delta = sample.jiffies - state->last_time;
1046 state->last_time = sample.jiffies;
1047
1048 delta2 = delta - state->last_delta;
1049 state->last_delta = delta;
1050
1051 delta3 = delta2 - state->last_delta2;
1052 state->last_delta2 = delta2;
1053
1054 if (delta < 0)
1055 delta = -delta;
1056 if (delta2 < 0)
1057 delta2 = -delta2;
1058 if (delta3 < 0)
1059 delta3 = -delta3;
1060 if (delta > delta2)
1061 delta = delta2;
1062 if (delta > delta3)
1063 delta = delta3;
1064
1065 /*
1066 * delta is now minimum absolute delta.
1067 * Round down by 1 bit on general principles,
1068 * and limit entropy entimate to 12 bits.
1069 */
40db23e5 1070 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 1071 }
1da177e4
LT
1072 preempt_enable();
1073}
1074
d251575a 1075void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1076 unsigned int value)
1077{
1078 static unsigned char last_value;
1079
1080 /* ignore autorepeat and the like */
1081 if (value == last_value)
1082 return;
1083
1da177e4
LT
1084 last_value = value;
1085 add_timer_randomness(&input_timer_state,
1086 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1087 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1088}
80fc9f53 1089EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1090
775f4b29
TT
1091static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1092
43759d4f
TT
1093#ifdef ADD_INTERRUPT_BENCH
1094static unsigned long avg_cycles, avg_deviation;
1095
1096#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1097#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1098
1099static void add_interrupt_bench(cycles_t start)
1100{
1101 long delta = random_get_entropy() - start;
1102
1103 /* Use a weighted moving average */
1104 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1105 avg_cycles += delta;
1106 /* And average deviation */
1107 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1108 avg_deviation += delta;
1109}
1110#else
1111#define add_interrupt_bench(x)
1112#endif
1113
ee3e00e9
TT
1114static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1115{
1116 __u32 *ptr = (__u32 *) regs;
1117
1118 if (regs == NULL)
1119 return 0;
1120 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1121 f->reg_idx = 0;
1122 return *(ptr + f->reg_idx++);
1123}
1124
775f4b29 1125void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1126{
775f4b29 1127 struct entropy_store *r;
1b2a1a7e 1128 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1129 struct pt_regs *regs = get_irq_regs();
1130 unsigned long now = jiffies;
655b2264 1131 cycles_t cycles = random_get_entropy();
43759d4f 1132 __u32 c_high, j_high;
655b2264 1133 __u64 ip;
83664a69 1134 unsigned long seed;
91fcb532 1135 int credit = 0;
3060d6fe 1136
ee3e00e9
TT
1137 if (cycles == 0)
1138 cycles = get_reg(fast_pool, regs);
655b2264
TT
1139 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1140 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1141 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1142 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1143 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1144 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1145 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1146 get_reg(fast_pool, regs);
3060d6fe 1147
43759d4f 1148 fast_mix(fast_pool);
43759d4f 1149 add_interrupt_bench(cycles);
3060d6fe 1150
e192be9d
TT
1151 if (!crng_ready()) {
1152 if ((fast_pool->count >= 64) &&
1153 crng_fast_load((char *) fast_pool->pool,
1154 sizeof(fast_pool->pool))) {
1155 fast_pool->count = 0;
1156 fast_pool->last = now;
1157 }
1158 return;
1159 }
1160
ee3e00e9
TT
1161 if ((fast_pool->count < 64) &&
1162 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1163 return;
1164
e192be9d 1165 r = &input_pool;
840f9507 1166 if (!spin_trylock(&r->lock))
91fcb532 1167 return;
83664a69 1168
91fcb532 1169 fast_pool->last = now;
85608f8e 1170 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1171
1172 /*
1173 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1174 * add it to the pool. For the sake of paranoia don't let the
1175 * architectural seed generator dominate the input from the
1176 * interrupt noise.
83664a69
PA
1177 */
1178 if (arch_get_random_seed_long(&seed)) {
85608f8e 1179 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1180 credit = 1;
83664a69 1181 }
91fcb532 1182 spin_unlock(&r->lock);
83664a69 1183
ee3e00e9 1184 fast_pool->count = 0;
83664a69 1185
ee3e00e9
TT
1186 /* award one bit for the contents of the fast pool */
1187 credit_entropy_bits(r, credit + 1);
1da177e4 1188}
4b44f2d1 1189EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1190
9361401e 1191#ifdef CONFIG_BLOCK
1da177e4
LT
1192void add_disk_randomness(struct gendisk *disk)
1193{
1194 if (!disk || !disk->random)
1195 return;
1196 /* first major is 1, so we get >= 0x200 here */
f331c029 1197 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1198 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1199}
bdcfa3e5 1200EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1201#endif
1da177e4 1202
1da177e4
LT
1203/*********************************************************************
1204 *
1205 * Entropy extraction routines
1206 *
1207 *********************************************************************/
1208
1da177e4 1209/*
25985edc 1210 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1211 * from the primary pool to the secondary extraction pool. We make
1212 * sure we pull enough for a 'catastrophic reseed'.
