random: remove use_input_pool parameter from crng_reseed()
[linux-block.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9f9eff85 4 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
b169c13d 5 *
9e95ce27 6 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
7 *
8 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
9 * rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, and the entire permission notice in its entirety,
16 * including the disclaimer of warranties.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * ALTERNATIVELY, this product may be distributed under the terms of
25 * the GNU General Public License, in which case the provisions of the GPL are
26 * required INSTEAD OF the above restrictions. (This clause is
27 * necessary due to a potential bad interaction between the GPL and
28 * the restrictions contained in a BSD-style copyright.)
29 *
30 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
31 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
33 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
34 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
36 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
37 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
38 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
40 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
41 * DAMAGE.
42 */
43
44/*
1da177e4
LT
45 * Exported interfaces ---- output
46 * ===============================
47 *
92e507d2 48 * There are four exported interfaces; two for use within the kernel,
c0a8a61e 49 * and two for use from userspace.
1da177e4 50 *
92e507d2
GS
51 * Exported interfaces ---- userspace output
52 * -----------------------------------------
1da177e4 53 *
92e507d2 54 * The userspace interfaces are two character devices /dev/random and
1da177e4
LT
55 * /dev/urandom. /dev/random is suitable for use when very high
56 * quality randomness is desired (for example, for key generation or
57 * one-time pads), as it will only return a maximum of the number of
58 * bits of randomness (as estimated by the random number generator)
59 * contained in the entropy pool.
60 *
61 * The /dev/urandom device does not have this limit, and will return
62 * as many bytes as are requested. As more and more random bytes are
63 * requested without giving time for the entropy pool to recharge,
64 * this will result in random numbers that are merely cryptographically
65 * strong. For many applications, however, this is acceptable.
66 *
92e507d2
GS
67 * Exported interfaces ---- kernel output
68 * --------------------------------------
69 *
70 * The primary kernel interface is
71 *
248045b8 72 * void get_random_bytes(void *buf, int nbytes);
92e507d2
GS
73 *
74 * This interface will return the requested number of random bytes,
75 * and place it in the requested buffer. This is equivalent to a
76 * read from /dev/urandom.
77 *
78 * For less critical applications, there are the functions:
79 *
248045b8
JD
80 * u32 get_random_u32()
81 * u64 get_random_u64()
82 * unsigned int get_random_int()
83 * unsigned long get_random_long()
92e507d2
GS
84 *
85 * These are produced by a cryptographic RNG seeded from get_random_bytes,
86 * and so do not deplete the entropy pool as much. These are recommended
87 * for most in-kernel operations *if the result is going to be stored in
88 * the kernel*.
89 *
90 * Specifically, the get_random_int() family do not attempt to do
91 * "anti-backtracking". If you capture the state of the kernel (e.g.
92 * by snapshotting the VM), you can figure out previous get_random_int()
93 * return values. But if the value is stored in the kernel anyway,
94 * this is not a problem.
95 *
96 * It *is* safe to expose get_random_int() output to attackers (e.g. as
97 * network cookies); given outputs 1..n, it's not feasible to predict
98 * outputs 0 or n+1. The only concern is an attacker who breaks into
99 * the kernel later; the get_random_int() engine is not reseeded as
100 * often as the get_random_bytes() one.
101 *
102 * get_random_bytes() is needed for keys that need to stay secret after
103 * they are erased from the kernel. For example, any key that will
104 * be wrapped and stored encrypted. And session encryption keys: we'd
105 * like to know that after the session is closed and the keys erased,
106 * the plaintext is unrecoverable to someone who recorded the ciphertext.
107 *
108 * But for network ports/cookies, stack canaries, PRNG seeds, address
109 * space layout randomization, session *authentication* keys, or other
110 * applications where the sensitive data is stored in the kernel in
111 * plaintext for as long as it's sensitive, the get_random_int() family
112 * is just fine.
113 *
114 * Consider ASLR. We want to keep the address space secret from an
115 * outside attacker while the process is running, but once the address
116 * space is torn down, it's of no use to an attacker any more. And it's
117 * stored in kernel data structures as long as it's alive, so worrying
118 * about an attacker's ability to extrapolate it from the get_random_int()
119 * CRNG is silly.
120 *
121 * Even some cryptographic keys are safe to generate with get_random_int().
122 * In particular, keys for SipHash are generally fine. Here, knowledge
123 * of the key authorizes you to do something to a kernel object (inject
124 * packets to a network connection, or flood a hash table), and the
125 * key is stored with the object being protected. Once it goes away,
126 * we no longer care if anyone knows the key.
127 *
128 * prandom_u32()
129 * -------------
130 *
131 * For even weaker applications, see the pseudorandom generator
132 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random
133 * numbers aren't security-critical at all, these are *far* cheaper.
134 * Useful for self-tests, random error simulation, randomized backoffs,
135 * and any other application where you trust that nobody is trying to
136 * maliciously mess with you by guessing the "random" numbers.
137 *
1da177e4
LT
138 * Exported interfaces ---- input
139 * ==============================
140 *
141 * The current exported interfaces for gathering environmental noise
142 * from the devices are:
143 *
a2080a67 144 * void add_device_randomness(const void *buf, unsigned int size);
248045b8 145 * void add_input_randomness(unsigned int type, unsigned int code,
1da177e4 146 * unsigned int value);
703f7066 147 * void add_interrupt_randomness(int irq);
248045b8 148 * void add_disk_randomness(struct gendisk *disk);
2b6c6e3d
MB
149 * void add_hwgenerator_randomness(const char *buffer, size_t count,
150 * size_t entropy);
151 * void add_bootloader_randomness(const void *buf, unsigned int size);
1da177e4 152 *
a2080a67
LT
153 * add_device_randomness() is for adding data to the random pool that
154 * is likely to differ between two devices (or possibly even per boot).
155 * This would be things like MAC addresses or serial numbers, or the
156 * read-out of the RTC. This does *not* add any actual entropy to the
157 * pool, but it initializes the pool to different values for devices
158 * that might otherwise be identical and have very little entropy
159 * available to them (particularly common in the embedded world).
160 *
1da177e4
LT
161 * add_input_randomness() uses the input layer interrupt timing, as well as
162 * the event type information from the hardware.
163 *
775f4b29
TT
164 * add_interrupt_randomness() uses the interrupt timing as random
165 * inputs to the entropy pool. Using the cycle counters and the irq source
166 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
167 *
168 * add_disk_randomness() uses what amounts to the seek time of block
169 * layer request events, on a per-disk_devt basis, as input to the
170 * entropy pool. Note that high-speed solid state drives with very low
171 * seek times do not make for good sources of entropy, as their seek
172 * times are usually fairly consistent.
1da177e4
LT
173 *
174 * All of these routines try to estimate how many bits of randomness a
175 * particular randomness source. They do this by keeping track of the
176 * first and second order deltas of the event timings.
177 *
2b6c6e3d
MB
178 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
179 * entropy as specified by the caller. If the entropy pool is full it will
180 * block until more entropy is needed.
181 *
182 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
183 * add_device_randomness(), depending on whether or not the configuration
184 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
185 *
1da177e4
LT
186 * Ensuring unpredictability at system startup
187 * ============================================
188 *
189 * When any operating system starts up, it will go through a sequence
190 * of actions that are fairly predictable by an adversary, especially
191 * if the start-up does not involve interaction with a human operator.
192 * This reduces the actual number of bits of unpredictability in the
193 * entropy pool below the value in entropy_count. In order to
194 * counteract this effect, it helps to carry information in the
195 * entropy pool across shut-downs and start-ups. To do this, put the
196 * following lines an appropriate script which is run during the boot
197 * sequence:
198 *
199 * echo "Initializing random number generator..."
200 * random_seed=/var/run/random-seed
201 * # Carry a random seed from start-up to start-up
202 * # Load and then save the whole entropy pool
203 * if [ -f $random_seed ]; then
204 * cat $random_seed >/dev/urandom
205 * else
206 * touch $random_seed
207 * fi
208 * chmod 600 $random_seed
209 * dd if=/dev/urandom of=$random_seed count=1 bs=512
210 *
211 * and the following lines in an appropriate script which is run as
212 * the system is shutdown:
213 *
214 * # Carry a random seed from shut-down to start-up
215 * # Save the whole entropy pool
216 * echo "Saving random seed..."
217 * random_seed=/var/run/random-seed
218 * touch $random_seed
219 * chmod 600 $random_seed
220 * dd if=/dev/urandom of=$random_seed count=1 bs=512
221 *
222 * For example, on most modern systems using the System V init
223 * scripts, such code fragments would be found in
224 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
225 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
226 *
227 * Effectively, these commands cause the contents of the entropy pool
228 * to be saved at shut-down time and reloaded into the entropy pool at
229 * start-up. (The 'dd' in the addition to the bootup script is to
230 * make sure that /etc/random-seed is different for every start-up,
231 * even if the system crashes without executing rc.0.) Even with
232 * complete knowledge of the start-up activities, predicting the state
233 * of the entropy pool requires knowledge of the previous history of
234 * the system.
