various: Fix spelling of "asynchronous" in comments.
[linux-2.6-block.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
1da177e4 44#include <linux/sched.h>
07412736 45#include <linux/seq_file.h>
1da177e4
LT
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
16f4232c 60#include <linux/ipmi.h>
1da177e4
LT
61#include <linux/ipmi_smi.h>
62#include <asm/io.h>
63#include "ipmi_si_sm.h"
64#include <linux/init.h>
b224cd3a 65#include <linux/dmi.h>
b361e27b
CM
66#include <linux/string.h>
67#include <linux/ctype.h>
9e368fa0 68#include <linux/pnp.h>
11c675ce
SR
69#include <linux/of_device.h>
70#include <linux/of_platform.h>
672d8eaf
RH
71#include <linux/of_address.h>
72#include <linux/of_irq.h>
dba9b4f6 73
b361e27b 74#define PFX "ipmi_si: "
1da177e4
LT
75
76/* Measure times between events in the driver. */
77#undef DEBUG_TIMING
78
79/* Call every 10 ms. */
80#define SI_TIMEOUT_TIME_USEC 10000
81#define SI_USEC_PER_JIFFY (1000000/HZ)
82#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 84 short timeout */
1da177e4
LT
85
86enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
1da177e4
LT
97 /* FIXME - add watchdog stuff. */
98};
99
9dbf68f9
CM
100/* Some BT-specific defines we need here. */
101#define IPMI_BT_INTMASK_REG 2
102#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
1da177e4
LT
105enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107};
b361e27b 108static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 109
5fedc4a2
MG
110static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 "ACPI", "SMBIOS", "PCI",
112 "device-tree", "default" };
113
50c812b2
CM
114#define DEVICE_NAME "ipmi_si"
115
a1e9c9dd 116static struct platform_driver ipmi_driver;
64959e2d
CM
117
118/*
119 * Indexes into stats[] in smi_info below.
120 */
ba8ff1c6
CM
121enum si_stat_indexes {
122 /*
123 * Number of times the driver requested a timer while an operation
124 * was in progress.
125 */
126 SI_STAT_short_timeouts = 0,
127
128 /*
129 * Number of times the driver requested a timer while nothing was in
130 * progress.
131 */
132 SI_STAT_long_timeouts,
133
134 /* Number of times the interface was idle while being polled. */
135 SI_STAT_idles,
136
137 /* Number of interrupts the driver handled. */
138 SI_STAT_interrupts,
139
140 /* Number of time the driver got an ATTN from the hardware. */
141 SI_STAT_attentions,
64959e2d 142
ba8ff1c6
CM
143 /* Number of times the driver requested flags from the hardware. */
144 SI_STAT_flag_fetches,
145
146 /* Number of times the hardware didn't follow the state machine. */
147 SI_STAT_hosed_count,
148
149 /* Number of completed messages. */
150 SI_STAT_complete_transactions,
151
152 /* Number of IPMI events received from the hardware. */
153 SI_STAT_events,
154
155 /* Number of watchdog pretimeouts. */
156 SI_STAT_watchdog_pretimeouts,
157
b3834be5 158 /* Number of asynchronous messages received. */
ba8ff1c6
CM
159 SI_STAT_incoming_messages,
160
161
162 /* This *must* remain last, add new values above this. */
163 SI_NUM_STATS
164};
64959e2d 165
c305e3d3 166struct smi_info {
a9a2c44f 167 int intf_num;
1da177e4
LT
168 ipmi_smi_t intf;
169 struct si_sm_data *si_sm;
170 struct si_sm_handlers *handlers;
171 enum si_type si_type;
172 spinlock_t si_lock;
1da177e4
LT
173 struct list_head xmit_msgs;
174 struct list_head hp_xmit_msgs;
175 struct ipmi_smi_msg *curr_msg;
176 enum si_intf_state si_state;
177
c305e3d3
CM
178 /*
179 * Used to handle the various types of I/O that can occur with
180 * IPMI
181 */
1da177e4
LT
182 struct si_sm_io io;
183 int (*io_setup)(struct smi_info *info);
184 void (*io_cleanup)(struct smi_info *info);
185 int (*irq_setup)(struct smi_info *info);
186 void (*irq_cleanup)(struct smi_info *info);
187 unsigned int io_size;
5fedc4a2 188 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
189 void (*addr_source_cleanup)(struct smi_info *info);
190 void *addr_source_data;
1da177e4 191
c305e3d3
CM
192 /*
193 * Per-OEM handler, called from handle_flags(). Returns 1
194 * when handle_flags() needs to be re-run or 0 indicating it
195 * set si_state itself.
