lib/crypto: blake2s: include as built-in
[linux-block.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
b169c13d
JD
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
9e95ce27 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45/*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
92e507d2
GS
104 * There are four exported interfaces; two for use within the kernel,
105 * and two or use from userspace.
1da177e4 106 *
92e507d2
GS
107 * Exported interfaces ---- userspace output
108 * -----------------------------------------
1da177e4 109 *
92e507d2 110 * The userspace interfaces are two character devices /dev/random and
1da177e4
LT
111 * /dev/urandom. /dev/random is suitable for use when very high
112 * quality randomness is desired (for example, for key generation or
113 * one-time pads), as it will only return a maximum of the number of
114 * bits of randomness (as estimated by the random number generator)
115 * contained in the entropy pool.
116 *
117 * The /dev/urandom device does not have this limit, and will return
118 * as many bytes as are requested. As more and more random bytes are
119 * requested without giving time for the entropy pool to recharge,
120 * this will result in random numbers that are merely cryptographically
121 * strong. For many applications, however, this is acceptable.
122 *
92e507d2
GS
123 * Exported interfaces ---- kernel output
124 * --------------------------------------
125 *
126 * The primary kernel interface is
127 *
128 * void get_random_bytes(void *buf, int nbytes);
129 *
130 * This interface will return the requested number of random bytes,
131 * and place it in the requested buffer. This is equivalent to a
132 * read from /dev/urandom.
133 *
134 * For less critical applications, there are the functions:
135 *
136 * u32 get_random_u32()
137 * u64 get_random_u64()
138 * unsigned int get_random_int()
139 * unsigned long get_random_long()
140 *
141 * These are produced by a cryptographic RNG seeded from get_random_bytes,
142 * and so do not deplete the entropy pool as much. These are recommended
143 * for most in-kernel operations *if the result is going to be stored in
144 * the kernel*.
145 *
146 * Specifically, the get_random_int() family do not attempt to do
147 * "anti-backtracking". If you capture the state of the kernel (e.g.
148 * by snapshotting the VM), you can figure out previous get_random_int()
149 * return values. But if the value is stored in the kernel anyway,
150 * this is not a problem.
151 *
152 * It *is* safe to expose get_random_int() output to attackers (e.g. as
153 * network cookies); given outputs 1..n, it's not feasible to predict
154 * outputs 0 or n+1. The only concern is an attacker who breaks into
155 * the kernel later; the get_random_int() engine is not reseeded as
156 * often as the get_random_bytes() one.
157 *
158 * get_random_bytes() is needed for keys that need to stay secret after
159 * they are erased from the kernel. For example, any key that will
160 * be wrapped and stored encrypted. And session encryption keys: we'd
161 * like to know that after the session is closed and the keys erased,
162 * the plaintext is unrecoverable to someone who recorded the ciphertext.
163 *
164 * But for network ports/cookies, stack canaries, PRNG seeds, address
165 * space layout randomization, session *authentication* keys, or other
166 * applications where the sensitive data is stored in the kernel in
167 * plaintext for as long as it's sensitive, the get_random_int() family
168 * is just fine.
169 *
170 * Consider ASLR. We want to keep the address space secret from an
171 * outside attacker while the process is running, but once the address
172 * space is torn down, it's of no use to an attacker any more. And it's
173 * stored in kernel data structures as long as it's alive, so worrying
174 * about an attacker's ability to extrapolate it from the get_random_int()
175 * CRNG is silly.
176 *
177 * Even some cryptographic keys are safe to generate with get_random_int().
178 * In particular, keys for SipHash are generally fine. Here, knowledge
179 * of the key authorizes you to do something to a kernel object (inject
180 * packets to a network connection, or flood a hash table), and the
181 * key is stored with the object being protected. Once it goes away,
182 * we no longer care if anyone knows the key.
183 *
184 * prandom_u32()
185 * -------------
186 *
187 * For even weaker applications, see the pseudorandom generator
188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random
189 * numbers aren't security-critical at all, these are *far* cheaper.
190 * Useful for self-tests, random error simulation, randomized backoffs,
191 * and any other application where you trust that nobody is trying to
192 * maliciously mess with you by guessing the "random" numbers.
193 *
1da177e4
LT
194 * Exported interfaces ---- input
195 * ==============================
196 *
197 * The current exported interfaces for gathering environmental noise
198 * from the devices are:
199 *
a2080a67 200 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
201 * void add_input_randomness(unsigned int type, unsigned int code,
202 * unsigned int value);
703f7066 203 * void add_interrupt_randomness(int irq);
442a4fff 204 * void add_disk_randomness(struct gendisk *disk);
2b6c6e3d
MB
205 * void add_hwgenerator_randomness(const char *buffer, size_t count,
206 * size_t entropy);
207 * void add_bootloader_randomness(const void *buf, unsigned int size);
1da177e4 208 *
a2080a67
LT
209 * add_device_randomness() is for adding data to the random pool that
210 * is likely to differ between two devices (or possibly even per boot).
211 * This would be things like MAC addresses or serial numbers, or the
212 * read-out of the RTC. This does *not* add any actual entropy to the
213 * pool, but it initializes the pool to different values for devices
214 * that might otherwise be identical and have very little entropy
215 * available to them (particularly common in the embedded world).
216 *
1da177e4
LT
217 * add_input_randomness() uses the input layer interrupt timing, as well as
218 * the event type information from the hardware.
219 *
775f4b29
TT
220 * add_interrupt_randomness() uses the interrupt timing as random
221 * inputs to the entropy pool. Using the cycle counters and the irq source
222 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
223 *
224 * add_disk_randomness() uses what amounts to the seek time of block
225 * layer request events, on a per-disk_devt basis, as input to the
226 * entropy pool. Note that high-speed solid state drives with very low
227 * seek times do not make for good sources of entropy, as their seek
228 * times are usually fairly consistent.
1da177e4
LT
229 *
230 * All of these routines try to estimate how many bits of randomness a
231 * particular randomness source. They do this by keeping track of the
232 * first and second order deltas of the event timings.
233 *
2b6c6e3d
MB
234 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
235 * entropy as specified by the caller. If the entropy pool is full it will
236 * block until more entropy is needed.
237 *
238 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
239 * add_device_randomness(), depending on whether or not the configuration
240 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
241 *
1da177e4
LT
242 * Ensuring unpredictability at system startup
243 * ============================================
244 *
245 * When any operating system starts up, it will go through a sequence
246 * of actions that are fairly predictable by an adversary, especially
247 * if the start-up does not involve interaction with a human operator.
248 * This reduces the actual number of bits of unpredictability in the
249 * entropy pool below the value in entropy_count. In order to
250 * counteract this effect, it helps to carry information in the
251 * entropy pool across shut-downs and start-ups. To do this, put the
252 * following lines an appropriate script which is run during the boot
253 * sequence:
254 *
255 * echo "Initializing random number generator..."
256 * random_seed=/var/run/random-seed
257 * # Carry a random seed from start-up to start-up
258 * # Load and then save the whole entropy pool
259 * if [ -f $random_seed ]; then
260 * cat $random_seed >/dev/urandom
261 * else
262 * touch $random_seed
263 * fi
264 * chmod 600 $random_seed
265 * dd if=/dev/urandom of=$random_seed count=1 bs=512
266 *
267 * and the following lines in an appropriate script which is run as
268 * the system is shutdown:
269 *
270 * # Carry a random seed from shut-down to start-up
271 * # Save the whole entropy pool
272 * echo "Saving random seed..."
273 * random_seed=/var/run/random-seed
274 * touch $random_seed
275 * chmod 600 $random_seed
276 * dd if=/dev/urandom of=$random_seed count=1 bs=512
277 *
278 * For example, on most modern systems using the System V init
279 * scripts, such code fragments would be found in
280 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
281 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
282 *
283 * Effectively, these commands cause the contents of the entropy pool
284 * to be saved at shut-down time and reloaded into the entropy pool at
285 * start-up. (The 'dd' in the addition to the bootup script is to
286 * make sure that /etc/random-seed is different for every start-up,
287 * even if the system crashes without executing rc.0.) Even with
288 * complete knowledge of the start-up activities, predicting the state
289 * of the entropy pool requires knowledge of the previous history of
290 * the system.
291 *
292 * Configuring the /dev/random driver under Linux
293 * ==============================================
294 *
295 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
296 * the /dev/mem major number (#1). So if your system does not have
297 * /dev/random and /dev/urandom created already, they can be created
298 * by using the commands:
299 *
300 * mknod /dev/random c 1 8
301 * mknod /dev/urandom c 1 9
302 *
303 * Acknowledgements:
304 * =================
305 *
306 * Ideas for constructing this random number generator were derived
307 * from Pretty Good Privacy's random number generator, and from private
308 * discussions with Phil Karn. Colin Plumb provided a faster random
309 * number generator, which speed up the mixing function of the entropy
310 * pool, taken from PGPfone. Dale Worley has also contributed many
311 * useful ideas and suggestions to improve this driver.
312 *
313 * Any flaws in the design are solely my responsibility, and should
314 * not be attributed to the Phil, Colin, or any of authors of PGP.
315 *
316 * Further background information on this topic may be obtained from
317 * RFC 1750, "Randomness Recommendations for Security", by Donald
318 * Eastlake, Steve Crocker, and Jeff Schiller.