235 *
236 * Configuring the /dev/random driver under Linux
237 * ==============================================
238 *
239 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
240 * the /dev/mem major number (#1). So if your system does not have
241 * /dev/random and /dev/urandom created already, they can be created
242 * by using the commands:
243 *
248045b8
JD
244 * mknod /dev/random c 1 8
245 * mknod /dev/urandom c 1 9
1da177e4
LT
246 */
247
12cd53af
YL
248#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
249
1da177e4 250#include <linux/utsname.h>
1da177e4
LT
251#include <linux/module.h>
252#include <linux/kernel.h>
253#include <linux/major.h>
254#include <linux/string.h>
255#include <linux/fcntl.h>
256#include <linux/slab.h>
257#include <linux/random.h>
258#include <linux/poll.h>
259#include <linux/init.h>
260#include <linux/fs.h>
261#include <linux/genhd.h>
262#include <linux/interrupt.h>
27ac792c 263#include <linux/mm.h>
dd0f0cf5 264#include <linux/nodemask.h>
1da177e4 265#include <linux/spinlock.h>
c84dbf61 266#include <linux/kthread.h>
1da177e4 267#include <linux/percpu.h>
775f4b29 268#include <linux/ptrace.h>
6265e169 269#include <linux/workqueue.h>
0244ad00 270#include <linux/irq.h>
4e00b339 271#include <linux/ratelimit.h>
c6e9d6f3
TT
272#include <linux/syscalls.h>
273#include <linux/completion.h>
8da4b8c4 274#include <linux/uuid.h>
1ca1b917 275#include <crypto/chacha.h>
9f9eff85 276#include <crypto/blake2s.h>
d178a1eb 277
1da177e4 278#include <asm/processor.h>
7c0f6ba6 279#include <linux/uaccess.h>
1da177e4 280#include <asm/irq.h>
775f4b29 281#include <asm/irq_regs.h>
1da177e4
LT
282#include <asm/io.h>
283
00ce1db1
TT
284#define CREATE_TRACE_POINTS
285#include <trace/events/random.h>
286
43759d4f
TT
287/* #define ADD_INTERRUPT_BENCH */
288
c5704490 289enum {
6e8ec255 290 POOL_BITS = BLAKE2S_HASH_SIZE * 8,
c5704490 291 POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
1da177e4
LT
292};
293
1da177e4
LT
294/*
295 * Static global variables
296 */
a11e1d43 297static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 298static struct fasync_struct *fasync;
1da177e4 299
205a525c
HX
300static DEFINE_SPINLOCK(random_ready_list_lock);
301static LIST_HEAD(random_ready_list);
302
e192be9d 303struct crng_state {
248045b8
JD
304 u32 state[16];
305 unsigned long init_time;
306 spinlock_t lock;
e192be9d
TT
307};
308
764ed189 309static struct crng_state primary_crng = {
e192be9d 310 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
96562f28
DB
311 .state[0] = CHACHA_CONSTANT_EXPA,
312 .state[1] = CHACHA_CONSTANT_ND_3,
313 .state[2] = CHACHA_CONSTANT_2_BY,
314 .state[3] = CHACHA_CONSTANT_TE_K,
e192be9d
TT
315};
316
317/*
318 * crng_init = 0 --> Uninitialized
319 * 1 --> Initialized
320 * 2 --> Initialized from input_pool
321 *
322 * crng_init is protected by primary_crng->lock, and only increases
323 * its value (from 0->1->2).
324 */
325static int crng_init = 0;
f7e67b8e 326static bool crng_need_final_init = false;
43838a23 327#define crng_ready() (likely(crng_init > 1))
e192be9d 328static int crng_init_cnt = 0;
d848e5f8 329static unsigned long crng_global_init_time = 0;
248045b8 330#define CRNG_INIT_CNT_THRESH (2 * CHACHA_KEY_SIZE)
d38bb085 331static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE]);
c92e040d 332static void _crng_backtrack_protect(struct crng_state *crng,
d38bb085 333 u8 tmp[CHACHA_BLOCK_SIZE], int used);
e192be9d 334static void process_random_ready_list(void);
eecabf56 335static void _get_random_bytes(void *buf, int nbytes);
e192be9d 336
4e00b339
TT
337static struct ratelimit_state unseeded_warning =
338 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
339static struct ratelimit_state urandom_warning =
340 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
341
342static int ratelimit_disable __read_mostly;
343
344module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
345MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
346
1da177e4
LT
347/**********************************************************************
348 *
349 * OS independent entropy store. Here are the functions which handle
350 * storing entropy in an entropy pool.
351 *
352 **********************************************************************/
353
90ed1e67 354static struct {
6e8ec255 355 struct blake2s_state hash;
43358209 356 spinlock_t lock;
cda796a3 357 int entropy_count;
90ed1e67 358} input_pool = {
6e8ec255
JD
359 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
360 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
361 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
362 .hash.outlen = BLAKE2S_HASH_SIZE,
eece09ec 363 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
364};
365
9c07f578 366static void extract_entropy(void *buf, size_t nbytes);
90ed1e67 367
5d58ea3a 368static void crng_reseed(struct crng_state *crng);
90ed1e67 369
1da177e4 370/*
e68e5b66 371 * This function adds bytes into the entropy "pool". It does not
1da177e4 372 * update the entropy estimate. The caller should call
adc782da 373 * credit_entropy_bits if this is appropriate.
1da177e4 374 */
90ed1e67 375static void _mix_pool_bytes(const void *in, int nbytes)
1da177e4 376{
6e8ec255 377 blake2s_update(&input_pool.hash, in, nbytes);
1da177e4
LT
378}
379
90ed1e67 380static void __mix_pool_bytes(const void *in, int nbytes)
00ce1db1 381{
90ed1e67
JD
382 trace_mix_pool_bytes_nolock(nbytes, _RET_IP_);
383 _mix_pool_bytes(in, nbytes);
00ce1db1
TT
384}
385
90ed1e67 386static void mix_pool_bytes(const void *in, int nbytes)
1da177e4 387{
902c098a
TT
388 unsigned long flags;
389
90ed1e67
JD
390 trace_mix_pool_bytes(nbytes, _RET_IP_);
391 spin_lock_irqsave(&input_pool.lock, flags);
392 _mix_pool_bytes(in, nbytes);
393 spin_unlock_irqrestore(&input_pool.lock, flags);
1da177e4
LT
394}
395
775f4b29 396struct fast_pool {
248045b8
JD
397 u32 pool[4];
398 unsigned long last;
399 u16 reg_idx;
400 u8 count;
775f4b29
TT
401};
402
403/*
404 * This is a fast mixing routine used by the interrupt randomness
405 * collector. It's hardcoded for an 128 bit pool and assumes that any
406 * locks that might be needed are taken by the caller.
407 */
43759d4f 408static void fast_mix(struct fast_pool *f)
775f4b29 409{
d38bb085
JD
410 u32 a = f->pool[0], b = f->pool[1];
411 u32 c = f->pool[2], d = f->pool[3];
43759d4f
TT
412
413 a += b; c += d;
19acc77a 414 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
415 d ^= a; b ^= c;
416
417 a += b; c += d;
19acc77a 418 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
419 d ^= a; b ^= c;
420
421 a += b; c += d;
19acc77a 422 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
423 d ^= a; b ^= c;
424
425 a += b; c += d;
19acc77a 426 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
427 d ^= a; b ^= c;
428
429 f->pool[0] = a; f->pool[1] = b;
430 f->pool[2] = c; f->pool[3] = d;
655b2264 431 f->count++;
775f4b29
TT
432}
433
205a525c
HX
434static void process_random_ready_list(void)
435{
436 unsigned long flags;
437 struct random_ready_callback *rdy, *tmp;
438
439 spin_lock_irqsave(&random_ready_list_lock, flags);
440 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
441 struct module *owner = rdy->owner;
442
443 list_del_init(&rdy->list);
444 rdy->func(rdy);
445 module_put(owner);
446 }
447 spin_unlock_irqrestore(&random_ready_list_lock, flags);
448}
449
90ed1e67 450static void credit_entropy_bits(int nbits)
1da177e4 451{
9c07f578 452 int entropy_count, orig;
18263c4e 453
a49c010e 454 if (nbits <= 0)
adc782da
MM
455 return;
456
a49c010e
JD
457 nbits = min(nbits, POOL_BITS);
458
c5704490
JD
459 do {
460 orig = READ_ONCE(input_pool.entropy_count);
461 entropy_count = min(POOL_BITS, orig + nbits);
462 } while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);
1da177e4 463
c5704490 464 trace_credit_entropy_bits(nbits, entropy_count, _RET_IP_);
00ce1db1 465
c5704490 466 if (crng_init < 2 && entropy_count >= POOL_MIN_BITS)
5d58ea3a 467 crng_reseed(&primary_crng);
1da177e4
LT
468}
469
e192be9d
TT
470/*********************************************************************
471 *
472 * CRNG using CHACHA20
473 *
474 *********************************************************************/
475
248045b8 476#define CRNG_RESEED_INTERVAL (300 * HZ)
e192be9d
TT
477
478static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
479
1e7f583a
TT
480/*
481 * Hack to deal with crazy userspace progams when they are all trying
482 * to access /dev/urandom in parallel. The programs are almost
483 * certainly doing something terribly wrong, but we'll work around
484 * their brain damage.