196 */
3ae0e0f9
CM
197 int (*oem_data_avail_handler)(struct smi_info *smi_info);
198
c305e3d3
CM
199 /*
200 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 * is set to hold the flags until we are done handling everything
202 * from the flags.
203 */
1da177e4
LT
204#define RECEIVE_MSG_AVAIL 0x01
205#define EVENT_MSG_BUFFER_FULL 0x02
206#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
207#define OEM0_DATA_AVAIL 0x20
208#define OEM1_DATA_AVAIL 0x40
209#define OEM2_DATA_AVAIL 0x80
210#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
211 OEM1_DATA_AVAIL | \
212 OEM2_DATA_AVAIL)
1da177e4
LT
213 unsigned char msg_flags;
214
40112ae7
CM
215 /* Does the BMC have an event buffer? */
216 char has_event_buffer;
217
c305e3d3
CM
218 /*
219 * If set to true, this will request events the next time the
220 * state machine is idle.
221 */
1da177e4
LT
222 atomic_t req_events;
223
c305e3d3
CM
224 /*
225 * If true, run the state machine to completion on every send
226 * call. Generally used after a panic to make sure stuff goes
227 * out.
228 */
1da177e4
LT
229 int run_to_completion;
230
231 /* The I/O port of an SI interface. */
232 int port;
233
c305e3d3
CM
234 /*
235 * The space between start addresses of the two ports. For
236 * instance, if the first port is 0xca2 and the spacing is 4, then
237 * the second port is 0xca6.
238 */
1da177e4
LT
239 unsigned int spacing;
240
241 /* zero if no irq; */
242 int irq;
243
244 /* The timer for this si. */
245 struct timer_list si_timer;
246
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies;
249
250 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 251 atomic_t stop_operation;
1da177e4 252
c305e3d3
CM
253 /*
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
257 * interrupts.
258 */
1da177e4
LT
259 int interrupt_disabled;
260
50c812b2 261 /* From the get device id response... */
3ae0e0f9 262 struct ipmi_device_id device_id;
1da177e4 263
50c812b2
CM
264 /* Driver model stuff. */
265 struct device *dev;
266 struct platform_device *pdev;
267
c305e3d3
CM
268 /*
269 * True if we allocated the device, false if it came from
270 * someplace else (like PCI).
271 */
50c812b2
CM
272 int dev_registered;
273
1da177e4
LT
274 /* Slave address, could be reported from DMI. */
275 unsigned char slave_addr;
276
277 /* Counters and things for the proc filesystem. */
64959e2d 278 atomic_t stats[SI_NUM_STATS];
a9a2c44f 279
c305e3d3 280 struct task_struct *thread;
b0defcdb
CM
281
282 struct list_head link;
16f4232c 283 union ipmi_smi_info_union addr_info;
1da177e4
LT
284};
285
64959e2d
CM
286#define smi_inc_stat(smi, stat) \
287 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288#define smi_get_stat(smi, stat) \
289 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
290
a51f4a81
CM
291#define SI_MAX_PARMS 4
292
293static int force_kipmid[SI_MAX_PARMS];
294static int num_force_kipmid;
56480287
MG
295#ifdef CONFIG_PCI
296static int pci_registered;
297#endif
561f8182
YL
298#ifdef CONFIG_ACPI
299static int pnp_registered;
300#endif
a51f4a81 301
ae74e823
MW
302static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303static int num_max_busy_us;
304
b361e27b
CM
305static int unload_when_empty = 1;
306
2407d77a 307static int add_smi(struct smi_info *smi);
b0defcdb 308static int try_smi_init(struct smi_info *smi);
b361e27b 309static void cleanup_one_si(struct smi_info *to_clean);
d2478521 310static void cleanup_ipmi_si(void);
b0defcdb 311