319 */
320
12cd53af
YL
321#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
322
1da177e4 323#include <linux/utsname.h>
1da177e4
LT
324#include <linux/module.h>
325#include <linux/kernel.h>
326#include <linux/major.h>
327#include <linux/string.h>
328#include <linux/fcntl.h>
329#include <linux/slab.h>
330#include <linux/random.h>
331#include <linux/poll.h>
332#include <linux/init.h>
333#include <linux/fs.h>
334#include <linux/genhd.h>
335#include <linux/interrupt.h>
27ac792c 336#include <linux/mm.h>
dd0f0cf5 337#include <linux/nodemask.h>
1da177e4 338#include <linux/spinlock.h>
c84dbf61 339#include <linux/kthread.h>
1da177e4 340#include <linux/percpu.h>
5b739ef8 341#include <linux/fips.h>
775f4b29 342#include <linux/ptrace.h>
6265e169 343#include <linux/workqueue.h>
0244ad00 344#include <linux/irq.h>
4e00b339 345#include <linux/ratelimit.h>
c6e9d6f3
TT
346#include <linux/syscalls.h>
347#include <linux/completion.h>
8da4b8c4 348#include <linux/uuid.h>
1ca1b917 349#include <crypto/chacha.h>
a24d22b2 350#include <crypto/sha1.h>
d178a1eb 351
1da177e4 352#include <asm/processor.h>
7c0f6ba6 353#include <linux/uaccess.h>
1da177e4 354#include <asm/irq.h>
775f4b29 355#include <asm/irq_regs.h>
1da177e4
LT
356#include <asm/io.h>
357
00ce1db1
TT
358#define CREATE_TRACE_POINTS
359#include <trace/events/random.h>
360
43759d4f
TT
361/* #define ADD_INTERRUPT_BENCH */
362
1da177e4
LT
363/*
364 * Configuration information
365 */
30e37ec5
PA
366#define INPUT_POOL_SHIFT 12
367#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
368#define OUTPUT_POOL_SHIFT 10
369#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
30e37ec5 370#define EXTRACT_SIZE 10
1da177e4 371
1da177e4 372
d2e7c96a
PA
373#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
374
a283b5c4 375/*
95b709b6
TT
376 * To allow fractional bits to be tracked, the entropy_count field is
377 * denominated in units of 1/8th bits.
30e37ec5 378 *
3bd0b5bf 379 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
30e37ec5 380 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
381 */
382#define ENTROPY_SHIFT 3
383#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
384
1da177e4
LT
385/*
386 * If the entropy count falls under this number of bits, then we
387 * should wake up processes which are selecting or polling on write
388 * access to /dev/random.
389 */
2132a96f 390static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4 391
1da177e4 392/*
6e9fa2c8
TT
393 * Originally, we used a primitive polynomial of degree .poolwords
394 * over GF(2). The taps for various sizes are defined below. They
395 * were chosen to be evenly spaced except for the last tap, which is 1
396 * to get the twisting happening as fast as possible.
397 *
398 * For the purposes of better mixing, we use the CRC-32 polynomial as
399 * well to make a (modified) twisted Generalized Feedback Shift
400 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
401 * generators. ACM Transactions on Modeling and Computer Simulation
402 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 403 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
404 * Simulation 4:254-266)
405 *
406 * Thanks to Colin Plumb for suggesting this.
407 *
408 * The mixing operation is much less sensitive than the output hash,
409 * where we use SHA-1. All that we want of mixing operation is that
410 * it be a good non-cryptographic hash; i.e. it not produce collisions
411 * when fed "random" data of the sort we expect to see. As long as
412 * the pool state differs for different inputs, we have preserved the
413 * input entropy and done a good job. The fact that an intelligent
414 * attacker can construct inputs that will produce controlled
415 * alterations to the pool's state is not important because we don't
416 * consider such inputs to contribute any randomness. The only
417 * property we need with respect to them is that the attacker can't
418 * increase his/her knowledge of the pool's state. Since all
419 * additions are reversible (knowing the final state and the input,
420 * you can reconstruct the initial state), if an attacker has any
421 * uncertainty about the initial state, he/she can only shuffle that
422 * uncertainty about, but never cause any collisions (which would
423 * decrease the uncertainty).
424 *
425 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
426 * Videau in their paper, "The Linux Pseudorandom Number Generator
427 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
428 * paper, they point out that we are not using a true Twisted GFSR,
429 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
430 * is, with only three taps, instead of the six that we are using).
431 * As a result, the resulting polynomial is neither primitive nor
432 * irreducible, and hence does not have a maximal period over
433 * GF(2**32). They suggest a slight change to the generator
434 * polynomial which improves the resulting TGFSR polynomial to be
435 * irreducible, which we have made here.
1da177e4 436 */
26e0854a 437static const struct poolinfo {
3bd0b5bf
RV
438 int poolbitshift, poolwords, poolbytes, poolfracbits;
439#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
440 int tap1, tap2, tap3, tap4, tap5;
441} poolinfo_table[] = {
6e9fa2c8
TT
442 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
443 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
444 { S(128), 104, 76, 51, 25, 1 },
1da177e4
LT
445};
446
1da177e4
LT
447/*
448 * Static global variables
449 */
a11e1d43 450static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 451static struct fasync_struct *fasync;
1da177e4 452
205a525c
HX
453static DEFINE_SPINLOCK(random_ready_list_lock);
454static LIST_HEAD(random_ready_list);
455
e192be9d
TT
456struct crng_state {
457 __u32 state[16];
458 unsigned long init_time;
459 spinlock_t lock;
460};
461
764ed189 462static struct crng_state primary_crng = {
e192be9d
TT
463 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
464};
465
466/*
467 * crng_init = 0 --> Uninitialized
468 * 1 --> Initialized
469 * 2 --> Initialized from input_pool
470 *
471 * crng_init is protected by primary_crng->lock, and only increases
472 * its value (from 0->1->2).
473 */
474static int crng_init = 0;
43838a23 475#define crng_ready() (likely(crng_init > 1))
e192be9d 476static int crng_init_cnt = 0;
d848e5f8 477static unsigned long crng_global_init_time = 0;
1ca1b917
EB
478#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
479static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
c92e040d 480static void _crng_backtrack_protect(struct crng_state *crng,
1ca1b917 481 __u8 tmp[CHACHA_BLOCK_SIZE], int used);
e192be9d 482static void process_random_ready_list(void);
eecabf56 483static void _get_random_bytes(void *buf, int nbytes);
e192be9d 484
4e00b339
TT
485static struct ratelimit_state unseeded_warning =
486 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
487static struct ratelimit_state urandom_warning =
488 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
489
490static int ratelimit_disable __read_mostly;
491
492module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
493MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
494
1da177e4
LT
495/**********************************************************************
496 *
497 * OS independent entropy store. Here are the functions which handle
498 * storing entropy in an entropy pool.
499 *
500 **********************************************************************/
501
502struct entropy_store;
503struct entropy_store {
43358209 504 /* read-only data: */
30e37ec5 505 const struct poolinfo *poolinfo;
1da177e4
LT
506 __u32 *pool;
507 const char *name;
1da177e4
LT
508
509 /* read-write data: */
43358209 510 spinlock_t lock;
c59974ae
TT
511 unsigned short add_ptr;
512 unsigned short input_rotate;
cda796a3 513 int entropy_count;
c59974ae 514 unsigned int last_data_init:1;
e954bc91 515 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
516};
517
e192be9d
TT
518static ssize_t extract_entropy(struct entropy_store *r, void *buf,
519 size_t nbytes, int min, int rsvd);
520static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
521 size_t nbytes, int fips);
522
523static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
0766f788 524static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
1da177e4
LT
525
526static struct entropy_store input_pool = {
527 .poolinfo = &poolinfo_table[0],
528 .name = "input",
eece09ec 529 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
530 .pool = input_pool_data
531};
532
775f4b29
TT
533static __u32 const twist_table[8] = {
534 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
535 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
536
1da177e4 537/*
e68e5b66 538 * This function adds bytes into the entropy "pool". It does not
1da177e4 539 * update the entropy estimate. The caller should call
adc782da 540 * credit_entropy_bits if this is appropriate.
1da177e4
LT
541 *
542 * The pool is stirred with a primitive polynomial of the appropriate
543 * degree, and then twisted. We twist by three bits at a time because
544 * it's cheap to do so and helps slightly in the expected case where
545 * the entropy is concentrated in the low-order bits.
546 */
00ce1db1 547static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 548 int nbytes)
1da177e4 549{
85608f8e 550 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 551 int input_rotate;
1da177e4 552 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 553 const char *bytes = in;
6d38b827 554 __u32 w;
1da177e4 555
1da177e4
LT
556 tap1 = r->poolinfo->tap1;
557 tap2 = r->poolinfo->tap2;
558 tap3 = r->poolinfo->tap3;
559 tap4 = r->poolinfo->tap4;
560 tap5 = r->poolinfo->tap5;
1da177e4 561
91fcb532
TT
562 input_rotate = r->input_rotate;
563 i = r->add_ptr;
1da177e4 564
e68e5b66
MM
565 /* mix one byte at a time to simplify size handling and churn faster */
566 while (nbytes--) {
c59974ae 567 w = rol32(*bytes++, input_rotate);
993ba211 568 i = (i - 1) & wordmask;
1da177e4
LT
569
570 /* XOR in the various taps */
993ba211 571 w ^= r->pool[i];
1da177e4
LT
572 w ^= r->pool[(i + tap1) & wordmask];
573 w ^= r->pool[(i + tap2) & wordmask];
574 w ^= r->pool[(i + tap3) & wordmask];
575 w ^= r->pool[(i + tap4) & wordmask];
576 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
577
578 /* Mix the result back in with a twist */
1da177e4 579 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
580
581 /*
582 * Normally, we add 7 bits of rotation to the pool.
583 * At the beginning of the pool, add an extra 7 bits
584 * rotation, so that successive passes spread the
585 * input bits across the pool evenly.
586 */
c59974ae 587 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
588 }
589
91fcb532
TT
590 r->input_rotate = input_rotate;
591 r->add_ptr = i;
1da177e4
LT
592}
593
00ce1db1 594static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 595 int nbytes)
00ce1db1
TT
596{
597 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 598 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
599}
600
601static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 602 int nbytes)
1da177e4 603{
902c098a
TT
604 unsigned long flags;
605
00ce1db1 606 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 607 spin_lock_irqsave(&r->lock, flags);
85608f8e 608 _mix_pool_bytes(r, in, nbytes);
902c098a 609 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
610}
611
775f4b29
TT
612struct fast_pool {
613 __u32 pool[4];
614 unsigned long last;
ee3e00e9 615 unsigned short reg_idx;
840f9507 616 unsigned char count;
775f4b29
TT
617};
618
619/*
620 * This is a fast mixing routine used by the interrupt randomness
621 * collector. It's hardcoded for an 128 bit pool and assumes that any
622 * locks that might be needed are taken by the caller.
