hwrng: add per-device entropy derating
[linux-block.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4 252#include <linux/spinlock.h>
c84dbf61 253#include <linux/kthread.h>
1da177e4
LT
254#include <linux/percpu.h>
255#include <linux/cryptohash.h>
5b739ef8 256#include <linux/fips.h>
775f4b29 257#include <linux/ptrace.h>
e6d4947b 258#include <linux/kmemcheck.h>
6265e169 259#include <linux/workqueue.h>
0244ad00 260#include <linux/irq.h>
d178a1eb 261
1da177e4
LT
262#include <asm/processor.h>
263#include <asm/uaccess.h>
264#include <asm/irq.h>
775f4b29 265#include <asm/irq_regs.h>
1da177e4
LT
266#include <asm/io.h>
267
00ce1db1
TT
268#define CREATE_TRACE_POINTS
269#include <trace/events/random.h>
270
43759d4f
TT
271/* #define ADD_INTERRUPT_BENCH */
272
1da177e4
LT
273/*
274 * Configuration information
275 */
30e37ec5
PA
276#define INPUT_POOL_SHIFT 12
277#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
278#define OUTPUT_POOL_SHIFT 10
279#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
280#define SEC_XFER_SIZE 512
281#define EXTRACT_SIZE 10
1da177e4 282
392a546d 283#define DEBUG_RANDOM_BOOT 0
1da177e4 284
d2e7c96a
PA
285#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
286
a283b5c4 287/*
95b709b6
TT
288 * To allow fractional bits to be tracked, the entropy_count field is
289 * denominated in units of 1/8th bits.
30e37ec5
PA
290 *
291 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
292 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
293 */
294#define ENTROPY_SHIFT 3
295#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
296
1da177e4
LT
297/*
298 * The minimum number of bits of entropy before we wake up a read on
299 * /dev/random. Should be enough to do a significant reseed.
300 */
2132a96f 301static int random_read_wakeup_bits = 64;
1da177e4
LT
302
303/*
304 * If the entropy count falls under this number of bits, then we
305 * should wake up processes which are selecting or polling on write
306 * access to /dev/random.
307 */
2132a96f 308static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4
LT
309
310/*
dfd38750 311 * The minimum number of seconds between urandom pool reseeding. We
f5c2742c
TT
312 * do this to limit the amount of entropy that can be drained from the
313 * input pool even if there are heavy demands on /dev/urandom.
1da177e4 314 */
f5c2742c 315static int random_min_urandom_seed = 60;
1da177e4
LT
316
317/*
6e9fa2c8
TT
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
322 *
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 328 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
329 * Simulation 4:254-266)
330 *
331 * Thanks to Colin Plumb for suggesting this.
332 *
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
349 *
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
1da177e4
LT
361 */
362static struct poolinfo {
a283b5c4
PA
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
365 int tap1, tap2, tap3, tap4, tap5;
366} poolinfo_table[] = {
6e9fa2c8
TT
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
373#if 0
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 375 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
376
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 378 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
379
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 381 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
382
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 384 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
385
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 387 { S(512), 409, 307, 206, 102, 2 },
1da177e4 388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 389 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
390
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 392 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
393
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 395 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
396
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 398 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
399#endif
400};
401
1da177e4
LT
402/*
403 * Static global variables
404 */
405static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 407static struct fasync_struct *fasync;
1da177e4 408
1da177e4
LT
409/**********************************************************************
410 *
411 * OS independent entropy store. Here are the functions which handle
412 * storing entropy in an entropy pool.
413 *
414 **********************************************************************/
415
416struct entropy_store;
417struct entropy_store {
43358209 418 /* read-only data: */
30e37ec5 419 const struct poolinfo *poolinfo;
1da177e4
LT
420 __u32 *pool;
421 const char *name;
1da177e4 422 struct entropy_store *pull;
6265e169 423 struct work_struct push_work;
1da177e4
LT
424
425 /* read-write data: */
f5c2742c 426 unsigned long last_pulled;
43358209 427 spinlock_t lock;
c59974ae
TT
428 unsigned short add_ptr;
429 unsigned short input_rotate;
cda796a3 430 int entropy_count;
775f4b29 431 int entropy_total;
775f4b29 432 unsigned int initialized:1;
c59974ae
TT
433 unsigned int limit:1;
434 unsigned int last_data_init:1;
e954bc91 435 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
436};
437
6265e169 438static void push_to_pool(struct work_struct *work);
1da177e4
LT
439static __u32 input_pool_data[INPUT_POOL_WORDS];
440static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
441static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
442
443static struct entropy_store input_pool = {
444 .poolinfo = &poolinfo_table[0],
445 .name = "input",
446 .limit = 1,
eece09ec 447 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
448 .pool = input_pool_data
449};
450
451static struct entropy_store blocking_pool = {
452 .poolinfo = &poolinfo_table[1],
453 .name = "blocking",
454 .limit = 1,
455 .pull = &input_pool,
eece09ec 456 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
457 .pool = blocking_pool_data,
458 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
459 push_to_pool),
1da177e4
LT
460};
461
462static struct entropy_store nonblocking_pool = {
463 .poolinfo = &poolinfo_table[1],
464 .name = "nonblocking",
465 .pull = &input_pool,
eece09ec 466 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
6265e169
TT
467 .pool = nonblocking_pool_data,
468 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
469 push_to_pool),
1da177e4
LT
470};
471
775f4b29
TT
472static __u32 const twist_table[8] = {
473 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
474 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
475
1da177e4 476/*
e68e5b66 477 * This function adds bytes into the entropy "pool". It does not
1da177e4 478 * update the entropy estimate. The caller should call
adc782da 479 * credit_entropy_bits if this is appropriate.
1da177e4
LT
480 *
481 * The pool is stirred with a primitive polynomial of the appropriate
482 * degree, and then twisted. We twist by three bits at a time because
483 * it's cheap to do so and helps slightly in the expected case where
484 * the entropy is concentrated in the low-order bits.