485 */
486static struct crng_state **crng_node_pool __read_mostly;
1e7f583a 487
b169c13d 488static void invalidate_batched_entropy(void);
fe6f1a6a 489static void numa_crng_init(void);
b169c13d 490
9b254366
KC
491static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
492static int __init parse_trust_cpu(char *arg)
493{
494 return kstrtobool(arg, &trust_cpu);
495}
496early_param("random.trust_cpu", parse_trust_cpu);
497
5cbe0f13 498static bool crng_init_try_arch(struct crng_state *crng)
e192be9d 499{
248045b8
JD
500 int i;
501 bool arch_init = true;
502 unsigned long rv;
e192be9d 503
e192be9d
TT
504 for (i = 4; i < 16; i++) {
505 if (!arch_get_random_seed_long(&rv) &&
39a8883a 506 !arch_get_random_long(&rv)) {
e192be9d 507 rv = random_get_entropy();
5cbe0f13 508 arch_init = false;
39a8883a 509 }
e192be9d
TT
510 crng->state[i] ^= rv;
511 }
5cbe0f13
MR
512
513 return arch_init;
514}
515
ebf76063 516static bool __init crng_init_try_arch_early(void)
253d3194 517{
248045b8
JD
518 int i;
519 bool arch_init = true;
520 unsigned long rv;
253d3194
MR
521
522 for (i = 4; i < 16; i++) {
523 if (!arch_get_random_seed_long_early(&rv) &&
524 !arch_get_random_long_early(&rv)) {
525 rv = random_get_entropy();
526 arch_init = false;
527 }
ebf76063 528 primary_crng.state[i] ^= rv;
253d3194
MR
529 }
530
531 return arch_init;
532}
533
7b873241 534static void crng_initialize_secondary(struct crng_state *crng)
5cbe0f13 535{
a181e0fd 536 chacha_init_consts(crng->state);
d38bb085 537 _get_random_bytes(&crng->state[4], sizeof(u32) * 12);
5cbe0f13
MR
538 crng_init_try_arch(crng);
539 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
540}
541
ebf76063 542static void __init crng_initialize_primary(void)
5cbe0f13 543{
9c07f578 544 extract_entropy(&primary_crng.state[4], sizeof(u32) * 12);
ebf76063 545 if (crng_init_try_arch_early() && trust_cpu && crng_init < 2) {
fe6f1a6a
JD
546 invalidate_batched_entropy();
547 numa_crng_init();
39a8883a 548 crng_init = 2;
161212c7 549 pr_notice("crng init done (trusting CPU's manufacturer)\n");
39a8883a 550 }
ebf76063 551 primary_crng.init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
e192be9d
TT
552}
553
9d5505f1 554static void crng_finalize_init(void)
f7e67b8e 555{
f7e67b8e
DB
556 if (!system_wq) {
557 /* We can't call numa_crng_init until we have workqueues,
558 * so mark this for processing later. */
559 crng_need_final_init = true;
560 return;
561 }
562
563 invalidate_batched_entropy();
564 numa_crng_init();
565 crng_init = 2;
9d5505f1 566 crng_need_final_init = false;
f7e67b8e
DB
567 process_random_ready_list();
568 wake_up_interruptible(&crng_init_wait);
569 kill_fasync(&fasync, SIGIO, POLL_IN);
570 pr_notice("crng init done\n");
571 if (unseeded_warning.missed) {
572 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
573 unseeded_warning.missed);
574 unseeded_warning.missed = 0;
575 }
576 if (urandom_warning.missed) {
577 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
578 urandom_warning.missed);
579 urandom_warning.missed = 0;
580 }
581}
582
6c1e851c 583static void do_numa_crng_init(struct work_struct *work)
8ef35c86
TT
584{
585 int i;
586 struct crng_state *crng;
587 struct crng_state **pool;
588
248045b8 589 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL | __GFP_NOFAIL);
8ef35c86
TT
590 for_each_online_node(i) {
591 crng = kmalloc_node(sizeof(struct crng_state),
592 GFP_KERNEL | __GFP_NOFAIL, i);
593 spin_lock_init(&crng->lock);
5cbe0f13 594 crng_initialize_secondary(crng);
8ef35c86
TT
595 pool[i] = crng;
596 }
5d73d1e3
EB
597 /* pairs with READ_ONCE() in select_crng() */
598 if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
8ef35c86
TT
599 for_each_node(i)
600 kfree(pool[i]);
601 kfree(pool);
602 }
603}
6c1e851c
TT
604
605static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
606
607static void numa_crng_init(void)
608{
7b873241
JD
609 if (IS_ENABLED(CONFIG_NUMA))
610 schedule_work(&numa_crng_init_work);
6c1e851c 611}
5d73d1e3
EB
612
613static struct crng_state *select_crng(void)
614{
7b873241
JD
615 if (IS_ENABLED(CONFIG_NUMA)) {
616 struct crng_state **pool;
617 int nid = numa_node_id();
618
619 /* pairs with cmpxchg_release() in do_numa_crng_init() */
620 pool = READ_ONCE(crng_node_pool);
621 if (pool && pool[nid])
622 return pool[nid];
623 }
5d73d1e3 624
5d73d1e3
EB
625 return &primary_crng;
626}
8ef35c86 627
dc12baac
TT
628/*
629 * crng_fast_load() can be called by code in the interrupt service
73c7733f
JD
630 * path. So we can't afford to dilly-dally. Returns the number of
631 * bytes processed from cp.
dc12baac 632 */
d38bb085 633static size_t crng_fast_load(const u8 *cp, size_t len)
e192be9d
TT
634{
635 unsigned long flags;
d38bb085 636 u8 *p;
73c7733f 637 size_t ret = 0;
e192be9d
TT
638
639 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
640 return 0;
43838a23 641 if (crng_init != 0) {
e192be9d
TT
642 spin_unlock_irqrestore(&primary_crng.lock, flags);
643 return 0;
644 }
248045b8 645 p = (u8 *)&primary_crng.state[4];
e192be9d 646 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
1ca1b917 647 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
73c7733f 648 cp++; crng_init_cnt++; len--; ret++;
e192be9d 649 }
4a072c71 650 spin_unlock_irqrestore(&primary_crng.lock, flags);
e192be9d 651 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
b169c13d 652 invalidate_batched_entropy();
e192be9d 653 crng_init = 1;
12cd53af 654 pr_notice("fast init done\n");
e192be9d 655 }
73c7733f 656 return ret;
e192be9d
TT
657}
658
dc12baac
TT
659/*
660 * crng_slow_load() is called by add_device_randomness, which has two
661 * attributes. (1) We can't trust the buffer passed to it is
662 * guaranteed to be unpredictable (so it might not have any entropy at
663 * all), and (2) it doesn't have the performance constraints of
664 * crng_fast_load().
665 *
666 * So we do something more comprehensive which is guaranteed to touch
667 * all of the primary_crng's state, and which uses a LFSR with a
668 * period of 255 as part of the mixing algorithm. Finally, we do
669 * *not* advance crng_init_cnt since buffer we may get may be something
670 * like a fixed DMI table (for example), which might very well be
671 * unique to the machine, but is otherwise unvarying.
