Merge branch 'for-5.13/surface-system-aggregator-intergration' into for-linus
[linux-2.6-block.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
b169c13d
JD
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
9e95ce27 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45/*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
92e507d2
GS
104 * There are four exported interfaces; two for use within the kernel,
105 * and two or use from userspace.
1da177e4 106 *
92e507d2
GS
107 * Exported interfaces ---- userspace output
108 * -----------------------------------------
1da177e4 109 *
92e507d2 110 * The userspace interfaces are two character devices /dev/random and
1da177e4
LT
111 * /dev/urandom. /dev/random is suitable for use when very high
112 * quality randomness is desired (for example, for key generation or
113 * one-time pads), as it will only return a maximum of the number of
114 * bits of randomness (as estimated by the random number generator)
115 * contained in the entropy pool.
116 *
117 * The /dev/urandom device does not have this limit, and will return
118 * as many bytes as are requested. As more and more random bytes are
119 * requested without giving time for the entropy pool to recharge,
120 * this will result in random numbers that are merely cryptographically
121 * strong. For many applications, however, this is acceptable.
122 *
92e507d2
GS
123 * Exported interfaces ---- kernel output
124 * --------------------------------------
125 *
126 * The primary kernel interface is
127 *
128 * void get_random_bytes(void *buf, int nbytes);
129 *
130 * This interface will return the requested number of random bytes,
131 * and place it in the requested buffer. This is equivalent to a
132 * read from /dev/urandom.
133 *
134 * For less critical applications, there are the functions:
135 *
136 * u32 get_random_u32()
137 * u64 get_random_u64()
138 * unsigned int get_random_int()
139 * unsigned long get_random_long()
140 *
141 * These are produced by a cryptographic RNG seeded from get_random_bytes,
142 * and so do not deplete the entropy pool as much. These are recommended
143 * for most in-kernel operations *if the result is going to be stored in
144 * the kernel*.
145 *
146 * Specifically, the get_random_int() family do not attempt to do
147 * "anti-backtracking". If you capture the state of the kernel (e.g.
148 * by snapshotting the VM), you can figure out previous get_random_int()
149 * return values. But if the value is stored in the kernel anyway,
150 * this is not a problem.
151 *
152 * It *is* safe to expose get_random_int() output to attackers (e.g. as
153 * network cookies); given outputs 1..n, it's not feasible to predict
154 * outputs 0 or n+1. The only concern is an attacker who breaks into
155 * the kernel later; the get_random_int() engine is not reseeded as
156 * often as the get_random_bytes() one.
157 *
158 * get_random_bytes() is needed for keys that need to stay secret after
159 * they are erased from the kernel. For example, any key that will
160 * be wrapped and stored encrypted. And session encryption keys: we'd
161 * like to know that after the session is closed and the keys erased,
162 * the plaintext is unrecoverable to someone who recorded the ciphertext.
163 *
164 * But for network ports/cookies, stack canaries, PRNG seeds, address
165 * space layout randomization, session *authentication* keys, or other
166 * applications where the sensitive data is stored in the kernel in
167 * plaintext for as long as it's sensitive, the get_random_int() family
168 * is just fine.
169 *
170 * Consider ASLR. We want to keep the address space secret from an
171 * outside attacker while the process is running, but once the address
172 * space is torn down, it's of no use to an attacker any more. And it's
173 * stored in kernel data structures as long as it's alive, so worrying
174 * about an attacker's ability to extrapolate it from the get_random_int()
175 * CRNG is silly.
176 *
177 * Even some cryptographic keys are safe to generate with get_random_int().
178 * In particular, keys for SipHash are generally fine. Here, knowledge
179 * of the key authorizes you to do something to a kernel object (inject
180 * packets to a network connection, or flood a hash table), and the
181 * key is stored with the object being protected. Once it goes away,
182 * we no longer care if anyone knows the key.
183 *
184 * prandom_u32()
185 * -------------
186 *
187 * For even weaker applications, see the pseudorandom generator
188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random
189 * numbers aren't security-critical at all, these are *far* cheaper.
190 * Useful for self-tests, random error simulation, randomized backoffs,
191 * and any other application where you trust that nobody is trying to
192 * maliciously mess with you by guessing the "random" numbers.
193 *
1da177e4
LT
194 * Exported interfaces ---- input
195 * ==============================
196 *
197 * The current exported interfaces for gathering environmental noise
198 * from the devices are:
199 *
a2080a67 200 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
201 * void add_input_randomness(unsigned int type, unsigned int code,
202 * unsigned int value);
775f4b29 203 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 204 * void add_disk_randomness(struct gendisk *disk);
1da177e4 205 *
a2080a67
LT
206 * add_device_randomness() is for adding data to the random pool that
207 * is likely to differ between two devices (or possibly even per boot).
208 * This would be things like MAC addresses or serial numbers, or the
209 * read-out of the RTC. This does *not* add any actual entropy to the
210 * pool, but it initializes the pool to different values for devices
211 * that might otherwise be identical and have very little entropy
212 * available to them (particularly common in the embedded world).
213 *
1da177e4
LT
214 * add_input_randomness() uses the input layer interrupt timing, as well as
215 * the event type information from the hardware.
216 *
775f4b29
TT
217 * add_interrupt_randomness() uses the interrupt timing as random
218 * inputs to the entropy pool. Using the cycle counters and the irq source
219 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
220 *
221 * add_disk_randomness() uses what amounts to the seek time of block
222 * layer request events, on a per-disk_devt basis, as input to the
223 * entropy pool. Note that high-speed solid state drives with very low
224 * seek times do not make for good sources of entropy, as their seek
225 * times are usually fairly consistent.
1da177e4
LT
226 *
227 * All of these routines try to estimate how many bits of randomness a
228 * particular randomness source. They do this by keeping track of the
229 * first and second order deltas of the event timings.
230 *
231 * Ensuring unpredictability at system startup
232 * ============================================
233 *
234 * When any operating system starts up, it will go through a sequence
235 * of actions that are fairly predictable by an adversary, especially
236 * if the start-up does not involve interaction with a human operator.
237 * This reduces the actual number of bits of unpredictability in the
238 * entropy pool below the value in entropy_count. In order to
239 * counteract this effect, it helps to carry information in the
240 * entropy pool across shut-downs and start-ups. To do this, put the
241 * following lines an appropriate script which is run during the boot
242 * sequence:
243 *
244 * echo "Initializing random number generator..."
245 * random_seed=/var/run/random-seed
246 * # Carry a random seed from start-up to start-up
247 * # Load and then save the whole entropy pool
248 * if [ -f $random_seed ]; then
249 * cat $random_seed >/dev/urandom
250 * else
251 * touch $random_seed
252 * fi
253 * chmod 600 $random_seed
254 * dd if=/dev/urandom of=$random_seed count=1 bs=512
255 *
256 * and the following lines in an appropriate script which is run as
257 * the system is shutdown:
258 *
259 * # Carry a random seed from shut-down to start-up
260 * # Save the whole entropy pool
261 * echo "Saving random seed..."
262 * random_seed=/var/run/random-seed
263 * touch $random_seed
264 * chmod 600 $random_seed
265 * dd if=/dev/urandom of=$random_seed count=1 bs=512
266 *
267 * For example, on most modern systems using the System V init
268 * scripts, such code fragments would be found in
269 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
271 *
272 * Effectively, these commands cause the contents of the entropy pool
273 * to be saved at shut-down time and reloaded into the entropy pool at
274 * start-up. (The 'dd' in the addition to the bootup script is to
275 * make sure that /etc/random-seed is different for every start-up,
276 * even if the system crashes without executing rc.0.) Even with
277 * complete knowledge of the start-up activities, predicting the state
278 * of the entropy pool requires knowledge of the previous history of
279 * the system.
280 *
281 * Configuring the /dev/random driver under Linux
282 * ==============================================
283 *
284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
285 * the /dev/mem major number (#1). So if your system does not have
286 * /dev/random and /dev/urandom created already, they can be created
287 * by using the commands:
288 *
289 * mknod /dev/random c 1 8
290 * mknod /dev/urandom c 1 9
291 *
292 * Acknowledgements:
293 * =================
294 *
295 * Ideas for constructing this random number generator were derived
296 * from Pretty Good Privacy's random number generator, and from private
297 * discussions with Phil Karn. Colin Plumb provided a faster random
298 * number generator, which speed up the mixing function of the entropy
299 * pool, taken from PGPfone. Dale Worley has also contributed many
300 * useful ideas and suggestions to improve this driver.
301 *
302 * Any flaws in the design are solely my responsibility, and should
303 * not be attributed to the Phil, Colin, or any of authors of PGP.
304 *
305 * Further background information on this topic may be obtained from
306 * RFC 1750, "Randomness Recommendations for Security", by Donald
307 * Eastlake, Steve Crocker, and Jeff Schiller.
308 */
309
12cd53af
YL
310#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
311
1da177e4 312#include <linux/utsname.h>
1da177e4
LT
313#include <linux/module.h>
314#include <linux/kernel.h>
315#include <linux/major.h>
316#include <linux/string.h>
317#include <linux/fcntl.h>
318#include <linux/slab.h>
319#include <linux/random.h>
320#include <linux/poll.h>
321#include <linux/init.h>
322#include <linux/fs.h>
323#include <linux/genhd.h>
324#include <linux/interrupt.h>
27ac792c 325#include <linux/mm.h>
dd0f0cf5 326#include <linux/nodemask.h>
1da177e4 327#include <linux/spinlock.h>
c84dbf61 328#include <linux/kthread.h>
1da177e4 329#include <linux/percpu.h>
5b739ef8 330#include <linux/fips.h>
775f4b29 331#include <linux/ptrace.h>
6265e169 332#include <linux/workqueue.h>
0244ad00 333#include <linux/irq.h>
4e00b339 334#include <linux/ratelimit.h>
c6e9d6f3
TT
335#include <linux/syscalls.h>
336#include <linux/completion.h>
8da4b8c4 337#include <linux/uuid.h>
1ca1b917 338#include <crypto/chacha.h>
a24d22b2 339#include <crypto/sha1.h>
d178a1eb 340
1da177e4 341#include <asm/processor.h>
7c0f6ba6 342#include <linux/uaccess.h>
1da177e4 343#include <asm/irq.h>
775f4b29 344#include <asm/irq_regs.h>
1da177e4
LT
345#include <asm/io.h>
346
00ce1db1
TT
347#define CREATE_TRACE_POINTS
348#include <trace/events/random.h>
349
43759d4f
TT
350/* #define ADD_INTERRUPT_BENCH */
351
1da177e4
LT
352/*
353 * Configuration information
354 */
30e37ec5
PA
355#define INPUT_POOL_SHIFT 12
356#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
357#define OUTPUT_POOL_SHIFT 10
358#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
30e37ec5 359#define EXTRACT_SIZE 10
1da177e4 360
1da177e4 361
d2e7c96a
PA
362#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
363
a283b5c4 364/*
95b709b6
TT
365 * To allow fractional bits to be tracked, the entropy_count field is
366 * denominated in units of 1/8th bits.