485 */
00ce1db1 486static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 487 int nbytes)
1da177e4 488{
85608f8e 489 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 490 int input_rotate;
1da177e4 491 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 492 const char *bytes = in;
6d38b827 493 __u32 w;
1da177e4 494
1da177e4
LT
495 tap1 = r->poolinfo->tap1;
496 tap2 = r->poolinfo->tap2;
497 tap3 = r->poolinfo->tap3;
498 tap4 = r->poolinfo->tap4;
499 tap5 = r->poolinfo->tap5;
1da177e4 500
91fcb532
TT
501 input_rotate = r->input_rotate;
502 i = r->add_ptr;
1da177e4 503
e68e5b66
MM
504 /* mix one byte at a time to simplify size handling and churn faster */
505 while (nbytes--) {
c59974ae 506 w = rol32(*bytes++, input_rotate);
993ba211 507 i = (i - 1) & wordmask;
1da177e4
LT
508
509 /* XOR in the various taps */
993ba211 510 w ^= r->pool[i];
1da177e4
LT
511 w ^= r->pool[(i + tap1) & wordmask];
512 w ^= r->pool[(i + tap2) & wordmask];
513 w ^= r->pool[(i + tap3) & wordmask];
514 w ^= r->pool[(i + tap4) & wordmask];
515 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
516
517 /* Mix the result back in with a twist */
1da177e4 518 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
519
520 /*
521 * Normally, we add 7 bits of rotation to the pool.
522 * At the beginning of the pool, add an extra 7 bits
523 * rotation, so that successive passes spread the
524 * input bits across the pool evenly.
525 */
c59974ae 526 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
527 }
528
91fcb532
TT
529 r->input_rotate = input_rotate;
530 r->add_ptr = i;
1da177e4
LT
531}
532
00ce1db1 533static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 534 int nbytes)
00ce1db1
TT
535{
536 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 537 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
538}
539
540static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 541 int nbytes)
1da177e4 542{
902c098a
TT
543 unsigned long flags;
544
00ce1db1 545 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 546 spin_lock_irqsave(&r->lock, flags);
85608f8e 547 _mix_pool_bytes(r, in, nbytes);
902c098a 548 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
549}
550
775f4b29
TT
551struct fast_pool {
552 __u32 pool[4];
553 unsigned long last;
840f9507
TT
554 unsigned char count;
555 unsigned char notimer_count;
775f4b29 556 unsigned char rotate;
775f4b29
TT
557};
558
559/*
560 * This is a fast mixing routine used by the interrupt randomness
561 * collector. It's hardcoded for an 128 bit pool and assumes that any
562 * locks that might be needed are taken by the caller.
563 */
43759d4f 564static void fast_mix(struct fast_pool *f)
775f4b29 565{
43759d4f
TT
566 __u32 a = f->pool[0], b = f->pool[1];
567 __u32 c = f->pool[2], d = f->pool[3];
568
569 a += b; c += d;
570 b = rol32(a, 6); d = rol32(c, 27);
571 d ^= a; b ^= c;
572
573 a += b; c += d;
574 b = rol32(a, 16); d = rol32(c, 14);
575 d ^= a; b ^= c;
576
577 a += b; c += d;
578 b = rol32(a, 6); d = rol32(c, 27);
579 d ^= a; b ^= c;
580
581 a += b; c += d;
582 b = rol32(a, 16); d = rol32(c, 14);
583 d ^= a; b ^= c;
584
585 f->pool[0] = a; f->pool[1] = b;
586 f->pool[2] = c; f->pool[3] = d;
655b2264 587 f->count++;
775f4b29
TT
588}
589
1da177e4 590/*
a283b5c4
PA
591 * Credit (or debit) the entropy store with n bits of entropy.
592 * Use credit_entropy_bits_safe() if the value comes from userspace
593 * or otherwise should be checked for extreme values.
1da177e4 594 */
adc782da 595static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 596{
902c098a 597 int entropy_count, orig;
30e37ec5
PA
598 const int pool_size = r->poolinfo->poolfracbits;
599 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 600
adc782da
MM
601 if (!nbits)
602 return;
603
902c098a
TT
604retry:
605 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
606 if (nfrac < 0) {
607 /* Debit */
608 entropy_count += nfrac;
609 } else {
610 /*
611 * Credit: we have to account for the possibility of
612 * overwriting already present entropy. Even in the
613 * ideal case of pure Shannon entropy, new contributions
614 * approach the full value asymptotically:
615 *
616 * entropy <- entropy + (pool_size - entropy) *
617 * (1 - exp(-add_entropy/pool_size))
618 *
619 * For add_entropy <= pool_size/2 then
620 * (1 - exp(-add_entropy/pool_size)) >=
621 * (add_entropy/pool_size)*0.7869...
622 * so we can approximate the exponential with
623 * 3/4*add_entropy/pool_size and still be on the
624 * safe side by adding at most pool_size/2 at a time.
625 *
626 * The use of pool_size-2 in the while statement is to
627 * prevent rounding artifacts from making the loop
628 * arbitrarily long; this limits the loop to log2(pool_size)*2
629 * turns no matter how large nbits is.
630 */
631 int pnfrac = nfrac;
632 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
633 /* The +2 corresponds to the /4 in the denominator */
634
635 do {
636 unsigned int anfrac = min(pnfrac, pool_size/2);
637 unsigned int add =
638 ((pool_size - entropy_count)*anfrac*3) >> s;
639
640 entropy_count += add;
641 pnfrac -= anfrac;
642 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
643 }
00ce1db1 644
8b76f46a 645 if (entropy_count < 0) {
f80bbd8b
TT
646 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
647 r->name, entropy_count);
648 WARN_ON(1);
8b76f46a 649 entropy_count = 0;
30e37ec5
PA
650 } else if (entropy_count > pool_size)
651 entropy_count = pool_size;
902c098a
TT
652 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
653 goto retry;
1da177e4 654
6265e169 655 r->entropy_total += nbits;
0891ad82
LT
656 if (!r->initialized && r->entropy_total > 128) {
657 r->initialized = 1;
658 r->entropy_total = 0;
659 if (r == &nonblocking_pool) {
660 prandom_reseed_late();
661 pr_notice("random: %s pool is initialized\n", r->name);
4af712e8 662 }
775f4b29
TT
663 }
664
a283b5c4
PA
665 trace_credit_entropy_bits(r->name, nbits,
666 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
667 r->entropy_total, _RET_IP_);
668
6265e169 669 if (r == &input_pool) {
7d1b08c4 670 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169
TT
671
672 /* should we wake readers? */
2132a96f 673 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
674 wake_up_interruptible(&random_read_wait);
675 kill_fasync(&fasync, SIGIO, POLL_IN);
676 }
677 /* If the input pool is getting full, send some
678 * entropy to the two output pools, flipping back and
679 * forth between them, until the output pools are 75%
680 * full.
