net/mlx4_core: Reduce harmless SRIOV error message to debug level
[linux-2.6-block.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
dd0f0cf5 252#include <linux/nodemask.h>
1da177e4 253#include <linux/spinlock.h>
c84dbf61 254#include <linux/kthread.h>
1da177e4
LT
255#include <linux/percpu.h>
256#include <linux/cryptohash.h>
5b739ef8 257#include <linux/fips.h>
775f4b29 258#include <linux/ptrace.h>
e6d4947b 259#include <linux/kmemcheck.h>
6265e169 260#include <linux/workqueue.h>
0244ad00 261#include <linux/irq.h>
c6e9d6f3
TT
262#include <linux/syscalls.h>
263#include <linux/completion.h>
8da4b8c4 264#include <linux/uuid.h>
e192be9d 265#include <crypto/chacha20.h>
d178a1eb 266
1da177e4 267#include <asm/processor.h>
7c0f6ba6 268#include <linux/uaccess.h>
1da177e4 269#include <asm/irq.h>
775f4b29 270#include <asm/irq_regs.h>
1da177e4
LT
271#include <asm/io.h>
272
00ce1db1
TT
273#define CREATE_TRACE_POINTS
274#include <trace/events/random.h>
275
43759d4f
TT
276/* #define ADD_INTERRUPT_BENCH */
277
1da177e4
LT
278/*
279 * Configuration information
280 */
30e37ec5
PA
281#define INPUT_POOL_SHIFT 12
282#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
283#define OUTPUT_POOL_SHIFT 10
284#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
285#define SEC_XFER_SIZE 512
286#define EXTRACT_SIZE 10
1da177e4 287
392a546d 288#define DEBUG_RANDOM_BOOT 0
1da177e4 289
d2e7c96a
PA
290#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
291
a283b5c4 292/*
95b709b6
TT
293 * To allow fractional bits to be tracked, the entropy_count field is
294 * denominated in units of 1/8th bits.
30e37ec5
PA
295 *
296 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
297 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
298 */
299#define ENTROPY_SHIFT 3
300#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
301
1da177e4
LT
302/*
303 * The minimum number of bits of entropy before we wake up a read on
304 * /dev/random. Should be enough to do a significant reseed.
305 */
2132a96f 306static int random_read_wakeup_bits = 64;
1da177e4
LT
307
308/*
309 * If the entropy count falls under this number of bits, then we
310 * should wake up processes which are selecting or polling on write
311 * access to /dev/random.
312 */
2132a96f 313static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4 314
1da177e4 315/*
6e9fa2c8
TT
316 * Originally, we used a primitive polynomial of degree .poolwords
317 * over GF(2). The taps for various sizes are defined below. They
318 * were chosen to be evenly spaced except for the last tap, which is 1
319 * to get the twisting happening as fast as possible.
320 *
321 * For the purposes of better mixing, we use the CRC-32 polynomial as
322 * well to make a (modified) twisted Generalized Feedback Shift
323 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
324 * generators. ACM Transactions on Modeling and Computer Simulation
325 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 326 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
327 * Simulation 4:254-266)
328 *
329 * Thanks to Colin Plumb for suggesting this.
330 *
331 * The mixing operation is much less sensitive than the output hash,
332 * where we use SHA-1. All that we want of mixing operation is that
333 * it be a good non-cryptographic hash; i.e. it not produce collisions
334 * when fed "random" data of the sort we expect to see. As long as
335 * the pool state differs for different inputs, we have preserved the
336 * input entropy and done a good job. The fact that an intelligent
337 * attacker can construct inputs that will produce controlled
338 * alterations to the pool's state is not important because we don't
339 * consider such inputs to contribute any randomness. The only
340 * property we need with respect to them is that the attacker can't
341 * increase his/her knowledge of the pool's state. Since all
342 * additions are reversible (knowing the final state and the input,
343 * you can reconstruct the initial state), if an attacker has any
344 * uncertainty about the initial state, he/she can only shuffle that
345 * uncertainty about, but never cause any collisions (which would
346 * decrease the uncertainty).
347 *
348 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
349 * Videau in their paper, "The Linux Pseudorandom Number Generator
350 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
351 * paper, they point out that we are not using a true Twisted GFSR,
352 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
353 * is, with only three taps, instead of the six that we are using).
354 * As a result, the resulting polynomial is neither primitive nor
355 * irreducible, and hence does not have a maximal period over
356 * GF(2**32). They suggest a slight change to the generator
357 * polynomial which improves the resulting TGFSR polynomial to be
358 * irreducible, which we have made here.
1da177e4
LT
359 */
360static struct poolinfo {
a283b5c4
PA
361 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
362#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
363 int tap1, tap2, tap3, tap4, tap5;
364} poolinfo_table[] = {
6e9fa2c8
TT
365 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
366 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
367 { S(128), 104, 76, 51, 25, 1 },
368 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
369 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
370 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
371#if 0
372 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 373 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
374
375 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 376 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
377
378 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 379 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
380
381 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 382 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
383
384 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 385 { S(512), 409, 307, 206, 102, 2 },
1da177e4 386 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 387 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
388
389 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 390 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
391
392 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 393 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
394
395 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 396 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
397#endif
398};
399
1da177e4
LT
400/*
401 * Static global variables
402 */
403static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
404static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 405static struct fasync_struct *fasync;
1da177e4 406
205a525c
HX
407static DEFINE_SPINLOCK(random_ready_list_lock);
408static LIST_HEAD(random_ready_list);
409
e192be9d
TT
410struct crng_state {
411 __u32 state[16];
412 unsigned long init_time;
413 spinlock_t lock;
414};
415
416struct crng_state primary_crng = {
417 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
418};
419
420/*
421 * crng_init = 0 --> Uninitialized
422 * 1 --> Initialized
423 * 2 --> Initialized from input_pool
424 *
425 * crng_init is protected by primary_crng->lock, and only increases
426 * its value (from 0->1->2).
427 */
428static int crng_init = 0;
429#define crng_ready() (likely(crng_init > 0))
430static int crng_init_cnt = 0;
431#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
1e7f583a
TT
432static void _extract_crng(struct crng_state *crng,
433 __u8 out[CHACHA20_BLOCK_SIZE]);
c92e040d
TT
434static void _crng_backtrack_protect(struct crng_state *crng,
435 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
e192be9d
TT
436static void process_random_ready_list(void);
437
1da177e4
LT
438/**********************************************************************
439 *
440 * OS independent entropy store. Here are the functions which handle
441 * storing entropy in an entropy pool.
442 *
443 **********************************************************************/
444
445struct entropy_store;
446struct entropy_store {
43358209 447 /* read-only data: */
30e37ec5 448 const struct poolinfo *poolinfo;
1da177e4
LT
449 __u32 *pool;
450 const char *name;
1da177e4 451 struct entropy_store *pull;
6265e169 452 struct work_struct push_work;
1da177e4
LT
453
454 /* read-write data: */
f5c2742c 455 unsigned long last_pulled;
43358209 456 spinlock_t lock;
c59974ae
TT
457 unsigned short add_ptr;
458 unsigned short input_rotate;
cda796a3 459 int entropy_count;
775f4b29 460 int entropy_total;
775f4b29 461 unsigned int initialized:1;
c59974ae 462 unsigned int last_data_init:1;
e954bc91 463 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
464};
465
e192be9d
TT
466static ssize_t extract_entropy(struct entropy_store *r, void *buf,
467 size_t nbytes, int min, int rsvd);
468static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
469 size_t nbytes, int fips);
470
471static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 472static void push_to_pool(struct work_struct *work);
0766f788
ER
473static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
474static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
1da177e4
LT
475
476static struct entropy_store input_pool = {
477 .poolinfo = &poolinfo_table[0],
478 .name = "input",
eece09ec 479 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
480 .pool = input_pool_data
481};
482
483static struct entropy_store blocking_pool = {
484 .poolinfo = &poolinfo_table[1],
485 .name = "blocking",
1da177e4 486 .pull = &input_pool,
eece09ec 487 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
488 .pool = blocking_pool_data,
489 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
490 push_to_pool),
1da177e4
LT
491};
492
775f4b29
TT
493static __u32 const twist_table[8] = {
494 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
495 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
496
1da177e4 497/*
e68e5b66 498 * This function adds bytes into the entropy "pool". It does not
1da177e4 499 * update the entropy estimate. The caller should call
adc782da 500 * credit_entropy_bits if this is appropriate.