e041c683 312static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 313static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 314{
e041c683 315 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
316}
317
1da177e4
LT
318static void deliver_recv_msg(struct smi_info *smi_info,
319 struct ipmi_smi_msg *msg)
320{
7adf579c
CM
321 /* Deliver the message to the upper layer. */
322 ipmi_smi_msg_received(smi_info->intf, msg);
1da177e4
LT
323}
324
4d7cbac7 325static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
326{
327 struct ipmi_smi_msg *msg = smi_info->curr_msg;
328
4d7cbac7
CM
329 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330 cCode = IPMI_ERR_UNSPECIFIED;
331 /* else use it as is */
332
25985edc 333 /* Make it a response */
1da177e4
LT
334 msg->rsp[0] = msg->data[0] | 4;
335 msg->rsp[1] = msg->data[1];
4d7cbac7 336 msg->rsp[2] = cCode;
1da177e4
LT
337 msg->rsp_size = 3;
338
339 smi_info->curr_msg = NULL;
340 deliver_recv_msg(smi_info, msg);
341}
342
343static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344{
345 int rv;
346 struct list_head *entry = NULL;
347#ifdef DEBUG_TIMING
348 struct timeval t;
349#endif
350
1da177e4 351 /* Pick the high priority queue first. */
b0defcdb 352 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 353 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 354 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
355 entry = smi_info->xmit_msgs.next;
356 }
357
b0defcdb 358 if (!entry) {
1da177e4
LT
359 smi_info->curr_msg = NULL;
360 rv = SI_SM_IDLE;
361 } else {
362 int err;
363
364 list_del(entry);
365 smi_info->curr_msg = list_entry(entry,
366 struct ipmi_smi_msg,
367 link);
368#ifdef DEBUG_TIMING
369 do_gettimeofday(&t);
c305e3d3 370 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 371#endif
e041c683
AS
372 err = atomic_notifier_call_chain(&xaction_notifier_list,
373 0, smi_info);
ea94027b
CM
374 if (err & NOTIFY_STOP_MASK) {
375 rv = SI_SM_CALL_WITHOUT_DELAY;
376 goto out;
377 }
1da177e4
LT
378 err = smi_info->handlers->start_transaction(
379 smi_info->si_sm,
380 smi_info->curr_msg->data,
381 smi_info->curr_msg->data_size);
c305e3d3 382 if (err)
4d7cbac7 383 return_hosed_msg(smi_info, err);
1da177e4
LT
384
385 rv = SI_SM_CALL_WITHOUT_DELAY;
386 }
c305e3d3 387 out:
1da177e4
LT
388 return rv;
389}
390
391static void start_enable_irq(struct smi_info *smi_info)
392{
393 unsigned char msg[2];
394
c305e3d3
CM
395 /*
396 * If we are enabling interrupts, we have to tell the
397 * BMC to use them.
398 */
1da177e4
LT
399 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
401
402 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404}
405
ee6cd5f8
CM
406static void start_disable_irq(struct smi_info *smi_info)
407{
408 unsigned char msg[2];
409
410 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
412
413 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415}
416
1da177e4
LT
417static void start_clear_flags(struct smi_info *smi_info)
418{
419 unsigned char msg[3];
420
421 /* Make sure the watchdog pre-timeout flag is not set at startup. */
422 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424 msg[2] = WDT_PRE_TIMEOUT_INT;
425
426 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427 smi_info->si_state = SI_CLEARING_FLAGS;
428}
429
c305e3d3
CM
430/*
431 * When we have a situtaion where we run out of memory and cannot
432 * allocate messages, we just leave them in the BMC and run the system
433 * polled until we can allocate some memory. Once we have some
434 * memory, we will re-enable the interrupt.