1213 */
6265e169 1214static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1215static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1216{
cff85031
TT
1217 if (!r->pull ||
1218 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1219 r->entropy_count > r->poolinfo->poolfracbits)
1220 return;
1221
f5c2742c
TT
1222 if (r->limit == 0 && random_min_urandom_seed) {
1223 unsigned long now = jiffies;
1da177e4 1224
f5c2742c
TT
1225 if (time_before(now,
1226 r->last_pulled + random_min_urandom_seed * HZ))
1227 return;
1228 r->last_pulled = now;
1da177e4 1229 }
cff85031
TT
1230
1231 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1232}
1233
1234static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1235{
1236 __u32 tmp[OUTPUT_POOL_WORDS];
1237
2132a96f
GP
1238 /* For /dev/random's pool, always leave two wakeups' worth */
1239 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
6265e169
TT
1240 int bytes = nbytes;
1241
2132a96f
GP
1242 /* pull at least as much as a wakeup */
1243 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1244 /* but never more than the buffer size */
1245 bytes = min_t(int, bytes, sizeof(tmp));
1246
f80bbd8b
TT
1247 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1248 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1249 bytes = extract_entropy(r->pull, tmp, bytes,
2132a96f 1250 random_read_wakeup_bits / 8, rsvd_bytes);
85608f8e 1251 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1252 credit_entropy_bits(r, bytes*8);
1253}
1254
1255/*
1256 * Used as a workqueue function so that when the input pool is getting
1257 * full, we can "spill over" some entropy to the output pools. That
1258 * way the output pools can store some of the excess entropy instead
1259 * of letting it go to waste.
1260 */
1261static void push_to_pool(struct work_struct *work)
1262{
1263 struct entropy_store *r = container_of(work, struct entropy_store,
1264 push_work);
1265 BUG_ON(!r);
2132a96f 1266 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1267 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1268 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1269}
1270
1271/*
19fa5be1
GP
1272 * This function decides how many bytes to actually take from the
1273 * given pool, and also debits the entropy count accordingly.
1da177e4 1274 */
1da177e4
LT
1275static size_t account(struct entropy_store *r, size_t nbytes, int min,
1276 int reserved)
1277{
a283b5c4 1278 int entropy_count, orig;
79a84687 1279 size_t ibytes, nfrac;
1da177e4 1280
a283b5c4 1281 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1282
1283 /* Can we pull enough? */
10b3a32d 1284retry:
a283b5c4 1285 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 1286 ibytes = nbytes;
0fb7a01a 1287 /* If limited, never pull more than available */
e33ba5fa
TT
1288 if (r->limit) {
1289 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1290
1291 if ((have_bytes -= reserved) < 0)
1292 have_bytes = 0;
1293 ibytes = min_t(size_t, ibytes, have_bytes);
1294 }
0fb7a01a 1295 if (ibytes < min)
a283b5c4 1296 ibytes = 0;
79a84687
HFS
1297
1298 if (unlikely(entropy_count < 0)) {
1299 pr_warn("random: negative entropy count: pool %s count %d\n",
1300 r->name, entropy_count);
1301 WARN_ON(1);
1302 entropy_count = 0;
1303 }
1304 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1305 if ((size_t) entropy_count > nfrac)
1306 entropy_count -= nfrac;
1307 else
e33ba5fa 1308 entropy_count = 0;
f9c6d498 1309
0fb7a01a
GP
1310 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1311 goto retry;
1da177e4 1312
f80bbd8b 1313 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1314 if (ibytes &&
2132a96f 1315 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1316 wake_up_interruptible(&random_write_wait);
1317 kill_fasync(&fasync, SIGIO, POLL_OUT);
1318 }
1319
a283b5c4 1320 return ibytes;
1da177e4
LT
1321}
1322
19fa5be1
GP
1323/*
1324 * This function does the actual extraction for extract_entropy and
1325 * extract_entropy_user.
1326 *
1327 * Note: we assume that .poolwords is a multiple of 16 words.