1da177e4
LT
501 *
502 * The pool is stirred with a primitive polynomial of the appropriate
503 * degree, and then twisted. We twist by three bits at a time because
504 * it's cheap to do so and helps slightly in the expected case where
505 * the entropy is concentrated in the low-order bits.
506 */
00ce1db1 507static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 508 int nbytes)
1da177e4 509{
85608f8e 510 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 511 int input_rotate;
1da177e4 512 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 513 const char *bytes = in;
6d38b827 514 __u32 w;
1da177e4 515
1da177e4
LT
516 tap1 = r->poolinfo->tap1;
517 tap2 = r->poolinfo->tap2;
518 tap3 = r->poolinfo->tap3;
519 tap4 = r->poolinfo->tap4;
520 tap5 = r->poolinfo->tap5;
1da177e4 521
91fcb532
TT
522 input_rotate = r->input_rotate;
523 i = r->add_ptr;
1da177e4 524
e68e5b66
MM
525 /* mix one byte at a time to simplify size handling and churn faster */
526 while (nbytes--) {
c59974ae 527 w = rol32(*bytes++, input_rotate);
993ba211 528 i = (i - 1) & wordmask;
1da177e4
LT
529
530 /* XOR in the various taps */
993ba211 531 w ^= r->pool[i];
1da177e4
LT
532 w ^= r->pool[(i + tap1) & wordmask];
533 w ^= r->pool[(i + tap2) & wordmask];
534 w ^= r->pool[(i + tap3) & wordmask];
535 w ^= r->pool[(i + tap4) & wordmask];
536 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
537
538 /* Mix the result back in with a twist */
1da177e4 539 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
540
541 /*
542 * Normally, we add 7 bits of rotation to the pool.
543 * At the beginning of the pool, add an extra 7 bits
544 * rotation, so that successive passes spread the
545 * input bits across the pool evenly.
546 */
c59974ae 547 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
548 }
549
91fcb532
TT
550 r->input_rotate = input_rotate;
551 r->add_ptr = i;
1da177e4
LT
552}
553
00ce1db1 554static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 555 int nbytes)
00ce1db1
TT
556{
557 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 558 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
559}
560
561static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 562 int nbytes)
1da177e4 563{
902c098a
TT
564 unsigned long flags;
565
00ce1db1 566 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 567 spin_lock_irqsave(&r->lock, flags);
85608f8e 568 _mix_pool_bytes(r, in, nbytes);
902c098a 569 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
570}
571
775f4b29
TT
572struct fast_pool {
573 __u32 pool[4];
574 unsigned long last;
ee3e00e9 575 unsigned short reg_idx;
840f9507 576 unsigned char count;
775f4b29
TT
577};
578
579/*
580 * This is a fast mixing routine used by the interrupt randomness
581 * collector. It's hardcoded for an 128 bit pool and assumes that any
582 * locks that might be needed are taken by the caller.
583 */
43759d4f 584static void fast_mix(struct fast_pool *f)
775f4b29 585{
43759d4f
TT
586 __u32 a = f->pool[0], b = f->pool[1];
587 __u32 c = f->pool[2], d = f->pool[3];
588
589 a += b; c += d;
19acc77a 590 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
591 d ^= a; b ^= c;
592
593 a += b; c += d;
19acc77a 594 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
595 d ^= a; b ^= c;
596
597 a += b; c += d;
19acc77a 598 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
599 d ^= a; b ^= c;
600
601 a += b; c += d;
19acc77a 602 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
603 d ^= a; b ^= c;
604
605 f->pool[0] = a; f->pool[1] = b;
606 f->pool[2] = c; f->pool[3] = d;
655b2264 607 f->count++;
775f4b29
TT
608}
609
205a525c
HX
610static void process_random_ready_list(void)
611{
612 unsigned long flags;
613 struct random_ready_callback *rdy, *tmp;
614
615 spin_lock_irqsave(&random_ready_list_lock, flags);
616 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
617 struct module *owner = rdy->owner;
618
619 list_del_init(&rdy->list);
620 rdy->func(rdy);
621 module_put(owner);
622 }
623 spin_unlock_irqrestore(&random_ready_list_lock, flags);
624}
625
1da177e4 626/*
a283b5c4
PA
627 * Credit (or debit) the entropy store with n bits of entropy.
628 * Use credit_entropy_bits_safe() if the value comes from userspace
629 * or otherwise should be checked for extreme values.
1da177e4 630 */
adc782da 631static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 632{
902c098a 633 int entropy_count, orig;
30e37ec5
PA
634 const int pool_size = r->poolinfo->poolfracbits;
635 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 636
adc782da
MM
637 if (!nbits)
638 return;
639
902c098a
TT
640retry:
641 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
642 if (nfrac < 0) {
643 /* Debit */
644 entropy_count += nfrac;
645 } else {
646 /*
647 * Credit: we have to account for the possibility of
648 * overwriting already present entropy. Even in the
649 * ideal case of pure Shannon entropy, new contributions
650 * approach the full value asymptotically:
651 *
652 * entropy <- entropy + (pool_size - entropy) *
653 * (1 - exp(-add_entropy/pool_size))
654 *
655 * For add_entropy <= pool_size/2 then
656 * (1 - exp(-add_entropy/pool_size)) >=
657 * (add_entropy/pool_size)*0.7869...
658 * so we can approximate the exponential with
659 * 3/4*add_entropy/pool_size and still be on the
660 * safe side by adding at most pool_size/2 at a time.
661 *
662 * The use of pool_size-2 in the while statement is to
663 * prevent rounding artifacts from making the loop
664 * arbitrarily long; this limits the loop to log2(pool_size)*2
665 * turns no matter how large nbits is.
666 */
667 int pnfrac = nfrac;
668 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
669 /* The +2 corresponds to the /4 in the denominator */
670
671 do {
672 unsigned int anfrac = min(pnfrac, pool_size/2);
673 unsigned int add =
674 ((pool_size - entropy_count)*anfrac*3) >> s;
675
676 entropy_count += add;
677 pnfrac -= anfrac;
678 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
679 }
00ce1db1 680
79a84687 681 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
682 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
683 r->name, entropy_count);
684 WARN_ON(1);
8b76f46a 685 entropy_count = 0;
30e37ec5
PA
686 } else if (entropy_count > pool_size)
687 entropy_count = pool_size;
902c098a
TT
688 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
689 goto retry;
1da177e4 690
6265e169 691 r->entropy_total += nbits;
0891ad82
LT
692 if (!r->initialized && r->entropy_total > 128) {
693 r->initialized = 1;
694 r->entropy_total = 0;
775f4b29
TT
695 }
696
a283b5c4
PA
697 trace_credit_entropy_bits(r->name, nbits,
698 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
699 r->entropy_total, _RET_IP_);
700
6265e169 701 if (r == &input_pool) {
7d1b08c4 702 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 703
e192be9d
TT
704 if (crng_init < 2 && entropy_bits >= 128) {
705 crng_reseed(&primary_crng, r);
706 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
707 }
708
6265e169 709 /* should we wake readers? */
2132a96f 710 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
711 wake_up_interruptible(&random_read_wait);
712 kill_fasync(&fasync, SIGIO, POLL_IN);
713 }
714 /* If the input pool is getting full, send some
e192be9d 715 * entropy to the blocking pool until it is 75% full.