30e37ec5 367 *
3bd0b5bf 368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
30e37ec5 369 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
370 */
371#define ENTROPY_SHIFT 3
372#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
373
1da177e4
LT
374/*
375 * If the entropy count falls under this number of bits, then we
376 * should wake up processes which are selecting or polling on write
377 * access to /dev/random.
378 */
2132a96f 379static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4 380
1da177e4 381/*
6e9fa2c8
TT
382 * Originally, we used a primitive polynomial of degree .poolwords
383 * over GF(2). The taps for various sizes are defined below. They
384 * were chosen to be evenly spaced except for the last tap, which is 1
385 * to get the twisting happening as fast as possible.
386 *
387 * For the purposes of better mixing, we use the CRC-32 polynomial as
388 * well to make a (modified) twisted Generalized Feedback Shift
389 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
390 * generators. ACM Transactions on Modeling and Computer Simulation
391 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 392 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
393 * Simulation 4:254-266)
394 *
395 * Thanks to Colin Plumb for suggesting this.
396 *
397 * The mixing operation is much less sensitive than the output hash,
398 * where we use SHA-1. All that we want of mixing operation is that
399 * it be a good non-cryptographic hash; i.e. it not produce collisions
400 * when fed "random" data of the sort we expect to see. As long as
401 * the pool state differs for different inputs, we have preserved the
402 * input entropy and done a good job. The fact that an intelligent
403 * attacker can construct inputs that will produce controlled
404 * alterations to the pool's state is not important because we don't
405 * consider such inputs to contribute any randomness. The only
406 * property we need with respect to them is that the attacker can't
407 * increase his/her knowledge of the pool's state. Since all
408 * additions are reversible (knowing the final state and the input,
409 * you can reconstruct the initial state), if an attacker has any
410 * uncertainty about the initial state, he/she can only shuffle that
411 * uncertainty about, but never cause any collisions (which would
412 * decrease the uncertainty).
413 *
414 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
415 * Videau in their paper, "The Linux Pseudorandom Number Generator
416 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
417 * paper, they point out that we are not using a true Twisted GFSR,
418 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
419 * is, with only three taps, instead of the six that we are using).
420 * As a result, the resulting polynomial is neither primitive nor
421 * irreducible, and hence does not have a maximal period over
422 * GF(2**32). They suggest a slight change to the generator
423 * polynomial which improves the resulting TGFSR polynomial to be
424 * irreducible, which we have made here.
1da177e4 425 */
26e0854a 426static const struct poolinfo {
3bd0b5bf
RV
427 int poolbitshift, poolwords, poolbytes, poolfracbits;
428#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
429 int tap1, tap2, tap3, tap4, tap5;
430} poolinfo_table[] = {
6e9fa2c8
TT
431 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
432 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
433 { S(128), 104, 76, 51, 25, 1 },
1da177e4
LT
434};
435
1da177e4
LT
436/*
437 * Static global variables
438 */
a11e1d43 439static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 440static struct fasync_struct *fasync;
1da177e4 441
205a525c
HX
442static DEFINE_SPINLOCK(random_ready_list_lock);
443static LIST_HEAD(random_ready_list);
444
e192be9d
TT
445struct crng_state {
446 __u32 state[16];
447 unsigned long init_time;
448 spinlock_t lock;
449};
450
764ed189 451static struct crng_state primary_crng = {
e192be9d
TT
452 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
453};
454
455/*
456 * crng_init = 0 --> Uninitialized
457 * 1 --> Initialized
458 * 2 --> Initialized from input_pool
459 *
460 * crng_init is protected by primary_crng->lock, and only increases
461 * its value (from 0->1->2).
462 */
463static int crng_init = 0;
43838a23 464#define crng_ready() (likely(crng_init > 1))
e192be9d 465static int crng_init_cnt = 0;
d848e5f8 466static unsigned long crng_global_init_time = 0;
1ca1b917
EB
467#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
468static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
c92e040d 469static void _crng_backtrack_protect(struct crng_state *crng,
1ca1b917 470 __u8 tmp[CHACHA_BLOCK_SIZE], int used);
e192be9d 471static void process_random_ready_list(void);
eecabf56 472static void _get_random_bytes(void *buf, int nbytes);
e192be9d 473
4e00b339
TT
474static struct ratelimit_state unseeded_warning =
475 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
476static struct ratelimit_state urandom_warning =
477 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
478
479static int ratelimit_disable __read_mostly;
480
481module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
482MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
483
1da177e4
LT
484/**********************************************************************
485 *
486 * OS independent entropy store. Here are the functions which handle
487 * storing entropy in an entropy pool.
488 *
489 **********************************************************************/
490
491struct entropy_store;
492struct entropy_store {
43358209 493 /* read-only data: */
30e37ec5 494 const struct poolinfo *poolinfo;
1da177e4
LT
495 __u32 *pool;
496 const char *name;
1da177e4
LT
497
498 /* read-write data: */
43358209 499 spinlock_t lock;
c59974ae
TT
500 unsigned short add_ptr;
501 unsigned short input_rotate;
cda796a3 502 int entropy_count;
775f4b29 503 unsigned int initialized:1;
c59974ae 504 unsigned int last_data_init:1;
e954bc91 505 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
506};
507
e192be9d
TT
508static ssize_t extract_entropy(struct entropy_store *r, void *buf,
509 size_t nbytes, int min, int rsvd);
510static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
511 size_t nbytes, int fips);
512
513static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
0766f788 514static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
1da177e4
LT
515
516static struct entropy_store input_pool = {
517 .poolinfo = &poolinfo_table[0],
518 .name = "input",
eece09ec 519 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
520 .pool = input_pool_data
521};
522
775f4b29
TT
523static __u32 const twist_table[8] = {
524 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
525 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
526
1da177e4 527/*
e68e5b66 528 * This function adds bytes into the entropy "pool". It does not
1da177e4 529 * update the entropy estimate. The caller should call
adc782da 530 * credit_entropy_bits if this is appropriate.
1da177e4
LT
531 *
532 * The pool is stirred with a primitive polynomial of the appropriate
533 * degree, and then twisted. We twist by three bits at a time because
534 * it's cheap to do so and helps slightly in the expected case where
535 * the entropy is concentrated in the low-order bits.
536 */
00ce1db1 537static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 538 int nbytes)
1da177e4 539{
85608f8e 540 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 541 int input_rotate;
1da177e4 542 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 543 const char *bytes = in;
6d38b827 544 __u32 w;
1da177e4 545
1da177e4
LT
546 tap1 = r->poolinfo->tap1;
547 tap2 = r->poolinfo->tap2;
548 tap3 = r->poolinfo->tap3;
549 tap4 = r->poolinfo->tap4;
550 tap5 = r->poolinfo->tap5;
1da177e4 551
91fcb532
TT
552 input_rotate = r->input_rotate;
553 i = r->add_ptr;
1da177e4 554
e68e5b66
MM
555 /* mix one byte at a time to simplify size handling and churn faster */
556 while (nbytes--) {
c59974ae 557 w = rol32(*bytes++, input_rotate);
993ba211 558 i = (i - 1) & wordmask;
1da177e4
LT
559
560 /* XOR in the various taps */
993ba211 561 w ^= r->pool[i];
1da177e4
LT
562 w ^= r->pool[(i + tap1) & wordmask];
563 w ^= r->pool[(i + tap2) & wordmask];
564 w ^= r->pool[(i + tap3) & wordmask];
565 w ^= r->pool[(i + tap4) & wordmask];
566 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
567
568 /* Mix the result back in with a twist */
1da177e4 569 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
570
571 /*
572 * Normally, we add 7 bits of rotation to the pool.
573 * At the beginning of the pool, add an extra 7 bits
574 * rotation, so that successive passes spread the
575 * input bits across the pool evenly.
576 */
c59974ae 577 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
578 }
579
91fcb532
TT
580 r->input_rotate = input_rotate;
581 r->add_ptr = i;
1da177e4
LT
582}
583
00ce1db1 584static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 585 int nbytes)
00ce1db1
TT
586{
587 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 588 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
589}
590
591static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 592 int nbytes)
1da177e4 593{
902c098a
TT
594 unsigned long flags;
595
00ce1db1 596 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 597 spin_lock_irqsave(&r->lock, flags);
85608f8e 598 _mix_pool_bytes(r, in, nbytes);
902c098a 599 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
600}
601
775f4b29
TT
602struct fast_pool {
603 __u32 pool[4];
604 unsigned long last;
ee3e00e9 605 unsigned short reg_idx;
840f9507 606 unsigned char count;
775f4b29
TT
607};
608
609/*
610 * This is a fast mixing routine used by the interrupt randomness
611 * collector. It's hardcoded for an 128 bit pool and assumes that any
612 * locks that might be needed are taken by the caller.