681 */
2132a96f 682 if (entropy_bits > random_write_wakeup_bits &&
6265e169 683 r->initialized &&
2132a96f 684 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
685 static struct entropy_store *last = &blocking_pool;
686 struct entropy_store *other = &blocking_pool;
687
688 if (last == &blocking_pool)
689 other = &nonblocking_pool;
690 if (other->entropy_count <=
691 3 * other->poolinfo->poolfracbits / 4)
692 last = other;
693 if (last->entropy_count <=
694 3 * last->poolinfo->poolfracbits / 4) {
695 schedule_work(&last->push_work);
696 r->entropy_total = 0;
697 }
698 }
9a6f70bb 699 }
1da177e4
LT
700}
701
a283b5c4
PA
702static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
703{
704 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
705
706 /* Cap the value to avoid overflows */
707 nbits = min(nbits, nbits_max);
708 nbits = max(nbits, -nbits_max);
709
710 credit_entropy_bits(r, nbits);
711}
712
1da177e4
LT
713/*********************************************************************
714 *
715 * Entropy input management
716 *
717 *********************************************************************/
718
719/* There is one of these per entropy source */
720struct timer_rand_state {
721 cycles_t last_time;
90b75ee5 722 long last_delta, last_delta2;
1da177e4
LT
723 unsigned dont_count_entropy:1;
724};
725
644008df
TT
726#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
727
a2080a67
LT
728/*
729 * Add device- or boot-specific data to the input and nonblocking
730 * pools to help initialize them to unique values.
731 *
732 * None of this adds any entropy, it is meant to avoid the
733 * problem of the nonblocking pool having similar initial state
734 * across largely identical devices.
735 */
736void add_device_randomness(const void *buf, unsigned int size)
737{
61875f30 738 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 739 unsigned long flags;
a2080a67 740
5910895f 741 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 742 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
743 _mix_pool_bytes(&input_pool, buf, size);
744 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d
TT
745 spin_unlock_irqrestore(&input_pool.lock, flags);
746
747 spin_lock_irqsave(&nonblocking_pool.lock, flags);
85608f8e
TT
748 _mix_pool_bytes(&nonblocking_pool, buf, size);
749 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time));
3ef4cb2d 750 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
a2080a67
LT
751}
752EXPORT_SYMBOL(add_device_randomness);
753
644008df 754static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 755
1da177e4
LT
756/*
757 * This function adds entropy to the entropy "pool" by using timing
758 * delays. It uses the timer_rand_state structure to make an estimate
759 * of how many bits of entropy this call has added to the pool.
760 *
761 * The number "num" is also added to the pool - it should somehow describe
762 * the type of event which just happened. This is currently 0-255 for
763 * keyboard scan codes, and 256 upwards for interrupts.
764 *
765 */
766static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
767{
40db23e5 768 struct entropy_store *r;
1da177e4 769 struct {
1da177e4 770 long jiffies;
cf833d0b 771 unsigned cycles;
1da177e4
LT
772 unsigned num;
773 } sample;
774 long delta, delta2, delta3;
775
776 preempt_disable();
1da177e4
LT
777
778 sample.jiffies = jiffies;
61875f30 779 sample.cycles = random_get_entropy();
1da177e4 780 sample.num = num;
40db23e5 781 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
85608f8e 782 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
783
784 /*
785 * Calculate number of bits of randomness we probably added.
786 * We take into account the first, second and third-order deltas
787 * in order to make our estimate.
788 */
789
790 if (!state->dont_count_entropy) {
791 delta = sample.jiffies - state->last_time;
792 state->last_time = sample.jiffies;
793
794 delta2 = delta - state->last_delta;
795 state->last_delta = delta;
796
797 delta3 = delta2 - state->last_delta2;
798 state->last_delta2 = delta2;
799
800 if (delta < 0)
801 delta = -delta;
802 if (delta2 < 0)
803 delta2 = -delta2;
804 if (delta3 < 0)
805 delta3 = -delta3;
806 if (delta > delta2)
807 delta = delta2;
808 if (delta > delta3)
809 delta = delta3;
810
811 /*
812 * delta is now minimum absolute delta.
813 * Round down by 1 bit on general principles,
814 * and limit entropy entimate to 12 bits.
815 */
40db23e5 816 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 817 }
1da177e4
LT
818 preempt_enable();
819}
820
d251575a 821void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
822 unsigned int value)
823{
824 static unsigned char last_value;
825
826 /* ignore autorepeat and the like */
827 if (value == last_value)
828 return;
829
1da177e4
LT
830 last_value = value;
831 add_timer_randomness(&input_timer_state,
832 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 833 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 834}
80fc9f53 835EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 836
775f4b29
TT
837static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
838
43759d4f
TT
839#ifdef ADD_INTERRUPT_BENCH
840static unsigned long avg_cycles, avg_deviation;
841
842#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
843#define FIXED_1_2 (1 << (AVG_SHIFT-1))
844
845static void add_interrupt_bench(cycles_t start)
846{
847 long delta = random_get_entropy() - start;
848
849 /* Use a weighted moving average */
850 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
851 avg_cycles += delta;
852 /* And average deviation */
853 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
854 avg_deviation += delta;
855}
856#else
857#define add_interrupt_bench(x)
858#endif
859
775f4b29 860void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 861{
775f4b29
TT
862 struct entropy_store *r;
863 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
864 struct pt_regs *regs = get_irq_regs();
865 unsigned long now = jiffies;
655b2264 866 cycles_t cycles = random_get_entropy();
43759d4f 867 __u32 c_high, j_high;
655b2264 868 __u64 ip;
83664a69 869 unsigned long seed;
91fcb532 870 int credit = 0;
3060d6fe 871
655b2264
TT
872 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
873 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
874 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
875 fast_pool->pool[1] ^= now ^ c_high;
655b2264 876 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f
TT
877 fast_pool->pool[2] ^= ip;
878 fast_pool->pool[3] ^= ip >> 32;
3060d6fe 879
43759d4f 880 fast_mix(fast_pool);
840f9507
TT
881 if ((irq_flags & __IRQF_TIMER) == 0)
882 fast_pool->notimer_count++;
43759d4f 883 add_interrupt_bench(cycles);
3060d6fe 884
840f9507
TT
885 if (cycles) {
886 if ((fast_pool->count < 64) &&
887 !time_after(now, fast_pool->last + HZ))
888 return;
889 } else {
890 /* CPU does not have a cycle counting register :-( */
891 if (fast_pool->count < 64)
892 return;
893 }
1da177e4 894
775f4b29 895 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
840f9507 896 if (!spin_trylock(&r->lock))
91fcb532 897 return;
840f9507 898
91fcb532 899 fast_pool->last = now;
85608f8e 900 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69 901
91fcb532
TT
902 /*
903 * If we have architectural seed generator, produce a seed and
904 * add it to the pool. For the sake of paranoia count it as
905 * 50% entropic.