672 */
d38bb085 673static int crng_slow_load(const u8 *cp, size_t len)
dc12baac 674{
248045b8
JD
675 unsigned long flags;
676 static u8 lfsr = 1;
677 u8 tmp;
678 unsigned int i, max = CHACHA_KEY_SIZE;
679 const u8 *src_buf = cp;
680 u8 *dest_buf = (u8 *)&primary_crng.state[4];
dc12baac
TT
681
682 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
683 return 0;
684 if (crng_init != 0) {
685 spin_unlock_irqrestore(&primary_crng.lock, flags);
686 return 0;
687 }
688 if (len > max)
689 max = len;
690
248045b8 691 for (i = 0; i < max; i++) {
dc12baac
TT
692 tmp = lfsr;
693 lfsr >>= 1;
694 if (tmp & 1)
695 lfsr ^= 0xE1;
1ca1b917
EB
696 tmp = dest_buf[i % CHACHA_KEY_SIZE];
697 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
dc12baac
TT
698 lfsr += (tmp << 3) | (tmp >> 5);
699 }
700 spin_unlock_irqrestore(&primary_crng.lock, flags);
701 return 1;
702}
703
5d58ea3a 704static void crng_reseed(struct crng_state *crng)
e192be9d 705{
248045b8 706 unsigned long flags;
6e8ec255 707 int i;
e192be9d 708 union {
248045b8
JD
709 u8 block[CHACHA_BLOCK_SIZE];
710 u32 key[8];
e192be9d
TT
711 } buf;
712
5d58ea3a 713 if (crng == &primary_crng) {
9c07f578
JD
714 int entropy_count;
715 do {
716 entropy_count = READ_ONCE(input_pool.entropy_count);
c5704490 717 if (entropy_count < POOL_MIN_BITS)
9c07f578
JD
718 return;
719 } while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
720 extract_entropy(buf.key, sizeof(buf.key));
489c7fc4
JD
721 wake_up_interruptible(&random_write_wait);
722 kill_fasync(&fasync, SIGIO, POLL_OUT);
c92e040d 723 } else {
1e7f583a 724 _extract_crng(&primary_crng, buf.block);
c92e040d 725 _crng_backtrack_protect(&primary_crng, buf.block,
1ca1b917 726 CHACHA_KEY_SIZE);
c92e040d 727 }
0bb29a84 728 spin_lock_irqsave(&crng->lock, flags);
e192be9d 729 for (i = 0; i < 8; i++) {
248045b8 730 unsigned long rv;
e192be9d
TT
731 if (!arch_get_random_seed_long(&rv) &&
732 !arch_get_random_long(&rv))
733 rv = random_get_entropy();
248045b8 734 crng->state[i + 4] ^= buf.key[i] ^ rv;
e192be9d
TT
735 }
736 memzero_explicit(&buf, sizeof(buf));
009ba856 737 WRITE_ONCE(crng->init_time, jiffies);
0bb29a84 738 spin_unlock_irqrestore(&crng->lock, flags);
9d5505f1
DB
739 if (crng == &primary_crng && crng_init < 2)
740 crng_finalize_init();
e192be9d
TT
741}
742
248045b8 743static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE])
e192be9d 744{
2ee25b69 745 unsigned long flags, init_time;
009ba856
EB
746
747 if (crng_ready()) {
748 init_time = READ_ONCE(crng->init_time);
749 if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
750 time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
5d58ea3a 751 crng_reseed(crng);
009ba856 752 }
e192be9d 753 spin_lock_irqsave(&crng->lock, flags);
e192be9d
TT
754 chacha20_block(&crng->state[0], out);
755 if (crng->state[12] == 0)
756 crng->state[13]++;
757 spin_unlock_irqrestore(&crng->lock, flags);
758}
759
d38bb085 760static void extract_crng(u8 out[CHACHA_BLOCK_SIZE])
1e7f583a 761{
5d73d1e3 762 _extract_crng(select_crng(), out);
1e7f583a
TT
763}
764
c92e040d
TT
765/*
766 * Use the leftover bytes from the CRNG block output (if there is
767 * enough) to mutate the CRNG key to provide backtracking protection.
768 */
769static void _crng_backtrack_protect(struct crng_state *crng,
d38bb085 770 u8 tmp[CHACHA_BLOCK_SIZE], int used)
c92e040d 771{
248045b8
JD
772 unsigned long flags;
773 u32 *s, *d;
774 int i;
c92e040d 775
d38bb085 776 used = round_up(used, sizeof(u32));
1ca1b917 777 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
c92e040d
TT
778 extract_crng(tmp);
779 used = 0;
780 }
781 spin_lock_irqsave(&crng->lock, flags);
248045b8 782 s = (u32 *)&tmp[used];
c92e040d 783 d = &crng->state[4];
248045b8 784 for (i = 0; i < 8; i++)
c92e040d
TT
785 *d++ ^= *s++;
786 spin_unlock_irqrestore(&crng->lock, flags);
787}
788
d38bb085 789static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used)
c92e040d 790{
5d73d1e3 791 _crng_backtrack_protect(select_crng(), tmp, used);
c92e040d
TT
792}
793
e192be9d
TT
794static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
795{
1ca1b917 796 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
d38bb085 797 u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
e192be9d
TT
798 int large_request = (nbytes > 256);
799
800 while (nbytes) {
801 if (large_request && need_resched()) {
802 if (signal_pending(current)) {
803 if (ret == 0)
804 ret = -ERESTARTSYS;
805 break;
806 }
807 schedule();
808 }
809
810 extract_crng(tmp);
1ca1b917 811 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
e192be9d
TT
812 if (copy_to_user(buf, tmp, i)) {
813 ret = -EFAULT;
814 break;
815 }
816
817 nbytes -= i;
818 buf += i;
819 ret += i;
820 }
c92e040d 821 crng_backtrack_protect(tmp, i);
e192be9d
TT
822
823 /* Wipe data just written to memory */
824 memzero_explicit(tmp, sizeof(tmp));
825
826 return ret;
827}
828
1da177e4
LT
829/*********************************************************************
830 *
831 * Entropy input management
832 *
833 *********************************************************************/
834
835/* There is one of these per entropy source */
836struct timer_rand_state {
837 cycles_t last_time;
90b75ee5 838 long last_delta, last_delta2;
1da177e4
LT
839};
840
644008df
TT
841#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
842
a2080a67 843/*
e192be9d
TT
844 * Add device- or boot-specific data to the input pool to help
845 * initialize it.
a2080a67 846 *
e192be9d
TT
847 * None of this adds any entropy; it is meant to avoid the problem of
848 * the entropy pool having similar initial state across largely
849 * identical devices.
a2080a67
LT
850 */
851void add_device_randomness(const void *buf, unsigned int size)
852{
61875f30 853 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 854 unsigned long flags;
a2080a67 855
dc12baac
TT
856 if (!crng_ready() && size)
857 crng_slow_load(buf, size);
ee7998c5 858
5910895f 859 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 860 spin_lock_irqsave(&input_pool.lock, flags);
90ed1e67
JD
861 _mix_pool_bytes(buf, size);
862 _mix_pool_bytes(&time, sizeof(time));
3ef4cb2d 863 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
864}
865EXPORT_SYMBOL(add_device_randomness);
866
644008df 867static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 868
1da177e4
LT
869/*
870 * This function adds entropy to the entropy "pool" by using timing
871 * delays. It uses the timer_rand_state structure to make an estimate
872 * of how many bits of entropy this call has added to the pool.
873 *
874 * The number "num" is also added to the pool - it should somehow describe
875 * the type of event which just happened. This is currently 0-255 for
876 * keyboard scan codes, and 256 upwards for interrupts.
877 *
878 */
879static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
880{
881 struct {
1da177e4 882 long jiffies;
d38bb085
JD
883 unsigned int cycles;
884 unsigned int num;
1da177e4
LT
885 } sample;
886 long delta, delta2, delta3;
887
1da177e4 888 sample.jiffies = jiffies;
61875f30 889 sample.cycles = random_get_entropy();
1da177e4 890 sample.num = num;
90ed1e67 891 mix_pool_bytes(&sample, sizeof(sample));
1da177e4
LT
892
893 /*
894 * Calculate number of bits of randomness we probably added.
895 * We take into account the first, second and third-order deltas
896 * in order to make our estimate.
897 */
e00d996a
QC
898 delta = sample.jiffies - READ_ONCE(state->last_time);
899 WRITE_ONCE(state->last_time, sample.jiffies);
5e747dd9 900
e00d996a
QC
901 delta2 = delta - READ_ONCE(state->last_delta);
902 WRITE_ONCE(state->last_delta, delta);
5e747dd9 903
e00d996a
QC
904 delta3 = delta2 - READ_ONCE(state->last_delta2);
905 WRITE_ONCE(state->last_delta2, delta2);
5e747dd9
RV
906
907 if (delta < 0)
908 delta = -delta;
909 if (delta2 < 0)
910 delta2 = -delta2;
911 if (delta3 < 0)
912 delta3 = -delta3;
913 if (delta > delta2)
914 delta = delta2;
915 if (delta > delta3)
916 delta = delta3;
1da177e4 917
5e747dd9
RV
918 /*
919 * delta is now minimum absolute delta.
920 * Round down by 1 bit on general principles,
727d499a 921 * and limit entropy estimate to 12 bits.