623 */
43759d4f 624static void fast_mix(struct fast_pool *f)
775f4b29 625{
43759d4f
TT
626 __u32 a = f->pool[0], b = f->pool[1];
627 __u32 c = f->pool[2], d = f->pool[3];
628
629 a += b; c += d;
19acc77a 630 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
631 d ^= a; b ^= c;
632
633 a += b; c += d;
19acc77a 634 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
635 d ^= a; b ^= c;
636
637 a += b; c += d;
19acc77a 638 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
639 d ^= a; b ^= c;
640
641 a += b; c += d;
19acc77a 642 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
643 d ^= a; b ^= c;
644
645 f->pool[0] = a; f->pool[1] = b;
646 f->pool[2] = c; f->pool[3] = d;
655b2264 647 f->count++;
775f4b29
TT
648}
649
205a525c
HX
650static void process_random_ready_list(void)
651{
652 unsigned long flags;
653 struct random_ready_callback *rdy, *tmp;
654
655 spin_lock_irqsave(&random_ready_list_lock, flags);
656 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
657 struct module *owner = rdy->owner;
658
659 list_del_init(&rdy->list);
660 rdy->func(rdy);
661 module_put(owner);
662 }
663 spin_unlock_irqrestore(&random_ready_list_lock, flags);
664}
665
1da177e4 666/*
a283b5c4
PA
667 * Credit (or debit) the entropy store with n bits of entropy.
668 * Use credit_entropy_bits_safe() if the value comes from userspace
669 * or otherwise should be checked for extreme values.
1da177e4 670 */
adc782da 671static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 672{
118a4417 673 int entropy_count, orig;
30e37ec5
PA
674 const int pool_size = r->poolinfo->poolfracbits;
675 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 676
adc782da
MM
677 if (!nbits)
678 return;
679
902c098a 680retry:
6aa7de05 681 entropy_count = orig = READ_ONCE(r->entropy_count);
30e37ec5
PA
682 if (nfrac < 0) {
683 /* Debit */
684 entropy_count += nfrac;
685 } else {
686 /*
687 * Credit: we have to account for the possibility of
688 * overwriting already present entropy. Even in the
689 * ideal case of pure Shannon entropy, new contributions
690 * approach the full value asymptotically:
691 *
692 * entropy <- entropy + (pool_size - entropy) *
693 * (1 - exp(-add_entropy/pool_size))
694 *
695 * For add_entropy <= pool_size/2 then
696 * (1 - exp(-add_entropy/pool_size)) >=
697 * (add_entropy/pool_size)*0.7869...
698 * so we can approximate the exponential with
699 * 3/4*add_entropy/pool_size and still be on the
700 * safe side by adding at most pool_size/2 at a time.
701 *
702 * The use of pool_size-2 in the while statement is to
703 * prevent rounding artifacts from making the loop
704 * arbitrarily long; this limits the loop to log2(pool_size)*2
705 * turns no matter how large nbits is.
706 */
707 int pnfrac = nfrac;
708 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
709 /* The +2 corresponds to the /4 in the denominator */
710
711 do {
712 unsigned int anfrac = min(pnfrac, pool_size/2);
713 unsigned int add =
714 ((pool_size - entropy_count)*anfrac*3) >> s;
715
716 entropy_count += add;
717 pnfrac -= anfrac;
718 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
719 }
00ce1db1 720
870e05b1 721 if (WARN_ON(entropy_count < 0)) {
12cd53af 722 pr_warn("negative entropy/overflow: pool %s count %d\n",
f80bbd8b 723 r->name, entropy_count);
8b76f46a 724 entropy_count = 0;
30e37ec5
PA
725 } else if (entropy_count > pool_size)
726 entropy_count = pool_size;
902c098a
TT
727 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
728 goto retry;
1da177e4 729
a283b5c4 730 trace_credit_entropy_bits(r->name, nbits,
eb9d1bf0 731 entropy_count >> ENTROPY_SHIFT, _RET_IP_);
00ce1db1 732
6265e169 733 if (r == &input_pool) {
7d1b08c4 734 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 735
118a4417 736 if (crng_init < 2 && entropy_bits >= 128)
e192be9d 737 crng_reseed(&primary_crng, r);
9a6f70bb 738 }
1da177e4
LT
739}
740
86a574de 741static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4 742{
9f886f4d 743 const int nbits_max = r->poolinfo->poolwords * 32;
a283b5c4 744
86a574de
TT
745 if (nbits < 0)
746 return -EINVAL;
747
a283b5c4
PA
748 /* Cap the value to avoid overflows */
749 nbits = min(nbits, nbits_max);
a283b5c4
PA
750
751 credit_entropy_bits(r, nbits);
86a574de 752 return 0;
a283b5c4
PA
753}
754
e192be9d
TT
755/*********************************************************************
756 *
757 * CRNG using CHACHA20
758 *
759 *********************************************************************/
760
761#define CRNG_RESEED_INTERVAL (300*HZ)
762
763static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
764
1e7f583a
TT
765#ifdef CONFIG_NUMA
766/*
767 * Hack to deal with crazy userspace progams when they are all trying
768 * to access /dev/urandom in parallel. The programs are almost
769 * certainly doing something terribly wrong, but we'll work around
770 * their brain damage.
771 */
772static struct crng_state **crng_node_pool __read_mostly;
773#endif
774
b169c13d 775static void invalidate_batched_entropy(void);
fe6f1a6a 776static void numa_crng_init(void);
b169c13d 777
9b254366
KC
778static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
779static int __init parse_trust_cpu(char *arg)
780{
781 return kstrtobool(arg, &trust_cpu);
782}
783early_param("random.trust_cpu", parse_trust_cpu);
784
5cbe0f13 785static bool crng_init_try_arch(struct crng_state *crng)
e192be9d
TT
786{
787 int i;
5cbe0f13 788 bool arch_init = true;
e192be9d
TT
789 unsigned long rv;
790
e192be9d
TT
791 for (i = 4; i < 16; i++) {
792 if (!arch_get_random_seed_long(&rv) &&
39a8883a 793 !arch_get_random_long(&rv)) {
e192be9d 794 rv = random_get_entropy();
5cbe0f13 795 arch_init = false;
39a8883a 796 }
e192be9d
TT
797 crng->state[i] ^= rv;
798 }
5cbe0f13
MR
799
800 return arch_init;
801}
802
253d3194
MR
803static bool __init crng_init_try_arch_early(struct crng_state *crng)
804{
805 int i;
806 bool arch_init = true;
807 unsigned long rv;
808
809 for (i = 4; i < 16; i++) {
810 if (!arch_get_random_seed_long_early(&rv) &&
811 !arch_get_random_long_early(&rv)) {
812 rv = random_get_entropy();
813 arch_init = false;
814 }
815 crng->state[i] ^= rv;
816 }
817
818 return arch_init;
819}
820
ab9a7e27 821static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
5cbe0f13 822{
a181e0fd 823 chacha_init_consts(crng->state);
5cbe0f13
MR
824 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
825 crng_init_try_arch(crng);
826 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
827}
828
829static void __init crng_initialize_primary(struct crng_state *crng)
830{
a181e0fd 831 chacha_init_consts(crng->state);
5cbe0f13 832 _extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
253d3194 833 if (crng_init_try_arch_early(crng) && trust_cpu) {
fe6f1a6a
JD
834 invalidate_batched_entropy();
835 numa_crng_init();
39a8883a 836 crng_init = 2;
12cd53af 837 pr_notice("crng done (trusting CPU's manufacturer)\n");
39a8883a 838 }
e192be9d
TT
839 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
840}
841
8ef35c86 842#ifdef CONFIG_NUMA
6c1e851c 843static void do_numa_crng_init(struct work_struct *work)
8ef35c86
TT
844{
845 int i;
846 struct crng_state *crng;
847 struct crng_state **pool;
848
849 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
850 for_each_online_node(i) {
851 crng = kmalloc_node(sizeof(struct crng_state),
852 GFP_KERNEL | __GFP_NOFAIL, i);
853 spin_lock_init(&crng->lock);
5cbe0f13 854 crng_initialize_secondary(crng);
8ef35c86
TT
855 pool[i] = crng;
856 }
5d73d1e3
EB
857 /* pairs with READ_ONCE() in select_crng() */
858 if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
8ef35c86
TT
859 for_each_node(i)
860 kfree(pool[i]);
861 kfree(pool);
862 }
863}
6c1e851c
TT
864
865static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
866
867static void numa_crng_init(void)
868{
869 schedule_work(&numa_crng_init_work);
870}
5d73d1e3
EB
871
872static struct crng_state *select_crng(void)
873{
874 struct crng_state **pool;
875 int nid = numa_node_id();
876
877 /* pairs with cmpxchg_release() in do_numa_crng_init() */
878 pool = READ_ONCE(crng_node_pool);
879 if (pool && pool[nid])
880 return pool[nid];
881
882 return &primary_crng;
883}
8ef35c86
TT
884#else
885static void numa_crng_init(void) {}
5d73d1e3
EB
886
887static struct crng_state *select_crng(void)
888{
889 return &primary_crng;
890}
8ef35c86
TT
891#endif
892
dc12baac
TT
893/*
894 * crng_fast_load() can be called by code in the interrupt service
895 * path. So we can't afford to dilly-dally.
896 */
e192be9d
TT
897static int crng_fast_load(const char *cp, size_t len)
898{
899 unsigned long flags;
900 char *p;
901
902 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
903 return 0;
43838a23 904 if (crng_init != 0) {
e192be9d
TT
905 spin_unlock_irqrestore(&primary_crng.lock, flags);
906 return 0;
907 }
908 p = (unsigned char *) &primary_crng.state[4];
909 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
1ca1b917 910 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
e192be9d
TT
911 cp++; crng_init_cnt++; len--;
912 }
4a072c71 913 spin_unlock_irqrestore(&primary_crng.lock, flags);
e192be9d 914 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
b169c13d 915 invalidate_batched_entropy();
e192be9d 916 crng_init = 1;
12cd53af 917 pr_notice("fast init done\n");
e192be9d 918 }
e192be9d
TT
919 return 1;
920}
921
dc12baac
TT
922/*
923 * crng_slow_load() is called by add_device_randomness, which has two
924 * attributes. (1) We can't trust the buffer passed to it is
925 * guaranteed to be unpredictable (so it might not have any entropy at
926 * all), and (2) it doesn't have the performance constraints of
927 * crng_fast_load().