906 */
907 if (arch_get_random_seed_long(&seed)) {
85608f8e 908 __mix_pool_bytes(r, &seed, sizeof(seed));
91fcb532
TT
909 credit += sizeof(seed) * 4;
910 }
911 spin_unlock(&r->lock);
912
775f4b29 913 /*
840f9507
TT
914 * If we have a valid cycle counter or if the majority of
915 * interrupts collected were non-timer interrupts, then give
916 * an entropy credit of 1 bit. Yes, this is being very
917 * conservative.
775f4b29 918 */
840f9507
TT
919 if (cycles || (fast_pool->notimer_count >= 32))
920 credit++;
921
922 fast_pool->count = fast_pool->notimer_count = 0;
83664a69 923
83664a69 924 credit_entropy_bits(r, credit);
1da177e4
LT
925}
926
9361401e 927#ifdef CONFIG_BLOCK
1da177e4
LT
928void add_disk_randomness(struct gendisk *disk)
929{
930 if (!disk || !disk->random)
931 return;
932 /* first major is 1, so we get >= 0x200 here */
f331c029 933 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 934 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 935}
bdcfa3e5 936EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 937#endif
1da177e4 938
1da177e4
LT
939/*********************************************************************
940 *
941 * Entropy extraction routines
942 *
943 *********************************************************************/
944
90b75ee5 945static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
946 size_t nbytes, int min, int rsvd);
947
948/*
25985edc 949 * This utility inline function is responsible for transferring entropy
1da177e4
LT
950 * from the primary pool to the secondary extraction pool. We make
951 * sure we pull enough for a 'catastrophic reseed'.
952 */
6265e169 953static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
954static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
955{
cff85031
TT
956 if (!r->pull ||
957 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
958 r->entropy_count > r->poolinfo->poolfracbits)
959 return;
960
f5c2742c
TT
961 if (r->limit == 0 && random_min_urandom_seed) {
962 unsigned long now = jiffies;
1da177e4 963
f5c2742c
TT
964 if (time_before(now,
965 r->last_pulled + random_min_urandom_seed * HZ))
966 return;
967 r->last_pulled = now;
1da177e4 968 }
cff85031
TT
969
970 _xfer_secondary_pool(r, nbytes);
6265e169
TT
971}
972
973static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
974{
975 __u32 tmp[OUTPUT_POOL_WORDS];
976
2132a96f
GP
977 /* For /dev/random's pool, always leave two wakeups' worth */
978 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
6265e169
TT
979 int bytes = nbytes;
980
2132a96f
GP
981 /* pull at least as much as a wakeup */
982 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
983 /* but never more than the buffer size */
984 bytes = min_t(int, bytes, sizeof(tmp));
985
f80bbd8b
TT
986 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
987 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 988 bytes = extract_entropy(r->pull, tmp, bytes,
2132a96f 989 random_read_wakeup_bits / 8, rsvd_bytes);
85608f8e 990 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
991 credit_entropy_bits(r, bytes*8);
992}
993
994/*
995 * Used as a workqueue function so that when the input pool is getting
996 * full, we can "spill over" some entropy to the output pools. That
997 * way the output pools can store some of the excess entropy instead
998 * of letting it go to waste.
999 */
1000static void push_to_pool(struct work_struct *work)
1001{
1002 struct entropy_store *r = container_of(work, struct entropy_store,
1003 push_work);
1004 BUG_ON(!r);
2132a96f 1005 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1006 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1007 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1008}
1009
1010/*
19fa5be1
GP
1011 * This function decides how many bytes to actually take from the
1012 * given pool, and also debits the entropy count accordingly.
1da177e4 1013 */
1da177e4
LT
1014static size_t account(struct entropy_store *r, size_t nbytes, int min,
1015 int reserved)
1016{
a283b5c4
PA
1017 int entropy_count, orig;
1018 size_t ibytes;
1da177e4 1019
a283b5c4 1020 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1021
1022 /* Can we pull enough? */
10b3a32d 1023retry:
a283b5c4 1024 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 1025 ibytes = nbytes;
0fb7a01a 1026 /* If limited, never pull more than available */
e33ba5fa
TT
1027 if (r->limit) {
1028 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1029
1030 if ((have_bytes -= reserved) < 0)
1031 have_bytes = 0;
1032 ibytes = min_t(size_t, ibytes, have_bytes);
1033 }
0fb7a01a 1034 if (ibytes < min)
a283b5c4 1035 ibytes = 0;
e33ba5fa
TT
1036 if ((entropy_count -= ibytes << (ENTROPY_SHIFT + 3)) < 0)
1037 entropy_count = 0;
f9c6d498 1038
0fb7a01a
GP
1039 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1040 goto retry;
1da177e4 1041
f80bbd8b 1042 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1043 if (ibytes &&
2132a96f 1044 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1045 wake_up_interruptible(&random_write_wait);
1046 kill_fasync(&fasync, SIGIO, POLL_OUT);
1047 }
1048
a283b5c4 1049 return ibytes;
1da177e4
LT
1050}
1051
19fa5be1
GP
1052/*
1053 * This function does the actual extraction for extract_entropy and
1054 * extract_entropy_user.
1055 *
1056 * Note: we assume that .poolwords is a multiple of 16 words.