5e747dd9 922 */
248045b8 923 credit_entropy_bits(min_t(int, fls(delta >> 1), 11));
1da177e4
LT
924}
925
d251575a 926void add_input_randomness(unsigned int type, unsigned int code,
248045b8 927 unsigned int value)
1da177e4
LT
928{
929 static unsigned char last_value;
930
931 /* ignore autorepeat and the like */
932 if (value == last_value)
933 return;
934
1da177e4
LT
935 last_value = value;
936 add_timer_randomness(&input_timer_state,
937 (type << 4) ^ code ^ (code >> 4) ^ value);
c5704490 938 trace_add_input_randomness(input_pool.entropy_count);
1da177e4 939}
80fc9f53 940EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 941
775f4b29
TT
942static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
943
43759d4f
TT
944#ifdef ADD_INTERRUPT_BENCH
945static unsigned long avg_cycles, avg_deviation;
946
248045b8
JD
947#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
948#define FIXED_1_2 (1 << (AVG_SHIFT - 1))
43759d4f
TT
949
950static void add_interrupt_bench(cycles_t start)
951{
248045b8 952 long delta = random_get_entropy() - start;
43759d4f 953
248045b8
JD
954 /* Use a weighted moving average */
955 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
956 avg_cycles += delta;
957 /* And average deviation */
958 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
959 avg_deviation += delta;
43759d4f
TT
960}
961#else
962#define add_interrupt_bench(x)
963#endif
964
d38bb085 965static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
ee3e00e9 966{
248045b8 967 u32 *ptr = (u32 *)regs;
92e75428 968 unsigned int idx;
ee3e00e9
TT
969
970 if (regs == NULL)
971 return 0;
92e75428 972 idx = READ_ONCE(f->reg_idx);
d38bb085 973 if (idx >= sizeof(struct pt_regs) / sizeof(u32))
92e75428
TT
974 idx = 0;
975 ptr += idx++;
976 WRITE_ONCE(f->reg_idx, idx);
9dfa7bba 977 return *ptr;
ee3e00e9
TT
978}
979
703f7066 980void add_interrupt_randomness(int irq)
1da177e4 981{
248045b8
JD
982 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
983 struct pt_regs *regs = get_irq_regs();
984 unsigned long now = jiffies;
985 cycles_t cycles = random_get_entropy();
986 u32 c_high, j_high;
987 u64 ip;
3060d6fe 988
ee3e00e9
TT
989 if (cycles == 0)
990 cycles = get_reg(fast_pool, regs);
655b2264
TT
991 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
992 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
993 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
994 fast_pool->pool[1] ^= now ^ c_high;
655b2264 995 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 996 fast_pool->pool[2] ^= ip;
248045b8
JD
997 fast_pool->pool[3] ^=
998 (sizeof(ip) > 4) ? ip >> 32 : get_reg(fast_pool, regs);
3060d6fe 999
43759d4f 1000 fast_mix(fast_pool);
43759d4f 1001 add_interrupt_bench(cycles);
3060d6fe 1002
43838a23 1003 if (unlikely(crng_init == 0)) {
e192be9d 1004 if ((fast_pool->count >= 64) &&
d38bb085 1005 crng_fast_load((u8 *)fast_pool->pool, sizeof(fast_pool->pool)) > 0) {
e192be9d
TT
1006 fast_pool->count = 0;
1007 fast_pool->last = now;
1008 }
1009 return;
1010 }
1011
248045b8 1012 if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1013 return;
1014
90ed1e67 1015 if (!spin_trylock(&input_pool.lock))
91fcb532 1016 return;
83664a69 1017
91fcb532 1018 fast_pool->last = now;
90ed1e67
JD
1019 __mix_pool_bytes(&fast_pool->pool, sizeof(fast_pool->pool));
1020 spin_unlock(&input_pool.lock);
83664a69 1021
ee3e00e9 1022 fast_pool->count = 0;
83664a69 1023
ee3e00e9 1024 /* award one bit for the contents of the fast pool */
90ed1e67 1025 credit_entropy_bits(1);
1da177e4 1026}
4b44f2d1 1027EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1028
9361401e 1029#ifdef CONFIG_BLOCK
1da177e4
LT
1030void add_disk_randomness(struct gendisk *disk)
1031{
1032 if (!disk || !disk->random)
1033 return;
1034 /* first major is 1, so we get >= 0x200 here */
f331c029 1035 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
c5704490 1036 trace_add_disk_randomness(disk_devt(disk), input_pool.entropy_count);
1da177e4 1037}
bdcfa3e5 1038EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1039#endif
1da177e4 1040
1da177e4
LT
1041/*********************************************************************
1042 *
1043 * Entropy extraction routines
1044 *
1045 *********************************************************************/
1046
19fa5be1 1047/*
6e8ec255
JD
1048 * This is an HKDF-like construction for using the hashed collected entropy
1049 * as a PRF key, that's then expanded block-by-block.
19fa5be1 1050 */
9c07f578 1051static void extract_entropy(void *buf, size_t nbytes)
1da177e4 1052{
902c098a 1053 unsigned long flags;
6e8ec255
JD
1054 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
1055 struct {
1056 unsigned long rdrand[32 / sizeof(long)];
1057 size_t counter;
1058 } block;
1059 size_t i;
1060
c5704490 1061 trace_extract_entropy(nbytes, input_pool.entropy_count);
9c07f578 1062
6e8ec255
JD
1063 for (i = 0; i < ARRAY_SIZE(block.rdrand); ++i) {
1064 if (!arch_get_random_long(&block.rdrand[i]))
1065 block.rdrand[i] = random_get_entropy();
85a1f777
TT
1066 }
1067
90ed1e67 1068 spin_lock_irqsave(&input_pool.lock, flags);
46884442 1069
6e8ec255
JD
1070 /* seed = HASHPRF(last_key, entropy_input) */
1071 blake2s_final(&input_pool.hash, seed);
1da177e4 1072
6e8ec255
JD
1073 /* next_key = HASHPRF(seed, RDRAND || 0) */
1074 block.counter = 0;
1075 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
1076 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
1da177e4 1077
6e8ec255
JD
1078 spin_unlock_irqrestore(&input_pool.lock, flags);
1079 memzero_explicit(next_key, sizeof(next_key));
e192be9d
TT
1080
1081 while (nbytes) {
6e8ec255
JD
1082 i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
1083 /* output = HASHPRF(seed, RDRAND || ++counter) */
1084 ++block.counter;
1085 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
e192be9d
TT
1086 nbytes -= i;
1087 buf += i;
e192be9d
TT
1088 }
1089
6e8ec255
JD
1090 memzero_explicit(seed, sizeof(seed));
1091 memzero_explicit(&block, sizeof(block));
e192be9d
TT
1092}
1093
eecabf56 1094#define warn_unseeded_randomness(previous) \
248045b8 1095 _warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
eecabf56 1096
248045b8 1097static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
eecabf56
TT
1098{
1099#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1100 const bool print_once = false;
1101#else
1102 static bool print_once __read_mostly;
1103#endif
1104
248045b8 1105 if (print_once || crng_ready() ||
eecabf56
TT
1106 (previous && (caller == READ_ONCE(*previous))))
1107 return;
1108 WRITE_ONCE(*previous, caller);
1109#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1110 print_once = true;
1111#endif
4e00b339 1112 if (__ratelimit(&unseeded_warning))
248045b8
JD
1113 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
1114 func_name, caller, crng_init);
eecabf56
TT
1115}
1116
1da177e4
LT
1117/*
1118 * This function is the exported kernel interface. It returns some
c2557a30 1119 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1120 * TCP sequence numbers, etc. It does not rely on the hardware random
1121 * number generator. For random bytes direct from the hardware RNG
e297a783
JD
1122 * (when available), use get_random_bytes_arch(). In order to ensure
1123 * that the randomness provided by this function is okay, the function
1124 * wait_for_random_bytes() should be called and return 0 at least once
1125 * at any point prior.
1da177e4 1126 */
eecabf56 1127static void _get_random_bytes(void *buf, int nbytes)
c2557a30 1128{
d38bb085 1129 u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
e192be9d 1130
5910895f 1131 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d 1132
1ca1b917 1133 while (nbytes >= CHACHA_BLOCK_SIZE) {
e192be9d 1134 extract_crng(buf);
1ca1b917
EB
1135 buf += CHACHA_BLOCK_SIZE;
1136 nbytes -= CHACHA_BLOCK_SIZE;
e192be9d
TT
1137 }
1138
1139 if (nbytes > 0) {
1140 extract_crng(tmp);
1141 memcpy(buf, tmp, nbytes);
c92e040d
TT
1142 crng_backtrack_protect(tmp, nbytes);
1143 } else
1ca1b917 1144 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
c92e040d 1145 memzero_explicit(tmp, sizeof(tmp));
c2557a30 1146}
eecabf56
TT
1147
1148void get_random_bytes(void *buf, int nbytes)
1149{
1150 static void *previous;
1151
1152 warn_unseeded_randomness(&previous);
1153 _get_random_bytes(buf, nbytes);
1154}
c2557a30
TT
1155EXPORT_SYMBOL(get_random_bytes);
1156
50ee7529
LT
1157/*
1158 * Each time the timer fires, we expect that we got an unpredictable
1159 * jump in the cycle counter. Even if the timer is running on another
1160 * CPU, the timer activity will be touching the stack of the CPU that is
1161 * generating entropy..
1162 *
1163 * Note that we don't re-arm the timer in the timer itself - we are
1164 * happy to be scheduled away, since that just makes the load more
1165 * complex, but we do not want the timer to keep ticking unless the
1166 * entropy loop is running.
1167 *
1168 * So the re-arming always happens in the entropy loop itself.
1169 */
1170static void entropy_timer(struct timer_list *t)
1171{
90ed1e67 1172 credit_entropy_bits(1);
50ee7529
LT
1173}
1174
1175/*
1176 * If we have an actual cycle counter, see if we can
1177 * generate enough entropy with timing noise
1178 */
1179static void try_to_generate_entropy(void)
1180{
1181 struct {
1182 unsigned long now;
1183 struct timer_list timer;
1184 } stack;
1185
1186 stack.now = random_get_entropy();
1187
1188 /* Slow counter - or none. Don't even bother */
1189 if (stack.now == random_get_entropy())
1190 return;
1191
1192 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1193 while (!crng_ready()) {
1194 if (!timer_pending(&stack.timer))
248045b8 1195 mod_timer(&stack.timer, jiffies + 1);
90ed1e67 1196 mix_pool_bytes(&stack.now, sizeof(stack.now));
50ee7529
LT
1197 schedule();
1198 stack.now = random_get_entropy();
1199 }
1200
1201 del_timer_sync(&stack.timer);
1202 destroy_timer_on_stack(&stack.timer);
90ed1e67 1203 mix_pool_bytes(&stack.now, sizeof(stack.now));
50ee7529
LT
1204}
1205
e297a783
JD
1206/*
1207 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1208 * cryptographically secure random numbers. This applies to: the /dev/urandom
1209 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1210 * family of functions. Using any of these functions without first calling
1211 * this function forfeits the guarantee of security.