613 */
43759d4f 614static void fast_mix(struct fast_pool *f)
775f4b29 615{
43759d4f
TT
616 __u32 a = f->pool[0], b = f->pool[1];
617 __u32 c = f->pool[2], d = f->pool[3];
618
619 a += b; c += d;
19acc77a 620 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
621 d ^= a; b ^= c;
622
623 a += b; c += d;
19acc77a 624 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
625 d ^= a; b ^= c;
626
627 a += b; c += d;
19acc77a 628 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
629 d ^= a; b ^= c;
630
631 a += b; c += d;
19acc77a 632 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
633 d ^= a; b ^= c;
634
635 f->pool[0] = a; f->pool[1] = b;
636 f->pool[2] = c; f->pool[3] = d;
655b2264 637 f->count++;
775f4b29
TT
638}
639
205a525c
HX
640static void process_random_ready_list(void)
641{
642 unsigned long flags;
643 struct random_ready_callback *rdy, *tmp;
644
645 spin_lock_irqsave(&random_ready_list_lock, flags);
646 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
647 struct module *owner = rdy->owner;
648
649 list_del_init(&rdy->list);
650 rdy->func(rdy);
651 module_put(owner);
652 }
653 spin_unlock_irqrestore(&random_ready_list_lock, flags);
654}
655
1da177e4 656/*
a283b5c4
PA
657 * Credit (or debit) the entropy store with n bits of entropy.
658 * Use credit_entropy_bits_safe() if the value comes from userspace
659 * or otherwise should be checked for extreme values.
1da177e4 660 */
adc782da 661static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 662{
eb9d1bf0 663 int entropy_count, orig, has_initialized = 0;
30e37ec5
PA
664 const int pool_size = r->poolinfo->poolfracbits;
665 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 666
adc782da
MM
667 if (!nbits)
668 return;
669
902c098a 670retry:
6aa7de05 671 entropy_count = orig = READ_ONCE(r->entropy_count);
30e37ec5
PA
672 if (nfrac < 0) {
673 /* Debit */
674 entropy_count += nfrac;
675 } else {
676 /*
677 * Credit: we have to account for the possibility of
678 * overwriting already present entropy. Even in the
679 * ideal case of pure Shannon entropy, new contributions
680 * approach the full value asymptotically:
681 *
682 * entropy <- entropy + (pool_size - entropy) *
683 * (1 - exp(-add_entropy/pool_size))
684 *
685 * For add_entropy <= pool_size/2 then
686 * (1 - exp(-add_entropy/pool_size)) >=
687 * (add_entropy/pool_size)*0.7869...
688 * so we can approximate the exponential with
689 * 3/4*add_entropy/pool_size and still be on the
690 * safe side by adding at most pool_size/2 at a time.
691 *
692 * The use of pool_size-2 in the while statement is to
693 * prevent rounding artifacts from making the loop
694 * arbitrarily long; this limits the loop to log2(pool_size)*2
695 * turns no matter how large nbits is.
696 */
697 int pnfrac = nfrac;
698 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
699 /* The +2 corresponds to the /4 in the denominator */
700
701 do {
702 unsigned int anfrac = min(pnfrac, pool_size/2);
703 unsigned int add =
704 ((pool_size - entropy_count)*anfrac*3) >> s;
705
706 entropy_count += add;
707 pnfrac -= anfrac;
708 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
709 }
00ce1db1 710
870e05b1 711 if (WARN_ON(entropy_count < 0)) {
12cd53af 712 pr_warn("negative entropy/overflow: pool %s count %d\n",
f80bbd8b 713 r->name, entropy_count);
8b76f46a 714 entropy_count = 0;
30e37ec5
PA
715 } else if (entropy_count > pool_size)
716 entropy_count = pool_size;
902c098a
TT
717 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
718 goto retry;
1da177e4 719
58be0106 720 if (has_initialized) {
0891ad82 721 r->initialized = 1;
58be0106
TT
722 kill_fasync(&fasync, SIGIO, POLL_IN);
723 }
775f4b29 724
a283b5c4 725 trace_credit_entropy_bits(r->name, nbits,
eb9d1bf0 726 entropy_count >> ENTROPY_SHIFT, _RET_IP_);
00ce1db1 727
6265e169 728 if (r == &input_pool) {
7d1b08c4 729 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 730
eb9d1bf0
TT
731 if (crng_init < 2) {
732 if (entropy_bits < 128)
733 return;
e192be9d 734 crng_reseed(&primary_crng, r);
12faac30 735 entropy_bits = ENTROPY_BITS(r);
e192be9d 736 }
9a6f70bb 737 }
1da177e4
LT
738}
739
86a574de 740static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4 741{
9f886f4d 742 const int nbits_max = r->poolinfo->poolwords * 32;
a283b5c4 743
86a574de
TT
744 if (nbits < 0)
745 return -EINVAL;
746
a283b5c4
PA
747 /* Cap the value to avoid overflows */
748 nbits = min(nbits, nbits_max);
a283b5c4
PA
749
750 credit_entropy_bits(r, nbits);
86a574de 751 return 0;
a283b5c4
PA
752}
753
e192be9d
TT
754/*********************************************************************
755 *
756 * CRNG using CHACHA20
757 *
758 *********************************************************************/
759
760#define CRNG_RESEED_INTERVAL (300*HZ)
761
762static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
763
1e7f583a
TT
764#ifdef CONFIG_NUMA
765/*
766 * Hack to deal with crazy userspace progams when they are all trying
767 * to access /dev/urandom in parallel. The programs are almost
768 * certainly doing something terribly wrong, but we'll work around
769 * their brain damage.
770 */
771static struct crng_state **crng_node_pool __read_mostly;
772#endif
773
b169c13d 774static void invalidate_batched_entropy(void);
fe6f1a6a 775static void numa_crng_init(void);
b169c13d 776
9b254366
KC
777static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
778static int __init parse_trust_cpu(char *arg)
779{
780 return kstrtobool(arg, &trust_cpu);
781}
782early_param("random.trust_cpu", parse_trust_cpu);
783
5cbe0f13 784static bool crng_init_try_arch(struct crng_state *crng)
e192be9d
TT
785{
786 int i;
5cbe0f13 787 bool arch_init = true;
e192be9d
TT
788 unsigned long rv;
789
e192be9d
TT
790 for (i = 4; i < 16; i++) {
791 if (!arch_get_random_seed_long(&rv) &&
39a8883a 792 !arch_get_random_long(&rv)) {
e192be9d 793 rv = random_get_entropy();
5cbe0f13 794 arch_init = false;
39a8883a 795 }
e192be9d
TT
796 crng->state[i] ^= rv;
797 }
5cbe0f13
MR
798
799 return arch_init;
800}
801
253d3194
MR
802static bool __init crng_init_try_arch_early(struct crng_state *crng)
803{
804 int i;
805 bool arch_init = true;
806 unsigned long rv;
807
808 for (i = 4; i < 16; i++) {
809 if (!arch_get_random_seed_long_early(&rv) &&
810 !arch_get_random_long_early(&rv)) {
811 rv = random_get_entropy();
812 arch_init = false;
813 }
814 crng->state[i] ^= rv;
815 }
816
817 return arch_init;
818}
819
ab9a7e27 820static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
5cbe0f13
MR
821{
822 memcpy(&crng->state[0], "expand 32-byte k", 16);
823 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
824 crng_init_try_arch(crng);
825 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
826}
827
828static void __init crng_initialize_primary(struct crng_state *crng)
829{
830 memcpy(&crng->state[0], "expand 32-byte k", 16);
831 _extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
253d3194 832 if (crng_init_try_arch_early(crng) && trust_cpu) {
fe6f1a6a
JD
833 invalidate_batched_entropy();
834 numa_crng_init();
39a8883a 835 crng_init = 2;
12cd53af 836 pr_notice("crng done (trusting CPU's manufacturer)\n");
39a8883a 837 }
e192be9d
TT
838 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
839}
840
8ef35c86 841#ifdef CONFIG_NUMA
6c1e851c 842static void do_numa_crng_init(struct work_struct *work)
8ef35c86
TT
843{
844 int i;
845 struct crng_state *crng;
846 struct crng_state **pool;
847
848 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
849 for_each_online_node(i) {
850 crng = kmalloc_node(sizeof(struct crng_state),
851 GFP_KERNEL | __GFP_NOFAIL, i);
852 spin_lock_init(&crng->lock);
5cbe0f13 853 crng_initialize_secondary(crng);
8ef35c86
TT
854 pool[i] = crng;
855 }
856 mb();
857 if (cmpxchg(&crng_node_pool, NULL, pool)) {
858 for_each_node(i)
859 kfree(pool[i]);
860 kfree(pool);
861 }
862}
6c1e851c
TT
863
864static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
865
866static void numa_crng_init(void)
867{
868 schedule_work(&numa_crng_init_work);
869}
8ef35c86
TT
870#else
871static void numa_crng_init(void) {}
872#endif
873
dc12baac
TT
874/*
875 * crng_fast_load() can be called by code in the interrupt service
876 * path. So we can't afford to dilly-dally.
877 */
e192be9d
TT
878static int crng_fast_load(const char *cp, size_t len)
879{
880 unsigned long flags;
881 char *p;
882
883 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
884 return 0;
43838a23 885 if (crng_init != 0) {
e192be9d
TT
886 spin_unlock_irqrestore(&primary_crng.lock, flags);
887 return 0;
888 }
889 p = (unsigned char *) &primary_crng.state[4];
890 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
1ca1b917 891 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
e192be9d
TT
892 cp++; crng_init_cnt++; len--;
893 }
4a072c71 894 spin_unlock_irqrestore(&primary_crng.lock, flags);
e192be9d 895 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
b169c13d 896 invalidate_batched_entropy();
e192be9d 897 crng_init = 1;
12cd53af 898 pr_notice("fast init done\n");
e192be9d 899 }
e192be9d
TT
900 return 1;
901}
902
dc12baac
TT
903/*
904 * crng_slow_load() is called by add_device_randomness, which has two
905 * attributes. (1) We can't trust the buffer passed to it is
906 * guaranteed to be unpredictable (so it might not have any entropy at
907 * all), and (2) it doesn't have the performance constraints of
908 * crng_fast_load().