6265e169 716 */
2132a96f 717 if (entropy_bits > random_write_wakeup_bits &&
6265e169 718 r->initialized &&
2132a96f 719 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
720 struct entropy_store *other = &blocking_pool;
721
6265e169 722 if (other->entropy_count <=
e192be9d
TT
723 3 * other->poolinfo->poolfracbits / 4) {
724 schedule_work(&other->push_work);
6265e169
TT
725 r->entropy_total = 0;
726 }
727 }
9a6f70bb 728 }
1da177e4
LT
729}
730
86a574de 731static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4
PA
732{
733 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
734
86a574de
TT
735 if (nbits < 0)
736 return -EINVAL;
737
a283b5c4
PA
738 /* Cap the value to avoid overflows */
739 nbits = min(nbits, nbits_max);
a283b5c4
PA
740
741 credit_entropy_bits(r, nbits);
86a574de 742 return 0;
a283b5c4
PA
743}
744
e192be9d
TT
745/*********************************************************************
746 *
747 * CRNG using CHACHA20
748 *
749 *********************************************************************/
750
751#define CRNG_RESEED_INTERVAL (300*HZ)
752
753static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
754
1e7f583a
TT
755#ifdef CONFIG_NUMA
756/*
757 * Hack to deal with crazy userspace progams when they are all trying
758 * to access /dev/urandom in parallel. The programs are almost
759 * certainly doing something terribly wrong, but we'll work around
760 * their brain damage.
761 */
762static struct crng_state **crng_node_pool __read_mostly;
763#endif
764
e192be9d
TT
765static void crng_initialize(struct crng_state *crng)
766{
767 int i;
768 unsigned long rv;
769
770 memcpy(&crng->state[0], "expand 32-byte k", 16);
771 if (crng == &primary_crng)
772 _extract_entropy(&input_pool, &crng->state[4],
773 sizeof(__u32) * 12, 0);
774 else
775 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
776 for (i = 4; i < 16; i++) {
777 if (!arch_get_random_seed_long(&rv) &&
778 !arch_get_random_long(&rv))
779 rv = random_get_entropy();
780 crng->state[i] ^= rv;
781 }
782 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
783}
784
785static int crng_fast_load(const char *cp, size_t len)
786{
787 unsigned long flags;
788 char *p;
789
790 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
791 return 0;
792 if (crng_ready()) {
793 spin_unlock_irqrestore(&primary_crng.lock, flags);
794 return 0;
795 }
796 p = (unsigned char *) &primary_crng.state[4];
797 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
798 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
799 cp++; crng_init_cnt++; len--;
800 }
801 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
802 crng_init = 1;
803 wake_up_interruptible(&crng_init_wait);
804 pr_notice("random: fast init done\n");
805 }
806 spin_unlock_irqrestore(&primary_crng.lock, flags);
807 return 1;
808}
809
810static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
811{
812 unsigned long flags;
813 int i, num;
814 union {
815 __u8 block[CHACHA20_BLOCK_SIZE];
816 __u32 key[8];
817 } buf;
818
819 if (r) {
820 num = extract_entropy(r, &buf, 32, 16, 0);
821 if (num == 0)
822 return;
c92e040d 823 } else {
1e7f583a 824 _extract_crng(&primary_crng, buf.block);
c92e040d
TT
825 _crng_backtrack_protect(&primary_crng, buf.block,
826 CHACHA20_KEY_SIZE);
827 }
e192be9d
TT
828 spin_lock_irqsave(&primary_crng.lock, flags);
829 for (i = 0; i < 8; i++) {
830 unsigned long rv;
831 if (!arch_get_random_seed_long(&rv) &&
832 !arch_get_random_long(&rv))
833 rv = random_get_entropy();
834 crng->state[i+4] ^= buf.key[i] ^ rv;
835 }
836 memzero_explicit(&buf, sizeof(buf));
837 crng->init_time = jiffies;
838 if (crng == &primary_crng && crng_init < 2) {
839 crng_init = 2;
840 process_random_ready_list();
841 wake_up_interruptible(&crng_init_wait);
842 pr_notice("random: crng init done\n");
843 }
844 spin_unlock_irqrestore(&primary_crng.lock, flags);
845}
846
847static inline void crng_wait_ready(void)
848{
849 wait_event_interruptible(crng_init_wait, crng_ready());
850}
851
1e7f583a
TT
852static void _extract_crng(struct crng_state *crng,
853 __u8 out[CHACHA20_BLOCK_SIZE])
e192be9d
TT
854{
855 unsigned long v, flags;
e192be9d
TT
856
857 if (crng_init > 1 &&
858 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
1e7f583a 859 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
860 spin_lock_irqsave(&crng->lock, flags);
861 if (arch_get_random_long(&v))
862 crng->state[14] ^= v;
863 chacha20_block(&crng->state[0], out);
864 if (crng->state[12] == 0)
865 crng->state[13]++;
866 spin_unlock_irqrestore(&crng->lock, flags);
867}
868
1e7f583a
TT
869static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
870{
871 struct crng_state *crng = NULL;
872
873#ifdef CONFIG_NUMA
874 if (crng_node_pool)
875 crng = crng_node_pool[numa_node_id()];
876 if (crng == NULL)
877#endif
878 crng = &primary_crng;
879 _extract_crng(crng, out);
880}
881
c92e040d
TT
882/*
883 * Use the leftover bytes from the CRNG block output (if there is
884 * enough) to mutate the CRNG key to provide backtracking protection.
885 */
886static void _crng_backtrack_protect(struct crng_state *crng,
887 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
888{
889 unsigned long flags;
890 __u32 *s, *d;
891 int i;
892
893 used = round_up(used, sizeof(__u32));
894 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
895 extract_crng(tmp);
896 used = 0;
897 }
898 spin_lock_irqsave(&crng->lock, flags);
899 s = (__u32 *) &tmp[used];
900 d = &crng->state[4];
901 for (i=0; i < 8; i++)
902 *d++ ^= *s++;
903 spin_unlock_irqrestore(&crng->lock, flags);
904}
905
906static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
907{
908 struct crng_state *crng = NULL;
909
910#ifdef CONFIG_NUMA
911 if (crng_node_pool)
912 crng = crng_node_pool[numa_node_id()];
913 if (crng == NULL)
914#endif
915 crng = &primary_crng;
916 _crng_backtrack_protect(crng, tmp, used);
917}
918
e192be9d
TT
919static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
920{
c92e040d 921 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
e192be9d
TT
922 __u8 tmp[CHACHA20_BLOCK_SIZE];
923 int large_request = (nbytes > 256);
924
925 while (nbytes) {
926 if (large_request && need_resched()) {
927 if (signal_pending(current)) {
928 if (ret == 0)
929 ret = -ERESTARTSYS;
930 break;
931 }
932 schedule();
933 }
934
935 extract_crng(tmp);
936 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
937 if (copy_to_user(buf, tmp, i)) {
938 ret = -EFAULT;
939 break;
940 }
941
942 nbytes -= i;
943 buf += i;
944 ret += i;
945 }
c92e040d 946 crng_backtrack_protect(tmp, i);
e192be9d
TT
947
948 /* Wipe data just written to memory */
949 memzero_explicit(tmp, sizeof(tmp));
950
951 return ret;
952}
953
954
1da177e4
LT
955/*********************************************************************
956 *
957 * Entropy input management
958 *
959 *********************************************************************/
960
961/* There is one of these per entropy source */
962struct timer_rand_state {
963 cycles_t last_time;
90b75ee5 964 long last_delta, last_delta2;
1da177e4
LT
965 unsigned dont_count_entropy:1;
966};
967
644008df
TT
968#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
969
a2080a67 970/*
e192be9d
TT
971 * Add device- or boot-specific data to the input pool to help
972 * initialize it.
a2080a67 973 *
e192be9d
TT
974 * None of this adds any entropy; it is meant to avoid the problem of
975 * the entropy pool having similar initial state across largely
976 * identical devices.
a2080a67
LT
977 */
978void add_device_randomness(const void *buf, unsigned int size)
979{
61875f30 980 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 981 unsigned long flags;
a2080a67 982
5910895f 983 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 984 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
985 _mix_pool_bytes(&input_pool, buf, size);
986 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 987 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
988}
989EXPORT_SYMBOL(add_device_randomness);
990
644008df 991static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 992
1da177e4
LT
993/*
994 * This function adds entropy to the entropy "pool" by using timing
995 * delays. It uses the timer_rand_state structure to make an estimate
996 * of how many bits of entropy this call has added to the pool.