1212 *
1213 * Returns: 0 if the urandom pool has been seeded.
1214 * -ERESTARTSYS if the function was interrupted by a signal.
1215 */
1216int wait_for_random_bytes(void)
1217{
1218 if (likely(crng_ready()))
1219 return 0;
50ee7529
LT
1220
1221 do {
1222 int ret;
1223 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1224 if (ret)
1225 return ret > 0 ? 0 : ret;
1226
1227 try_to_generate_entropy();
1228 } while (!crng_ready());
1229
1230 return 0;
e297a783
JD
1231}
1232EXPORT_SYMBOL(wait_for_random_bytes);
1233
9a47249d
JD
1234/*
1235 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1236 * to supply cryptographically secure random numbers. This applies to: the
1237 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1238 * ,u64,int,long} family of functions.
1239 *
1240 * Returns: true if the urandom pool has been seeded.
1241 * false if the urandom pool has not been seeded.
1242 */
1243bool rng_is_initialized(void)
1244{
1245 return crng_ready();
1246}
1247EXPORT_SYMBOL(rng_is_initialized);
1248
205a525c
HX
1249/*
1250 * Add a callback function that will be invoked when the nonblocking
1251 * pool is initialised.
1252 *
1253 * returns: 0 if callback is successfully added
1254 * -EALREADY if pool is already initialised (callback not called)
1255 * -ENOENT if module for callback is not alive
1256 */
1257int add_random_ready_callback(struct random_ready_callback *rdy)
1258{
1259 struct module *owner;
1260 unsigned long flags;
1261 int err = -EALREADY;
1262
e192be9d 1263 if (crng_ready())
205a525c
HX
1264 return err;
1265
1266 owner = rdy->owner;
1267 if (!try_module_get(owner))
1268 return -ENOENT;
1269
1270 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1271 if (crng_ready())
205a525c
HX
1272 goto out;
1273
1274 owner = NULL;
1275
1276 list_add(&rdy->list, &random_ready_list);
1277 err = 0;
1278
1279out:
1280 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1281
1282 module_put(owner);
1283
1284 return err;
1285}
1286EXPORT_SYMBOL(add_random_ready_callback);
1287
1288/*
1289 * Delete a previously registered readiness callback function.
1290 */
1291void del_random_ready_callback(struct random_ready_callback *rdy)
1292{
1293 unsigned long flags;
1294 struct module *owner = NULL;
1295
1296 spin_lock_irqsave(&random_ready_list_lock, flags);
1297 if (!list_empty(&rdy->list)) {
1298 list_del_init(&rdy->list);
1299 owner = rdy->owner;
1300 }
1301 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1302
1303 module_put(owner);
1304}
1305EXPORT_SYMBOL(del_random_ready_callback);
1306
c2557a30
TT
1307/*
1308 * This function will use the architecture-specific hardware random
1309 * number generator if it is available. The arch-specific hw RNG will
1310 * almost certainly be faster than what we can do in software, but it
1311 * is impossible to verify that it is implemented securely (as
1312 * opposed, to, say, the AES encryption of a sequence number using a
1313 * key known by the NSA). So it's useful if we need the speed, but
1314 * only if we're willing to trust the hardware manufacturer not to
1315 * have put in a back door.
753d433b
TH
1316 *
1317 * Return number of bytes filled in.
c2557a30 1318 */
753d433b 1319int __must_check get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1320{
753d433b 1321 int left = nbytes;
d38bb085 1322 u8 *p = buf;
63d77173 1323
753d433b
TH
1324 trace_get_random_bytes_arch(left, _RET_IP_);
1325 while (left) {
63d77173 1326 unsigned long v;
753d433b 1327 int chunk = min_t(int, left, sizeof(unsigned long));
c2557a30 1328
63d77173
PA
1329 if (!arch_get_random_long(&v))
1330 break;
8ddd6efa 1331
bd29e568 1332 memcpy(p, &v, chunk);
63d77173 1333 p += chunk;
753d433b 1334 left -= chunk;
63d77173
PA
1335 }
1336
753d433b 1337 return nbytes - left;
1da177e4 1338}
c2557a30
TT
1339EXPORT_SYMBOL(get_random_bytes_arch);
1340
1da177e4
LT
1341/*
1342 * init_std_data - initialize pool with system data
1343 *
1da177e4
LT
1344 * This function clears the pool's entropy count and mixes some system
1345 * data into the pool to prepare it for use. The pool is not cleared
1346 * as that can only decrease the entropy in the pool.
1347 */
90ed1e67 1348static void __init init_std_data(void)
1da177e4 1349{
3e88bdff 1350 int i;
902c098a
TT
1351 ktime_t now = ktime_get_real();
1352 unsigned long rv;
1da177e4 1353
90ed1e67 1354 mix_pool_bytes(&now, sizeof(now));
6e8ec255 1355 for (i = BLAKE2S_BLOCK_SIZE; i > 0; i -= sizeof(rv)) {
83664a69
PA
1356 if (!arch_get_random_seed_long(&rv) &&
1357 !arch_get_random_long(&rv))
ae9ecd92 1358 rv = random_get_entropy();
90ed1e67 1359 mix_pool_bytes(&rv, sizeof(rv));
3e88bdff 1360 }
90ed1e67 1361 mix_pool_bytes(utsname(), sizeof(*(utsname())));
1da177e4
LT
1362}
1363
cbc96b75
TL
1364/*
1365 * Note that setup_arch() may call add_device_randomness()
1366 * long before we get here. This allows seeding of the pools
1367 * with some platform dependent data very early in the boot
1368 * process. But it limits our options here. We must use
1369 * statically allocated structures that already have all
1370 * initializations complete at compile time. We should also
1371 * take care not to overwrite the precious per platform data
1372 * we were given.
1373 */
d5553523 1374int __init rand_initialize(void)
1da177e4 1375{
90ed1e67 1376 init_std_data();
f7e67b8e 1377 if (crng_need_final_init)
9d5505f1 1378 crng_finalize_init();
ebf76063 1379 crng_initialize_primary();
d848e5f8 1380 crng_global_init_time = jiffies;
4e00b339
TT
1381 if (ratelimit_disable) {
1382 urandom_warning.interval = 0;
1383 unseeded_warning.interval = 0;
1384 }
1da177e4
LT
1385 return 0;
1386}
1da177e4 1387
9361401e 1388#ifdef CONFIG_BLOCK
1da177e4
LT
1389void rand_initialize_disk(struct gendisk *disk)
1390{
1391 struct timer_rand_state *state;
1392
1393 /*
f8595815 1394 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1395 * source.