909 *
910 * So we do something more comprehensive which is guaranteed to touch
911 * all of the primary_crng's state, and which uses a LFSR with a
912 * period of 255 as part of the mixing algorithm. Finally, we do
913 * *not* advance crng_init_cnt since buffer we may get may be something
914 * like a fixed DMI table (for example), which might very well be
915 * unique to the machine, but is otherwise unvarying.
916 */
917static int crng_slow_load(const char *cp, size_t len)
918{
919 unsigned long flags;
920 static unsigned char lfsr = 1;
921 unsigned char tmp;
1ca1b917 922 unsigned i, max = CHACHA_KEY_SIZE;
dc12baac
TT
923 const char * src_buf = cp;
924 char * dest_buf = (char *) &primary_crng.state[4];
925
926 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
927 return 0;
928 if (crng_init != 0) {
929 spin_unlock_irqrestore(&primary_crng.lock, flags);
930 return 0;
931 }
932 if (len > max)
933 max = len;
934
935 for (i = 0; i < max ; i++) {
936 tmp = lfsr;
937 lfsr >>= 1;
938 if (tmp & 1)
939 lfsr ^= 0xE1;
1ca1b917
EB
940 tmp = dest_buf[i % CHACHA_KEY_SIZE];
941 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
dc12baac
TT
942 lfsr += (tmp << 3) | (tmp >> 5);
943 }
944 spin_unlock_irqrestore(&primary_crng.lock, flags);
945 return 1;
946}
947
e192be9d
TT
948static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
949{
950 unsigned long flags;
951 int i, num;
952 union {
1ca1b917 953 __u8 block[CHACHA_BLOCK_SIZE];
e192be9d
TT
954 __u32 key[8];
955 } buf;
956
957 if (r) {
958 num = extract_entropy(r, &buf, 32, 16, 0);
959 if (num == 0)
960 return;
c92e040d 961 } else {
1e7f583a 962 _extract_crng(&primary_crng, buf.block);
c92e040d 963 _crng_backtrack_protect(&primary_crng, buf.block,
1ca1b917 964 CHACHA_KEY_SIZE);
c92e040d 965 }
0bb29a84 966 spin_lock_irqsave(&crng->lock, flags);
e192be9d
TT
967 for (i = 0; i < 8; i++) {
968 unsigned long rv;
969 if (!arch_get_random_seed_long(&rv) &&
970 !arch_get_random_long(&rv))
971 rv = random_get_entropy();
972 crng->state[i+4] ^= buf.key[i] ^ rv;
973 }
974 memzero_explicit(&buf, sizeof(buf));
975 crng->init_time = jiffies;
0bb29a84 976 spin_unlock_irqrestore(&crng->lock, flags);
e192be9d 977 if (crng == &primary_crng && crng_init < 2) {
b169c13d 978 invalidate_batched_entropy();
8ef35c86 979 numa_crng_init();
e192be9d
TT
980 crng_init = 2;
981 process_random_ready_list();
982 wake_up_interruptible(&crng_init_wait);
30c08efe 983 kill_fasync(&fasync, SIGIO, POLL_IN);
12cd53af 984 pr_notice("crng init done\n");
4e00b339 985 if (unseeded_warning.missed) {
12cd53af 986 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
4e00b339
TT
987 unseeded_warning.missed);
988 unseeded_warning.missed = 0;
989 }
990 if (urandom_warning.missed) {
12cd53af 991 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
4e00b339
TT
992 urandom_warning.missed);
993 urandom_warning.missed = 0;
994 }
e192be9d 995 }
e192be9d
TT
996}
997
1e7f583a 998static void _extract_crng(struct crng_state *crng,
1ca1b917 999 __u8 out[CHACHA_BLOCK_SIZE])
e192be9d
TT
1000{
1001 unsigned long v, flags;
e192be9d 1002
43838a23 1003 if (crng_ready() &&
d848e5f8
TT
1004 (time_after(crng_global_init_time, crng->init_time) ||
1005 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1e7f583a 1006 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
1007 spin_lock_irqsave(&crng->lock, flags);
1008 if (arch_get_random_long(&v))
1009 crng->state[14] ^= v;
1010 chacha20_block(&crng->state[0], out);
1011 if (crng->state[12] == 0)
1012 crng->state[13]++;
1013 spin_unlock_irqrestore(&crng->lock, flags);
1014}
1015
1ca1b917 1016static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1e7f583a
TT
1017{
1018 struct crng_state *crng = NULL;
1019
1020#ifdef CONFIG_NUMA
1021 if (crng_node_pool)
1022 crng = crng_node_pool[numa_node_id()];
1023 if (crng == NULL)
1024#endif
1025 crng = &primary_crng;
1026 _extract_crng(crng, out);
1027}
1028
c92e040d
TT
1029/*
1030 * Use the leftover bytes from the CRNG block output (if there is
1031 * enough) to mutate the CRNG key to provide backtracking protection.
1032 */
1033static void _crng_backtrack_protect(struct crng_state *crng,
1ca1b917 1034 __u8 tmp[CHACHA_BLOCK_SIZE], int used)
c92e040d
TT
1035{
1036 unsigned long flags;
1037 __u32 *s, *d;
1038 int i;
1039
1040 used = round_up(used, sizeof(__u32));
1ca1b917 1041 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
c92e040d
TT
1042 extract_crng(tmp);
1043 used = 0;
1044 }
1045 spin_lock_irqsave(&crng->lock, flags);
a5e9f557 1046 s = (__u32 *) &tmp[used];
c92e040d
TT
1047 d = &crng->state[4];
1048 for (i=0; i < 8; i++)
1049 *d++ ^= *s++;
1050 spin_unlock_irqrestore(&crng->lock, flags);
1051}
1052
1ca1b917 1053static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
c92e040d
TT
1054{
1055 struct crng_state *crng = NULL;
1056
1057#ifdef CONFIG_NUMA
1058 if (crng_node_pool)
1059 crng = crng_node_pool[numa_node_id()];
1060 if (crng == NULL)
1061#endif
1062 crng = &primary_crng;
1063 _crng_backtrack_protect(crng, tmp, used);
1064}
1065
e192be9d
TT
1066static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1067{
1ca1b917
EB
1068 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1069 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
e192be9d
TT
1070 int large_request = (nbytes > 256);
1071
1072 while (nbytes) {
1073 if (large_request && need_resched()) {
1074 if (signal_pending(current)) {
1075 if (ret == 0)
1076 ret = -ERESTARTSYS;
1077 break;
1078 }
1079 schedule();
1080 }
1081
1082 extract_crng(tmp);
1ca1b917 1083 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
e192be9d
TT
1084 if (copy_to_user(buf, tmp, i)) {
1085 ret = -EFAULT;
1086 break;
1087 }
1088
1089 nbytes -= i;
1090 buf += i;
1091 ret += i;
1092 }
c92e040d 1093 crng_backtrack_protect(tmp, i);
e192be9d
TT
1094
1095 /* Wipe data just written to memory */
1096 memzero_explicit(tmp, sizeof(tmp));
1097
1098 return ret;
1099}
1100
1101
1da177e4
LT
1102/*********************************************************************
1103 *
1104 * Entropy input management
1105 *
1106 *********************************************************************/
1107
1108/* There is one of these per entropy source */
1109struct timer_rand_state {
1110 cycles_t last_time;
90b75ee5 1111 long last_delta, last_delta2;
1da177e4
LT
1112};
1113
644008df
TT
1114#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1115
a2080a67 1116/*
e192be9d
TT
1117 * Add device- or boot-specific data to the input pool to help
1118 * initialize it.
a2080a67 1119 *
e192be9d
TT
1120 * None of this adds any entropy; it is meant to avoid the problem of
1121 * the entropy pool having similar initial state across largely
1122 * identical devices.
a2080a67
LT
1123 */
1124void add_device_randomness(const void *buf, unsigned int size)
1125{
61875f30 1126 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 1127 unsigned long flags;
a2080a67 1128
dc12baac
TT
1129 if (!crng_ready() && size)
1130 crng_slow_load(buf, size);
ee7998c5 1131
5910895f 1132 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 1133 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
1134 _mix_pool_bytes(&input_pool, buf, size);
1135 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 1136 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
1137}
1138EXPORT_SYMBOL(add_device_randomness);
1139
644008df 1140static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 1141
1da177e4
LT
1142/*
1143 * This function adds entropy to the entropy "pool" by using timing
1144 * delays. It uses the timer_rand_state structure to make an estimate
1145 * of how many bits of entropy this call has added to the pool.
1146 *
1147 * The number "num" is also added to the pool - it should somehow describe
1148 * the type of event which just happened. This is currently 0-255 for
1149 * keyboard scan codes, and 256 upwards for interrupts.
1150 *
1151 */
1152static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1153{
40db23e5 1154 struct entropy_store *r;
1da177e4 1155 struct {
1da177e4 1156 long jiffies;
cf833d0b 1157 unsigned cycles;
1da177e4
LT
1158 unsigned num;
1159 } sample;
1160 long delta, delta2, delta3;
1161
1da177e4 1162 sample.jiffies = jiffies;
61875f30 1163 sample.cycles = random_get_entropy();
1da177e4 1164 sample.num = num;
e192be9d 1165 r = &input_pool;
85608f8e 1166 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1167
1168 /*
1169 * Calculate number of bits of randomness we probably added.
1170 * We take into account the first, second and third-order deltas
1171 * in order to make our estimate.
1172 */
e00d996a
QC
1173 delta = sample.jiffies - READ_ONCE(state->last_time);
1174 WRITE_ONCE(state->last_time, sample.jiffies);
5e747dd9 1175
e00d996a
QC
1176 delta2 = delta - READ_ONCE(state->last_delta);
1177 WRITE_ONCE(state->last_delta, delta);
5e747dd9 1178
e00d996a
QC
1179 delta3 = delta2 - READ_ONCE(state->last_delta2);
1180 WRITE_ONCE(state->last_delta2, delta2);
5e747dd9
RV
1181
1182 if (delta < 0)
1183 delta = -delta;
1184 if (delta2 < 0)
1185 delta2 = -delta2;
1186 if (delta3 < 0)
1187 delta3 = -delta3;
1188 if (delta > delta2)
1189 delta = delta2;
1190 if (delta > delta3)
1191 delta = delta3;
1da177e4 1192
5e747dd9
RV
1193 /*
1194 * delta is now minimum absolute delta.