435 */
1da177e4
LT
436static inline void disable_si_irq(struct smi_info *smi_info)
437{
b0defcdb 438 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 439 start_disable_irq(smi_info);
1da177e4 440 smi_info->interrupt_disabled = 1;
ea4078ca
MG
441 if (!atomic_read(&smi_info->stop_operation))
442 mod_timer(&smi_info->si_timer,
443 jiffies + SI_TIMEOUT_JIFFIES);
1da177e4
LT
444 }
445}
446
447static inline void enable_si_irq(struct smi_info *smi_info)
448{
449 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 450 start_enable_irq(smi_info);
1da177e4
LT
451 smi_info->interrupt_disabled = 0;
452 }
453}
454
455static void handle_flags(struct smi_info *smi_info)
456{
3ae0e0f9 457 retry:
1da177e4
LT
458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 /* Watchdog pre-timeout */
64959e2d 460 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
461
462 start_clear_flags(smi_info);
463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
1da177e4 464 ipmi_smi_watchdog_pretimeout(smi_info->intf);
1da177e4
LT
465 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466 /* Messages available. */
467 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 468 if (!smi_info->curr_msg) {
1da177e4
LT
469 disable_si_irq(smi_info);
470 smi_info->si_state = SI_NORMAL;
471 return;
472 }
473 enable_si_irq(smi_info);
474
475 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477 smi_info->curr_msg->data_size = 2;
478
479 smi_info->handlers->start_transaction(
480 smi_info->si_sm,
481 smi_info->curr_msg->data,
482 smi_info->curr_msg->data_size);
483 smi_info->si_state = SI_GETTING_MESSAGES;
484 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485 /* Events available. */
486 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 487 if (!smi_info->curr_msg) {
1da177e4
LT
488 disable_si_irq(smi_info);
489 smi_info->si_state = SI_NORMAL;
490 return;
491 }
492 enable_si_irq(smi_info);
493
494 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496 smi_info->curr_msg->data_size = 2;
497
498 smi_info->handlers->start_transaction(
499 smi_info->si_sm,
500 smi_info->curr_msg->data,
501 smi_info->curr_msg->data_size);
502 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef 503 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 504 smi_info->oem_data_avail_handler) {
4064d5ef
CM
505 if (smi_info->oem_data_avail_handler(smi_info))
506 goto retry;
c305e3d3 507 } else
1da177e4 508 smi_info->si_state = SI_NORMAL;
1da177e4
LT
509}
510
511static void handle_transaction_done(struct smi_info *smi_info)
512{
513 struct ipmi_smi_msg *msg;
514#ifdef DEBUG_TIMING
515 struct timeval t;
516
517 do_gettimeofday(&t);
c305e3d3 518 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
519#endif
520 switch (smi_info->si_state) {
521 case SI_NORMAL:
b0defcdb 522 if (!smi_info->curr_msg)
1da177e4
LT
523 break;
524
525 smi_info->curr_msg->rsp_size
526 = smi_info->handlers->get_result(
527 smi_info->si_sm,
528 smi_info->curr_msg->rsp,
529 IPMI_MAX_MSG_LENGTH);
530
c305e3d3
CM
531 /*
532 * Do this here becase deliver_recv_msg() releases the
533 * lock, and a new message can be put in during the
534 * time the lock is released.
535 */
1da177e4
LT
536 msg = smi_info->curr_msg;
537 smi_info->curr_msg = NULL;
538 deliver_recv_msg(smi_info, msg);
539 break;
540
541 case SI_GETTING_FLAGS:
542 {
543 unsigned char msg[4];
544 unsigned int len;
545
546 /* We got the flags from the SMI, now handle them. */
547 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548 if (msg[2] != 0) {
c305e3d3 549 /* Error fetching flags, just give up for now. */
1da177e4
LT
550 smi_info->si_state = SI_NORMAL;
551 } else if (len < 4) {
c305e3d3
CM
552 /*
553 * Hmm, no flags. That's technically illegal, but
554 * don't use uninitialized data.