1328 */
1da177e4
LT
1329static void extract_buf(struct entropy_store *r, __u8 *out)
1330{
602b6aee 1331 int i;
d2e7c96a
PA
1332 union {
1333 __u32 w[5];
85a1f777 1334 unsigned long l[LONGS(20)];
d2e7c96a
PA
1335 } hash;
1336 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1337 unsigned long flags;
1da177e4 1338
85a1f777 1339 /*
dfd38750 1340 * If we have an architectural hardware random number
46884442 1341 * generator, use it for SHA's initial vector
85a1f777 1342 */
46884442 1343 sha_init(hash.w);
85a1f777
TT
1344 for (i = 0; i < LONGS(20); i++) {
1345 unsigned long v;
1346 if (!arch_get_random_long(&v))
1347 break;
46884442 1348 hash.l[i] = v;
85a1f777
TT
1349 }
1350
46884442
TT
1351 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1352 spin_lock_irqsave(&r->lock, flags);
1353 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1354 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1355
1da177e4 1356 /*
1c0ad3d4
MM
1357 * We mix the hash back into the pool to prevent backtracking
1358 * attacks (where the attacker knows the state of the pool
1359 * plus the current outputs, and attempts to find previous
1360 * ouputs), unless the hash function can be inverted. By
1361 * mixing at least a SHA1 worth of hash data back, we make
1362 * brute-forcing the feedback as hard as brute-forcing the
1363 * hash.
1da177e4 1364 */
85608f8e 1365 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1366 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1367
d4c5efdb 1368 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1369
1370 /*
1c0ad3d4
MM
1371 * In case the hash function has some recognizable output
1372 * pattern, we fold it in half. Thus, we always feed back
1373 * twice as much data as we output.
1da177e4 1374 */
d2e7c96a
PA
1375 hash.w[0] ^= hash.w[3];
1376 hash.w[1] ^= hash.w[4];
1377 hash.w[2] ^= rol32(hash.w[2], 16);
1378
d2e7c96a 1379 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1380 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1381}
1382
e192be9d
TT
1383static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1384 size_t nbytes, int fips)
1385{
1386 ssize_t ret = 0, i;
1387 __u8 tmp[EXTRACT_SIZE];
1388 unsigned long flags;
1389
1390 while (nbytes) {
1391 extract_buf(r, tmp);
1392
1393 if (fips) {
1394 spin_lock_irqsave(&r->lock, flags);
1395 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1396 panic("Hardware RNG duplicated output!\n");
1397 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1398 spin_unlock_irqrestore(&r->lock, flags);
1399 }
1400 i = min_t(int, nbytes, EXTRACT_SIZE);
1401 memcpy(buf, tmp, i);
1402 nbytes -= i;
1403 buf += i;
1404 ret += i;
1405 }
1406
1407 /* Wipe data just returned from memory */
1408 memzero_explicit(tmp, sizeof(tmp));
1409
1410 return ret;
1411}
1412
19fa5be1
GP
1413/*
1414 * This function extracts randomness from the "entropy pool", and
1415 * returns it in a buffer.
1416 *
1417 * The min parameter specifies the minimum amount we can pull before
1418 * failing to avoid races that defeat catastrophic reseeding while the
1419 * reserved parameter indicates how much entropy we must leave in the
1420 * pool after each pull to avoid starving other readers.
1421 */
90b75ee5 1422static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1423 size_t nbytes, int min, int reserved)
1da177e4 1424{
1da177e4 1425 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1426 unsigned long flags;
1da177e4 1427
ec8f02da 1428 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1429 if (fips_enabled) {
1430 spin_lock_irqsave(&r->lock, flags);
1431 if (!r->last_data_init) {
c59974ae 1432 r->last_data_init = 1;
1e7e2e05
JW
1433 spin_unlock_irqrestore(&r->lock, flags);
1434 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1435 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1436 xfer_secondary_pool(r, EXTRACT_SIZE);
1437 extract_buf(r, tmp);
1438 spin_lock_irqsave(&r->lock, flags);
1439 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1440 }
1441 spin_unlock_irqrestore(&r->lock, flags);
1442 }
ec8f02da 1443
a283b5c4 1444 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1445 xfer_secondary_pool(r, nbytes);
1446 nbytes = account(r, nbytes, min, reserved);
1447
e192be9d 1448 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1449}
1450
19fa5be1
GP
1451/*
1452 * This function extracts randomness from the "entropy pool", and
1453 * returns it in a userspace buffer.