1195 * Round down by 1 bit on general principles,
727d499a 1196 * and limit entropy estimate to 12 bits.
5e747dd9
RV
1197 */
1198 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4
LT
1199}
1200
d251575a 1201void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1202 unsigned int value)
1203{
1204 static unsigned char last_value;
1205
1206 /* ignore autorepeat and the like */
1207 if (value == last_value)
1208 return;
1209
1da177e4
LT
1210 last_value = value;
1211 add_timer_randomness(&input_timer_state,
1212 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1213 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1214}
80fc9f53 1215EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1216
775f4b29
TT
1217static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1218
43759d4f
TT
1219#ifdef ADD_INTERRUPT_BENCH
1220static unsigned long avg_cycles, avg_deviation;
1221
1222#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1223#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1224
1225static void add_interrupt_bench(cycles_t start)
1226{
1227 long delta = random_get_entropy() - start;
1228
1229 /* Use a weighted moving average */
1230 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1231 avg_cycles += delta;
1232 /* And average deviation */
1233 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1234 avg_deviation += delta;
1235}
1236#else
1237#define add_interrupt_bench(x)
1238#endif
1239
ee3e00e9
TT
1240static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1241{
1242 __u32 *ptr = (__u32 *) regs;
92e75428 1243 unsigned int idx;
ee3e00e9
TT
1244
1245 if (regs == NULL)
1246 return 0;
92e75428
TT
1247 idx = READ_ONCE(f->reg_idx);
1248 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1249 idx = 0;
1250 ptr += idx++;
1251 WRITE_ONCE(f->reg_idx, idx);
9dfa7bba 1252 return *ptr;
ee3e00e9
TT
1253}
1254
775f4b29 1255void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1256{
775f4b29 1257 struct entropy_store *r;
1b2a1a7e 1258 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1259 struct pt_regs *regs = get_irq_regs();
1260 unsigned long now = jiffies;
655b2264 1261 cycles_t cycles = random_get_entropy();
43759d4f 1262 __u32 c_high, j_high;
655b2264 1263 __u64 ip;
3060d6fe 1264
ee3e00e9
TT
1265 if (cycles == 0)
1266 cycles = get_reg(fast_pool, regs);
655b2264
TT
1267 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1268 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1269 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1270 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1271 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1272 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1273 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1274 get_reg(fast_pool, regs);
3060d6fe 1275
43759d4f 1276 fast_mix(fast_pool);
43759d4f 1277 add_interrupt_bench(cycles);
3060d6fe 1278
43838a23 1279 if (unlikely(crng_init == 0)) {
e192be9d
TT
1280 if ((fast_pool->count >= 64) &&
1281 crng_fast_load((char *) fast_pool->pool,
1282 sizeof(fast_pool->pool))) {
1283 fast_pool->count = 0;
1284 fast_pool->last = now;
1285 }
1286 return;
1287 }
1288
ee3e00e9
TT
1289 if ((fast_pool->count < 64) &&
1290 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1291 return;
1292
e192be9d 1293 r = &input_pool;
840f9507 1294 if (!spin_trylock(&r->lock))
91fcb532 1295 return;
83664a69 1296
91fcb532 1297 fast_pool->last = now;
85608f8e 1298 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
91fcb532 1299 spin_unlock(&r->lock);
83664a69 1300
ee3e00e9 1301 fast_pool->count = 0;
83664a69 1302
ee3e00e9 1303 /* award one bit for the contents of the fast pool */
390596c9 1304 credit_entropy_bits(r, 1);
1da177e4 1305}
4b44f2d1 1306EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1307
9361401e 1308#ifdef CONFIG_BLOCK
1da177e4
LT
1309void add_disk_randomness(struct gendisk *disk)
1310{
1311 if (!disk || !disk->random)
1312 return;
1313 /* first major is 1, so we get >= 0x200 here */
f331c029 1314 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1315 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1316}
bdcfa3e5 1317EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1318#endif
1da177e4 1319
1da177e4
LT
1320/*********************************************************************
1321 *
1322 * Entropy extraction routines
1323 *
1324 *********************************************************************/
1325
1da177e4 1326/*
19fa5be1
GP
1327 * This function decides how many bytes to actually take from the
1328 * given pool, and also debits the entropy count accordingly.
1da177e4 1329 */
1da177e4
LT
1330static size_t account(struct entropy_store *r, size_t nbytes, int min,
1331 int reserved)
1332{
43d8a72c 1333 int entropy_count, orig, have_bytes;
79a84687 1334 size_t ibytes, nfrac;
1da177e4 1335
a283b5c4 1336 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1337
1338 /* Can we pull enough? */
10b3a32d 1339retry:
6aa7de05 1340 entropy_count = orig = READ_ONCE(r->entropy_count);
a283b5c4 1341 ibytes = nbytes;
43d8a72c
SM
1342 /* never pull more than available */
1343 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
e33ba5fa 1344
43d8a72c
SM
1345 if ((have_bytes -= reserved) < 0)
1346 have_bytes = 0;
1347 ibytes = min_t(size_t, ibytes, have_bytes);
0fb7a01a 1348 if (ibytes < min)
a283b5c4 1349 ibytes = 0;
79a84687 1350
870e05b1 1351 if (WARN_ON(entropy_count < 0)) {
12cd53af 1352 pr_warn("negative entropy count: pool %s count %d\n",
79a84687 1353 r->name, entropy_count);
79a84687
HFS
1354 entropy_count = 0;
1355 }
1356 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1357 if ((size_t) entropy_count > nfrac)
1358 entropy_count -= nfrac;
1359 else
e33ba5fa 1360 entropy_count = 0;
f9c6d498 1361
0fb7a01a
GP
1362 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1363 goto retry;
1da177e4 1364
f80bbd8b 1365 trace_debit_entropy(r->name, 8 * ibytes);
12faac30 1366 if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
a11e1d43 1367 wake_up_interruptible(&random_write_wait);
b9809552
TT
1368 kill_fasync(&fasync, SIGIO, POLL_OUT);
1369 }
1370
a283b5c4 1371 return ibytes;
1da177e4
LT
1372}
1373
19fa5be1
GP
1374/*
1375 * This function does the actual extraction for extract_entropy and
1376 * extract_entropy_user.
1377 *
1378 * Note: we assume that .poolwords is a multiple of 16 words.
1379 */
1da177e4
LT
1380static void extract_buf(struct entropy_store *r, __u8 *out)
1381{
602b6aee 1382 int i;
d2e7c96a
PA
1383 union {
1384 __u32 w[5];
85a1f777 1385 unsigned long l[LONGS(20)];
d2e7c96a 1386 } hash;
6b0b0fa2 1387 __u32 workspace[SHA1_WORKSPACE_WORDS];
902c098a 1388 unsigned long flags;
1da177e4 1389
85a1f777 1390 /*
dfd38750 1391 * If we have an architectural hardware random number
46884442 1392 * generator, use it for SHA's initial vector
85a1f777 1393 */
6b0b0fa2 1394 sha1_init(hash.w);
85a1f777
TT
1395 for (i = 0; i < LONGS(20); i++) {
1396 unsigned long v;
1397 if (!arch_get_random_long(&v))
1398 break;
46884442 1399 hash.l[i] = v;
85a1f777
TT
1400 }
1401
46884442
TT
1402 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1403 spin_lock_irqsave(&r->lock, flags);
1404 for (i = 0; i < r->poolinfo->poolwords; i += 16)
6b0b0fa2 1405 sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
46884442 1406
1da177e4 1407 /*
1c0ad3d4
MM
1408 * We mix the hash back into the pool to prevent backtracking
1409 * attacks (where the attacker knows the state of the pool
1410 * plus the current outputs, and attempts to find previous
1411 * ouputs), unless the hash function can be inverted. By
1412 * mixing at least a SHA1 worth of hash data back, we make
1413 * brute-forcing the feedback as hard as brute-forcing the
1414 * hash.
1da177e4 1415 */
85608f8e 1416 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1417 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1418
d4c5efdb 1419 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1420
1421 /*
1c0ad3d4
MM
1422 * In case the hash function has some recognizable output
1423 * pattern, we fold it in half. Thus, we always feed back
1424 * twice as much data as we output.
1da177e4 1425 */
d2e7c96a
PA
1426 hash.w[0] ^= hash.w[3];
1427 hash.w[1] ^= hash.w[4];
1428 hash.w[2] ^= rol32(hash.w[2], 16);
1429
d2e7c96a 1430 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1431 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1432}
1433
e192be9d
TT
1434static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1435 size_t nbytes, int fips)
1436{
1437 ssize_t ret = 0, i;
1438 __u8 tmp[EXTRACT_SIZE];
1439 unsigned long flags;
1440
1441 while (nbytes) {
1442 extract_buf(r, tmp);
1443
1444 if (fips) {
1445 spin_lock_irqsave(&r->lock, flags);
1446 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1447 panic("Hardware RNG duplicated output!\n");
1448 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1449 spin_unlock_irqrestore(&r->lock, flags);
1450 }
1451 i = min_t(int, nbytes, EXTRACT_SIZE);
1452 memcpy(buf, tmp, i);
1453 nbytes -= i;
1454 buf += i;
1455 ret += i;
1456 }
1457
1458 /* Wipe data just returned from memory */
1459 memzero_explicit(tmp, sizeof(tmp));
1460
1461 return ret;
1462}
1463
19fa5be1
GP
1464/*
1465 * This function extracts randomness from the "entropy pool", and
1466 * returns it in a buffer.
1467 *
1468 * The min parameter specifies the minimum amount we can pull before
1469 * failing to avoid races that defeat catastrophic reseeding while the
1470 * reserved parameter indicates how much entropy we must leave in the
1471 * pool after each pull to avoid starving other readers.