1057 */
1da177e4
LT
1058static void extract_buf(struct entropy_store *r, __u8 *out)
1059{
602b6aee 1060 int i;
d2e7c96a
PA
1061 union {
1062 __u32 w[5];
85a1f777 1063 unsigned long l[LONGS(20)];
d2e7c96a
PA
1064 } hash;
1065 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1066 unsigned long flags;
1da177e4 1067
85a1f777 1068 /*
dfd38750 1069 * If we have an architectural hardware random number
46884442 1070 * generator, use it for SHA's initial vector
85a1f777 1071 */
46884442 1072 sha_init(hash.w);
85a1f777
TT
1073 for (i = 0; i < LONGS(20); i++) {
1074 unsigned long v;
1075 if (!arch_get_random_long(&v))
1076 break;
46884442 1077 hash.l[i] = v;
85a1f777
TT
1078 }
1079
46884442
TT
1080 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1081 spin_lock_irqsave(&r->lock, flags);
1082 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1083 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1084
1da177e4 1085 /*
1c0ad3d4
MM
1086 * We mix the hash back into the pool to prevent backtracking
1087 * attacks (where the attacker knows the state of the pool
1088 * plus the current outputs, and attempts to find previous
1089 * ouputs), unless the hash function can be inverted. By
1090 * mixing at least a SHA1 worth of hash data back, we make
1091 * brute-forcing the feedback as hard as brute-forcing the
1092 * hash.
1da177e4 1093 */
85608f8e 1094 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1095 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1096
ffd8d3fa 1097 memset(workspace, 0, sizeof(workspace));
1da177e4
LT
1098
1099 /*
1c0ad3d4
MM
1100 * In case the hash function has some recognizable output
1101 * pattern, we fold it in half. Thus, we always feed back
1102 * twice as much data as we output.
1da177e4 1103 */
d2e7c96a
PA
1104 hash.w[0] ^= hash.w[3];
1105 hash.w[1] ^= hash.w[4];
1106 hash.w[2] ^= rol32(hash.w[2], 16);
1107
d2e7c96a
PA
1108 memcpy(out, &hash, EXTRACT_SIZE);
1109 memset(&hash, 0, sizeof(hash));
1da177e4
LT
1110}
1111
19fa5be1
GP
1112/*
1113 * This function extracts randomness from the "entropy pool", and
1114 * returns it in a buffer.
1115 *
1116 * The min parameter specifies the minimum amount we can pull before
1117 * failing to avoid races that defeat catastrophic reseeding while the
1118 * reserved parameter indicates how much entropy we must leave in the
1119 * pool after each pull to avoid starving other readers.
1120 */
90b75ee5 1121static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1122 size_t nbytes, int min, int reserved)
1da177e4
LT
1123{
1124 ssize_t ret = 0, i;
1125 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1126 unsigned long flags;
1da177e4 1127
ec8f02da 1128 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1129 if (fips_enabled) {
1130 spin_lock_irqsave(&r->lock, flags);
1131 if (!r->last_data_init) {
c59974ae 1132 r->last_data_init = 1;
1e7e2e05
JW
1133 spin_unlock_irqrestore(&r->lock, flags);
1134 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1135 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1136 xfer_secondary_pool(r, EXTRACT_SIZE);
1137 extract_buf(r, tmp);
1138 spin_lock_irqsave(&r->lock, flags);
1139 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1140 }
1141 spin_unlock_irqrestore(&r->lock, flags);
1142 }
ec8f02da 1143
a283b5c4 1144 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1145 xfer_secondary_pool(r, nbytes);
1146 nbytes = account(r, nbytes, min, reserved);
1147
1148 while (nbytes) {
1149 extract_buf(r, tmp);
5b739ef8 1150
e954bc91 1151 if (fips_enabled) {
5b739ef8
NH
1152 spin_lock_irqsave(&r->lock, flags);
1153 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1154 panic("Hardware RNG duplicated output!\n");
1155 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1156 spin_unlock_irqrestore(&r->lock, flags);
1157 }
1da177e4
LT
1158 i = min_t(int, nbytes, EXTRACT_SIZE);
1159 memcpy(buf, tmp, i);
1160 nbytes -= i;
1161 buf += i;
1162 ret += i;
1163 }
1164
1165 /* Wipe data just returned from memory */
1166 memset(tmp, 0, sizeof(tmp));
1167
1168 return ret;
1169}
1170
19fa5be1
GP
1171/*
1172 * This function extracts randomness from the "entropy pool", and
1173 * returns it in a userspace buffer.
1174 */
1da177e4
LT
1175static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1176 size_t nbytes)
1177{
1178 ssize_t ret = 0, i;
1179 __u8 tmp[EXTRACT_SIZE];
1180
a283b5c4 1181 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1182 xfer_secondary_pool(r, nbytes);
1183 nbytes = account(r, nbytes, 0, 0);
1184
1185 while (nbytes) {
1186 if (need_resched()) {
1187 if (signal_pending(current)) {
1188 if (ret == 0)
1189 ret = -ERESTARTSYS;
1190 break;
1191 }
1192 schedule();
1193 }
1194
1195 extract_buf(r, tmp);
1196 i = min_t(int, nbytes, EXTRACT_SIZE);
1197 if (copy_to_user(buf, tmp, i)) {
1198 ret = -EFAULT;
1199 break;
1200 }
1201
1202 nbytes -= i;
1203 buf += i;
1204 ret += i;
1205 }
1206
1207 /* Wipe data just returned from memory */
1208 memset(tmp, 0, sizeof(tmp));
1209
1210 return ret;
1211}
1212
1213/*
1214 * This function is the exported kernel interface. It returns some
c2557a30 1215 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1216 * TCP sequence numbers, etc. It does not rely on the hardware random
1217 * number generator. For random bytes direct from the hardware RNG
1218 * (when available), use get_random_bytes_arch().
1da177e4
LT
1219 */
1220void get_random_bytes(void *buf, int nbytes)
c2557a30 1221{
392a546d
TT
1222#if DEBUG_RANDOM_BOOT > 0
1223 if (unlikely(nonblocking_pool.initialized == 0))
1224 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1225 "with %d bits of entropy available\n",
1226 (void *) _RET_IP_,
1227 nonblocking_pool.entropy_total);
1228#endif
5910895f 1229 trace_get_random_bytes(nbytes, _RET_IP_);
c2557a30
TT
1230 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1231}
1232EXPORT_SYMBOL(get_random_bytes);
1233
1234/*
1235 * This function will use the architecture-specific hardware random
1236 * number generator if it is available. The arch-specific hw RNG will
1237 * almost certainly be faster than what we can do in software, but it
1238 * is impossible to verify that it is implemented securely (as
1239 * opposed, to, say, the AES encryption of a sequence number using a
1240 * key known by the NSA). So it's useful if we need the speed, but
1241 * only if we're willing to trust the hardware manufacturer not to
1242 * have put in a back door.