928 *
929 * So we do something more comprehensive which is guaranteed to touch
930 * all of the primary_crng's state, and which uses a LFSR with a
931 * period of 255 as part of the mixing algorithm. Finally, we do
932 * *not* advance crng_init_cnt since buffer we may get may be something
933 * like a fixed DMI table (for example), which might very well be
934 * unique to the machine, but is otherwise unvarying.
935 */
936static int crng_slow_load(const char *cp, size_t len)
937{
938 unsigned long flags;
939 static unsigned char lfsr = 1;
940 unsigned char tmp;
1ca1b917 941 unsigned i, max = CHACHA_KEY_SIZE;
dc12baac
TT
942 const char * src_buf = cp;
943 char * dest_buf = (char *) &primary_crng.state[4];
944
945 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
946 return 0;
947 if (crng_init != 0) {
948 spin_unlock_irqrestore(&primary_crng.lock, flags);
949 return 0;
950 }
951 if (len > max)
952 max = len;
953
954 for (i = 0; i < max ; i++) {
955 tmp = lfsr;
956 lfsr >>= 1;
957 if (tmp & 1)
958 lfsr ^= 0xE1;
1ca1b917
EB
959 tmp = dest_buf[i % CHACHA_KEY_SIZE];
960 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
dc12baac
TT
961 lfsr += (tmp << 3) | (tmp >> 5);
962 }
963 spin_unlock_irqrestore(&primary_crng.lock, flags);
964 return 1;
965}
966
e192be9d
TT
967static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
968{
969 unsigned long flags;
970 int i, num;
971 union {
1ca1b917 972 __u8 block[CHACHA_BLOCK_SIZE];
e192be9d
TT
973 __u32 key[8];
974 } buf;
975
976 if (r) {
977 num = extract_entropy(r, &buf, 32, 16, 0);
978 if (num == 0)
979 return;
c92e040d 980 } else {
1e7f583a 981 _extract_crng(&primary_crng, buf.block);
c92e040d 982 _crng_backtrack_protect(&primary_crng, buf.block,
1ca1b917 983 CHACHA_KEY_SIZE);
c92e040d 984 }
0bb29a84 985 spin_lock_irqsave(&crng->lock, flags);
e192be9d
TT
986 for (i = 0; i < 8; i++) {
987 unsigned long rv;
988 if (!arch_get_random_seed_long(&rv) &&
989 !arch_get_random_long(&rv))
990 rv = random_get_entropy();
991 crng->state[i+4] ^= buf.key[i] ^ rv;
992 }
993 memzero_explicit(&buf, sizeof(buf));
009ba856 994 WRITE_ONCE(crng->init_time, jiffies);
0bb29a84 995 spin_unlock_irqrestore(&crng->lock, flags);
e192be9d 996 if (crng == &primary_crng && crng_init < 2) {
b169c13d 997 invalidate_batched_entropy();
8ef35c86 998 numa_crng_init();
e192be9d
TT
999 crng_init = 2;
1000 process_random_ready_list();
1001 wake_up_interruptible(&crng_init_wait);
30c08efe 1002 kill_fasync(&fasync, SIGIO, POLL_IN);
12cd53af 1003 pr_notice("crng init done\n");
4e00b339 1004 if (unseeded_warning.missed) {
12cd53af 1005 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
4e00b339
TT
1006 unseeded_warning.missed);
1007 unseeded_warning.missed = 0;
1008 }
1009 if (urandom_warning.missed) {
12cd53af 1010 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
4e00b339
TT
1011 urandom_warning.missed);
1012 urandom_warning.missed = 0;
1013 }
e192be9d 1014 }
e192be9d
TT
1015}
1016
1e7f583a 1017static void _extract_crng(struct crng_state *crng,
1ca1b917 1018 __u8 out[CHACHA_BLOCK_SIZE])
e192be9d 1019{
009ba856
EB
1020 unsigned long v, flags, init_time;
1021
1022 if (crng_ready()) {
1023 init_time = READ_ONCE(crng->init_time);
1024 if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
1025 time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
1026 crng_reseed(crng, crng == &primary_crng ?
1027 &input_pool : NULL);
1028 }
e192be9d
TT
1029 spin_lock_irqsave(&crng->lock, flags);
1030 if (arch_get_random_long(&v))
1031 crng->state[14] ^= v;
1032 chacha20_block(&crng->state[0], out);
1033 if (crng->state[12] == 0)
1034 crng->state[13]++;
1035 spin_unlock_irqrestore(&crng->lock, flags);
1036}
1037
1ca1b917 1038static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1e7f583a 1039{
5d73d1e3 1040 _extract_crng(select_crng(), out);
1e7f583a
TT
1041}
1042
c92e040d
TT
1043/*
1044 * Use the leftover bytes from the CRNG block output (if there is
1045 * enough) to mutate the CRNG key to provide backtracking protection.
1046 */
1047static void _crng_backtrack_protect(struct crng_state *crng,
1ca1b917 1048 __u8 tmp[CHACHA_BLOCK_SIZE], int used)
c92e040d
TT
1049{
1050 unsigned long flags;
1051 __u32 *s, *d;
1052 int i;
1053
1054 used = round_up(used, sizeof(__u32));
1ca1b917 1055 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
c92e040d
TT
1056 extract_crng(tmp);
1057 used = 0;
1058 }
1059 spin_lock_irqsave(&crng->lock, flags);
a5e9f557 1060 s = (__u32 *) &tmp[used];
c92e040d
TT
1061 d = &crng->state[4];
1062 for (i=0; i < 8; i++)
1063 *d++ ^= *s++;
1064 spin_unlock_irqrestore(&crng->lock, flags);
1065}
1066
1ca1b917 1067static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
c92e040d 1068{
5d73d1e3 1069 _crng_backtrack_protect(select_crng(), tmp, used);
c92e040d
TT
1070}
1071
e192be9d
TT
1072static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1073{
1ca1b917
EB
1074 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1075 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
e192be9d
TT
1076 int large_request = (nbytes > 256);
1077
1078 while (nbytes) {
1079 if (large_request && need_resched()) {
1080 if (signal_pending(current)) {
1081 if (ret == 0)
1082 ret = -ERESTARTSYS;
1083 break;
1084 }
1085 schedule();
1086 }
1087
1088 extract_crng(tmp);
1ca1b917 1089 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
e192be9d
TT
1090 if (copy_to_user(buf, tmp, i)) {
1091 ret = -EFAULT;
1092 break;
1093 }
1094
1095 nbytes -= i;
1096 buf += i;
1097 ret += i;
1098 }
c92e040d 1099 crng_backtrack_protect(tmp, i);
e192be9d
TT
1100
1101 /* Wipe data just written to memory */
1102 memzero_explicit(tmp, sizeof(tmp));
1103
1104 return ret;
1105}
1106
1107
1da177e4
LT
1108/*********************************************************************
1109 *
1110 * Entropy input management
1111 *
1112 *********************************************************************/
1113
1114/* There is one of these per entropy source */
1115struct timer_rand_state {
1116 cycles_t last_time;
90b75ee5 1117 long last_delta, last_delta2;
1da177e4
LT
1118};
1119
644008df
TT
1120#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1121
a2080a67 1122/*
e192be9d
TT
1123 * Add device- or boot-specific data to the input pool to help
1124 * initialize it.
a2080a67 1125 *
e192be9d
TT
1126 * None of this adds any entropy; it is meant to avoid the problem of
1127 * the entropy pool having similar initial state across largely
1128 * identical devices.
a2080a67
LT
1129 */
1130void add_device_randomness(const void *buf, unsigned int size)
1131{
61875f30 1132 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 1133 unsigned long flags;
a2080a67 1134
dc12baac
TT
1135 if (!crng_ready() && size)
1136 crng_slow_load(buf, size);
ee7998c5 1137
5910895f 1138 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 1139 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
1140 _mix_pool_bytes(&input_pool, buf, size);
1141 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 1142 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
1143}
1144EXPORT_SYMBOL(add_device_randomness);
1145
644008df 1146static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 1147
1da177e4
LT
1148/*
1149 * This function adds entropy to the entropy "pool" by using timing
1150 * delays. It uses the timer_rand_state structure to make an estimate
1151 * of how many bits of entropy this call has added to the pool.
1152 *
1153 * The number "num" is also added to the pool - it should somehow describe
1154 * the type of event which just happened. This is currently 0-255 for
1155 * keyboard scan codes, and 256 upwards for interrupts.
1156 *
1157 */
1158static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1159{
40db23e5 1160 struct entropy_store *r;
1da177e4 1161 struct {
1da177e4 1162 long jiffies;
cf833d0b 1163 unsigned cycles;
1da177e4
LT
1164 unsigned num;
1165 } sample;
1166 long delta, delta2, delta3;
1167
1da177e4 1168 sample.jiffies = jiffies;
61875f30 1169 sample.cycles = random_get_entropy();
1da177e4 1170 sample.num = num;
e192be9d 1171 r = &input_pool;
85608f8e 1172 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1173
1174 /*
1175 * Calculate number of bits of randomness we probably added.
1176 * We take into account the first, second and third-order deltas
1177 * in order to make our estimate.
1178 */
e00d996a
QC
1179 delta = sample.jiffies - READ_ONCE(state->last_time);
1180 WRITE_ONCE(state->last_time, sample.jiffies);
5e747dd9 1181
e00d996a
QC
1182 delta2 = delta - READ_ONCE(state->last_delta);
1183 WRITE_ONCE(state->last_delta, delta);
5e747dd9 1184
e00d996a
QC
1185 delta3 = delta2 - READ_ONCE(state->last_delta2);
1186 WRITE_ONCE(state->last_delta2, delta2);
5e747dd9
RV
1187
1188 if (delta < 0)
1189 delta = -delta;
1190 if (delta2 < 0)
1191 delta2 = -delta2;
1192 if (delta3 < 0)
1193 delta3 = -delta3;
1194 if (delta > delta2)
1195 delta = delta2;
1196 if (delta > delta3)
1197 delta = delta3;
1da177e4 1198
5e747dd9
RV
1199 /*
1200 * delta is now minimum absolute delta.