997 *
998 * The number "num" is also added to the pool - it should somehow describe
999 * the type of event which just happened. This is currently 0-255 for
1000 * keyboard scan codes, and 256 upwards for interrupts.
1001 *
1002 */
1003static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1004{
40db23e5 1005 struct entropy_store *r;
1da177e4 1006 struct {
1da177e4 1007 long jiffies;
cf833d0b 1008 unsigned cycles;
1da177e4
LT
1009 unsigned num;
1010 } sample;
1011 long delta, delta2, delta3;
1012
1013 preempt_disable();
1da177e4
LT
1014
1015 sample.jiffies = jiffies;
61875f30 1016 sample.cycles = random_get_entropy();
1da177e4 1017 sample.num = num;
e192be9d 1018 r = &input_pool;
85608f8e 1019 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1020
1021 /*
1022 * Calculate number of bits of randomness we probably added.
1023 * We take into account the first, second and third-order deltas
1024 * in order to make our estimate.
1025 */
1026
1027 if (!state->dont_count_entropy) {
1028 delta = sample.jiffies - state->last_time;
1029 state->last_time = sample.jiffies;
1030
1031 delta2 = delta - state->last_delta;
1032 state->last_delta = delta;
1033
1034 delta3 = delta2 - state->last_delta2;
1035 state->last_delta2 = delta2;
1036
1037 if (delta < 0)
1038 delta = -delta;
1039 if (delta2 < 0)
1040 delta2 = -delta2;
1041 if (delta3 < 0)
1042 delta3 = -delta3;
1043 if (delta > delta2)
1044 delta = delta2;
1045 if (delta > delta3)
1046 delta = delta3;
1047
1048 /*
1049 * delta is now minimum absolute delta.
1050 * Round down by 1 bit on general principles,
1051 * and limit entropy entimate to 12 bits.
1052 */
40db23e5 1053 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 1054 }
1da177e4
LT
1055 preempt_enable();
1056}
1057
d251575a 1058void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1059 unsigned int value)
1060{
1061 static unsigned char last_value;
1062
1063 /* ignore autorepeat and the like */
1064 if (value == last_value)
1065 return;
1066
1da177e4
LT
1067 last_value = value;
1068 add_timer_randomness(&input_timer_state,
1069 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1070 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1071}
80fc9f53 1072EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1073
775f4b29
TT
1074static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1075
43759d4f
TT
1076#ifdef ADD_INTERRUPT_BENCH
1077static unsigned long avg_cycles, avg_deviation;
1078
1079#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1080#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1081
1082static void add_interrupt_bench(cycles_t start)
1083{
1084 long delta = random_get_entropy() - start;
1085
1086 /* Use a weighted moving average */
1087 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1088 avg_cycles += delta;
1089 /* And average deviation */
1090 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1091 avg_deviation += delta;
1092}
1093#else
1094#define add_interrupt_bench(x)
1095#endif
1096
ee3e00e9
TT
1097static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1098{
1099 __u32 *ptr = (__u32 *) regs;
1100
1101 if (regs == NULL)
1102 return 0;
1103 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1104 f->reg_idx = 0;
1105 return *(ptr + f->reg_idx++);
1106}
1107
775f4b29 1108void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1109{
775f4b29 1110 struct entropy_store *r;
1b2a1a7e 1111 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1112 struct pt_regs *regs = get_irq_regs();
1113 unsigned long now = jiffies;
655b2264 1114 cycles_t cycles = random_get_entropy();
43759d4f 1115 __u32 c_high, j_high;
655b2264 1116 __u64 ip;
83664a69 1117 unsigned long seed;
91fcb532 1118 int credit = 0;
3060d6fe 1119
ee3e00e9
TT
1120 if (cycles == 0)
1121 cycles = get_reg(fast_pool, regs);
655b2264
TT
1122 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1123 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1124 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1125 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1126 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1127 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1128 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1129 get_reg(fast_pool, regs);
3060d6fe 1130
43759d4f 1131 fast_mix(fast_pool);
43759d4f 1132 add_interrupt_bench(cycles);
3060d6fe 1133
e192be9d
TT
1134 if (!crng_ready()) {
1135 if ((fast_pool->count >= 64) &&
1136 crng_fast_load((char *) fast_pool->pool,
1137 sizeof(fast_pool->pool))) {
1138 fast_pool->count = 0;
1139 fast_pool->last = now;
1140 }
1141 return;
1142 }
1143
ee3e00e9
TT
1144 if ((fast_pool->count < 64) &&
1145 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1146 return;
1147
e192be9d 1148 r = &input_pool;
840f9507 1149 if (!spin_trylock(&r->lock))
91fcb532 1150 return;
83664a69 1151
91fcb532 1152 fast_pool->last = now;
85608f8e 1153 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1154
1155 /*
1156 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1157 * add it to the pool. For the sake of paranoia don't let the
1158 * architectural seed generator dominate the input from the
1159 * interrupt noise.
83664a69
PA
1160 */
1161 if (arch_get_random_seed_long(&seed)) {
85608f8e 1162 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1163 credit = 1;
83664a69 1164 }
91fcb532 1165 spin_unlock(&r->lock);
83664a69 1166
ee3e00e9 1167 fast_pool->count = 0;
83664a69 1168
ee3e00e9
TT
1169 /* award one bit for the contents of the fast pool */
1170 credit_entropy_bits(r, credit + 1);
1da177e4 1171}
4b44f2d1 1172EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1173
9361401e 1174#ifdef CONFIG_BLOCK
1da177e4
LT
1175void add_disk_randomness(struct gendisk *disk)
1176{
1177 if (!disk || !disk->random)
1178 return;
1179 /* first major is 1, so we get >= 0x200 here */
f331c029 1180 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1181 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1182}
bdcfa3e5 1183EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1184#endif
1da177e4 1185
1da177e4
LT
1186/*********************************************************************
1187 *
1188 * Entropy extraction routines
1189 *
1190 *********************************************************************/
1191
1da177e4 1192/*
25985edc 1193 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1194 * from the primary pool to the secondary extraction pool. We make
1195 * sure we pull enough for a 'catastrophic reseed'.
1196 */
6265e169 1197static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1198static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1199{
cff85031
TT
1200 if (!r->pull ||
1201 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1202 r->entropy_count > r->poolinfo->poolfracbits)
1203 return;
1204
cff85031 1205 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1206}
1207
1208static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1209{
1210 __u32 tmp[OUTPUT_POOL_WORDS];
1211
6265e169
TT
1212 int bytes = nbytes;
1213
2132a96f
GP
1214 /* pull at least as much as a wakeup */
1215 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1216 /* but never more than the buffer size */
1217 bytes = min_t(int, bytes, sizeof(tmp));
1218
f80bbd8b
TT
1219 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1220 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1221 bytes = extract_entropy(r->pull, tmp, bytes,
43d8a72c 1222 random_read_wakeup_bits / 8, 0);
85608f8e 1223 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1224 credit_entropy_bits(r, bytes*8);
1225}
1226
1227/*
1228 * Used as a workqueue function so that when the input pool is getting
1229 * full, we can "spill over" some entropy to the output pools. That
1230 * way the output pools can store some of the excess entropy instead
1231 * of letting it go to waste.