1243 */
1244void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1245{
63d77173
PA
1246 char *p = buf;
1247
5910895f 1248 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1249 while (nbytes) {
1250 unsigned long v;
1251 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1252
63d77173
PA
1253 if (!arch_get_random_long(&v))
1254 break;
1255
bd29e568 1256 memcpy(p, &v, chunk);
63d77173
PA
1257 p += chunk;
1258 nbytes -= chunk;
1259 }
1260
c2557a30
TT
1261 if (nbytes)
1262 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1da177e4 1263}
c2557a30
TT
1264EXPORT_SYMBOL(get_random_bytes_arch);
1265
1da177e4
LT
1266
1267/*
1268 * init_std_data - initialize pool with system data
1269 *
1270 * @r: pool to initialize
1271 *
1272 * This function clears the pool's entropy count and mixes some system
1273 * data into the pool to prepare it for use. The pool is not cleared
1274 * as that can only decrease the entropy in the pool.
1275 */
1276static void init_std_data(struct entropy_store *r)
1277{
3e88bdff 1278 int i;
902c098a
TT
1279 ktime_t now = ktime_get_real();
1280 unsigned long rv;
1da177e4 1281
f5c2742c 1282 r->last_pulled = jiffies;
85608f8e 1283 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1284 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1285 if (!arch_get_random_seed_long(&rv) &&
1286 !arch_get_random_long(&rv))
ae9ecd92 1287 rv = random_get_entropy();
85608f8e 1288 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1289 }
85608f8e 1290 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1291}
1292
cbc96b75
TL
1293/*
1294 * Note that setup_arch() may call add_device_randomness()
1295 * long before we get here. This allows seeding of the pools
1296 * with some platform dependent data very early in the boot
1297 * process. But it limits our options here. We must use
1298 * statically allocated structures that already have all
1299 * initializations complete at compile time. We should also
1300 * take care not to overwrite the precious per platform data
1301 * we were given.
1302 */
53c3f63e 1303static int rand_initialize(void)
1da177e4
LT
1304{
1305 init_std_data(&input_pool);
1306 init_std_data(&blocking_pool);
1307 init_std_data(&nonblocking_pool);
1308 return 0;
1309}
ae9ecd92 1310early_initcall(rand_initialize);
1da177e4 1311
9361401e 1312#ifdef CONFIG_BLOCK
1da177e4
LT
1313void rand_initialize_disk(struct gendisk *disk)
1314{
1315 struct timer_rand_state *state;
1316
1317 /*
f8595815 1318 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1319 * source.
1320 */
f8595815 1321 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1322 if (state) {
1323 state->last_time = INITIAL_JIFFIES;
1da177e4 1324 disk->random = state;
644008df 1325 }
1da177e4 1326}
9361401e 1327#endif
1da177e4 1328
331c6490
PA
1329/*
1330 * Attempt an emergency refill using arch_get_random_seed_long().
1331 *
1332 * As with add_interrupt_randomness() be paranoid and only
1333 * credit the output as 50% entropic.
1334 */
1335static int arch_random_refill(void)
1336{
1337 const unsigned int nlongs = 64; /* Arbitrary number */
1338 unsigned int n = 0;
1339 unsigned int i;
1340 unsigned long buf[nlongs];
1341
7b878d4b
PA
1342 if (!arch_has_random_seed())
1343 return 0;
1344
331c6490
PA
1345 for (i = 0; i < nlongs; i++) {
1346 if (arch_get_random_seed_long(&buf[n]))
1347 n++;
1348 }
1349
1350 if (n) {
1351 unsigned int rand_bytes = n * sizeof(unsigned long);
1352
85608f8e 1353 mix_pool_bytes(&input_pool, buf, rand_bytes);
331c6490
PA
1354 credit_entropy_bits(&input_pool, rand_bytes*4);
1355 }
1356
1357 return n;
1358}
1359
1da177e4 1360static ssize_t
90b75ee5 1361random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1362{
12ff3a51 1363 ssize_t n;
1da177e4
LT
1364
1365 if (nbytes == 0)
1366 return 0;
1367
12ff3a51
GP
1368 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1369 while (1) {
1370 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1371 if (n < 0)
1372 return n;
f80bbd8b
TT
1373 trace_random_read(n*8, (nbytes-n)*8,
1374 ENTROPY_BITS(&blocking_pool),
1375 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1376 if (n > 0)
1377 return n;
331c6490 1378
12ff3a51
GP
1379 /* Pool is (near) empty. Maybe wait and retry. */
1380
331c6490
PA
1381 /* First try an emergency refill */
1382 if (arch_random_refill())
1383 continue;
1384
12ff3a51
GP
1385 if (file->f_flags & O_NONBLOCK)
1386 return -EAGAIN;
1387
1388 wait_event_interruptible(random_read_wait,
1389 ENTROPY_BITS(&input_pool) >=
2132a96f 1390 random_read_wakeup_bits);
12ff3a51
GP
1391 if (signal_pending(current))
1392 return -ERESTARTSYS;
1da177e4 1393 }
1da177e4
LT
1394}
1395
1396static ssize_t
90b75ee5 1397urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1398{
301f0595
TT
1399 int ret;
1400
1401 if (unlikely(nonblocking_pool.initialized == 0))
1402 printk_once(KERN_NOTICE "random: %s urandom read "
1403 "with %d bits of entropy available\n",
1404 current->comm, nonblocking_pool.entropy_total);
1405
1406 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
f80bbd8b
TT
1407
1408 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1409 ENTROPY_BITS(&input_pool));
1410 return ret;
1da177e4
LT
1411}
1412
1413static unsigned int
1414random_poll(struct file *file, poll_table * wait)