1396 */
f8595815 1397 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1398 if (state) {
1399 state->last_time = INITIAL_JIFFIES;
1da177e4 1400 disk->random = state;
644008df 1401 }
1da177e4 1402}
9361401e 1403#endif
1da177e4 1404
248045b8
JD
1405static ssize_t urandom_read_nowarn(struct file *file, char __user *buf,
1406 size_t nbytes, loff_t *ppos)
c6f1deb1
AL
1407{
1408 int ret;
1409
c5704490 1410 nbytes = min_t(size_t, nbytes, INT_MAX >> 6);
c6f1deb1 1411 ret = extract_crng_user(buf, nbytes);
c5704490 1412 trace_urandom_read(8 * nbytes, 0, input_pool.entropy_count);
c6f1deb1
AL
1413 return ret;
1414}
1415
248045b8
JD
1416static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
1417 loff_t *ppos)
1da177e4 1418{
9b4d0087 1419 static int maxwarn = 10;
301f0595 1420
e192be9d 1421 if (!crng_ready() && maxwarn > 0) {
9b4d0087 1422 maxwarn--;
4e00b339 1423 if (__ratelimit(&urandom_warning))
12cd53af
YL
1424 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1425 current->comm, nbytes);
9b4d0087 1426 }
c6f1deb1
AL
1427
1428 return urandom_read_nowarn(file, buf, nbytes, ppos);
1da177e4
LT
1429}
1430
248045b8
JD
1431static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
1432 loff_t *ppos)
30c08efe
AL
1433{
1434 int ret;
1435
1436 ret = wait_for_random_bytes();
1437 if (ret != 0)
1438 return ret;
1439 return urandom_read_nowarn(file, buf, nbytes, ppos);
1440}
1441
248045b8 1442static __poll_t random_poll(struct file *file, poll_table *wait)
1da177e4 1443{
a11e1d43 1444 __poll_t mask;
1da177e4 1445
30c08efe 1446 poll_wait(file, &crng_init_wait, wait);
a11e1d43
LT
1447 poll_wait(file, &random_write_wait, wait);
1448 mask = 0;
30c08efe 1449 if (crng_ready())
a9a08845 1450 mask |= EPOLLIN | EPOLLRDNORM;
489c7fc4 1451 if (input_pool.entropy_count < POOL_MIN_BITS)
a9a08845 1452 mask |= EPOLLOUT | EPOLLWRNORM;
1da177e4
LT
1453 return mask;
1454}
1455
248045b8 1456static int write_pool(const char __user *buffer, size_t count)
1da177e4 1457{
1da177e4 1458 size_t bytes;
d38bb085 1459 u32 t, buf[16];
1da177e4 1460 const char __user *p = buffer;
1da177e4 1461
7f397dcd 1462 while (count > 0) {
81e69df3
TT
1463 int b, i = 0;
1464
7f397dcd
MM
1465 bytes = min(count, sizeof(buf));
1466 if (copy_from_user(&buf, p, bytes))
1467 return -EFAULT;
1da177e4 1468
d38bb085 1469 for (b = bytes; b > 0; b -= sizeof(u32), i++) {
81e69df3
TT
1470 if (!arch_get_random_int(&t))
1471 break;
1472 buf[i] ^= t;
1473 }
1474
7f397dcd 1475 count -= bytes;
1da177e4
LT
1476 p += bytes;
1477
90ed1e67 1478 mix_pool_bytes(buf, bytes);
91f3f1e3 1479 cond_resched();
1da177e4 1480 }
7f397dcd
MM
1481
1482 return 0;
1483}
1484
90b75ee5
MM
1485static ssize_t random_write(struct file *file, const char __user *buffer,
1486 size_t count, loff_t *ppos)
7f397dcd
MM
1487{
1488 size_t ret;
7f397dcd 1489
90ed1e67 1490 ret = write_pool(buffer, count);
7f397dcd
MM
1491 if (ret)
1492 return ret;
1493
7f397dcd 1494 return (ssize_t)count;
1da177e4
LT
1495}
1496
43ae4860 1497static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1498{
1499 int size, ent_count;
1500 int __user *p = (int __user *)arg;
1501 int retval;
1502
1503 switch (cmd) {
1504 case RNDGETENTCNT:
43ae4860 1505 /* inherently racy, no point locking */
c5704490 1506 if (put_user(input_pool.entropy_count, p))
1da177e4
LT
1507 return -EFAULT;
1508 return 0;
1509 case RNDADDTOENTCNT:
1510 if (!capable(CAP_SYS_ADMIN))
1511 return -EPERM;
1512 if (get_user(ent_count, p))
1513 return -EFAULT;
a49c010e
JD
1514 if (ent_count < 0)
1515 return -EINVAL;
1516 credit_entropy_bits(ent_count);
1517 return 0;
1da177e4
LT
1518 case RNDADDENTROPY:
1519 if (!capable(CAP_SYS_ADMIN))
1520 return -EPERM;
1521 if (get_user(ent_count, p++))
1522 return -EFAULT;
1523 if (ent_count < 0)
1524 return -EINVAL;
1525 if (get_user(size, p++))
1526 return -EFAULT;
90ed1e67 1527 retval = write_pool((const char __user *)p, size);
1da177e4
LT
1528 if (retval < 0)
1529 return retval;
a49c010e
JD
1530 credit_entropy_bits(ent_count);
1531 return 0;
1da177e4
LT
1532 case RNDZAPENTCNT:
1533 case RNDCLEARPOOL:
ae9ecd92
TT
1534 /*
1535 * Clear the entropy pool counters. We no longer clear
1536 * the entropy pool, as that's silly.
1537 */
1da177e4
LT
1538 if (!capable(CAP_SYS_ADMIN))
1539 return -EPERM;
489c7fc4 1540 if (xchg(&input_pool.entropy_count, 0)) {
042e293e
JD
1541 wake_up_interruptible(&random_write_wait);
1542 kill_fasync(&fasync, SIGIO, POLL_OUT);
1543 }
1da177e4 1544 return 0;
d848e5f8
TT
1545 case RNDRESEEDCRNG:
1546 if (!capable(CAP_SYS_ADMIN))
1547 return -EPERM;
1548 if (crng_init < 2)
1549 return -ENODATA;
5d58ea3a 1550 crng_reseed(&primary_crng);
009ba856 1551 WRITE_ONCE(crng_global_init_time, jiffies - 1);
d848e5f8 1552 return 0;
1da177e4
LT
1553 default:
1554 return -EINVAL;
1555 }
1556}
1557
9a6f70bb
JD
1558static int random_fasync(int fd, struct file *filp, int on)
1559{
1560 return fasync_helper(fd, filp, on, &fasync);
1561}
1562
2b8693c0 1563const struct file_operations random_fops = {
248045b8 1564 .read = random_read,
1da177e4 1565 .write = random_write,
248045b8 1566 .poll = random_poll,
43ae4860 1567 .unlocked_ioctl = random_ioctl,
507e4e2b 1568 .compat_ioctl = compat_ptr_ioctl,
9a6f70bb 1569 .fasync = random_fasync,
6038f373 1570 .llseek = noop_llseek,
1da177e4
LT
1571};
1572
2b8693c0 1573const struct file_operations urandom_fops = {
248045b8 1574 .read = urandom_read,
1da177e4 1575 .write = random_write,
43ae4860 1576 .unlocked_ioctl = random_ioctl,
4aa37c46 1577 .compat_ioctl = compat_ptr_ioctl,
9a6f70bb 1578 .fasync = random_fasync,
6038f373 1579 .llseek = noop_llseek,
1da177e4
LT
1580};
1581
248045b8
JD
1582SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
1583 flags)
c6e9d6f3 1584{
e297a783
JD
1585 int ret;
1586
248045b8 1587 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
75551dbf
AL
1588 return -EINVAL;
1589
1590 /*
1591 * Requesting insecure and blocking randomness at the same time makes
1592 * no sense.
1593 */
248045b8 1594 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
c6e9d6f3
TT
1595 return -EINVAL;
1596
1597 if (count > INT_MAX)
1598 count = INT_MAX;
1599
75551dbf 1600 if (!(flags & GRND_INSECURE) && !crng_ready()) {
c6e9d6f3
TT
1601 if (flags & GRND_NONBLOCK)
1602 return -EAGAIN;
e297a783
JD
1603 ret = wait_for_random_bytes();
1604 if (unlikely(ret))
1605 return ret;
c6e9d6f3 1606 }
c6f1deb1 1607 return urandom_read_nowarn(NULL, buf, count, NULL);
c6e9d6f3
TT
1608}
1609
1da177e4
LT
1610/********************************************************************
1611 *
1612 * Sysctl interface
1613 *
1614 ********************************************************************/
1615
1616#ifdef CONFIG_SYSCTL
1617
1618#include <linux/sysctl.h>
1619
db61ffe3 1620static int random_min_urandom_seed = 60;
489c7fc4
JD
1621static int random_write_wakeup_bits = POOL_MIN_BITS;
1622static int sysctl_poolsize = POOL_BITS;
1da177e4
LT
1623static char sysctl_bootid[16];
1624
1625/*
f22052b2 1626 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1627 * UUID. The difference is in whether table->data is NULL; if it is,
1628 * then a new UUID is generated and returned to the user.
1629 *
f22052b2
GP
1630 * If the user accesses this via the proc interface, the UUID will be
1631 * returned as an ASCII string in the standard UUID format; if via the
1632 * sysctl system call, as 16 bytes of binary data.