1201 * Round down by 1 bit on general principles,
727d499a 1202 * and limit entropy estimate to 12 bits.
5e747dd9
RV
1203 */
1204 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4
LT
1205}
1206
d251575a 1207void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1208 unsigned int value)
1209{
1210 static unsigned char last_value;
1211
1212 /* ignore autorepeat and the like */
1213 if (value == last_value)
1214 return;
1215
1da177e4
LT
1216 last_value = value;
1217 add_timer_randomness(&input_timer_state,
1218 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1219 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1220}
80fc9f53 1221EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1222
775f4b29
TT
1223static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1224
43759d4f
TT
1225#ifdef ADD_INTERRUPT_BENCH
1226static unsigned long avg_cycles, avg_deviation;
1227
1228#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1229#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1230
1231static void add_interrupt_bench(cycles_t start)
1232{
1233 long delta = random_get_entropy() - start;
1234
1235 /* Use a weighted moving average */
1236 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1237 avg_cycles += delta;
1238 /* And average deviation */
1239 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1240 avg_deviation += delta;
1241}
1242#else
1243#define add_interrupt_bench(x)
1244#endif
1245
ee3e00e9
TT
1246static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1247{
1248 __u32 *ptr = (__u32 *) regs;
92e75428 1249 unsigned int idx;
ee3e00e9
TT
1250
1251 if (regs == NULL)
1252 return 0;
92e75428
TT
1253 idx = READ_ONCE(f->reg_idx);
1254 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1255 idx = 0;
1256 ptr += idx++;
1257 WRITE_ONCE(f->reg_idx, idx);
9dfa7bba 1258 return *ptr;
ee3e00e9
TT
1259}
1260
703f7066 1261void add_interrupt_randomness(int irq)
1da177e4 1262{
775f4b29 1263 struct entropy_store *r;
1b2a1a7e 1264 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1265 struct pt_regs *regs = get_irq_regs();
1266 unsigned long now = jiffies;
655b2264 1267 cycles_t cycles = random_get_entropy();
43759d4f 1268 __u32 c_high, j_high;
655b2264 1269 __u64 ip;
3060d6fe 1270
ee3e00e9
TT
1271 if (cycles == 0)
1272 cycles = get_reg(fast_pool, regs);
655b2264
TT
1273 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1274 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1275 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1276 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1277 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1278 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1279 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1280 get_reg(fast_pool, regs);
3060d6fe 1281
43759d4f 1282 fast_mix(fast_pool);
43759d4f 1283 add_interrupt_bench(cycles);
3060d6fe 1284
43838a23 1285 if (unlikely(crng_init == 0)) {
e192be9d
TT
1286 if ((fast_pool->count >= 64) &&
1287 crng_fast_load((char *) fast_pool->pool,
1288 sizeof(fast_pool->pool))) {
1289 fast_pool->count = 0;
1290 fast_pool->last = now;
1291 }
1292 return;
1293 }
1294
ee3e00e9
TT
1295 if ((fast_pool->count < 64) &&
1296 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1297 return;
1298
e192be9d 1299 r = &input_pool;
840f9507 1300 if (!spin_trylock(&r->lock))
91fcb532 1301 return;
83664a69 1302
91fcb532 1303 fast_pool->last = now;
85608f8e 1304 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
91fcb532 1305 spin_unlock(&r->lock);
83664a69 1306
ee3e00e9 1307 fast_pool->count = 0;
83664a69 1308
ee3e00e9 1309 /* award one bit for the contents of the fast pool */
390596c9 1310 credit_entropy_bits(r, 1);
1da177e4 1311}
4b44f2d1 1312EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1313
9361401e 1314#ifdef CONFIG_BLOCK
1da177e4
LT
1315void add_disk_randomness(struct gendisk *disk)
1316{
1317 if (!disk || !disk->random)
1318 return;
1319 /* first major is 1, so we get >= 0x200 here */
f331c029 1320 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1321 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1322}
bdcfa3e5 1323EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1324#endif
1da177e4 1325
1da177e4
LT
1326/*********************************************************************
1327 *
1328 * Entropy extraction routines
1329 *
1330 *********************************************************************/
1331
1da177e4 1332/*
19fa5be1
GP
1333 * This function decides how many bytes to actually take from the
1334 * given pool, and also debits the entropy count accordingly.
1da177e4 1335 */
1da177e4
LT
1336static size_t account(struct entropy_store *r, size_t nbytes, int min,
1337 int reserved)
1338{
43d8a72c 1339 int entropy_count, orig, have_bytes;
79a84687 1340 size_t ibytes, nfrac;
1da177e4 1341
a283b5c4 1342 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1343
1344 /* Can we pull enough? */
10b3a32d 1345retry:
6aa7de05 1346 entropy_count = orig = READ_ONCE(r->entropy_count);
a283b5c4 1347 ibytes = nbytes;
43d8a72c
SM
1348 /* never pull more than available */
1349 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
e33ba5fa 1350
43d8a72c
SM
1351 if ((have_bytes -= reserved) < 0)
1352 have_bytes = 0;
1353 ibytes = min_t(size_t, ibytes, have_bytes);
0fb7a01a 1354 if (ibytes < min)
a283b5c4 1355 ibytes = 0;
79a84687 1356
870e05b1 1357 if (WARN_ON(entropy_count < 0)) {
12cd53af 1358 pr_warn("negative entropy count: pool %s count %d\n",
79a84687 1359 r->name, entropy_count);
79a84687
HFS
1360 entropy_count = 0;
1361 }
1362 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1363 if ((size_t) entropy_count > nfrac)
1364 entropy_count -= nfrac;
1365 else
e33ba5fa 1366 entropy_count = 0;
f9c6d498 1367
0fb7a01a
GP
1368 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1369 goto retry;
1da177e4 1370
f80bbd8b 1371 trace_debit_entropy(r->name, 8 * ibytes);
12faac30 1372 if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
a11e1d43 1373 wake_up_interruptible(&random_write_wait);
b9809552
TT
1374 kill_fasync(&fasync, SIGIO, POLL_OUT);
1375 }
1376
a283b5c4 1377 return ibytes;
1da177e4
LT
1378}
1379
19fa5be1 1380/*
118a4417 1381 * This function does the actual extraction for extract_entropy.
19fa5be1
GP
1382 *
1383 * Note: we assume that .poolwords is a multiple of 16 words.
1384 */
1da177e4
LT
1385static void extract_buf(struct entropy_store *r, __u8 *out)
1386{
602b6aee 1387 int i;
d2e7c96a
PA
1388 union {
1389 __u32 w[5];
85a1f777 1390 unsigned long l[LONGS(20)];
d2e7c96a 1391 } hash;
6b0b0fa2 1392 __u32 workspace[SHA1_WORKSPACE_WORDS];
902c098a 1393 unsigned long flags;
1da177e4 1394
85a1f777 1395 /*
dfd38750 1396 * If we have an architectural hardware random number
46884442 1397 * generator, use it for SHA's initial vector
85a1f777 1398 */
6b0b0fa2 1399 sha1_init(hash.w);
85a1f777
TT
1400 for (i = 0; i < LONGS(20); i++) {
1401 unsigned long v;
1402 if (!arch_get_random_long(&v))
1403 break;
46884442 1404 hash.l[i] = v;
85a1f777
TT
1405 }
1406
46884442
TT
1407 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1408 spin_lock_irqsave(&r->lock, flags);
1409 for (i = 0; i < r->poolinfo->poolwords; i += 16)
6b0b0fa2 1410 sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
46884442 1411
1da177e4 1412 /*
1c0ad3d4
MM
1413 * We mix the hash back into the pool to prevent backtracking
1414 * attacks (where the attacker knows the state of the pool
1415 * plus the current outputs, and attempts to find previous
1416 * ouputs), unless the hash function can be inverted. By
1417 * mixing at least a SHA1 worth of hash data back, we make
1418 * brute-forcing the feedback as hard as brute-forcing the
1419 * hash.
1da177e4 1420 */
85608f8e 1421 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1422 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1423
d4c5efdb 1424 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1425
1426 /*
1c0ad3d4
MM
1427 * In case the hash function has some recognizable output
1428 * pattern, we fold it in half. Thus, we always feed back
1429 * twice as much data as we output.
1da177e4 1430 */
d2e7c96a
PA
1431 hash.w[0] ^= hash.w[3];
1432 hash.w[1] ^= hash.w[4];
1433 hash.w[2] ^= rol32(hash.w[2], 16);
1434
d2e7c96a 1435 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1436 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1437}
1438
e192be9d
TT
1439static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1440 size_t nbytes, int fips)
1441{
1442 ssize_t ret = 0, i;
1443 __u8 tmp[EXTRACT_SIZE];
1444 unsigned long flags;
1445
1446 while (nbytes) {
1447 extract_buf(r, tmp);
1448
1449 if (fips) {
1450 spin_lock_irqsave(&r->lock, flags);
1451 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1452 panic("Hardware RNG duplicated output!\n");
1453 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1454 spin_unlock_irqrestore(&r->lock, flags);
1455 }
1456 i = min_t(int, nbytes, EXTRACT_SIZE);
1457 memcpy(buf, tmp, i);
1458 nbytes -= i;
1459 buf += i;
1460 ret += i;
1461 }
1462
1463 /* Wipe data just returned from memory */
1464 memzero_explicit(tmp, sizeof(tmp));
1465
1466 return ret;
1467}
1468
19fa5be1
GP
1469/*
1470 * This function extracts randomness from the "entropy pool", and
1471 * returns it in a buffer.
1472 *
1473 * The min parameter specifies the minimum amount we can pull before
1474 * failing to avoid races that defeat catastrophic reseeding while the
1475 * reserved parameter indicates how much entropy we must leave in the
1476 * pool after each pull to avoid starving other readers.