1415{
1416 unsigned int mask;
1417
1418 poll_wait(file, &random_read_wait, wait);
1419 poll_wait(file, &random_write_wait, wait);
1420 mask = 0;
2132a96f 1421 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1422 mask |= POLLIN | POLLRDNORM;
2132a96f 1423 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1424 mask |= POLLOUT | POLLWRNORM;
1425 return mask;
1426}
1427
7f397dcd
MM
1428static int
1429write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1430{
1da177e4
LT
1431 size_t bytes;
1432 __u32 buf[16];
1433 const char __user *p = buffer;
1da177e4 1434
7f397dcd
MM
1435 while (count > 0) {
1436 bytes = min(count, sizeof(buf));
1437 if (copy_from_user(&buf, p, bytes))
1438 return -EFAULT;
1da177e4 1439
7f397dcd 1440 count -= bytes;
1da177e4
LT
1441 p += bytes;
1442
85608f8e 1443 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1444 cond_resched();
1da177e4 1445 }
7f397dcd
MM
1446
1447 return 0;
1448}
1449
90b75ee5
MM
1450static ssize_t random_write(struct file *file, const char __user *buffer,
1451 size_t count, loff_t *ppos)
7f397dcd
MM
1452{
1453 size_t ret;
7f397dcd
MM
1454
1455 ret = write_pool(&blocking_pool, buffer, count);
1456 if (ret)
1457 return ret;
1458 ret = write_pool(&nonblocking_pool, buffer, count);
1459 if (ret)
1460 return ret;
1461
7f397dcd 1462 return (ssize_t)count;
1da177e4
LT
1463}
1464
43ae4860 1465static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1466{
1467 int size, ent_count;
1468 int __user *p = (int __user *)arg;
1469 int retval;
1470
1471 switch (cmd) {
1472 case RNDGETENTCNT:
43ae4860 1473 /* inherently racy, no point locking */
a283b5c4
PA
1474 ent_count = ENTROPY_BITS(&input_pool);
1475 if (put_user(ent_count, p))
1da177e4
LT
1476 return -EFAULT;
1477 return 0;
1478 case RNDADDTOENTCNT:
1479 if (!capable(CAP_SYS_ADMIN))
1480 return -EPERM;
1481 if (get_user(ent_count, p))
1482 return -EFAULT;
a283b5c4 1483 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1484 return 0;
1485 case RNDADDENTROPY:
1486 if (!capable(CAP_SYS_ADMIN))
1487 return -EPERM;
1488 if (get_user(ent_count, p++))
1489 return -EFAULT;
1490 if (ent_count < 0)
1491 return -EINVAL;
1492 if (get_user(size, p++))
1493 return -EFAULT;
7f397dcd
MM
1494 retval = write_pool(&input_pool, (const char __user *)p,
1495 size);
1da177e4
LT
1496 if (retval < 0)
1497 return retval;
a283b5c4 1498 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1499 return 0;
1500 case RNDZAPENTCNT:
1501 case RNDCLEARPOOL:
ae9ecd92
TT
1502 /*
1503 * Clear the entropy pool counters. We no longer clear
1504 * the entropy pool, as that's silly.
1505 */
1da177e4
LT
1506 if (!capable(CAP_SYS_ADMIN))
1507 return -EPERM;
ae9ecd92
TT
1508 input_pool.entropy_count = 0;
1509 nonblocking_pool.entropy_count = 0;
1510 blocking_pool.entropy_count = 0;
1da177e4
LT
1511 return 0;
1512 default:
1513 return -EINVAL;
1514 }
1515}
1516
9a6f70bb
JD
1517static int random_fasync(int fd, struct file *filp, int on)
1518{
1519 return fasync_helper(fd, filp, on, &fasync);
1520}
1521
2b8693c0 1522const struct file_operations random_fops = {
1da177e4
LT
1523 .read = random_read,
1524 .write = random_write,
1525 .poll = random_poll,
43ae4860 1526 .unlocked_ioctl = random_ioctl,
9a6f70bb 1527 .fasync = random_fasync,
6038f373 1528 .llseek = noop_llseek,
1da177e4
LT
1529};
1530
2b8693c0 1531const struct file_operations urandom_fops = {
1da177e4
LT
1532 .read = urandom_read,
1533 .write = random_write,
43ae4860 1534 .unlocked_ioctl = random_ioctl,
9a6f70bb 1535 .fasync = random_fasync,
6038f373 1536 .llseek = noop_llseek,
1da177e4
LT
1537};
1538
1539/***************************************************************
1540 * Random UUID interface
1541 *
1542 * Used here for a Boot ID, but can be useful for other kernel
1543 * drivers.
1544 ***************************************************************/
1545
1546/*
1547 * Generate random UUID
1548 */
1549void generate_random_uuid(unsigned char uuid_out[16])
1550{
1551 get_random_bytes(uuid_out, 16);
c41b20e7 1552 /* Set UUID version to 4 --- truly random generation */
1da177e4
LT
1553 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1554 /* Set the UUID variant to DCE */
1555 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1556}
1da177e4
LT
1557EXPORT_SYMBOL(generate_random_uuid);
1558
1559/********************************************************************
1560 *
1561 * Sysctl interface
1562 *
1563 ********************************************************************/
1564
1565#ifdef CONFIG_SYSCTL
1566
1567#include <linux/sysctl.h>
1568
1569static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1570static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4
LT
1571static int max_write_thresh = INPUT_POOL_WORDS * 32;
1572static char sysctl_bootid[16];
1573
1574/*
f22052b2 1575 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1576 * UUID. The difference is in whether table->data is NULL; if it is,
1577 * then a new UUID is generated and returned to the user.
1578 *
f22052b2
GP
1579 * If the user accesses this via the proc interface, the UUID will be
1580 * returned as an ASCII string in the standard UUID format; if via the
1581 * sysctl system call, as 16 bytes of binary data.