555 */
1da177e4
LT
556 smi_info->si_state = SI_NORMAL;
557 } else {
558 smi_info->msg_flags = msg[3];
559 handle_flags(smi_info);
560 }
561 break;
562 }
563
564 case SI_CLEARING_FLAGS:
565 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
566 {
567 unsigned char msg[3];
568
569 /* We cleared the flags. */
570 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571 if (msg[2] != 0) {
572 /* Error clearing flags */
279fbd0c
MS
573 dev_warn(smi_info->dev,
574 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4
LT
575 }
576 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577 start_enable_irq(smi_info);
578 else
579 smi_info->si_state = SI_NORMAL;
580 break;
581 }
582
583 case SI_GETTING_EVENTS:
584 {
585 smi_info->curr_msg->rsp_size
586 = smi_info->handlers->get_result(
587 smi_info->si_sm,
588 smi_info->curr_msg->rsp,
589 IPMI_MAX_MSG_LENGTH);
590
c305e3d3
CM
591 /*
592 * Do this here becase deliver_recv_msg() releases the
593 * lock, and a new message can be put in during the
594 * time the lock is released.
595 */
1da177e4
LT
596 msg = smi_info->curr_msg;
597 smi_info->curr_msg = NULL;
598 if (msg->rsp[2] != 0) {
599 /* Error getting event, probably done. */
600 msg->done(msg);
601
602 /* Take off the event flag. */
603 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604 handle_flags(smi_info);
605 } else {
64959e2d 606 smi_inc_stat(smi_info, events);
1da177e4 607
c305e3d3
CM
608 /*
609 * Do this before we deliver the message
610 * because delivering the message releases the
611 * lock and something else can mess with the
612 * state.
613 */
1da177e4
LT
614 handle_flags(smi_info);
615
616 deliver_recv_msg(smi_info, msg);
617 }
618 break;
619 }
620
621 case SI_GETTING_MESSAGES:
622 {
623 smi_info->curr_msg->rsp_size
624 = smi_info->handlers->get_result(
625 smi_info->si_sm,
626 smi_info->curr_msg->rsp,
627 IPMI_MAX_MSG_LENGTH);
628
c305e3d3
CM
629 /*
630 * Do this here becase deliver_recv_msg() releases the
631 * lock, and a new message can be put in during the
632 * time the lock is released.
633 */
1da177e4
LT
634 msg = smi_info->curr_msg;
635 smi_info->curr_msg = NULL;
636 if (msg->rsp[2] != 0) {
637 /* Error getting event, probably done. */
638 msg->done(msg);
639
640 /* Take off the msg flag. */
641 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642 handle_flags(smi_info);
643 } else {
64959e2d 644 smi_inc_stat(smi_info, incoming_messages);
1da177e4 645
c305e3d3
CM
646 /*
647 * Do this before we deliver the message
648 * because delivering the message releases the
649 * lock and something else can mess with the
650 * state.
651 */
1da177e4
LT
652 handle_flags(smi_info);
653
654 deliver_recv_msg(smi_info, msg);
655 }
656 break;
657 }
658
659 case SI_ENABLE_INTERRUPTS1:
660 {
661 unsigned char msg[4];
662
663 /* We got the flags from the SMI, now handle them. */
664 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665 if (msg[2] != 0) {
279fbd0c
MS
666 dev_warn(smi_info->dev, "Could not enable interrupts"
667 ", failed get, using polled mode.\n");
1da177e4
LT
668 smi_info->si_state = SI_NORMAL;
669 } else {
670 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
671 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
672 msg[2] = (msg[3] |
673 IPMI_BMC_RCV_MSG_INTR |
674 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
675 smi_info->handlers->start_transaction(
676 smi_info->si_sm, msg, 3);
677 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
678 }
679 break;
680 }
681
682 case SI_ENABLE_INTERRUPTS2:
683 {
684 unsigned char msg[4];
685
686 /* We got the flags from the SMI, now handle them. */
687 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
279fbd0c
MS
688 if (msg[2] != 0)
689 dev_warn(smi_info->dev, "Could not enable interrupts"
690 ", failed set, using polled mode.\n");
691 else
ea4078ca 692 smi_info->interrupt_disabled = 0;
1da177e4
LT
693 smi_info->si_state = SI_NORMAL;
694 break;
695 }
ee6cd5f8
CM
696
697 case SI_DISABLE_INTERRUPTS1:
698 {
699 unsigned char msg[4];
700
701 /* We got the flags from the SMI, now handle them. */
702 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
703 if (msg[2] != 0) {
279fbd0c
MS
704 dev_warn(smi_info->dev, "Could not disable interrupts"
705 ", failed get.\n");
ee6cd5f8
CM
706 smi_info->si_state = SI_NORMAL;
707 } else {
708 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
709 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
710 msg[2] = (msg[3] &
711 ~(IPMI_BMC_RCV_MSG_INTR |
712 IPMI_BMC_EVT_MSG_INTR));
713 smi_info->handlers->start_transaction(
714 smi_info->si_sm, msg, 3);
715 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
716 }
717 break;
718 }
719
720 case SI_DISABLE_INTERRUPTS2:
721 {
722 unsigned char msg[4];
723
724 /* We got the flags from the SMI, now handle them. */
725 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726 if (msg[2] != 0) {
279fbd0c
MS
727 dev_warn(smi_info->dev, "Could not disable interrupts"
728 ", failed set.\n");
ee6cd5f8
CM
729 }
730 smi_info->si_state = SI_NORMAL;
731 break;
732 }
1da177e4
LT
733 }
734}
735
c305e3d3
CM
736/*
737 * Called on timeouts and events. Timeouts should pass the elapsed
738 * time, interrupts should pass in zero. Must be called with
739 * si_lock held and interrupts disabled.