1232 */
1233static void push_to_pool(struct work_struct *work)
1234{
1235 struct entropy_store *r = container_of(work, struct entropy_store,
1236 push_work);
1237 BUG_ON(!r);
2132a96f 1238 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1239 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1240 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1241}
1242
1243/*
19fa5be1
GP
1244 * This function decides how many bytes to actually take from the
1245 * given pool, and also debits the entropy count accordingly.
1da177e4 1246 */
1da177e4
LT
1247static size_t account(struct entropy_store *r, size_t nbytes, int min,
1248 int reserved)
1249{
43d8a72c 1250 int entropy_count, orig, have_bytes;
79a84687 1251 size_t ibytes, nfrac;
1da177e4 1252
a283b5c4 1253 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1254
1255 /* Can we pull enough? */
10b3a32d 1256retry:
a283b5c4 1257 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 1258 ibytes = nbytes;
43d8a72c
SM
1259 /* never pull more than available */
1260 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
e33ba5fa 1261
43d8a72c
SM
1262 if ((have_bytes -= reserved) < 0)
1263 have_bytes = 0;
1264 ibytes = min_t(size_t, ibytes, have_bytes);
0fb7a01a 1265 if (ibytes < min)
a283b5c4 1266 ibytes = 0;
79a84687
HFS
1267
1268 if (unlikely(entropy_count < 0)) {
1269 pr_warn("random: negative entropy count: pool %s count %d\n",
1270 r->name, entropy_count);
1271 WARN_ON(1);
1272 entropy_count = 0;
1273 }
1274 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1275 if ((size_t) entropy_count > nfrac)
1276 entropy_count -= nfrac;
1277 else
e33ba5fa 1278 entropy_count = 0;
f9c6d498 1279
0fb7a01a
GP
1280 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1281 goto retry;
1da177e4 1282
f80bbd8b 1283 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1284 if (ibytes &&
2132a96f 1285 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1286 wake_up_interruptible(&random_write_wait);
1287 kill_fasync(&fasync, SIGIO, POLL_OUT);
1288 }
1289
a283b5c4 1290 return ibytes;
1da177e4
LT
1291}
1292
19fa5be1
GP
1293/*
1294 * This function does the actual extraction for extract_entropy and
1295 * extract_entropy_user.
1296 *
1297 * Note: we assume that .poolwords is a multiple of 16 words.
1298 */
1da177e4
LT
1299static void extract_buf(struct entropy_store *r, __u8 *out)
1300{
602b6aee 1301 int i;
d2e7c96a
PA
1302 union {
1303 __u32 w[5];
85a1f777 1304 unsigned long l[LONGS(20)];
d2e7c96a
PA
1305 } hash;
1306 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1307 unsigned long flags;
1da177e4 1308
85a1f777 1309 /*
dfd38750 1310 * If we have an architectural hardware random number
46884442 1311 * generator, use it for SHA's initial vector
85a1f777 1312 */
46884442 1313 sha_init(hash.w);
85a1f777
TT
1314 for (i = 0; i < LONGS(20); i++) {
1315 unsigned long v;
1316 if (!arch_get_random_long(&v))
1317 break;
46884442 1318 hash.l[i] = v;
85a1f777
TT
1319 }
1320
46884442
TT
1321 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1322 spin_lock_irqsave(&r->lock, flags);
1323 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1324 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1325
1da177e4 1326 /*
1c0ad3d4
MM
1327 * We mix the hash back into the pool to prevent backtracking
1328 * attacks (where the attacker knows the state of the pool
1329 * plus the current outputs, and attempts to find previous
1330 * ouputs), unless the hash function can be inverted. By
1331 * mixing at least a SHA1 worth of hash data back, we make
1332 * brute-forcing the feedback as hard as brute-forcing the
1333 * hash.
1da177e4 1334 */
85608f8e 1335 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1336 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1337
d4c5efdb 1338 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1339
1340 /*
1c0ad3d4
MM
1341 * In case the hash function has some recognizable output
1342 * pattern, we fold it in half. Thus, we always feed back
1343 * twice as much data as we output.
1da177e4 1344 */
d2e7c96a
PA
1345 hash.w[0] ^= hash.w[3];
1346 hash.w[1] ^= hash.w[4];
1347 hash.w[2] ^= rol32(hash.w[2], 16);
1348
d2e7c96a 1349 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1350 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1351}
1352
e192be9d
TT
1353static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1354 size_t nbytes, int fips)
1355{
1356 ssize_t ret = 0, i;
1357 __u8 tmp[EXTRACT_SIZE];
1358 unsigned long flags;
1359
1360 while (nbytes) {
1361 extract_buf(r, tmp);
1362
1363 if (fips) {
1364 spin_lock_irqsave(&r->lock, flags);
1365 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1366 panic("Hardware RNG duplicated output!\n");
1367 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1368 spin_unlock_irqrestore(&r->lock, flags);
1369 }
1370 i = min_t(int, nbytes, EXTRACT_SIZE);
1371 memcpy(buf, tmp, i);
1372 nbytes -= i;
1373 buf += i;
1374 ret += i;
1375 }
1376
1377 /* Wipe data just returned from memory */
1378 memzero_explicit(tmp, sizeof(tmp));
1379
1380 return ret;
1381}
1382
19fa5be1
GP
1383/*
1384 * This function extracts randomness from the "entropy pool", and
1385 * returns it in a buffer.
1386 *
1387 * The min parameter specifies the minimum amount we can pull before
1388 * failing to avoid races that defeat catastrophic reseeding while the
1389 * reserved parameter indicates how much entropy we must leave in the
1390 * pool after each pull to avoid starving other readers.
1391 */
90b75ee5 1392static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1393 size_t nbytes, int min, int reserved)
1da177e4 1394{
1da177e4 1395 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1396 unsigned long flags;
1da177e4 1397
ec8f02da 1398 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1399 if (fips_enabled) {
1400 spin_lock_irqsave(&r->lock, flags);
1401 if (!r->last_data_init) {
c59974ae 1402 r->last_data_init = 1;
1e7e2e05
JW
1403 spin_unlock_irqrestore(&r->lock, flags);
1404 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1405 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1406 xfer_secondary_pool(r, EXTRACT_SIZE);
1407 extract_buf(r, tmp);
1408 spin_lock_irqsave(&r->lock, flags);
1409 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1410 }
1411 spin_unlock_irqrestore(&r->lock, flags);
1412 }
ec8f02da 1413
a283b5c4 1414 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1415 xfer_secondary_pool(r, nbytes);
1416 nbytes = account(r, nbytes, min, reserved);
1417
e192be9d 1418 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1419}
1420
19fa5be1
GP
1421/*
1422 * This function extracts randomness from the "entropy pool", and
1423 * returns it in a userspace buffer.
1424 */
1da177e4
LT
1425static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1426 size_t nbytes)
1427{
1428 ssize_t ret = 0, i;
1429 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1430 int large_request = (nbytes > 256);
1da177e4 1431
a283b5c4 1432 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1433 xfer_secondary_pool(r, nbytes);
1434 nbytes = account(r, nbytes, 0, 0);
1435
1436 while (nbytes) {
c6e9d6f3 1437 if (large_request && need_resched()) {
1da177e4
LT
1438 if (signal_pending(current)) {
1439 if (ret == 0)
1440 ret = -ERESTARTSYS;
1441 break;
1442 }
1443 schedule();
1444 }
1445
1446 extract_buf(r, tmp);
1447 i = min_t(int, nbytes, EXTRACT_SIZE);
1448 if (copy_to_user(buf, tmp, i)) {
1449 ret = -EFAULT;
1450 break;
1451 }
1452
1453 nbytes -= i;
1454 buf += i;
1455 ret += i;
1456 }
1457
1458 /* Wipe data just returned from memory */
d4c5efdb 1459 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1460
1461 return ret;
1462}
1463
1464/*
1465 * This function is the exported kernel interface. It returns some
c2557a30 1466 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1467 * TCP sequence numbers, etc. It does not rely on the hardware random
1468 * number generator. For random bytes direct from the hardware RNG
1469 * (when available), use get_random_bytes_arch().