1472 */
90b75ee5 1473static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1474 size_t nbytes, int min, int reserved)
1da177e4 1475{
1da177e4 1476 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1477 unsigned long flags;
1da177e4 1478
ec8f02da 1479 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1480 if (fips_enabled) {
1481 spin_lock_irqsave(&r->lock, flags);
1482 if (!r->last_data_init) {
c59974ae 1483 r->last_data_init = 1;
1e7e2e05
JW
1484 spin_unlock_irqrestore(&r->lock, flags);
1485 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1486 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1487 extract_buf(r, tmp);
1488 spin_lock_irqsave(&r->lock, flags);
1489 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1490 }
1491 spin_unlock_irqrestore(&r->lock, flags);
1492 }
ec8f02da 1493
a283b5c4 1494 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1495 nbytes = account(r, nbytes, min, reserved);
1496
e192be9d 1497 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1498}
1499
eecabf56
TT
1500#define warn_unseeded_randomness(previous) \
1501 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1502
1503static void _warn_unseeded_randomness(const char *func_name, void *caller,
1504 void **previous)
1505{
1506#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1507 const bool print_once = false;
1508#else
1509 static bool print_once __read_mostly;
1510#endif
1511
1512 if (print_once ||
1513 crng_ready() ||
1514 (previous && (caller == READ_ONCE(*previous))))
1515 return;
1516 WRITE_ONCE(*previous, caller);
1517#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1518 print_once = true;
1519#endif
4e00b339 1520 if (__ratelimit(&unseeded_warning))
1b710b1b
SS
1521 printk_deferred(KERN_NOTICE "random: %s called from %pS "
1522 "with crng_init=%d\n", func_name, caller,
1523 crng_init);
eecabf56
TT
1524}
1525
1da177e4
LT
1526/*
1527 * This function is the exported kernel interface. It returns some
c2557a30 1528 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1529 * TCP sequence numbers, etc. It does not rely on the hardware random
1530 * number generator. For random bytes direct from the hardware RNG
e297a783
JD
1531 * (when available), use get_random_bytes_arch(). In order to ensure
1532 * that the randomness provided by this function is okay, the function
1533 * wait_for_random_bytes() should be called and return 0 at least once
1534 * at any point prior.
1da177e4 1535 */
eecabf56 1536static void _get_random_bytes(void *buf, int nbytes)
c2557a30 1537{
1ca1b917 1538 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
e192be9d 1539
5910895f 1540 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d 1541
1ca1b917 1542 while (nbytes >= CHACHA_BLOCK_SIZE) {
e192be9d 1543 extract_crng(buf);
1ca1b917
EB
1544 buf += CHACHA_BLOCK_SIZE;
1545 nbytes -= CHACHA_BLOCK_SIZE;
e192be9d
TT
1546 }
1547
1548 if (nbytes > 0) {
1549 extract_crng(tmp);
1550 memcpy(buf, tmp, nbytes);
c92e040d
TT
1551 crng_backtrack_protect(tmp, nbytes);
1552 } else
1ca1b917 1553 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
c92e040d 1554 memzero_explicit(tmp, sizeof(tmp));
c2557a30 1555}
eecabf56
TT
1556
1557void get_random_bytes(void *buf, int nbytes)
1558{
1559 static void *previous;
1560
1561 warn_unseeded_randomness(&previous);
1562 _get_random_bytes(buf, nbytes);
1563}
c2557a30
TT
1564EXPORT_SYMBOL(get_random_bytes);
1565
50ee7529
LT
1566
1567/*
1568 * Each time the timer fires, we expect that we got an unpredictable
1569 * jump in the cycle counter. Even if the timer is running on another
1570 * CPU, the timer activity will be touching the stack of the CPU that is
1571 * generating entropy..
1572 *
1573 * Note that we don't re-arm the timer in the timer itself - we are
1574 * happy to be scheduled away, since that just makes the load more
1575 * complex, but we do not want the timer to keep ticking unless the
1576 * entropy loop is running.
1577 *
1578 * So the re-arming always happens in the entropy loop itself.
1579 */
1580static void entropy_timer(struct timer_list *t)
1581{
1582 credit_entropy_bits(&input_pool, 1);
1583}
1584
1585/*
1586 * If we have an actual cycle counter, see if we can
1587 * generate enough entropy with timing noise
1588 */
1589static void try_to_generate_entropy(void)
1590{
1591 struct {
1592 unsigned long now;
1593 struct timer_list timer;
1594 } stack;
1595
1596 stack.now = random_get_entropy();
1597
1598 /* Slow counter - or none. Don't even bother */
1599 if (stack.now == random_get_entropy())
1600 return;
1601
1602 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1603 while (!crng_ready()) {
1604 if (!timer_pending(&stack.timer))
1605 mod_timer(&stack.timer, jiffies+1);
1606 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1607 schedule();
1608 stack.now = random_get_entropy();
1609 }
1610
1611 del_timer_sync(&stack.timer);
1612 destroy_timer_on_stack(&stack.timer);
1613 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1614}
1615
e297a783
JD
1616/*
1617 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1618 * cryptographically secure random numbers. This applies to: the /dev/urandom
1619 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1620 * family of functions. Using any of these functions without first calling
1621 * this function forfeits the guarantee of security.
1622 *
1623 * Returns: 0 if the urandom pool has been seeded.
1624 * -ERESTARTSYS if the function was interrupted by a signal.
1625 */
1626int wait_for_random_bytes(void)
1627{
1628 if (likely(crng_ready()))
1629 return 0;
50ee7529
LT
1630
1631 do {
1632 int ret;
1633 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1634 if (ret)
1635 return ret > 0 ? 0 : ret;
1636
1637 try_to_generate_entropy();
1638 } while (!crng_ready());
1639
1640 return 0;
e297a783
JD
1641}
1642EXPORT_SYMBOL(wait_for_random_bytes);
1643
9a47249d
JD
1644/*
1645 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1646 * to supply cryptographically secure random numbers. This applies to: the
1647 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1648 * ,u64,int,long} family of functions.
1649 *
1650 * Returns: true if the urandom pool has been seeded.
1651 * false if the urandom pool has not been seeded.
1652 */
1653bool rng_is_initialized(void)
1654{
1655 return crng_ready();
1656}
1657EXPORT_SYMBOL(rng_is_initialized);
1658
205a525c
HX
1659/*
1660 * Add a callback function that will be invoked when the nonblocking
1661 * pool is initialised.
1662 *
1663 * returns: 0 if callback is successfully added
1664 * -EALREADY if pool is already initialised (callback not called)
1665 * -ENOENT if module for callback is not alive
1666 */
1667int add_random_ready_callback(struct random_ready_callback *rdy)
1668{
1669 struct module *owner;
1670 unsigned long flags;
1671 int err = -EALREADY;
1672
e192be9d 1673 if (crng_ready())
205a525c
HX
1674 return err;
1675
1676 owner = rdy->owner;
1677 if (!try_module_get(owner))
1678 return -ENOENT;
1679
1680 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1681 if (crng_ready())
205a525c
HX
1682 goto out;
1683
1684 owner = NULL;
1685
1686 list_add(&rdy->list, &random_ready_list);
1687 err = 0;
1688
1689out:
1690 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1691
1692 module_put(owner);
1693
1694 return err;
1695}
1696EXPORT_SYMBOL(add_random_ready_callback);
1697
1698/*
1699 * Delete a previously registered readiness callback function.
1700 */
1701void del_random_ready_callback(struct random_ready_callback *rdy)
1702{
1703 unsigned long flags;
1704 struct module *owner = NULL;
1705
1706 spin_lock_irqsave(&random_ready_list_lock, flags);
1707 if (!list_empty(&rdy->list)) {
1708 list_del_init(&rdy->list);
1709 owner = rdy->owner;
1710 }
1711 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1712
1713 module_put(owner);
1714}
1715EXPORT_SYMBOL(del_random_ready_callback);
1716
c2557a30
TT
1717/*
1718 * This function will use the architecture-specific hardware random
1719 * number generator if it is available. The arch-specific hw RNG will
1720 * almost certainly be faster than what we can do in software, but it
1721 * is impossible to verify that it is implemented securely (as
1722 * opposed, to, say, the AES encryption of a sequence number using a
1723 * key known by the NSA). So it's useful if we need the speed, but
1724 * only if we're willing to trust the hardware manufacturer not to
1725 * have put in a back door.
753d433b
TH
1726 *
1727 * Return number of bytes filled in.
c2557a30 1728 */
753d433b 1729int __must_check get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1730{
753d433b 1731 int left = nbytes;
63d77173
PA
1732 char *p = buf;
1733
753d433b
TH
1734 trace_get_random_bytes_arch(left, _RET_IP_);
1735 while (left) {
63d77173 1736 unsigned long v;
753d433b 1737 int chunk = min_t(int, left, sizeof(unsigned long));
c2557a30 1738
63d77173
PA
1739 if (!arch_get_random_long(&v))
1740 break;
8ddd6efa 1741
bd29e568 1742 memcpy(p, &v, chunk);
63d77173 1743 p += chunk;
753d433b 1744 left -= chunk;
63d77173
PA
1745 }
1746
753d433b 1747 return nbytes - left;
1da177e4 1748}
c2557a30
TT
1749EXPORT_SYMBOL(get_random_bytes_arch);
1750
1da177e4
LT
1751/*
1752 * init_std_data - initialize pool with system data
1753 *
1754 * @r: pool to initialize
1755 *
1756 * This function clears the pool's entropy count and mixes some system
1757 * data into the pool to prepare it for use. The pool is not cleared
1758 * as that can only decrease the entropy in the pool.
1759 */
d5553523 1760static void __init init_std_data(struct entropy_store *r)
1da177e4 1761{
3e88bdff 1762 int i;
902c098a
TT
1763 ktime_t now = ktime_get_real();
1764 unsigned long rv;
1da177e4 1765
85608f8e 1766 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1767 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1768 if (!arch_get_random_seed_long(&rv) &&
1769 !arch_get_random_long(&rv))
ae9ecd92 1770 rv = random_get_entropy();
85608f8e 1771 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1772 }
85608f8e 1773 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1774}
1775
cbc96b75
TL
1776/*
1777 * Note that setup_arch() may call add_device_randomness()
1778 * long before we get here. This allows seeding of the pools
1779 * with some platform dependent data very early in the boot
1780 * process. But it limits our options here. We must use
1781 * statically allocated structures that already have all
1782 * initializations complete at compile time. We should also
1783 * take care not to overwrite the precious per platform data
1784 * we were given.