1454 */
1da177e4
LT
1455static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1456 size_t nbytes)
1457{
1458 ssize_t ret = 0, i;
1459 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1460 int large_request = (nbytes > 256);
1da177e4 1461
a283b5c4 1462 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1463 xfer_secondary_pool(r, nbytes);
1464 nbytes = account(r, nbytes, 0, 0);
1465
1466 while (nbytes) {
c6e9d6f3 1467 if (large_request && need_resched()) {
1da177e4
LT
1468 if (signal_pending(current)) {
1469 if (ret == 0)
1470 ret = -ERESTARTSYS;
1471 break;
1472 }
1473 schedule();
1474 }
1475
1476 extract_buf(r, tmp);
1477 i = min_t(int, nbytes, EXTRACT_SIZE);
1478 if (copy_to_user(buf, tmp, i)) {
1479 ret = -EFAULT;
1480 break;
1481 }
1482
1483 nbytes -= i;
1484 buf += i;
1485 ret += i;
1486 }
1487
1488 /* Wipe data just returned from memory */
d4c5efdb 1489 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1490
1491 return ret;
1492}
1493
1494/*
1495 * This function is the exported kernel interface. It returns some
c2557a30 1496 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1497 * TCP sequence numbers, etc. It does not rely on the hardware random
1498 * number generator. For random bytes direct from the hardware RNG
1499 * (when available), use get_random_bytes_arch().
1da177e4
LT
1500 */
1501void get_random_bytes(void *buf, int nbytes)
c2557a30 1502{
e192be9d
TT
1503 __u8 tmp[CHACHA20_BLOCK_SIZE];
1504
392a546d 1505#if DEBUG_RANDOM_BOOT > 0
e192be9d 1506 if (!crng_ready())
392a546d 1507 printk(KERN_NOTICE "random: %pF get_random_bytes called "
e192be9d 1508 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
392a546d 1509#endif
5910895f 1510 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1511
1512 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1513 extract_crng(buf);
1514 buf += CHACHA20_BLOCK_SIZE;
1515 nbytes -= CHACHA20_BLOCK_SIZE;
1516 }
1517
1518 if (nbytes > 0) {
1519 extract_crng(tmp);
1520 memcpy(buf, tmp, nbytes);
c92e040d
TT
1521 crng_backtrack_protect(tmp, nbytes);
1522 } else
1523 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1524 memzero_explicit(tmp, sizeof(tmp));
c2557a30
TT
1525}
1526EXPORT_SYMBOL(get_random_bytes);
1527
205a525c
HX
1528/*
1529 * Add a callback function that will be invoked when the nonblocking
1530 * pool is initialised.
1531 *
1532 * returns: 0 if callback is successfully added
1533 * -EALREADY if pool is already initialised (callback not called)
1534 * -ENOENT if module for callback is not alive
1535 */
1536int add_random_ready_callback(struct random_ready_callback *rdy)
1537{
1538 struct module *owner;
1539 unsigned long flags;
1540 int err = -EALREADY;
1541
e192be9d 1542 if (crng_ready())
205a525c
HX
1543 return err;
1544
1545 owner = rdy->owner;
1546 if (!try_module_get(owner))
1547 return -ENOENT;
1548
1549 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1550 if (crng_ready())
205a525c
HX
1551 goto out;
1552
1553 owner = NULL;
1554
1555 list_add(&rdy->list, &random_ready_list);
1556 err = 0;
1557
1558out:
1559 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1560
1561 module_put(owner);
1562
1563 return err;
1564}
1565EXPORT_SYMBOL(add_random_ready_callback);
1566
1567/*
1568 * Delete a previously registered readiness callback function.
1569 */
1570void del_random_ready_callback(struct random_ready_callback *rdy)
1571{
1572 unsigned long flags;
1573 struct module *owner = NULL;
1574
1575 spin_lock_irqsave(&random_ready_list_lock, flags);
1576 if (!list_empty(&rdy->list)) {
1577 list_del_init(&rdy->list);
1578 owner = rdy->owner;
1579 }
1580 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1581
1582 module_put(owner);
1583}
1584EXPORT_SYMBOL(del_random_ready_callback);
1585
c2557a30
TT
1586/*
1587 * This function will use the architecture-specific hardware random
1588 * number generator if it is available. The arch-specific hw RNG will
1589 * almost certainly be faster than what we can do in software, but it
1590 * is impossible to verify that it is implemented securely (as
1591 * opposed, to, say, the AES encryption of a sequence number using a
1592 * key known by the NSA). So it's useful if we need the speed, but
1593 * only if we're willing to trust the hardware manufacturer not to
1594 * have put in a back door.
1595 */
1596void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1597{
63d77173
PA
1598 char *p = buf;
1599
5910895f 1600 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1601 while (nbytes) {
1602 unsigned long v;
1603 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1604
63d77173
PA
1605 if (!arch_get_random_long(&v))
1606 break;
1607
bd29e568 1608 memcpy(p, &v, chunk);
63d77173
PA
1609 p += chunk;
1610 nbytes -= chunk;
1611 }
1612
c2557a30 1613 if (nbytes)
e192be9d 1614 get_random_bytes(p, nbytes);
1da177e4 1615}
c2557a30
TT
1616EXPORT_SYMBOL(get_random_bytes_arch);
1617
1da177e4
LT
1618
1619/*
1620 * init_std_data - initialize pool with system data
1621 *
1622 * @r: pool to initialize
1623 *
1624 * This function clears the pool's entropy count and mixes some system
1625 * data into the pool to prepare it for use. The pool is not cleared
1626 * as that can only decrease the entropy in the pool.