740 */
1da177e4
LT
741static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
742 int time)
743{
744 enum si_sm_result si_sm_result;
745
746 restart:
c305e3d3
CM
747 /*
748 * There used to be a loop here that waited a little while
749 * (around 25us) before giving up. That turned out to be
750 * pointless, the minimum delays I was seeing were in the 300us
751 * range, which is far too long to wait in an interrupt. So
752 * we just run until the state machine tells us something
753 * happened or it needs a delay.
754 */
1da177e4
LT
755 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
756 time = 0;
757 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 758 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 759
c305e3d3 760 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 761 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
762
763 handle_transaction_done(smi_info);
764 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 765 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 766 smi_inc_stat(smi_info, hosed_count);
1da177e4 767
c305e3d3
CM
768 /*
769 * Do the before return_hosed_msg, because that
770 * releases the lock.
771 */
1da177e4
LT
772 smi_info->si_state = SI_NORMAL;
773 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
774 /*
775 * If we were handling a user message, format
776 * a response to send to the upper layer to
777 * tell it about the error.
778 */
4d7cbac7 779 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
780 }
781 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782 }
783
4ea18425
CM
784 /*
785 * We prefer handling attn over new messages. But don't do
786 * this if there is not yet an upper layer to handle anything.
787 */
c305e3d3 788 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
789 unsigned char msg[2];
790
64959e2d 791 smi_inc_stat(smi_info, attentions);
1da177e4 792
c305e3d3
CM
793 /*
794 * Got a attn, send down a get message flags to see
795 * what's causing it. It would be better to handle
796 * this in the upper layer, but due to the way
797 * interrupts work with the SMI, that's not really
798 * possible.
799 */
1da177e4
LT
800 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
801 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
802
803 smi_info->handlers->start_transaction(
804 smi_info->si_sm, msg, 2);
805 smi_info->si_state = SI_GETTING_FLAGS;
806 goto restart;
807 }
808
809 /* If we are currently idle, try to start the next message. */
810 if (si_sm_result == SI_SM_IDLE) {
64959e2d 811 smi_inc_stat(smi_info, idles);
1da177e4
LT
812
813 si_sm_result = start_next_msg(smi_info);
814 if (si_sm_result != SI_SM_IDLE)
815 goto restart;
c305e3d3 816 }
1da177e4
LT
817
818 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
819 && (atomic_read(&smi_info->req_events))) {
820 /*
821 * We are idle and the upper layer requested that I fetch
822 * events, so do so.