1da177e4 1633 */
248045b8
JD
1634static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
1635 size_t *lenp, loff_t *ppos)
1da177e4 1636{
a151427e 1637 struct ctl_table fake_table;
1da177e4
LT
1638 unsigned char buf[64], tmp_uuid[16], *uuid;
1639
1640 uuid = table->data;
1641 if (!uuid) {
1642 uuid = tmp_uuid;
1da177e4 1643 generate_random_uuid(uuid);
44e4360f
MD
1644 } else {
1645 static DEFINE_SPINLOCK(bootid_spinlock);
1646
1647 spin_lock(&bootid_spinlock);
1648 if (!uuid[8])
1649 generate_random_uuid(uuid);
1650 spin_unlock(&bootid_spinlock);
1651 }
1da177e4 1652
35900771
JP
1653 sprintf(buf, "%pU", uuid);
1654
1da177e4
LT
1655 fake_table.data = buf;
1656 fake_table.maxlen = sizeof(buf);
1657
8d65af78 1658 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1659}
1660
5475e8f0 1661static struct ctl_table random_table[] = {
1da177e4 1662 {
1da177e4
LT
1663 .procname = "poolsize",
1664 .data = &sysctl_poolsize,
1665 .maxlen = sizeof(int),
1666 .mode = 0444,
6d456111 1667 .proc_handler = proc_dointvec,
1da177e4
LT
1668 },
1669 {
1da177e4 1670 .procname = "entropy_avail",
c5704490 1671 .data = &input_pool.entropy_count,
1da177e4
LT
1672 .maxlen = sizeof(int),
1673 .mode = 0444,
c5704490 1674 .proc_handler = proc_dointvec,
1da177e4 1675 },
1da177e4 1676 {
1da177e4 1677 .procname = "write_wakeup_threshold",
2132a96f 1678 .data = &random_write_wakeup_bits,
1da177e4
LT
1679 .maxlen = sizeof(int),
1680 .mode = 0644,
489c7fc4 1681 .proc_handler = proc_dointvec,
1da177e4 1682 },
f5c2742c
TT
1683 {
1684 .procname = "urandom_min_reseed_secs",
1685 .data = &random_min_urandom_seed,
1686 .maxlen = sizeof(int),
1687 .mode = 0644,
1688 .proc_handler = proc_dointvec,
1689 },
1da177e4 1690 {
1da177e4
LT
1691 .procname = "boot_id",
1692 .data = &sysctl_bootid,
1693 .maxlen = 16,
1694 .mode = 0444,
6d456111 1695 .proc_handler = proc_do_uuid,
1da177e4
LT
1696 },
1697 {
1da177e4
LT
1698 .procname = "uuid",
1699 .maxlen = 16,
1700 .mode = 0444,
6d456111 1701 .proc_handler = proc_do_uuid,
1da177e4 1702 },
43759d4f
TT
1703#ifdef ADD_INTERRUPT_BENCH
1704 {
1705 .procname = "add_interrupt_avg_cycles",
1706 .data = &avg_cycles,
1707 .maxlen = sizeof(avg_cycles),
1708 .mode = 0444,
1709 .proc_handler = proc_doulongvec_minmax,
1710 },
1711 {
1712 .procname = "add_interrupt_avg_deviation",
1713 .data = &avg_deviation,
1714 .maxlen = sizeof(avg_deviation),
1715 .mode = 0444,
1716 .proc_handler = proc_doulongvec_minmax,
1717 },
1718#endif
894d2491 1719 { }
1da177e4 1720};
5475e8f0
XN
1721
1722/*
1723 * rand_initialize() is called before sysctl_init(),
1724 * so we cannot call register_sysctl_init() in rand_initialize()
1725 */
1726static int __init random_sysctls_init(void)
1727{
1728 register_sysctl_init("kernel/random", random_table);
1729 return 0;
1730}
1731device_initcall(random_sysctls_init);
248045b8 1732#endif /* CONFIG_SYSCTL */
1da177e4 1733
f5b98461
JD
1734struct batched_entropy {
1735 union {
1ca1b917
EB
1736 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
1737 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
f5b98461
JD
1738 };
1739 unsigned int position;
b7d5dc21 1740 spinlock_t batch_lock;
f5b98461 1741};
b1132dea 1742
1da177e4 1743/*
f5b98461 1744 * Get a random word for internal kernel use only. The quality of the random
69efea71
JD
1745 * number is good as /dev/urandom, but there is no backtrack protection, with
1746 * the goal of being quite fast and not depleting entropy. In order to ensure
e297a783 1747 * that the randomness provided by this function is okay, the function
69efea71
JD
1748 * wait_for_random_bytes() should be called and return 0 at least once at any
1749 * point prior.
1da177e4 1750 */
b7d5dc21 1751static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
248045b8 1752 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
b7d5dc21
SAS
1753};
1754
c440408c 1755u64 get_random_u64(void)
1da177e4 1756{
c440408c 1757 u64 ret;
b7d5dc21 1758 unsigned long flags;
f5b98461 1759 struct batched_entropy *batch;
eecabf56 1760 static void *previous;
8a0a9bd4 1761
eecabf56 1762 warn_unseeded_randomness(&previous);
d06bfd19 1763
b7d5dc21
SAS
1764 batch = raw_cpu_ptr(&batched_entropy_u64);
1765 spin_lock_irqsave(&batch->batch_lock, flags);
c440408c 1766 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
a5e9f557 1767 extract_crng((u8 *)batch->entropy_u64);
f5b98461
JD
1768 batch->position = 0;
1769 }
c440408c 1770 ret = batch->entropy_u64[batch->position++];
b7d5dc21 1771 spin_unlock_irqrestore(&batch->batch_lock, flags);
8a0a9bd4 1772 return ret;
1da177e4 1773}
c440408c 1774EXPORT_SYMBOL(get_random_u64);
1da177e4 1775
b7d5dc21 1776static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
248045b8 1777 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
b7d5dc21 1778};
c440408c 1779u32 get_random_u32(void)
f5b98461 1780{
c440408c 1781 u32 ret;
b7d5dc21 1782 unsigned long flags;
f5b98461 1783 struct batched_entropy *batch;
eecabf56 1784 static void *previous;
ec9ee4ac 1785
eecabf56 1786 warn_unseeded_randomness(&previous);
d06bfd19 1787
b7d5dc21
SAS
1788 batch = raw_cpu_ptr(&batched_entropy_u32);
1789 spin_lock_irqsave(&batch->batch_lock, flags);
c440408c 1790 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
a5e9f557 1791 extract_crng((u8 *)batch->entropy_u32);
f5b98461
JD
1792 batch->position = 0;
1793 }
c440408c 1794 ret = batch->entropy_u32[batch->position++];
b7d5dc21 1795 spin_unlock_irqrestore(&batch->batch_lock, flags);
ec9ee4ac
DC
1796 return ret;
1797}
c440408c 1798EXPORT_SYMBOL(get_random_u32);
ec9ee4ac 1799
b169c13d
JD
1800/* It's important to invalidate all potential batched entropy that might
1801 * be stored before the crng is initialized, which we can do lazily by
1802 * simply resetting the counter to zero so that it's re-extracted on the
1803 * next usage. */
1804static void invalidate_batched_entropy(void)
1805{
1806 int cpu;
1807 unsigned long flags;
1808
248045b8 1809 for_each_possible_cpu(cpu) {
b7d5dc21
SAS
1810 struct batched_entropy *batched_entropy;
1811
1812 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
1813 spin_lock_irqsave(&batched_entropy->batch_lock, flags);
1814 batched_entropy->position = 0;
1815 spin_unlock(&batched_entropy->batch_lock);
1816
1817 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
1818 spin_lock(&batched_entropy->batch_lock);
1819 batched_entropy->position = 0;
1820 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
b169c13d 1821 }
b169c13d
JD
1822}
1823
99fdafde
JC
1824/**
1825 * randomize_page - Generate a random, page aligned address
1826 * @start: The smallest acceptable address the caller will take.
1827 * @range: The size of the area, starting at @start, within which the
1828 * random address must fall.
1829 *
1830 * If @start + @range would overflow, @range is capped.
1831 *
1832 * NOTE: Historical use of randomize_range, which this replaces, presumed that
1833 * @start was already page aligned. We now align it regardless.
1834 *
1835 * Return: A page aligned address within [start, start + range). On error,
1836 * @start is returned.
1837 */
248045b8 1838unsigned long randomize_page(unsigned long start, unsigned long range)
99fdafde
JC
1839{
1840 if (!PAGE_ALIGNED(start)) {
1841 range -= PAGE_ALIGN(start) - start;
1842 start = PAGE_ALIGN(start);
1843 }
1844
1845 if (start > ULONG_MAX - range)
1846 range = ULONG_MAX - start;
1847
1848 range >>= PAGE_SHIFT;
1849
1850 if (range == 0)
1851 return start;
1852
1853 return start + (get_random_long() % range << PAGE_SHIFT);
1854}
1855
c84dbf61
TD
1856/* Interface for in-kernel drivers of true hardware RNGs.
1857 * Those devices may produce endless random bits and will be throttled
1858 * when our pool is full.
1859 */
1860void add_hwgenerator_randomness(const char *buffer, size_t count,
1861 size_t entropy)
1862{
43838a23 1863 if (unlikely(crng_init == 0)) {
73c7733f 1864 size_t ret = crng_fast_load(buffer, count);
90ed1e67 1865 mix_pool_bytes(buffer, ret);
73c7733f
JD
1866 count -= ret;
1867 buffer += ret;
1868 if (!count || crng_init == 0)
1869 return;
3371f3da 1870 }
e192be9d 1871
c321e907 1872 /* Throttle writing if we're above the trickle threshold.
489c7fc4
JD
1873 * We'll be woken up again once below POOL_MIN_BITS, when
1874 * the calling thread is about to terminate, or once
1875 * CRNG_RESEED_INTERVAL has elapsed.
e192be9d 1876 */
c321e907 1877 wait_event_interruptible_timeout(random_write_wait,
f7e67b8e 1878 !system_wq || kthread_should_stop() ||
489c7fc4 1879 input_pool.entropy_count < POOL_MIN_BITS,
c321e907 1880 CRNG_RESEED_INTERVAL);
90ed1e67
JD
1881 mix_pool_bytes(buffer, count);
1882 credit_entropy_bits(entropy);
c84dbf61
TD
1883}
1884EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
428826f5
HYW
1885
1886/* Handle random seed passed by bootloader.
1887 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
1888 * it would be regarded as device data.
1889 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
1890 */
1891void add_bootloader_randomness(const void *buf, unsigned int size)
1892{
1893 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
1894 add_hwgenerator_randomness(buf, size, size * 8);
1895 else
1896 add_device_randomness(buf, size);
1897}
3fd57e7a 1898EXPORT_SYMBOL_GPL(add_bootloader_randomness);