1477 */
90b75ee5 1478static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1479 size_t nbytes, int min, int reserved)
1da177e4 1480{
1da177e4 1481 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1482 unsigned long flags;
1da177e4 1483
ec8f02da 1484 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1485 if (fips_enabled) {
1486 spin_lock_irqsave(&r->lock, flags);
1487 if (!r->last_data_init) {
c59974ae 1488 r->last_data_init = 1;
1e7e2e05
JW
1489 spin_unlock_irqrestore(&r->lock, flags);
1490 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1491 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1492 extract_buf(r, tmp);
1493 spin_lock_irqsave(&r->lock, flags);
1494 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1495 }
1496 spin_unlock_irqrestore(&r->lock, flags);
1497 }
ec8f02da 1498
a283b5c4 1499 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1500 nbytes = account(r, nbytes, min, reserved);
1501
e192be9d 1502 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1503}
1504
eecabf56
TT
1505#define warn_unseeded_randomness(previous) \
1506 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1507
1508static void _warn_unseeded_randomness(const char *func_name, void *caller,
1509 void **previous)
1510{
1511#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1512 const bool print_once = false;
1513#else
1514 static bool print_once __read_mostly;
1515#endif
1516
1517 if (print_once ||
1518 crng_ready() ||
1519 (previous && (caller == READ_ONCE(*previous))))
1520 return;
1521 WRITE_ONCE(*previous, caller);
1522#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1523 print_once = true;
1524#endif
4e00b339 1525 if (__ratelimit(&unseeded_warning))
1b710b1b
SS
1526 printk_deferred(KERN_NOTICE "random: %s called from %pS "
1527 "with crng_init=%d\n", func_name, caller,
1528 crng_init);
eecabf56
TT
1529}
1530
1da177e4
LT
1531/*
1532 * This function is the exported kernel interface. It returns some
c2557a30 1533 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1534 * TCP sequence numbers, etc. It does not rely on the hardware random
1535 * number generator. For random bytes direct from the hardware RNG
e297a783
JD
1536 * (when available), use get_random_bytes_arch(). In order to ensure
1537 * that the randomness provided by this function is okay, the function
1538 * wait_for_random_bytes() should be called and return 0 at least once
1539 * at any point prior.
1da177e4 1540 */
eecabf56 1541static void _get_random_bytes(void *buf, int nbytes)
c2557a30 1542{
1ca1b917 1543 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
e192be9d 1544
5910895f 1545 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d 1546
1ca1b917 1547 while (nbytes >= CHACHA_BLOCK_SIZE) {
e192be9d 1548 extract_crng(buf);
1ca1b917
EB
1549 buf += CHACHA_BLOCK_SIZE;
1550 nbytes -= CHACHA_BLOCK_SIZE;
e192be9d
TT
1551 }
1552
1553 if (nbytes > 0) {
1554 extract_crng(tmp);
1555 memcpy(buf, tmp, nbytes);
c92e040d
TT
1556 crng_backtrack_protect(tmp, nbytes);
1557 } else
1ca1b917 1558 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
c92e040d 1559 memzero_explicit(tmp, sizeof(tmp));
c2557a30 1560}
eecabf56
TT
1561
1562void get_random_bytes(void *buf, int nbytes)
1563{
1564 static void *previous;
1565
1566 warn_unseeded_randomness(&previous);
1567 _get_random_bytes(buf, nbytes);
1568}
c2557a30
TT
1569EXPORT_SYMBOL(get_random_bytes);
1570
50ee7529
LT
1571
1572/*
1573 * Each time the timer fires, we expect that we got an unpredictable
1574 * jump in the cycle counter. Even if the timer is running on another
1575 * CPU, the timer activity will be touching the stack of the CPU that is
1576 * generating entropy..
1577 *
1578 * Note that we don't re-arm the timer in the timer itself - we are
1579 * happy to be scheduled away, since that just makes the load more
1580 * complex, but we do not want the timer to keep ticking unless the
1581 * entropy loop is running.
1582 *
1583 * So the re-arming always happens in the entropy loop itself.
1584 */
1585static void entropy_timer(struct timer_list *t)
1586{
1587 credit_entropy_bits(&input_pool, 1);
1588}
1589
1590/*
1591 * If we have an actual cycle counter, see if we can
1592 * generate enough entropy with timing noise
1593 */
1594static void try_to_generate_entropy(void)
1595{
1596 struct {
1597 unsigned long now;
1598 struct timer_list timer;
1599 } stack;
1600
1601 stack.now = random_get_entropy();
1602
1603 /* Slow counter - or none. Don't even bother */
1604 if (stack.now == random_get_entropy())
1605 return;
1606
1607 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1608 while (!crng_ready()) {
1609 if (!timer_pending(&stack.timer))
1610 mod_timer(&stack.timer, jiffies+1);
1611 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1612 schedule();
1613 stack.now = random_get_entropy();
1614 }
1615
1616 del_timer_sync(&stack.timer);
1617 destroy_timer_on_stack(&stack.timer);
1618 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1619}
1620
e297a783
JD
1621/*
1622 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1623 * cryptographically secure random numbers. This applies to: the /dev/urandom
1624 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1625 * family of functions. Using any of these functions without first calling
1626 * this function forfeits the guarantee of security.
1627 *
1628 * Returns: 0 if the urandom pool has been seeded.
1629 * -ERESTARTSYS if the function was interrupted by a signal.
1630 */
1631int wait_for_random_bytes(void)
1632{
1633 if (likely(crng_ready()))
1634 return 0;
50ee7529
LT
1635
1636 do {
1637 int ret;
1638 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1639 if (ret)
1640 return ret > 0 ? 0 : ret;
1641
1642 try_to_generate_entropy();
1643 } while (!crng_ready());
1644
1645 return 0;
e297a783
JD
1646}
1647EXPORT_SYMBOL(wait_for_random_bytes);
1648
9a47249d
JD
1649/*
1650 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1651 * to supply cryptographically secure random numbers. This applies to: the
1652 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1653 * ,u64,int,long} family of functions.
1654 *
1655 * Returns: true if the urandom pool has been seeded.
1656 * false if the urandom pool has not been seeded.
1657 */
1658bool rng_is_initialized(void)
1659{
1660 return crng_ready();
1661}
1662EXPORT_SYMBOL(rng_is_initialized);
1663
205a525c
HX
1664/*
1665 * Add a callback function that will be invoked when the nonblocking
1666 * pool is initialised.
1667 *
1668 * returns: 0 if callback is successfully added
1669 * -EALREADY if pool is already initialised (callback not called)
1670 * -ENOENT if module for callback is not alive
1671 */
1672int add_random_ready_callback(struct random_ready_callback *rdy)
1673{
1674 struct module *owner;
1675 unsigned long flags;
1676 int err = -EALREADY;
1677
e192be9d 1678 if (crng_ready())
205a525c
HX
1679 return err;
1680
1681 owner = rdy->owner;
1682 if (!try_module_get(owner))
1683 return -ENOENT;
1684
1685 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1686 if (crng_ready())
205a525c
HX
1687 goto out;
1688
1689 owner = NULL;
1690
1691 list_add(&rdy->list, &random_ready_list);
1692 err = 0;
1693
1694out:
1695 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1696
1697 module_put(owner);
1698
1699 return err;
1700}
1701EXPORT_SYMBOL(add_random_ready_callback);
1702
1703/*
1704 * Delete a previously registered readiness callback function.
1705 */
1706void del_random_ready_callback(struct random_ready_callback *rdy)
1707{
1708 unsigned long flags;
1709 struct module *owner = NULL;
1710
1711 spin_lock_irqsave(&random_ready_list_lock, flags);
1712 if (!list_empty(&rdy->list)) {
1713 list_del_init(&rdy->list);
1714 owner = rdy->owner;
1715 }
1716 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1717
1718 module_put(owner);
1719}
1720EXPORT_SYMBOL(del_random_ready_callback);
1721
c2557a30
TT
1722/*
1723 * This function will use the architecture-specific hardware random
1724 * number generator if it is available. The arch-specific hw RNG will
1725 * almost certainly be faster than what we can do in software, but it
1726 * is impossible to verify that it is implemented securely (as
1727 * opposed, to, say, the AES encryption of a sequence number using a
1728 * key known by the NSA). So it's useful if we need the speed, but
1729 * only if we're willing to trust the hardware manufacturer not to
1730 * have put in a back door.
753d433b
TH
1731 *
1732 * Return number of bytes filled in.
c2557a30 1733 */
753d433b 1734int __must_check get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1735{
753d433b 1736 int left = nbytes;
63d77173
PA
1737 char *p = buf;
1738
753d433b
TH
1739 trace_get_random_bytes_arch(left, _RET_IP_);
1740 while (left) {
63d77173 1741 unsigned long v;
753d433b 1742 int chunk = min_t(int, left, sizeof(unsigned long));
c2557a30 1743
63d77173
PA
1744 if (!arch_get_random_long(&v))
1745 break;
8ddd6efa 1746
bd29e568 1747 memcpy(p, &v, chunk);
63d77173 1748 p += chunk;
753d433b 1749 left -= chunk;
63d77173
PA
1750 }
1751
753d433b 1752 return nbytes - left;
1da177e4 1753}
c2557a30
TT
1754EXPORT_SYMBOL(get_random_bytes_arch);
1755
1da177e4
LT
1756/*
1757 * init_std_data - initialize pool with system data
1758 *
1759 * @r: pool to initialize
1760 *
1761 * This function clears the pool's entropy count and mixes some system
1762 * data into the pool to prepare it for use. The pool is not cleared
1763 * as that can only decrease the entropy in the pool.
1764 */
d5553523 1765static void __init init_std_data(struct entropy_store *r)
1da177e4 1766{
3e88bdff 1767 int i;
902c098a
TT
1768 ktime_t now = ktime_get_real();
1769 unsigned long rv;
1da177e4 1770
85608f8e 1771 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1772 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1773 if (!arch_get_random_seed_long(&rv) &&
1774 !arch_get_random_long(&rv))
ae9ecd92 1775 rv = random_get_entropy();
85608f8e 1776 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1777 }
85608f8e 1778 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1779}
1780
cbc96b75
TL
1781/*
1782 * Note that setup_arch() may call add_device_randomness()
1783 * long before we get here. This allows seeding of the pools
1784 * with some platform dependent data very early in the boot
1785 * process. But it limits our options here. We must use
1786 * statically allocated structures that already have all
1787 * initializations complete at compile time. We should also
1788 * take care not to overwrite the precious per platform data
1789 * we were given.