1627 */
1628static void init_std_data(struct entropy_store *r)
1629{
3e88bdff 1630 int i;
902c098a
TT
1631 ktime_t now = ktime_get_real();
1632 unsigned long rv;
1da177e4 1633
f5c2742c 1634 r->last_pulled = jiffies;
85608f8e 1635 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1636 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1637 if (!arch_get_random_seed_long(&rv) &&
1638 !arch_get_random_long(&rv))
ae9ecd92 1639 rv = random_get_entropy();
85608f8e 1640 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1641 }
85608f8e 1642 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1643}
1644
cbc96b75
TL
1645/*
1646 * Note that setup_arch() may call add_device_randomness()
1647 * long before we get here. This allows seeding of the pools
1648 * with some platform dependent data very early in the boot
1649 * process. But it limits our options here. We must use
1650 * statically allocated structures that already have all
1651 * initializations complete at compile time. We should also
1652 * take care not to overwrite the precious per platform data
1653 * we were given.
1654 */
53c3f63e 1655static int rand_initialize(void)
1da177e4 1656{
1e7f583a
TT
1657#ifdef CONFIG_NUMA
1658 int i;
1659 int num_nodes = num_possible_nodes();
1660 struct crng_state *crng;
1661 struct crng_state **pool;
1662#endif
1663
1da177e4
LT
1664 init_std_data(&input_pool);
1665 init_std_data(&blocking_pool);
e192be9d 1666 crng_initialize(&primary_crng);
1e7f583a
TT
1667
1668#ifdef CONFIG_NUMA
1669 pool = kmalloc(num_nodes * sizeof(void *),
1670 GFP_KERNEL|__GFP_NOFAIL|__GFP_ZERO);
1671 for (i=0; i < num_nodes; i++) {
1672 crng = kmalloc_node(sizeof(struct crng_state),
1673 GFP_KERNEL | __GFP_NOFAIL, i);
1674 spin_lock_init(&crng->lock);
1675 crng_initialize(crng);
1676 pool[i] = crng;
1677
1678 }
1679 mb();
1680 crng_node_pool = pool;
1681#endif
1da177e4
LT
1682 return 0;
1683}
ae9ecd92 1684early_initcall(rand_initialize);
1da177e4 1685
9361401e 1686#ifdef CONFIG_BLOCK
1da177e4
LT
1687void rand_initialize_disk(struct gendisk *disk)
1688{
1689 struct timer_rand_state *state;
1690
1691 /*
f8595815 1692 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1693 * source.
1694 */
f8595815 1695 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1696 if (state) {
1697 state->last_time = INITIAL_JIFFIES;
1da177e4 1698 disk->random = state;
644008df 1699 }
1da177e4 1700}
9361401e 1701#endif
1da177e4
LT
1702
1703static ssize_t
c6e9d6f3 1704_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1705{
12ff3a51 1706 ssize_t n;
1da177e4
LT
1707
1708 if (nbytes == 0)
1709 return 0;
1710
12ff3a51
GP
1711 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1712 while (1) {
1713 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1714 if (n < 0)
1715 return n;
f80bbd8b
TT
1716 trace_random_read(n*8, (nbytes-n)*8,
1717 ENTROPY_BITS(&blocking_pool),
1718 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1719 if (n > 0)
1720 return n;
331c6490 1721
12ff3a51 1722 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1723 if (nonblock)
12ff3a51
GP
1724 return -EAGAIN;
1725
1726 wait_event_interruptible(random_read_wait,
1727 ENTROPY_BITS(&input_pool) >=
2132a96f 1728 random_read_wakeup_bits);
12ff3a51
GP
1729 if (signal_pending(current))
1730 return -ERESTARTSYS;
1da177e4 1731 }
1da177e4
LT
1732}
1733
c6e9d6f3
TT
1734static ssize_t
1735random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1736{
1737 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1738}
1739
1da177e4 1740static ssize_t
90b75ee5 1741urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1742{
e192be9d 1743 unsigned long flags;
9b4d0087 1744 static int maxwarn = 10;
301f0595
TT
1745 int ret;
1746
e192be9d 1747 if (!crng_ready() && maxwarn > 0) {
9b4d0087
TT
1748 maxwarn--;
1749 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
e192be9d
TT
1750 "(%zd bytes read)\n",
1751 current->comm, nbytes);
1752 spin_lock_irqsave(&primary_crng.lock, flags);
1753 crng_init_cnt = 0;
1754 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1755 }
79a84687 1756 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1757 ret = extract_crng_user(buf, nbytes);
1758 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1759 return ret;
1da177e4
LT
1760}
1761
1762static unsigned int
1763random_poll(struct file *file, poll_table * wait)
1764{
1765 unsigned int mask;
1766
1767 poll_wait(file, &random_read_wait, wait);
1768 poll_wait(file, &random_write_wait, wait);
1769 mask = 0;
2132a96f 1770 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1771 mask |= POLLIN | POLLRDNORM;