1da177e4
LT
1470 */
1471void get_random_bytes(void *buf, int nbytes)
c2557a30 1472{
e192be9d
TT
1473 __u8 tmp[CHACHA20_BLOCK_SIZE];
1474
392a546d 1475#if DEBUG_RANDOM_BOOT > 0
e192be9d 1476 if (!crng_ready())
392a546d 1477 printk(KERN_NOTICE "random: %pF get_random_bytes called "
e192be9d 1478 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
392a546d 1479#endif
5910895f 1480 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1481
1482 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1483 extract_crng(buf);
1484 buf += CHACHA20_BLOCK_SIZE;
1485 nbytes -= CHACHA20_BLOCK_SIZE;
1486 }
1487
1488 if (nbytes > 0) {
1489 extract_crng(tmp);
1490 memcpy(buf, tmp, nbytes);
c92e040d
TT
1491 crng_backtrack_protect(tmp, nbytes);
1492 } else
1493 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1494 memzero_explicit(tmp, sizeof(tmp));
c2557a30
TT
1495}
1496EXPORT_SYMBOL(get_random_bytes);
1497
205a525c
HX
1498/*
1499 * Add a callback function that will be invoked when the nonblocking
1500 * pool is initialised.
1501 *
1502 * returns: 0 if callback is successfully added
1503 * -EALREADY if pool is already initialised (callback not called)
1504 * -ENOENT if module for callback is not alive
1505 */
1506int add_random_ready_callback(struct random_ready_callback *rdy)
1507{
1508 struct module *owner;
1509 unsigned long flags;
1510 int err = -EALREADY;
1511
e192be9d 1512 if (crng_ready())
205a525c
HX
1513 return err;
1514
1515 owner = rdy->owner;
1516 if (!try_module_get(owner))
1517 return -ENOENT;
1518
1519 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1520 if (crng_ready())
205a525c
HX
1521 goto out;
1522
1523 owner = NULL;
1524
1525 list_add(&rdy->list, &random_ready_list);
1526 err = 0;
1527
1528out:
1529 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1530
1531 module_put(owner);
1532
1533 return err;
1534}
1535EXPORT_SYMBOL(add_random_ready_callback);
1536
1537/*
1538 * Delete a previously registered readiness callback function.
1539 */
1540void del_random_ready_callback(struct random_ready_callback *rdy)
1541{
1542 unsigned long flags;
1543 struct module *owner = NULL;
1544
1545 spin_lock_irqsave(&random_ready_list_lock, flags);
1546 if (!list_empty(&rdy->list)) {
1547 list_del_init(&rdy->list);
1548 owner = rdy->owner;
1549 }
1550 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1551
1552 module_put(owner);
1553}
1554EXPORT_SYMBOL(del_random_ready_callback);
1555
c2557a30
TT
1556/*
1557 * This function will use the architecture-specific hardware random
1558 * number generator if it is available. The arch-specific hw RNG will
1559 * almost certainly be faster than what we can do in software, but it
1560 * is impossible to verify that it is implemented securely (as
1561 * opposed, to, say, the AES encryption of a sequence number using a
1562 * key known by the NSA). So it's useful if we need the speed, but
1563 * only if we're willing to trust the hardware manufacturer not to
1564 * have put in a back door.
1565 */
1566void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1567{
63d77173
PA
1568 char *p = buf;
1569
5910895f 1570 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1571 while (nbytes) {
1572 unsigned long v;
1573 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1574
63d77173
PA
1575 if (!arch_get_random_long(&v))
1576 break;
1577
bd29e568 1578 memcpy(p, &v, chunk);
63d77173
PA
1579 p += chunk;
1580 nbytes -= chunk;
1581 }
1582
c2557a30 1583 if (nbytes)
e192be9d 1584 get_random_bytes(p, nbytes);
1da177e4 1585}
c2557a30
TT
1586EXPORT_SYMBOL(get_random_bytes_arch);
1587
1da177e4
LT
1588
1589/*
1590 * init_std_data - initialize pool with system data
1591 *
1592 * @r: pool to initialize
1593 *
1594 * This function clears the pool's entropy count and mixes some system
1595 * data into the pool to prepare it for use. The pool is not cleared
1596 * as that can only decrease the entropy in the pool.
1597 */
1598static void init_std_data(struct entropy_store *r)
1599{
3e88bdff 1600 int i;
902c098a
TT
1601 ktime_t now = ktime_get_real();
1602 unsigned long rv;
1da177e4 1603
f5c2742c 1604 r->last_pulled = jiffies;
85608f8e 1605 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1606 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1607 if (!arch_get_random_seed_long(&rv) &&
1608 !arch_get_random_long(&rv))
ae9ecd92 1609 rv = random_get_entropy();
85608f8e 1610 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1611 }
85608f8e 1612 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1613}
1614
cbc96b75
TL
1615/*
1616 * Note that setup_arch() may call add_device_randomness()
1617 * long before we get here. This allows seeding of the pools
1618 * with some platform dependent data very early in the boot
1619 * process. But it limits our options here. We must use
1620 * statically allocated structures that already have all
1621 * initializations complete at compile time. We should also
1622 * take care not to overwrite the precious per platform data
1623 * we were given.
1624 */
53c3f63e 1625static int rand_initialize(void)
1da177e4 1626{
1e7f583a
TT
1627#ifdef CONFIG_NUMA
1628 int i;
1e7f583a
TT
1629 struct crng_state *crng;
1630 struct crng_state **pool;
1631#endif
1632
1da177e4
LT
1633 init_std_data(&input_pool);
1634 init_std_data(&blocking_pool);
e192be9d 1635 crng_initialize(&primary_crng);
1e7f583a
TT
1636
1637#ifdef CONFIG_NUMA
dd0f0cf5 1638 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
59b8d4f1 1639 for_each_online_node(i) {
1e7f583a
TT
1640 crng = kmalloc_node(sizeof(struct crng_state),
1641 GFP_KERNEL | __GFP_NOFAIL, i);
1642 spin_lock_init(&crng->lock);
1643 crng_initialize(crng);
1644 pool[i] = crng;
1e7f583a
TT
1645 }
1646 mb();
1647 crng_node_pool = pool;
1648#endif
1da177e4
LT
1649 return 0;
1650}
ae9ecd92 1651early_initcall(rand_initialize);
1da177e4 1652
9361401e 1653#ifdef CONFIG_BLOCK
1da177e4
LT
1654void rand_initialize_disk(struct gendisk *disk)
1655{
1656 struct timer_rand_state *state;
1657
1658 /*
f8595815 1659 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1660 * source.