1790 */
d5553523 1791int __init rand_initialize(void)
1da177e4
LT
1792{
1793 init_std_data(&input_pool);
5cbe0f13 1794 crng_initialize_primary(&primary_crng);
d848e5f8 1795 crng_global_init_time = jiffies;
4e00b339
TT
1796 if (ratelimit_disable) {
1797 urandom_warning.interval = 0;
1798 unseeded_warning.interval = 0;
1799 }
1da177e4
LT
1800 return 0;
1801}
1da177e4 1802
9361401e 1803#ifdef CONFIG_BLOCK
1da177e4
LT
1804void rand_initialize_disk(struct gendisk *disk)
1805{
1806 struct timer_rand_state *state;
1807
1808 /*
f8595815 1809 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1810 * source.
1811 */
f8595815 1812 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1813 if (state) {
1814 state->last_time = INITIAL_JIFFIES;
1da177e4 1815 disk->random = state;
644008df 1816 }
1da177e4 1817}
9361401e 1818#endif
1da177e4 1819
c6f1deb1
AL
1820static ssize_t
1821urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
1822 loff_t *ppos)
1823{
1824 int ret;
1825
1826 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1827 ret = extract_crng_user(buf, nbytes);
1828 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1829 return ret;
1830}
1831
1da177e4 1832static ssize_t
90b75ee5 1833urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1834{
e192be9d 1835 unsigned long flags;
9b4d0087 1836 static int maxwarn = 10;
301f0595 1837
e192be9d 1838 if (!crng_ready() && maxwarn > 0) {
9b4d0087 1839 maxwarn--;
4e00b339 1840 if (__ratelimit(&urandom_warning))
12cd53af
YL
1841 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1842 current->comm, nbytes);
e192be9d
TT
1843 spin_lock_irqsave(&primary_crng.lock, flags);
1844 crng_init_cnt = 0;
1845 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1846 }
c6f1deb1
AL
1847
1848 return urandom_read_nowarn(file, buf, nbytes, ppos);
1da177e4
LT
1849}
1850
30c08efe
AL
1851static ssize_t
1852random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1853{
1854 int ret;
1855
1856 ret = wait_for_random_bytes();
1857 if (ret != 0)
1858 return ret;
1859 return urandom_read_nowarn(file, buf, nbytes, ppos);
1860}
1861
afc9a42b 1862static __poll_t
a11e1d43 1863random_poll(struct file *file, poll_table * wait)
1da177e4 1864{
a11e1d43 1865 __poll_t mask;
1da177e4 1866
30c08efe 1867 poll_wait(file, &crng_init_wait, wait);
a11e1d43
LT
1868 poll_wait(file, &random_write_wait, wait);
1869 mask = 0;
30c08efe 1870 if (crng_ready())
a9a08845 1871 mask |= EPOLLIN | EPOLLRDNORM;
2132a96f 1872 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
a9a08845 1873 mask |= EPOLLOUT | EPOLLWRNORM;
1da177e4
LT
1874 return mask;
1875}
1876
7f397dcd
MM
1877static int
1878write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1879{
1da177e4 1880 size_t bytes;
81e69df3 1881 __u32 t, buf[16];
1da177e4 1882 const char __user *p = buffer;
1da177e4 1883
7f397dcd 1884 while (count > 0) {
81e69df3
TT
1885 int b, i = 0;
1886
7f397dcd
MM
1887 bytes = min(count, sizeof(buf));
1888 if (copy_from_user(&buf, p, bytes))
1889 return -EFAULT;
1da177e4 1890
81e69df3
TT
1891 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1892 if (!arch_get_random_int(&t))
1893 break;
1894 buf[i] ^= t;
1895 }
1896
7f397dcd 1897 count -= bytes;
1da177e4
LT
1898 p += bytes;
1899
85608f8e 1900 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1901 cond_resched();
1da177e4 1902 }
7f397dcd
MM
1903
1904 return 0;
1905}
1906
90b75ee5
MM
1907static ssize_t random_write(struct file *file, const char __user *buffer,
1908 size_t count, loff_t *ppos)
7f397dcd
MM
1909{
1910 size_t ret;
7f397dcd 1911
e192be9d 1912 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1913 if (ret)
1914 return ret;
1915
7f397dcd 1916 return (ssize_t)count;
1da177e4
LT
1917}
1918
43ae4860 1919static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1920{
1921 int size, ent_count;
1922 int __user *p = (int __user *)arg;
1923 int retval;
1924
1925 switch (cmd) {
1926 case RNDGETENTCNT:
43ae4860 1927 /* inherently racy, no point locking */
a283b5c4
PA
1928 ent_count = ENTROPY_BITS(&input_pool);
1929 if (put_user(ent_count, p))
1da177e4
LT
1930 return -EFAULT;
1931 return 0;
1932 case RNDADDTOENTCNT:
1933 if (!capable(CAP_SYS_ADMIN))
1934 return -EPERM;
1935 if (get_user(ent_count, p))
1936 return -EFAULT;
86a574de 1937 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1938 case RNDADDENTROPY:
1939 if (!capable(CAP_SYS_ADMIN))
1940 return -EPERM;
1941 if (get_user(ent_count, p++))
1942 return -EFAULT;
1943 if (ent_count < 0)
1944 return -EINVAL;
1945 if (get_user(size, p++))
1946 return -EFAULT;
7f397dcd
MM
1947 retval = write_pool(&input_pool, (const char __user *)p,
1948 size);
1da177e4
LT
1949 if (retval < 0)
1950 return retval;
86a574de 1951 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1952 case RNDZAPENTCNT:
1953 case RNDCLEARPOOL:
ae9ecd92
TT
1954 /*
1955 * Clear the entropy pool counters. We no longer clear
1956 * the entropy pool, as that's silly.
1957 */
1da177e4
LT
1958 if (!capable(CAP_SYS_ADMIN))
1959 return -EPERM;
ae9ecd92 1960 input_pool.entropy_count = 0;
1da177e4 1961 return 0;
d848e5f8
TT
1962 case RNDRESEEDCRNG:
1963 if (!capable(CAP_SYS_ADMIN))
1964 return -EPERM;
1965 if (crng_init < 2)
1966 return -ENODATA;
11a0b5e0 1967 crng_reseed(&primary_crng, &input_pool);
009ba856 1968 WRITE_ONCE(crng_global_init_time, jiffies - 1);
d848e5f8 1969 return 0;
1da177e4
LT
1970 default:
1971 return -EINVAL;
1972 }
1973}
1974
9a6f70bb
JD
1975static int random_fasync(int fd, struct file *filp, int on)
1976{
1977 return fasync_helper(fd, filp, on, &fasync);
1978}
1979
2b8693c0 1980const struct file_operations random_fops = {
1da177e4
LT
1981 .read = random_read,
1982 .write = random_write,
a11e1d43 1983 .poll = random_poll,
43ae4860 1984 .unlocked_ioctl = random_ioctl,
507e4e2b 1985 .compat_ioctl = compat_ptr_ioctl,
9a6f70bb 1986 .fasync = random_fasync,
6038f373 1987 .llseek = noop_llseek,
1da177e4
LT
1988};
1989
2b8693c0 1990const struct file_operations urandom_fops = {
1da177e4
LT
1991 .read = urandom_read,
1992 .write = random_write,
43ae4860 1993 .unlocked_ioctl = random_ioctl,
4aa37c46 1994 .compat_ioctl = compat_ptr_ioctl,
9a6f70bb 1995 .fasync = random_fasync,
6038f373 1996 .llseek = noop_llseek,
1da177e4
LT
1997};
1998
c6e9d6f3
TT
1999SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2000 unsigned int, flags)
2001{
e297a783
JD
2002 int ret;
2003
75551dbf
AL
2004 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
2005 return -EINVAL;
2006
2007 /*
2008 * Requesting insecure and blocking randomness at the same time makes
2009 * no sense.
2010 */
2011 if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
c6e9d6f3
TT
2012 return -EINVAL;
2013
2014 if (count > INT_MAX)
2015 count = INT_MAX;
2016
75551dbf 2017 if (!(flags & GRND_INSECURE) && !crng_ready()) {
c6e9d6f3
TT
2018 if (flags & GRND_NONBLOCK)
2019 return -EAGAIN;
e297a783
JD
2020 ret = wait_for_random_bytes();
2021 if (unlikely(ret))
2022 return ret;
c6e9d6f3 2023 }
c6f1deb1 2024 return urandom_read_nowarn(NULL, buf, count, NULL);
c6e9d6f3
TT
2025}
2026
1da177e4
LT
2027/********************************************************************
2028 *
2029 * Sysctl interface
2030 *
2031 ********************************************************************/
2032
2033#ifdef CONFIG_SYSCTL
2034
2035#include <linux/sysctl.h>
2036
c95ea0c6 2037static int min_write_thresh;
1da177e4 2038static int max_write_thresh = INPUT_POOL_WORDS * 32;
db61ffe3 2039static int random_min_urandom_seed = 60;
1da177e4
LT
2040static char sysctl_bootid[16];
2041
2042/*
f22052b2 2043 * This function is used to return both the bootid UUID, and random
1da177e4
LT
2044 * UUID. The difference is in whether table->data is NULL; if it is,
2045 * then a new UUID is generated and returned to the user.
2046 *
f22052b2
GP
2047 * If the user accesses this via the proc interface, the UUID will be
2048 * returned as an ASCII string in the standard UUID format; if via the
2049 * sysctl system call, as 16 bytes of binary data.