2132a96f 1772 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1773 mask |= POLLOUT | POLLWRNORM;
1774 return mask;
1775}
1776
7f397dcd
MM
1777static int
1778write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1779{
1da177e4
LT
1780 size_t bytes;
1781 __u32 buf[16];
1782 const char __user *p = buffer;
1da177e4 1783
7f397dcd
MM
1784 while (count > 0) {
1785 bytes = min(count, sizeof(buf));
1786 if (copy_from_user(&buf, p, bytes))
1787 return -EFAULT;
1da177e4 1788
7f397dcd 1789 count -= bytes;
1da177e4
LT
1790 p += bytes;
1791
85608f8e 1792 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1793 cond_resched();
1da177e4 1794 }
7f397dcd
MM
1795
1796 return 0;
1797}
1798
90b75ee5
MM
1799static ssize_t random_write(struct file *file, const char __user *buffer,
1800 size_t count, loff_t *ppos)
7f397dcd
MM
1801{
1802 size_t ret;
7f397dcd 1803
e192be9d 1804 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1805 if (ret)
1806 return ret;
1807
7f397dcd 1808 return (ssize_t)count;
1da177e4
LT
1809}
1810
43ae4860 1811static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1812{
1813 int size, ent_count;
1814 int __user *p = (int __user *)arg;
1815 int retval;
1816
1817 switch (cmd) {
1818 case RNDGETENTCNT:
43ae4860 1819 /* inherently racy, no point locking */
a283b5c4
PA
1820 ent_count = ENTROPY_BITS(&input_pool);
1821 if (put_user(ent_count, p))
1da177e4
LT
1822 return -EFAULT;
1823 return 0;
1824 case RNDADDTOENTCNT:
1825 if (!capable(CAP_SYS_ADMIN))
1826 return -EPERM;
1827 if (get_user(ent_count, p))
1828 return -EFAULT;
86a574de 1829 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1830 case RNDADDENTROPY:
1831 if (!capable(CAP_SYS_ADMIN))
1832 return -EPERM;
1833 if (get_user(ent_count, p++))
1834 return -EFAULT;
1835 if (ent_count < 0)
1836 return -EINVAL;
1837 if (get_user(size, p++))
1838 return -EFAULT;
7f397dcd
MM
1839 retval = write_pool(&input_pool, (const char __user *)p,
1840 size);
1da177e4
LT
1841 if (retval < 0)
1842 return retval;
86a574de 1843 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1844 case RNDZAPENTCNT:
1845 case RNDCLEARPOOL:
ae9ecd92
TT
1846 /*
1847 * Clear the entropy pool counters. We no longer clear
1848 * the entropy pool, as that's silly.
1849 */
1da177e4
LT
1850 if (!capable(CAP_SYS_ADMIN))
1851 return -EPERM;
ae9ecd92 1852 input_pool.entropy_count = 0;
ae9ecd92 1853 blocking_pool.entropy_count = 0;
1da177e4
LT
1854 return 0;
1855 default:
1856 return -EINVAL;
1857 }
1858}
1859
9a6f70bb
JD
1860static int random_fasync(int fd, struct file *filp, int on)
1861{
1862 return fasync_helper(fd, filp, on, &fasync);
1863}
1864
2b8693c0 1865const struct file_operations random_fops = {
1da177e4
LT
1866 .read = random_read,
1867 .write = random_write,
1868 .poll = random_poll,
43ae4860 1869 .unlocked_ioctl = random_ioctl,
9a6f70bb 1870 .fasync = random_fasync,
6038f373 1871 .llseek = noop_llseek,
1da177e4
LT
1872};
1873
2b8693c0 1874const struct file_operations urandom_fops = {
1da177e4
LT
1875 .read = urandom_read,
1876 .write = random_write,
43ae4860 1877 .unlocked_ioctl = random_ioctl,
9a6f70bb 1878 .fasync = random_fasync,
6038f373 1879 .llseek = noop_llseek,
1da177e4
LT
1880};
1881
c6e9d6f3
TT
1882SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1883 unsigned int, flags)
1884{
1885 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1886 return -EINVAL;
1887
1888 if (count > INT_MAX)
1889 count = INT_MAX;
1890
1891 if (flags & GRND_RANDOM)
1892 return _random_read(flags & GRND_NONBLOCK, buf, count);
1893
e192be9d 1894 if (!crng_ready()) {
c6e9d6f3
TT
1895 if (flags & GRND_NONBLOCK)
1896 return -EAGAIN;
e192be9d 1897 crng_wait_ready();
c6e9d6f3
TT
1898 if (signal_pending(current))
1899 return -ERESTARTSYS;
1900 }
1901 return urandom_read(NULL, buf, count, NULL);
1902}
1903
1da177e4
LT
1904/********************************************************************
1905 *
1906 * Sysctl interface
1907 *
1908 ********************************************************************/
1909
1910#ifdef CONFIG_SYSCTL
1911
1912#include <linux/sysctl.h>
1913
1914static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1915static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4
LT
1916static int max_write_thresh = INPUT_POOL_WORDS * 32;
1917static char sysctl_bootid[16];
1918
1919/*
f22052b2 1920 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1921 * UUID. The difference is in whether table->data is NULL; if it is,
1922 * then a new UUID is generated and returned to the user.