1785 */
d5553523 1786int __init rand_initialize(void)
1da177e4
LT
1787{
1788 init_std_data(&input_pool);
5cbe0f13 1789 crng_initialize_primary(&primary_crng);
d848e5f8 1790 crng_global_init_time = jiffies;
4e00b339
TT
1791 if (ratelimit_disable) {
1792 urandom_warning.interval = 0;
1793 unseeded_warning.interval = 0;
1794 }
1da177e4
LT
1795 return 0;
1796}
1da177e4 1797
9361401e 1798#ifdef CONFIG_BLOCK
1da177e4
LT
1799void rand_initialize_disk(struct gendisk *disk)
1800{
1801 struct timer_rand_state *state;
1802
1803 /*
f8595815 1804 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1805 * source.
1806 */
f8595815 1807 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1808 if (state) {
1809 state->last_time = INITIAL_JIFFIES;
1da177e4 1810 disk->random = state;
644008df 1811 }
1da177e4 1812}
9361401e 1813#endif
1da177e4 1814
c6f1deb1
AL
1815static ssize_t
1816urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
1817 loff_t *ppos)
1818{
1819 int ret;
1820
1821 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1822 ret = extract_crng_user(buf, nbytes);
1823 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1824 return ret;
1825}
1826
1da177e4 1827static ssize_t
90b75ee5 1828urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1829{
e192be9d 1830 unsigned long flags;
9b4d0087 1831 static int maxwarn = 10;
301f0595 1832
e192be9d 1833 if (!crng_ready() && maxwarn > 0) {
9b4d0087 1834 maxwarn--;
4e00b339 1835 if (__ratelimit(&urandom_warning))
12cd53af
YL
1836 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1837 current->comm, nbytes);
e192be9d
TT
1838 spin_lock_irqsave(&primary_crng.lock, flags);
1839 crng_init_cnt = 0;
1840 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1841 }
c6f1deb1
AL
1842
1843 return urandom_read_nowarn(file, buf, nbytes, ppos);
1da177e4
LT
1844}
1845
30c08efe
AL
1846static ssize_t
1847random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1848{
1849 int ret;
1850
1851 ret = wait_for_random_bytes();
1852 if (ret != 0)
1853 return ret;
1854 return urandom_read_nowarn(file, buf, nbytes, ppos);
1855}
1856
afc9a42b 1857static __poll_t
a11e1d43 1858random_poll(struct file *file, poll_table * wait)
1da177e4 1859{
a11e1d43 1860 __poll_t mask;
1da177e4 1861
30c08efe 1862 poll_wait(file, &crng_init_wait, wait);
a11e1d43
LT
1863 poll_wait(file, &random_write_wait, wait);
1864 mask = 0;
30c08efe 1865 if (crng_ready())
a9a08845 1866 mask |= EPOLLIN | EPOLLRDNORM;
2132a96f 1867 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
a9a08845 1868 mask |= EPOLLOUT | EPOLLWRNORM;
1da177e4
LT
1869 return mask;
1870}
1871
7f397dcd
MM
1872static int
1873write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1874{
1da177e4 1875 size_t bytes;
81e69df3 1876 __u32 t, buf[16];
1da177e4 1877 const char __user *p = buffer;
1da177e4 1878
7f397dcd 1879 while (count > 0) {
81e69df3
TT
1880 int b, i = 0;
1881
7f397dcd
MM
1882 bytes = min(count, sizeof(buf));
1883 if (copy_from_user(&buf, p, bytes))
1884 return -EFAULT;
1da177e4 1885
81e69df3
TT
1886 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1887 if (!arch_get_random_int(&t))
1888 break;
1889 buf[i] ^= t;
1890 }
1891
7f397dcd 1892 count -= bytes;
1da177e4
LT
1893 p += bytes;
1894
85608f8e 1895 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1896 cond_resched();
1da177e4 1897 }
7f397dcd
MM
1898
1899 return 0;
1900}
1901
90b75ee5
MM
1902static ssize_t random_write(struct file *file, const char __user *buffer,
1903 size_t count, loff_t *ppos)
7f397dcd
MM
1904{
1905 size_t ret;
7f397dcd 1906
e192be9d 1907 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1908 if (ret)
1909 return ret;
1910
7f397dcd 1911 return (ssize_t)count;
1da177e4
LT
1912}
1913
43ae4860 1914static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1915{
1916 int size, ent_count;
1917 int __user *p = (int __user *)arg;
1918 int retval;
1919
1920 switch (cmd) {
1921 case RNDGETENTCNT:
43ae4860 1922 /* inherently racy, no point locking */
a283b5c4
PA
1923 ent_count = ENTROPY_BITS(&input_pool);
1924 if (put_user(ent_count, p))
1da177e4
LT
1925 return -EFAULT;
1926 return 0;
1927 case RNDADDTOENTCNT:
1928 if (!capable(CAP_SYS_ADMIN))
1929 return -EPERM;
1930 if (get_user(ent_count, p))
1931 return -EFAULT;
86a574de 1932 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1933 case RNDADDENTROPY:
1934 if (!capable(CAP_SYS_ADMIN))
1935 return -EPERM;
1936 if (get_user(ent_count, p++))
1937 return -EFAULT;
1938 if (ent_count < 0)
1939 return -EINVAL;
1940 if (get_user(size, p++))
1941 return -EFAULT;
7f397dcd
MM
1942 retval = write_pool(&input_pool, (const char __user *)p,
1943 size);
1da177e4
LT
1944 if (retval < 0)
1945 return retval;
86a574de 1946 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1947 case RNDZAPENTCNT:
1948 case RNDCLEARPOOL:
ae9ecd92
TT
1949 /*
1950 * Clear the entropy pool counters. We no longer clear
1951 * the entropy pool, as that's silly.
1952 */
1da177e4
LT
1953 if (!capable(CAP_SYS_ADMIN))
1954 return -EPERM;
ae9ecd92 1955 input_pool.entropy_count = 0;
1da177e4 1956 return 0;
d848e5f8
TT
1957 case RNDRESEEDCRNG:
1958 if (!capable(CAP_SYS_ADMIN))
1959 return -EPERM;
1960 if (crng_init < 2)
1961 return -ENODATA;
11a0b5e0 1962 crng_reseed(&primary_crng, &input_pool);
d848e5f8
TT
1963 crng_global_init_time = jiffies - 1;
1964 return 0;
1da177e4
LT
1965 default:
1966 return -EINVAL;
1967 }
1968}
1969
9a6f70bb
JD
1970static int random_fasync(int fd, struct file *filp, int on)
1971{
1972 return fasync_helper(fd, filp, on, &fasync);
1973}
1974
2b8693c0 1975const struct file_operations random_fops = {
1da177e4
LT
1976 .read = random_read,
1977 .write = random_write,
a11e1d43 1978 .poll = random_poll,
43ae4860 1979 .unlocked_ioctl = random_ioctl,
507e4e2b 1980 .compat_ioctl = compat_ptr_ioctl,
9a6f70bb 1981 .fasync = random_fasync,
6038f373 1982 .llseek = noop_llseek,
1da177e4
LT
1983};
1984
2b8693c0 1985const struct file_operations urandom_fops = {
1da177e4
LT
1986 .read = urandom_read,
1987 .write = random_write,
43ae4860 1988 .unlocked_ioctl = random_ioctl,
4aa37c46 1989 .compat_ioctl = compat_ptr_ioctl,
9a6f70bb 1990 .fasync = random_fasync,
6038f373 1991 .llseek = noop_llseek,
1da177e4
LT
1992};
1993
c6e9d6f3
TT
1994SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1995 unsigned int, flags)
1996{
e297a783
JD
1997 int ret;
1998
75551dbf
AL
1999 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
2000 return -EINVAL;
2001
2002 /*
2003 * Requesting insecure and blocking randomness at the same time makes
2004 * no sense.
2005 */
2006 if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
c6e9d6f3
TT
2007 return -EINVAL;
2008
2009 if (count > INT_MAX)
2010 count = INT_MAX;
2011
75551dbf 2012 if (!(flags & GRND_INSECURE) && !crng_ready()) {
c6e9d6f3
TT
2013 if (flags & GRND_NONBLOCK)
2014 return -EAGAIN;
e297a783
JD
2015 ret = wait_for_random_bytes();
2016 if (unlikely(ret))
2017 return ret;
c6e9d6f3 2018 }
c6f1deb1 2019 return urandom_read_nowarn(NULL, buf, count, NULL);
c6e9d6f3
TT
2020}
2021
1da177e4
LT
2022/********************************************************************
2023 *
2024 * Sysctl interface
2025 *
2026 ********************************************************************/
2027
2028#ifdef CONFIG_SYSCTL
2029
2030#include <linux/sysctl.h>
2031
c95ea0c6 2032static int min_write_thresh;
1da177e4 2033static int max_write_thresh = INPUT_POOL_WORDS * 32;
db61ffe3 2034static int random_min_urandom_seed = 60;
1da177e4
LT
2035static char sysctl_bootid[16];
2036
2037/*
f22052b2 2038 * This function is used to return both the bootid UUID, and random
1da177e4
LT
2039 * UUID. The difference is in whether table->data is NULL; if it is,
2040 * then a new UUID is generated and returned to the user.
2041 *
f22052b2
GP
2042 * If the user accesses this via the proc interface, the UUID will be
2043 * returned as an ASCII string in the standard UUID format; if via the
2044 * sysctl system call, as 16 bytes of binary data.