1da177e4 2050 */
a151427e 2051static int proc_do_uuid(struct ctl_table *table, int write,
32927393 2052 void *buffer, size_t *lenp, loff_t *ppos)
1da177e4 2053{
a151427e 2054 struct ctl_table fake_table;
1da177e4
LT
2055 unsigned char buf[64], tmp_uuid[16], *uuid;
2056
2057 uuid = table->data;
2058 if (!uuid) {
2059 uuid = tmp_uuid;
1da177e4 2060 generate_random_uuid(uuid);
44e4360f
MD
2061 } else {
2062 static DEFINE_SPINLOCK(bootid_spinlock);
2063
2064 spin_lock(&bootid_spinlock);
2065 if (!uuid[8])
2066 generate_random_uuid(uuid);
2067 spin_unlock(&bootid_spinlock);
2068 }
1da177e4 2069
35900771
JP
2070 sprintf(buf, "%pU", uuid);
2071
1da177e4
LT
2072 fake_table.data = buf;
2073 fake_table.maxlen = sizeof(buf);
2074
8d65af78 2075 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
2076}
2077
a283b5c4
PA
2078/*
2079 * Return entropy available scaled to integral bits
2080 */
5eb10d91 2081static int proc_do_entropy(struct ctl_table *table, int write,
a2541dcb 2082 void *buffer, size_t *lenp, loff_t *ppos)
a283b5c4 2083{
5eb10d91 2084 struct ctl_table fake_table;
a283b5c4
PA
2085 int entropy_count;
2086
2087 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2088
2089 fake_table.data = &entropy_count;
2090 fake_table.maxlen = sizeof(entropy_count);
2091
2092 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2093}
2094
1da177e4 2095static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
2096extern struct ctl_table random_table[];
2097struct ctl_table random_table[] = {
1da177e4 2098 {
1da177e4
LT
2099 .procname = "poolsize",
2100 .data = &sysctl_poolsize,
2101 .maxlen = sizeof(int),
2102 .mode = 0444,
6d456111 2103 .proc_handler = proc_dointvec,
1da177e4
LT
2104 },
2105 {
1da177e4
LT
2106 .procname = "entropy_avail",
2107 .maxlen = sizeof(int),
2108 .mode = 0444,
a283b5c4 2109 .proc_handler = proc_do_entropy,
1da177e4
LT
2110 .data = &input_pool.entropy_count,
2111 },
1da177e4 2112 {
1da177e4 2113 .procname = "write_wakeup_threshold",
2132a96f 2114 .data = &random_write_wakeup_bits,
1da177e4
LT
2115 .maxlen = sizeof(int),
2116 .mode = 0644,
6d456111 2117 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2118 .extra1 = &min_write_thresh,
2119 .extra2 = &max_write_thresh,
2120 },
f5c2742c
TT
2121 {
2122 .procname = "urandom_min_reseed_secs",
2123 .data = &random_min_urandom_seed,
2124 .maxlen = sizeof(int),
2125 .mode = 0644,
2126 .proc_handler = proc_dointvec,
2127 },
1da177e4 2128 {
1da177e4
LT
2129 .procname = "boot_id",
2130 .data = &sysctl_bootid,
2131 .maxlen = 16,
2132 .mode = 0444,
6d456111 2133 .proc_handler = proc_do_uuid,
1da177e4
LT
2134 },
2135 {
1da177e4
LT
2136 .procname = "uuid",
2137 .maxlen = 16,
2138 .mode = 0444,
6d456111 2139 .proc_handler = proc_do_uuid,
1da177e4 2140 },
43759d4f
TT
2141#ifdef ADD_INTERRUPT_BENCH
2142 {
2143 .procname = "add_interrupt_avg_cycles",
2144 .data = &avg_cycles,
2145 .maxlen = sizeof(avg_cycles),
2146 .mode = 0444,
2147 .proc_handler = proc_doulongvec_minmax,
2148 },
2149 {
2150 .procname = "add_interrupt_avg_deviation",
2151 .data = &avg_deviation,
2152 .maxlen = sizeof(avg_deviation),
2153 .mode = 0444,
2154 .proc_handler = proc_doulongvec_minmax,
2155 },
2156#endif
894d2491 2157 { }
1da177e4
LT
2158};
2159#endif /* CONFIG_SYSCTL */
2160
f5b98461
JD
2161struct batched_entropy {
2162 union {
1ca1b917
EB
2163 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2164 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
f5b98461
JD
2165 };
2166 unsigned int position;
b7d5dc21 2167 spinlock_t batch_lock;
f5b98461 2168};
b1132dea 2169
1da177e4 2170/*
f5b98461 2171 * Get a random word for internal kernel use only. The quality of the random
69efea71
JD
2172 * number is good as /dev/urandom, but there is no backtrack protection, with
2173 * the goal of being quite fast and not depleting entropy. In order to ensure
e297a783 2174 * that the randomness provided by this function is okay, the function
69efea71
JD
2175 * wait_for_random_bytes() should be called and return 0 at least once at any
2176 * point prior.
1da177e4 2177 */
b7d5dc21
SAS
2178static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2179 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2180};
2181
c440408c 2182u64 get_random_u64(void)
1da177e4 2183{
c440408c 2184 u64 ret;
b7d5dc21 2185 unsigned long flags;
f5b98461 2186 struct batched_entropy *batch;
eecabf56 2187 static void *previous;
8a0a9bd4 2188
eecabf56 2189 warn_unseeded_randomness(&previous);
d06bfd19 2190
b7d5dc21
SAS
2191 batch = raw_cpu_ptr(&batched_entropy_u64);
2192 spin_lock_irqsave(&batch->batch_lock, flags);
c440408c 2193 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
a5e9f557 2194 extract_crng((u8 *)batch->entropy_u64);
f5b98461
JD
2195 batch->position = 0;
2196 }
c440408c 2197 ret = batch->entropy_u64[batch->position++];
b7d5dc21 2198 spin_unlock_irqrestore(&batch->batch_lock, flags);
8a0a9bd4 2199 return ret;
1da177e4 2200}
c440408c 2201EXPORT_SYMBOL(get_random_u64);
1da177e4 2202
b7d5dc21
SAS
2203static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2204 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2205};
c440408c 2206u32 get_random_u32(void)
f5b98461 2207{
c440408c 2208 u32 ret;
b7d5dc21 2209 unsigned long flags;
f5b98461 2210 struct batched_entropy *batch;
eecabf56 2211 static void *previous;
ec9ee4ac 2212
eecabf56 2213 warn_unseeded_randomness(&previous);
d06bfd19 2214
b7d5dc21
SAS
2215 batch = raw_cpu_ptr(&batched_entropy_u32);
2216 spin_lock_irqsave(&batch->batch_lock, flags);
c440408c 2217 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
a5e9f557 2218 extract_crng((u8 *)batch->entropy_u32);
f5b98461
JD
2219 batch->position = 0;
2220 }
c440408c 2221 ret = batch->entropy_u32[batch->position++];
b7d5dc21 2222 spin_unlock_irqrestore(&batch->batch_lock, flags);
ec9ee4ac
DC
2223 return ret;
2224}
c440408c 2225EXPORT_SYMBOL(get_random_u32);
ec9ee4ac 2226
b169c13d
JD
2227/* It's important to invalidate all potential batched entropy that might
2228 * be stored before the crng is initialized, which we can do lazily by
2229 * simply resetting the counter to zero so that it's re-extracted on the
2230 * next usage. */
2231static void invalidate_batched_entropy(void)
2232{
2233 int cpu;
2234 unsigned long flags;
2235
b169c13d 2236 for_each_possible_cpu (cpu) {
b7d5dc21
SAS
2237 struct batched_entropy *batched_entropy;
2238
2239 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2240 spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2241 batched_entropy->position = 0;
2242 spin_unlock(&batched_entropy->batch_lock);
2243
2244 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2245 spin_lock(&batched_entropy->batch_lock);
2246 batched_entropy->position = 0;
2247 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
b169c13d 2248 }
b169c13d
JD
2249}
2250
99fdafde
JC
2251/**
2252 * randomize_page - Generate a random, page aligned address
2253 * @start: The smallest acceptable address the caller will take.
2254 * @range: The size of the area, starting at @start, within which the
2255 * random address must fall.
2256 *
2257 * If @start + @range would overflow, @range is capped.
2258 *
2259 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2260 * @start was already page aligned. We now align it regardless.
2261 *
2262 * Return: A page aligned address within [start, start + range). On error,
2263 * @start is returned.
2264 */
2265unsigned long
2266randomize_page(unsigned long start, unsigned long range)
2267{
2268 if (!PAGE_ALIGNED(start)) {
2269 range -= PAGE_ALIGN(start) - start;
2270 start = PAGE_ALIGN(start);
2271 }
2272
2273 if (start > ULONG_MAX - range)
2274 range = ULONG_MAX - start;
2275
2276 range >>= PAGE_SHIFT;
2277
2278 if (range == 0)
2279 return start;
2280
2281 return start + (get_random_long() % range << PAGE_SHIFT);
2282}
2283
c84dbf61
TD
2284/* Interface for in-kernel drivers of true hardware RNGs.
2285 * Those devices may produce endless random bits and will be throttled
2286 * when our pool is full.
2287 */
2288void add_hwgenerator_randomness(const char *buffer, size_t count,
2289 size_t entropy)
2290{
2291 struct entropy_store *poolp = &input_pool;
2292
43838a23 2293 if (unlikely(crng_init == 0)) {
e192be9d
TT
2294 crng_fast_load(buffer, count);
2295 return;
3371f3da 2296 }
e192be9d
TT
2297
2298 /* Suspend writing if we're above the trickle threshold.
2299 * We'll be woken up again once below random_write_wakeup_thresh,
2300 * or when the calling thread is about to terminate.
2301 */
08e97aec 2302 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
e192be9d 2303 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2304 mix_pool_bytes(poolp, buffer, count);
2305 credit_entropy_bits(poolp, entropy);
2306}
2307EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
428826f5
HYW
2308
2309/* Handle random seed passed by bootloader.
2310 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2311 * it would be regarded as device data.
2312 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2313 */
2314void add_bootloader_randomness(const void *buf, unsigned int size)
2315{
2316 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2317 add_hwgenerator_randomness(buf, size, size * 8);
2318 else
2319 add_device_randomness(buf, size);
2320}
3fd57e7a 2321EXPORT_SYMBOL_GPL(add_bootloader_randomness);