1661 */
f8595815 1662 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1663 if (state) {
1664 state->last_time = INITIAL_JIFFIES;
1da177e4 1665 disk->random = state;
644008df 1666 }
1da177e4 1667}
9361401e 1668#endif
1da177e4
LT
1669
1670static ssize_t
c6e9d6f3 1671_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1672{
12ff3a51 1673 ssize_t n;
1da177e4
LT
1674
1675 if (nbytes == 0)
1676 return 0;
1677
12ff3a51
GP
1678 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1679 while (1) {
1680 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1681 if (n < 0)
1682 return n;
f80bbd8b
TT
1683 trace_random_read(n*8, (nbytes-n)*8,
1684 ENTROPY_BITS(&blocking_pool),
1685 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1686 if (n > 0)
1687 return n;
331c6490 1688
12ff3a51 1689 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1690 if (nonblock)
12ff3a51
GP
1691 return -EAGAIN;
1692
1693 wait_event_interruptible(random_read_wait,
1694 ENTROPY_BITS(&input_pool) >=
2132a96f 1695 random_read_wakeup_bits);
12ff3a51
GP
1696 if (signal_pending(current))
1697 return -ERESTARTSYS;
1da177e4 1698 }
1da177e4
LT
1699}
1700
c6e9d6f3
TT
1701static ssize_t
1702random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1703{
1704 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1705}
1706
1da177e4 1707static ssize_t
90b75ee5 1708urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1709{
e192be9d 1710 unsigned long flags;
9b4d0087 1711 static int maxwarn = 10;
301f0595
TT
1712 int ret;
1713
e192be9d 1714 if (!crng_ready() && maxwarn > 0) {
9b4d0087
TT
1715 maxwarn--;
1716 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
e192be9d
TT
1717 "(%zd bytes read)\n",
1718 current->comm, nbytes);
1719 spin_lock_irqsave(&primary_crng.lock, flags);
1720 crng_init_cnt = 0;
1721 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1722 }
79a84687 1723 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1724 ret = extract_crng_user(buf, nbytes);
1725 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1726 return ret;
1da177e4
LT
1727}
1728
1729static unsigned int
1730random_poll(struct file *file, poll_table * wait)
1731{
1732 unsigned int mask;
1733
1734 poll_wait(file, &random_read_wait, wait);
1735 poll_wait(file, &random_write_wait, wait);
1736 mask = 0;
2132a96f 1737 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1738 mask |= POLLIN | POLLRDNORM;
2132a96f 1739 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1740 mask |= POLLOUT | POLLWRNORM;
1741 return mask;
1742}
1743
7f397dcd
MM
1744static int
1745write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1746{
1da177e4
LT
1747 size_t bytes;
1748 __u32 buf[16];
1749 const char __user *p = buffer;
1da177e4 1750
7f397dcd
MM
1751 while (count > 0) {
1752 bytes = min(count, sizeof(buf));
1753 if (copy_from_user(&buf, p, bytes))
1754 return -EFAULT;
1da177e4 1755
7f397dcd 1756 count -= bytes;
1da177e4
LT
1757 p += bytes;
1758
85608f8e 1759 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1760 cond_resched();
1da177e4 1761 }
7f397dcd
MM
1762
1763 return 0;
1764}
1765
90b75ee5
MM
1766static ssize_t random_write(struct file *file, const char __user *buffer,
1767 size_t count, loff_t *ppos)
7f397dcd
MM
1768{
1769 size_t ret;
7f397dcd 1770
e192be9d 1771 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1772 if (ret)
1773 return ret;
1774
7f397dcd 1775 return (ssize_t)count;
1da177e4
LT
1776}
1777
43ae4860 1778static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1779{
1780 int size, ent_count;
1781 int __user *p = (int __user *)arg;
1782 int retval;
1783
1784 switch (cmd) {
1785 case RNDGETENTCNT:
43ae4860 1786 /* inherently racy, no point locking */
a283b5c4
PA
1787 ent_count = ENTROPY_BITS(&input_pool);
1788 if (put_user(ent_count, p))
1da177e4
LT
1789 return -EFAULT;
1790 return 0;
1791 case RNDADDTOENTCNT:
1792 if (!capable(CAP_SYS_ADMIN))
1793 return -EPERM;
1794 if (get_user(ent_count, p))
1795 return -EFAULT;
86a574de 1796 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1797 case RNDADDENTROPY:
1798 if (!capable(CAP_SYS_ADMIN))
1799 return -EPERM;
1800 if (get_user(ent_count, p++))
1801 return -EFAULT;
1802 if (ent_count < 0)
1803 return -EINVAL;
1804 if (get_user(size, p++))
1805 return -EFAULT;
7f397dcd
MM
1806 retval = write_pool(&input_pool, (const char __user *)p,
1807 size);
1da177e4
LT
1808 if (retval < 0)
1809 return retval;
86a574de 1810 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1811 case RNDZAPENTCNT:
1812 case RNDCLEARPOOL:
ae9ecd92
TT
1813 /*
1814 * Clear the entropy pool counters. We no longer clear
1815 * the entropy pool, as that's silly.
1816 */
1da177e4
LT
1817 if (!capable(CAP_SYS_ADMIN))
1818 return -EPERM;
ae9ecd92 1819 input_pool.entropy_count = 0;
ae9ecd92 1820 blocking_pool.entropy_count = 0;
1da177e4
LT
1821 return 0;
1822 default:
1823 return -EINVAL;
1824 }
1825}
1826
9a6f70bb
JD
1827static int random_fasync(int fd, struct file *filp, int on)
1828{
1829 return fasync_helper(fd, filp, on, &fasync);
1830}
1831
2b8693c0 1832const struct file_operations random_fops = {
1da177e4
LT
1833 .read = random_read,
1834 .write = random_write,
1835 .poll = random_poll,
43ae4860 1836 .unlocked_ioctl = random_ioctl,
9a6f70bb 1837 .fasync = random_fasync,
6038f373 1838 .llseek = noop_llseek,
1da177e4
LT
1839};
1840
2b8693c0 1841const struct file_operations urandom_fops = {
1da177e4
LT
1842 .read = urandom_read,
1843 .write = random_write,
43ae4860 1844 .unlocked_ioctl = random_ioctl,
9a6f70bb 1845 .fasync = random_fasync,
6038f373 1846 .llseek = noop_llseek,
1da177e4
LT
1847};
1848
c6e9d6f3
TT
1849SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1850 unsigned int, flags)
1851{
1852 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1853 return -EINVAL;
1854
1855 if (count > INT_MAX)
1856 count = INT_MAX;
1857
1858 if (flags & GRND_RANDOM)
1859 return _random_read(flags & GRND_NONBLOCK, buf, count);
1860
e192be9d 1861 if (!crng_ready()) {
c6e9d6f3
TT
1862 if (flags & GRND_NONBLOCK)
1863 return -EAGAIN;
e192be9d 1864 crng_wait_ready();
c6e9d6f3
TT
1865 if (signal_pending(current))
1866 return -ERESTARTSYS;
1867 }
1868 return urandom_read(NULL, buf, count, NULL);
1869}
1870
1da177e4
LT
1871/********************************************************************
1872 *
1873 * Sysctl interface
1874 *
1875 ********************************************************************/
1876
1877#ifdef CONFIG_SYSCTL
1878
1879#include <linux/sysctl.h>
1880
1881static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1882static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4 1883static int max_write_thresh = INPUT_POOL_WORDS * 32;
db61ffe3 1884static int random_min_urandom_seed = 60;
1da177e4
LT
1885static char sysctl_bootid[16];
1886
1887/*
f22052b2 1888 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1889 * UUID. The difference is in whether table->data is NULL; if it is,
1890 * then a new UUID is generated and returned to the user.
1891 *
f22052b2
GP
1892 * If the user accesses this via the proc interface, the UUID will be
1893 * returned as an ASCII string in the standard UUID format; if via the
1894 * sysctl system call, as 16 bytes of binary data.