1da177e4 2045 */
a151427e 2046static int proc_do_uuid(struct ctl_table *table, int write,
32927393 2047 void *buffer, size_t *lenp, loff_t *ppos)
1da177e4 2048{
a151427e 2049 struct ctl_table fake_table;
1da177e4
LT
2050 unsigned char buf[64], tmp_uuid[16], *uuid;
2051
2052 uuid = table->data;
2053 if (!uuid) {
2054 uuid = tmp_uuid;
1da177e4 2055 generate_random_uuid(uuid);
44e4360f
MD
2056 } else {
2057 static DEFINE_SPINLOCK(bootid_spinlock);
2058
2059 spin_lock(&bootid_spinlock);
2060 if (!uuid[8])
2061 generate_random_uuid(uuid);
2062 spin_unlock(&bootid_spinlock);
2063 }
1da177e4 2064
35900771
JP
2065 sprintf(buf, "%pU", uuid);
2066
1da177e4
LT
2067 fake_table.data = buf;
2068 fake_table.maxlen = sizeof(buf);
2069
8d65af78 2070 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
2071}
2072
a283b5c4
PA
2073/*
2074 * Return entropy available scaled to integral bits
2075 */
5eb10d91 2076static int proc_do_entropy(struct ctl_table *table, int write,
a2541dcb 2077 void *buffer, size_t *lenp, loff_t *ppos)
a283b5c4 2078{
5eb10d91 2079 struct ctl_table fake_table;
a283b5c4
PA
2080 int entropy_count;
2081
2082 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2083
2084 fake_table.data = &entropy_count;
2085 fake_table.maxlen = sizeof(entropy_count);
2086
2087 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2088}
2089
1da177e4 2090static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
2091extern struct ctl_table random_table[];
2092struct ctl_table random_table[] = {
1da177e4 2093 {
1da177e4
LT
2094 .procname = "poolsize",
2095 .data = &sysctl_poolsize,
2096 .maxlen = sizeof(int),
2097 .mode = 0444,
6d456111 2098 .proc_handler = proc_dointvec,
1da177e4
LT
2099 },
2100 {
1da177e4
LT
2101 .procname = "entropy_avail",
2102 .maxlen = sizeof(int),
2103 .mode = 0444,
a283b5c4 2104 .proc_handler = proc_do_entropy,
1da177e4
LT
2105 .data = &input_pool.entropy_count,
2106 },
1da177e4 2107 {
1da177e4 2108 .procname = "write_wakeup_threshold",
2132a96f 2109 .data = &random_write_wakeup_bits,
1da177e4
LT
2110 .maxlen = sizeof(int),
2111 .mode = 0644,
6d456111 2112 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2113 .extra1 = &min_write_thresh,
2114 .extra2 = &max_write_thresh,
2115 },
f5c2742c
TT
2116 {
2117 .procname = "urandom_min_reseed_secs",
2118 .data = &random_min_urandom_seed,
2119 .maxlen = sizeof(int),
2120 .mode = 0644,
2121 .proc_handler = proc_dointvec,
2122 },
1da177e4 2123 {
1da177e4
LT
2124 .procname = "boot_id",
2125 .data = &sysctl_bootid,
2126 .maxlen = 16,
2127 .mode = 0444,
6d456111 2128 .proc_handler = proc_do_uuid,
1da177e4
LT
2129 },
2130 {
1da177e4
LT
2131 .procname = "uuid",
2132 .maxlen = 16,
2133 .mode = 0444,
6d456111 2134 .proc_handler = proc_do_uuid,
1da177e4 2135 },
43759d4f
TT
2136#ifdef ADD_INTERRUPT_BENCH
2137 {
2138 .procname = "add_interrupt_avg_cycles",
2139 .data = &avg_cycles,
2140 .maxlen = sizeof(avg_cycles),
2141 .mode = 0444,
2142 .proc_handler = proc_doulongvec_minmax,
2143 },
2144 {
2145 .procname = "add_interrupt_avg_deviation",
2146 .data = &avg_deviation,
2147 .maxlen = sizeof(avg_deviation),
2148 .mode = 0444,
2149 .proc_handler = proc_doulongvec_minmax,
2150 },
2151#endif
894d2491 2152 { }
1da177e4
LT
2153};
2154#endif /* CONFIG_SYSCTL */
2155
f5b98461
JD
2156struct batched_entropy {
2157 union {
1ca1b917
EB
2158 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2159 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
f5b98461
JD
2160 };
2161 unsigned int position;
b7d5dc21 2162 spinlock_t batch_lock;
f5b98461 2163};
b1132dea 2164
1da177e4 2165/*
f5b98461 2166 * Get a random word for internal kernel use only. The quality of the random
69efea71
JD
2167 * number is good as /dev/urandom, but there is no backtrack protection, with
2168 * the goal of being quite fast and not depleting entropy. In order to ensure
e297a783 2169 * that the randomness provided by this function is okay, the function
69efea71
JD
2170 * wait_for_random_bytes() should be called and return 0 at least once at any
2171 * point prior.
1da177e4 2172 */
b7d5dc21
SAS
2173static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2174 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2175};
2176
c440408c 2177u64 get_random_u64(void)
1da177e4 2178{
c440408c 2179 u64 ret;
b7d5dc21 2180 unsigned long flags;
f5b98461 2181 struct batched_entropy *batch;
eecabf56 2182 static void *previous;
8a0a9bd4 2183
eecabf56 2184 warn_unseeded_randomness(&previous);
d06bfd19 2185
b7d5dc21
SAS
2186 batch = raw_cpu_ptr(&batched_entropy_u64);
2187 spin_lock_irqsave(&batch->batch_lock, flags);
c440408c 2188 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
a5e9f557 2189 extract_crng((u8 *)batch->entropy_u64);
f5b98461
JD
2190 batch->position = 0;
2191 }
c440408c 2192 ret = batch->entropy_u64[batch->position++];
b7d5dc21 2193 spin_unlock_irqrestore(&batch->batch_lock, flags);
8a0a9bd4 2194 return ret;
1da177e4 2195}
c440408c 2196EXPORT_SYMBOL(get_random_u64);
1da177e4 2197
b7d5dc21
SAS
2198static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2199 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2200};
c440408c 2201u32 get_random_u32(void)
f5b98461 2202{
c440408c 2203 u32 ret;
b7d5dc21 2204 unsigned long flags;
f5b98461 2205 struct batched_entropy *batch;
eecabf56 2206 static void *previous;
ec9ee4ac 2207
eecabf56 2208 warn_unseeded_randomness(&previous);
d06bfd19 2209
b7d5dc21
SAS
2210 batch = raw_cpu_ptr(&batched_entropy_u32);
2211 spin_lock_irqsave(&batch->batch_lock, flags);
c440408c 2212 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
a5e9f557 2213 extract_crng((u8 *)batch->entropy_u32);
f5b98461
JD
2214 batch->position = 0;
2215 }
c440408c 2216 ret = batch->entropy_u32[batch->position++];
b7d5dc21 2217 spin_unlock_irqrestore(&batch->batch_lock, flags);
ec9ee4ac
DC
2218 return ret;
2219}
c440408c 2220EXPORT_SYMBOL(get_random_u32);
ec9ee4ac 2221
b169c13d
JD
2222/* It's important to invalidate all potential batched entropy that might
2223 * be stored before the crng is initialized, which we can do lazily by
2224 * simply resetting the counter to zero so that it's re-extracted on the
2225 * next usage. */
2226static void invalidate_batched_entropy(void)
2227{
2228 int cpu;
2229 unsigned long flags;
2230
b169c13d 2231 for_each_possible_cpu (cpu) {
b7d5dc21
SAS
2232 struct batched_entropy *batched_entropy;
2233
2234 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2235 spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2236 batched_entropy->position = 0;
2237 spin_unlock(&batched_entropy->batch_lock);
2238
2239 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2240 spin_lock(&batched_entropy->batch_lock);
2241 batched_entropy->position = 0;
2242 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
b169c13d 2243 }
b169c13d
JD
2244}
2245
99fdafde
JC
2246/**
2247 * randomize_page - Generate a random, page aligned address
2248 * @start: The smallest acceptable address the caller will take.
2249 * @range: The size of the area, starting at @start, within which the
2250 * random address must fall.
2251 *
2252 * If @start + @range would overflow, @range is capped.
2253 *
2254 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2255 * @start was already page aligned. We now align it regardless.
2256 *
2257 * Return: A page aligned address within [start, start + range). On error,
2258 * @start is returned.
2259 */
2260unsigned long
2261randomize_page(unsigned long start, unsigned long range)
2262{
2263 if (!PAGE_ALIGNED(start)) {
2264 range -= PAGE_ALIGN(start) - start;
2265 start = PAGE_ALIGN(start);
2266 }
2267
2268 if (start > ULONG_MAX - range)
2269 range = ULONG_MAX - start;
2270
2271 range >>= PAGE_SHIFT;
2272
2273 if (range == 0)
2274 return start;
2275
2276 return start + (get_random_long() % range << PAGE_SHIFT);
2277}
2278
c84dbf61
TD
2279/* Interface for in-kernel drivers of true hardware RNGs.
2280 * Those devices may produce endless random bits and will be throttled
2281 * when our pool is full.
2282 */
2283void add_hwgenerator_randomness(const char *buffer, size_t count,
2284 size_t entropy)
2285{
2286 struct entropy_store *poolp = &input_pool;
2287
43838a23 2288 if (unlikely(crng_init == 0)) {
e192be9d
TT
2289 crng_fast_load(buffer, count);
2290 return;
3371f3da 2291 }
e192be9d
TT
2292
2293 /* Suspend writing if we're above the trickle threshold.
2294 * We'll be woken up again once below random_write_wakeup_thresh,
2295 * or when the calling thread is about to terminate.
2296 */
08e97aec 2297 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
e192be9d 2298 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2299 mix_pool_bytes(poolp, buffer, count);
2300 credit_entropy_bits(poolp, entropy);
2301}
2302EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
428826f5
HYW
2303
2304/* Handle random seed passed by bootloader.
2305 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2306 * it would be regarded as device data.
2307 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2308 */
2309void add_bootloader_randomness(const void *buf, unsigned int size)
2310{
2311 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2312 add_hwgenerator_randomness(buf, size, size * 8);
2313 else
2314 add_device_randomness(buf, size);
2315}
3fd57e7a 2316EXPORT_SYMBOL_GPL(add_bootloader_randomness);