1923 *
f22052b2
GP
1924 * If the user accesses this via the proc interface, the UUID will be
1925 * returned as an ASCII string in the standard UUID format; if via the
1926 * sysctl system call, as 16 bytes of binary data.
1da177e4 1927 */
a151427e 1928static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1929 void __user *buffer, size_t *lenp, loff_t *ppos)
1930{
a151427e 1931 struct ctl_table fake_table;
1da177e4
LT
1932 unsigned char buf[64], tmp_uuid[16], *uuid;
1933
1934 uuid = table->data;
1935 if (!uuid) {
1936 uuid = tmp_uuid;
1da177e4 1937 generate_random_uuid(uuid);
44e4360f
MD
1938 } else {
1939 static DEFINE_SPINLOCK(bootid_spinlock);
1940
1941 spin_lock(&bootid_spinlock);
1942 if (!uuid[8])
1943 generate_random_uuid(uuid);
1944 spin_unlock(&bootid_spinlock);
1945 }
1da177e4 1946
35900771
JP
1947 sprintf(buf, "%pU", uuid);
1948
1da177e4
LT
1949 fake_table.data = buf;
1950 fake_table.maxlen = sizeof(buf);
1951
8d65af78 1952 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1953}
1954
a283b5c4
PA
1955/*
1956 * Return entropy available scaled to integral bits
1957 */
5eb10d91 1958static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1959 void __user *buffer, size_t *lenp, loff_t *ppos)
1960{
5eb10d91 1961 struct ctl_table fake_table;
a283b5c4
PA
1962 int entropy_count;
1963
1964 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1965
1966 fake_table.data = &entropy_count;
1967 fake_table.maxlen = sizeof(entropy_count);
1968
1969 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1970}
1971
1da177e4 1972static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1973extern struct ctl_table random_table[];
1974struct ctl_table random_table[] = {
1da177e4 1975 {
1da177e4
LT
1976 .procname = "poolsize",
1977 .data = &sysctl_poolsize,
1978 .maxlen = sizeof(int),
1979 .mode = 0444,
6d456111 1980 .proc_handler = proc_dointvec,
1da177e4
LT
1981 },
1982 {
1da177e4
LT
1983 .procname = "entropy_avail",
1984 .maxlen = sizeof(int),
1985 .mode = 0444,
a283b5c4 1986 .proc_handler = proc_do_entropy,
1da177e4
LT
1987 .data = &input_pool.entropy_count,
1988 },
1989 {
1da177e4 1990 .procname = "read_wakeup_threshold",
2132a96f 1991 .data = &random_read_wakeup_bits,
1da177e4
LT
1992 .maxlen = sizeof(int),
1993 .mode = 0644,
6d456111 1994 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1995 .extra1 = &min_read_thresh,
1996 .extra2 = &max_read_thresh,
1997 },
1998 {
1da177e4 1999 .procname = "write_wakeup_threshold",
2132a96f 2000 .data = &random_write_wakeup_bits,
1da177e4
LT
2001 .maxlen = sizeof(int),
2002 .mode = 0644,
6d456111 2003 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2004 .extra1 = &min_write_thresh,
2005 .extra2 = &max_write_thresh,
2006 },
f5c2742c
TT
2007 {
2008 .procname = "urandom_min_reseed_secs",
2009 .data = &random_min_urandom_seed,
2010 .maxlen = sizeof(int),
2011 .mode = 0644,
2012 .proc_handler = proc_dointvec,
2013 },
1da177e4 2014 {
1da177e4
LT
2015 .procname = "boot_id",
2016 .data = &sysctl_bootid,
2017 .maxlen = 16,
2018 .mode = 0444,
6d456111 2019 .proc_handler = proc_do_uuid,
1da177e4
LT
2020 },
2021 {
1da177e4
LT
2022 .procname = "uuid",
2023 .maxlen = 16,
2024 .mode = 0444,
6d456111 2025 .proc_handler = proc_do_uuid,
1da177e4 2026 },
43759d4f
TT
2027#ifdef ADD_INTERRUPT_BENCH
2028 {
2029 .procname = "add_interrupt_avg_cycles",
2030 .data = &avg_cycles,
2031 .maxlen = sizeof(avg_cycles),
2032 .mode = 0444,
2033 .proc_handler = proc_doulongvec_minmax,
2034 },
2035 {