1da177e4 1582 */
a151427e 1583static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1584 void __user *buffer, size_t *lenp, loff_t *ppos)
1585{
a151427e 1586 struct ctl_table fake_table;
1da177e4
LT
1587 unsigned char buf[64], tmp_uuid[16], *uuid;
1588
1589 uuid = table->data;
1590 if (!uuid) {
1591 uuid = tmp_uuid;
1da177e4 1592 generate_random_uuid(uuid);
44e4360f
MD
1593 } else {
1594 static DEFINE_SPINLOCK(bootid_spinlock);
1595
1596 spin_lock(&bootid_spinlock);
1597 if (!uuid[8])
1598 generate_random_uuid(uuid);
1599 spin_unlock(&bootid_spinlock);
1600 }
1da177e4 1601
35900771
JP
1602 sprintf(buf, "%pU", uuid);
1603
1da177e4
LT
1604 fake_table.data = buf;
1605 fake_table.maxlen = sizeof(buf);
1606
8d65af78 1607 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1608}
1609
a283b5c4
PA
1610/*
1611 * Return entropy available scaled to integral bits
1612 */
5eb10d91 1613static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1614 void __user *buffer, size_t *lenp, loff_t *ppos)
1615{
5eb10d91 1616 struct ctl_table fake_table;
a283b5c4
PA
1617 int entropy_count;
1618
1619 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1620
1621 fake_table.data = &entropy_count;
1622 fake_table.maxlen = sizeof(entropy_count);
1623
1624 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1625}
1626
1da177e4 1627static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1628extern struct ctl_table random_table[];
1629struct ctl_table random_table[] = {
1da177e4 1630 {
1da177e4
LT
1631 .procname = "poolsize",
1632 .data = &sysctl_poolsize,
1633 .maxlen = sizeof(int),
1634 .mode = 0444,
6d456111 1635 .proc_handler = proc_dointvec,
1da177e4
LT
1636 },
1637 {
1da177e4
LT
1638 .procname = "entropy_avail",
1639 .maxlen = sizeof(int),
1640 .mode = 0444,
a283b5c4 1641 .proc_handler = proc_do_entropy,
1da177e4
LT
1642 .data = &input_pool.entropy_count,
1643 },
1644 {
1da177e4 1645 .procname = "read_wakeup_threshold",
2132a96f 1646 .data = &random_read_wakeup_bits,
1da177e4
LT
1647 .maxlen = sizeof(int),
1648 .mode = 0644,
6d456111 1649 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1650 .extra1 = &min_read_thresh,
1651 .extra2 = &max_read_thresh,
1652 },
1653 {
1da177e4 1654 .procname = "write_wakeup_threshold",
2132a96f 1655 .data = &random_write_wakeup_bits,
1da177e4
LT
1656 .maxlen = sizeof(int),
1657 .mode = 0644,
6d456111 1658 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1659 .extra1 = &min_write_thresh,
1660 .extra2 = &max_write_thresh,
1661 },
f5c2742c
TT
1662 {
1663 .procname = "urandom_min_reseed_secs",
1664 .data = &random_min_urandom_seed,
1665 .maxlen = sizeof(int),
1666 .mode = 0644,
1667 .proc_handler = proc_dointvec,
1668 },
1da177e4 1669 {
1da177e4
LT
1670 .procname = "boot_id",
1671 .data = &sysctl_bootid,
1672 .maxlen = 16,
1673 .mode = 0444,
6d456111 1674 .proc_handler = proc_do_uuid,
1da177e4
LT
1675 },
1676 {
1da177e4
LT
1677 .procname = "uuid",
1678 .maxlen = 16,
1679 .mode = 0444,
6d456111 1680 .proc_handler = proc_do_uuid,
1da177e4 1681 },
43759d4f
TT
1682#ifdef ADD_INTERRUPT_BENCH
1683 {
1684 .procname = "add_interrupt_avg_cycles",
1685 .data = &avg_cycles,
1686 .maxlen = sizeof(avg_cycles),
1687 .mode = 0444,
1688 .proc_handler = proc_doulongvec_minmax,
1689 },
1690 {
1691 .procname = "add_interrupt_avg_deviation",
1692 .data = &avg_deviation,
1693 .maxlen = sizeof(avg_deviation),
1694 .mode = 0444,
1695 .proc_handler = proc_doulongvec_minmax,
1696 },
1697#endif
894d2491 1698 { }
1da177e4
LT
1699};
1700#endif /* CONFIG_SYSCTL */
1701
6e5714ea 1702static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 1703
47d06e53 1704int random_int_secret_init(void)
1da177e4 1705{
6e5714ea 1706 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
1707 return 0;
1708}
1da177e4
LT
1709
1710/*
1711 * Get a random word for internal kernel use only. Similar to urandom but
1712 * with the goal of minimal entropy pool depletion. As a result, the random
1713 * value is not cryptographically secure but for several uses the cost of
1714 * depleting entropy is too high
1715 */
74feec5d 1716static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1da177e4
LT
1717unsigned int get_random_int(void)
1718{
63d77173 1719 __u32 *hash;
6e5714ea 1720 unsigned int ret;
8a0a9bd4 1721
63d77173
PA
1722 if (arch_get_random_int(&ret))
1723 return ret;
1724
1725 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 1726
61875f30 1727 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
1728 md5_transform(hash, random_int_secret);
1729 ret = hash[0];
8a0a9bd4
LT
1730 put_cpu_var(get_random_int_hash);
1731
1732 return ret;
1da177e4 1733}
16c7fa05 1734EXPORT_SYMBOL(get_random_int);
1da177e4
LT
1735
1736/*
1737 * randomize_range() returns a start address such that
1738 *
1739 * [...... <range> .....]
1740 * start end
1741 *
1742 * a <range> with size "len" starting at the return value is inside in the
1743 * area defined by [start, end], but is otherwise randomized.
1744 */
1745unsigned long
1746randomize_range(unsigned long start, unsigned long end, unsigned long len)
1747{
1748 unsigned long range = end - len - start;
1749
1750 if (end <= start + len)
1751 return 0;
1752 return PAGE_ALIGN(get_random_int() % range + start);
1753}
c84dbf61
TD
1754
1755/* Interface for in-kernel drivers of true hardware RNGs.
1756 * Those devices may produce endless random bits and will be throttled
1757 * when our pool is full.
1758 */
1759void add_hwgenerator_randomness(const char *buffer, size_t count,
1760 size_t entropy)
1761{
1762 struct entropy_store *poolp = &input_pool;
1763
1764 /* Suspend writing if we're above the trickle threshold.
1765 * We'll be woken up again once below random_write_wakeup_thresh,
1766 * or when the calling thread is about to terminate.
1767 */
1768 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
1769 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
1770 mix_pool_bytes(poolp, buffer, count);
1771 credit_entropy_bits(poolp, entropy);
1772}
1773EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);