1da177e4 1895 */
a151427e 1896static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1897 void __user *buffer, size_t *lenp, loff_t *ppos)
1898{
a151427e 1899 struct ctl_table fake_table;
1da177e4
LT
1900 unsigned char buf[64], tmp_uuid[16], *uuid;
1901
1902 uuid = table->data;
1903 if (!uuid) {
1904 uuid = tmp_uuid;
1da177e4 1905 generate_random_uuid(uuid);
44e4360f
MD
1906 } else {
1907 static DEFINE_SPINLOCK(bootid_spinlock);
1908
1909 spin_lock(&bootid_spinlock);
1910 if (!uuid[8])
1911 generate_random_uuid(uuid);
1912 spin_unlock(&bootid_spinlock);
1913 }
1da177e4 1914
35900771
JP
1915 sprintf(buf, "%pU", uuid);
1916
1da177e4
LT
1917 fake_table.data = buf;
1918 fake_table.maxlen = sizeof(buf);
1919
8d65af78 1920 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1921}
1922
a283b5c4
PA
1923/*
1924 * Return entropy available scaled to integral bits
1925 */
5eb10d91 1926static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1927 void __user *buffer, size_t *lenp, loff_t *ppos)
1928{
5eb10d91 1929 struct ctl_table fake_table;
a283b5c4
PA
1930 int entropy_count;
1931
1932 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1933
1934 fake_table.data = &entropy_count;
1935 fake_table.maxlen = sizeof(entropy_count);
1936
1937 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1938}
1939
1da177e4 1940static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1941extern struct ctl_table random_table[];
1942struct ctl_table random_table[] = {
1da177e4 1943 {
1da177e4
LT
1944 .procname = "poolsize",
1945 .data = &sysctl_poolsize,
1946 .maxlen = sizeof(int),
1947 .mode = 0444,
6d456111 1948 .proc_handler = proc_dointvec,
1da177e4
LT
1949 },
1950 {
1da177e4
LT
1951 .procname = "entropy_avail",
1952 .maxlen = sizeof(int),
1953 .mode = 0444,
a283b5c4 1954 .proc_handler = proc_do_entropy,
1da177e4
LT
1955 .data = &input_pool.entropy_count,
1956 },
1957 {
1da177e4 1958 .procname = "read_wakeup_threshold",
2132a96f 1959 .data = &random_read_wakeup_bits,
1da177e4
LT
1960 .maxlen = sizeof(int),
1961 .mode = 0644,
6d456111 1962 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1963 .extra1 = &min_read_thresh,
1964 .extra2 = &max_read_thresh,
1965 },
1966 {
1da177e4 1967 .procname = "write_wakeup_threshold",
2132a96f 1968 .data = &random_write_wakeup_bits,
1da177e4
LT
1969 .maxlen = sizeof(int),
1970 .mode = 0644,
6d456111 1971 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1972 .extra1 = &min_write_thresh,
1973 .extra2 = &max_write_thresh,
1974 },
f5c2742c
TT
1975 {
1976 .procname = "urandom_min_reseed_secs",
1977 .data = &random_min_urandom_seed,
1978 .maxlen = sizeof(int),
1979 .mode = 0644,
1980 .proc_handler = proc_dointvec,
1981 },
1da177e4 1982 {
1da177e4
LT
1983 .procname = "boot_id",
1984 .data = &sysctl_bootid,
1985 .maxlen = 16,
1986 .mode = 0444,
6d456111 1987 .proc_handler = proc_do_uuid,
1da177e4
LT
1988 },
1989 {
1da177e4
LT
1990 .procname = "uuid",
1991 .maxlen = 16,
1992 .mode = 0444,
6d456111 1993 .proc_handler = proc_do_uuid,
1da177e4 1994 },
43759d4f
TT
1995#ifdef ADD_INTERRUPT_BENCH
1996 {
1997 .procname = "add_interrupt_avg_cycles",
1998 .data = &avg_cycles,
1999 .maxlen = sizeof(avg_cycles),
2000 .mode = 0444,
2001 .proc_handler = proc_doulongvec_minmax,
2002 },
2003 {
2004 .procname = "add_interrupt_avg_deviation",
2005 .data = &avg_deviation,
2006 .maxlen = sizeof(avg_deviation),
2007 .mode = 0444,
2008 .proc_handler = proc_doulongvec_minmax,
2009 },
2010#endif
894d2491 2011 { }
1da177e4
LT
2012};
2013#endif /* CONFIG_SYSCTL */
2014
f5b98461
JD
2015struct batched_entropy {
2016 union {
c440408c
JD
2017 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2018 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
f5b98461
JD
2019 };
2020 unsigned int position;
2021};
b1132dea 2022
1da177e4 2023/*
f5b98461
JD
2024 * Get a random word for internal kernel use only. The quality of the random
2025 * number is either as good as RDRAND or as good as /dev/urandom, with the
2026 * goal of being quite fast and not depleting entropy.
1da177e4 2027 */
c440408c
JD
2028static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2029u64 get_random_u64(void)
1da177e4 2030{
c440408c 2031 u64 ret;
f5b98461 2032 struct batched_entropy *batch;
8a0a9bd4 2033
c440408c
JD
2034#if BITS_PER_LONG == 64
2035 if (arch_get_random_long((unsigned long *)&ret))
63d77173 2036 return ret;
c440408c
JD
2037#else
2038 if (arch_get_random_long((unsigned long *)&ret) &&
2039 arch_get_random_long((unsigned long *)&ret + 1))
2040 return ret;
2041#endif
63d77173 2042
c440408c
JD
2043 batch = &get_cpu_var(batched_entropy_u64);
2044 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2045 extract_crng((u8 *)batch->entropy_u64);
f5b98461
JD
2046 batch->position = 0;
2047 }
c440408c
JD
2048 ret = batch->entropy_u64[batch->position++];
2049 put_cpu_var(batched_entropy_u64);
8a0a9bd4 2050 return ret;
1da177e4 2051}
c440408c 2052EXPORT_SYMBOL(get_random_u64);
1da177e4 2053
c440408c
JD
2054static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2055u32 get_random_u32(void)
f5b98461 2056{
c440408c 2057 u32 ret;
f5b98461 2058 struct batched_entropy *batch;
ec9ee4ac 2059
f5b98461 2060 if (arch_get_random_int(&ret))
ec9ee4ac
DC
2061 return ret;
2062
c440408c
JD
2063 batch = &get_cpu_var(batched_entropy_u32);
2064 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2065 extract_crng((u8 *)batch->entropy_u32);
f5b98461
JD
2066 batch->position = 0;
2067 }
c440408c
JD
2068 ret = batch->entropy_u32[batch->position++];
2069 put_cpu_var(batched_entropy_u32);
ec9ee4ac
DC
2070 return ret;
2071}
c440408c 2072EXPORT_SYMBOL(get_random_u32);
ec9ee4ac 2073
99fdafde
JC
2074/**
2075 * randomize_page - Generate a random, page aligned address
2076 * @start: The smallest acceptable address the caller will take.
2077 * @range: The size of the area, starting at @start, within which the
2078 * random address must fall.
2079 *
2080 * If @start + @range would overflow, @range is capped.
2081 *
2082 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2083 * @start was already page aligned. We now align it regardless.
2084 *
2085 * Return: A page aligned address within [start, start + range). On error,
2086 * @start is returned.
2087 */
2088unsigned long
2089randomize_page(unsigned long start, unsigned long range)
2090{
2091 if (!PAGE_ALIGNED(start)) {
2092 range -= PAGE_ALIGN(start) - start;
2093 start = PAGE_ALIGN(start);
2094 }
2095
2096 if (start > ULONG_MAX - range)
2097 range = ULONG_MAX - start;
2098
2099 range >>= PAGE_SHIFT;
2100
2101 if (range == 0)
2102 return start;
2103
2104 return start + (get_random_long() % range << PAGE_SHIFT);
2105}
2106
c84dbf61
TD
2107/* Interface for in-kernel drivers of true hardware RNGs.
2108 * Those devices may produce endless random bits and will be throttled
2109 * when our pool is full.
2110 */
2111void add_hwgenerator_randomness(const char *buffer, size_t count,
2112 size_t entropy)
2113{
2114 struct entropy_store *poolp = &input_pool;
2115
e192be9d
TT
2116 if (!crng_ready()) {
2117 crng_fast_load(buffer, count);
2118 return;
3371f3da 2119 }
e192be9d
TT
2120
2121 /* Suspend writing if we're above the trickle threshold.
2122 * We'll be woken up again once below random_write_wakeup_thresh,
2123 * or when the calling thread is about to terminate.
2124 */
2125 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2126 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2127 mix_pool_bytes(poolp, buffer, count);
2128 credit_entropy_bits(poolp, entropy);
2129}
2130EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);