2036 .procname = "add_interrupt_avg_deviation",
2037 .data = &avg_deviation,
2038 .maxlen = sizeof(avg_deviation),
2039 .mode = 0444,
2040 .proc_handler = proc_doulongvec_minmax,
2041 },
2042#endif
894d2491 2043 { }
1da177e4
LT
2044};
2045#endif /* CONFIG_SYSCTL */
2046
6e5714ea 2047static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 2048
47d06e53 2049int random_int_secret_init(void)
1da177e4 2050{
6e5714ea 2051 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
2052 return 0;
2053}
1da177e4 2054
b1132dea
EB
2055static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
2056 __aligned(sizeof(unsigned long));
2057
1da177e4
LT
2058/*
2059 * Get a random word for internal kernel use only. Similar to urandom but
2060 * with the goal of minimal entropy pool depletion. As a result, the random
2061 * value is not cryptographically secure but for several uses the cost of
2062 * depleting entropy is too high
2063 */
2064unsigned int get_random_int(void)
2065{
63d77173 2066 __u32 *hash;
6e5714ea 2067 unsigned int ret;
8a0a9bd4 2068
63d77173
PA
2069 if (arch_get_random_int(&ret))
2070 return ret;
2071
2072 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 2073
61875f30 2074 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
2075 md5_transform(hash, random_int_secret);
2076 ret = hash[0];
8a0a9bd4
LT
2077 put_cpu_var(get_random_int_hash);
2078
2079 return ret;
1da177e4 2080}
16c7fa05 2081EXPORT_SYMBOL(get_random_int);
1da177e4 2082
ec9ee4ac
DC
2083/*
2084 * Same as get_random_int(), but returns unsigned long.
2085 */
2086unsigned long get_random_long(void)
2087{
2088 __u32 *hash;
2089 unsigned long ret;
2090
2091 if (arch_get_random_long(&ret))
2092 return ret;
2093
2094 hash = get_cpu_var(get_random_int_hash);
2095
2096 hash[0] += current->pid + jiffies + random_get_entropy();
2097 md5_transform(hash, random_int_secret);
2098 ret = *(unsigned long *)hash;
2099 put_cpu_var(get_random_int_hash);
2100
2101 return ret;
2102}
2103EXPORT_SYMBOL(get_random_long);
2104
1da177e4
LT
2105/*
2106 * randomize_range() returns a start address such that
2107 *
2108 * [...... <range> .....]
2109 * start end
2110 *
2111 * a <range> with size "len" starting at the return value is inside in the
2112 * area defined by [start, end], but is otherwise randomized.
2113 */
2114unsigned long
2115randomize_range(unsigned long start, unsigned long end, unsigned long len)
2116{
2117 unsigned long range = end - len - start;
2118
2119 if (end <= start + len)
2120 return 0;
2121 return PAGE_ALIGN(get_random_int() % range + start);
2122}
c84dbf61
TD
2123
2124/* Interface for in-kernel drivers of true hardware RNGs.
2125 * Those devices may produce endless random bits and will be throttled
2126 * when our pool is full.
2127 */
2128void add_hwgenerator_randomness(const char *buffer, size_t count,
2129 size_t entropy)
2130{
2131 struct entropy_store *poolp = &input_pool;
2132
e192be9d
TT
2133 if (!crng_ready()) {
2134 crng_fast_load(buffer, count);
2135 return;
3371f3da 2136 }
e192be9d
TT
2137
2138 /* Suspend writing if we're above the trickle threshold.
2139 * We'll be woken up again once below random_write_wakeup_thresh,
2140 * or when the calling thread is about to terminate.
2141 */
2142 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2143 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2144 mix_pool_bytes(poolp, buffer, count);
2145 credit_entropy_bits(poolp, entropy);
2146}
2147EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);