823 */
55162fb1 824 atomic_set(&smi_info->req_events, 0);
1da177e4 825
55162fb1
CM
826 smi_info->curr_msg = ipmi_alloc_smi_msg();
827 if (!smi_info->curr_msg)
828 goto out;
1da177e4 829
55162fb1
CM
830 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
831 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
832 smi_info->curr_msg->data_size = 2;
1da177e4
LT
833
834 smi_info->handlers->start_transaction(
55162fb1
CM
835 smi_info->si_sm,
836 smi_info->curr_msg->data,
837 smi_info->curr_msg->data_size);
838 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
839 goto restart;
840 }
55162fb1 841 out:
1da177e4
LT
842 return si_sm_result;
843}
844
845static void sender(void *send_info,
846 struct ipmi_smi_msg *msg,
847 int priority)
848{
849 struct smi_info *smi_info = send_info;
850 enum si_sm_result result;
851 unsigned long flags;
852#ifdef DEBUG_TIMING
853 struct timeval t;
854#endif
855
b361e27b
CM
856 if (atomic_read(&smi_info->stop_operation)) {
857 msg->rsp[0] = msg->data[0] | 4;
858 msg->rsp[1] = msg->data[1];
859 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
860 msg->rsp_size = 3;
861 deliver_recv_msg(smi_info, msg);
862 return;
863 }
864
1da177e4
LT
865#ifdef DEBUG_TIMING
866 do_gettimeofday(&t);
867 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
868#endif
869
870 if (smi_info->run_to_completion) {
bda4c30a
CM
871 /*
872 * If we are running to completion, then throw it in
873 * the list and run transactions until everything is
874 * clear. Priority doesn't matter here.
875 */
876
877 /*
878 * Run to completion means we are single-threaded, no
879 * need for locks.
880 */
1da177e4
LT
881 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
882
1da177e4
LT
883 result = smi_event_handler(smi_info, 0);
884 while (result != SI_SM_IDLE) {
885 udelay(SI_SHORT_TIMEOUT_USEC);
886 result = smi_event_handler(smi_info,
887 SI_SHORT_TIMEOUT_USEC);
888 }
1da177e4 889 return;
1da177e4 890 }
1da177e4 891
f60adf42 892 spin_lock_irqsave(&smi_info->si_lock, flags);
bda4c30a
CM
893 if (priority > 0)
894 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
895 else
896 list_add_tail(&msg->link, &smi_info->xmit_msgs);
bda4c30a 897
b88e7693 898 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
f60adf42
CM
899 /*
900 * last_timeout_jiffies is updated here to avoid
901 * smi_timeout() handler passing very large time_diff
902 * value to smi_event_handler() that causes
903 * the send command to abort.
904 */
905 smi_info->last_timeout_jiffies = jiffies;
906
907 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
908
909 if (smi_info->thread)
910 wake_up_process(smi_info->thread);
911
1da177e4 912 start_next_msg(smi_info);
b88e7693
S
913 smi_event_handler(smi_info, 0);
914 }
bda4c30a 915 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
916}
917
918static void set_run_to_completion(void *send_info, int i_run_to_completion)
919{
920 struct smi_info *smi_info = send_info;
921 enum si_sm_result result;
1da177e4
LT
922
923 smi_info->run_to_completion = i_run_to_completion;
924 if (i_run_to_completion) {
925 result = smi_event_handler(smi_info, 0);
926 while (result != SI_SM_IDLE) {
927 udelay(SI_SHORT_TIMEOUT_USEC);
928 result = smi_event_handler(smi_info,
929 SI_SHORT_TIMEOUT_USEC);
930 }
931 }
1da177e4
LT
932}
933
ae74e823
MW
934/*
935 * Use -1 in the nsec value of the busy waiting timespec to tell that
936 * we are spinning in kipmid looking for something and not delaying
937 * between checks
938 */
939static inline void ipmi_si_set_not_busy(struct timespec *ts)
940{
941 ts->tv_nsec = -1;
942}
943static inline int ipmi_si_is_busy(struct timespec *ts)
944{
945 return ts->tv_nsec != -1;
946}
947
948static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
949 const struct smi_info *smi_info,
950 struct timespec *busy_until)
951{
952 unsigned int max_busy_us = 0;
953
954 if (smi_info->intf_num < num_max_busy_us)
955 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
956 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
957 ipmi_si_set_not_busy(busy_until);
958 else if (!ipmi_si_is_busy(busy_until)) {
959 getnstimeofday(busy_until);
960 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
961 } else {
962 struct timespec now;
963 getnstimeofday(&now);
964 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
965 ipmi_si_set_not_busy(busy_until);
966 return 0;
967 }
968 }
969 return 1;
970}
971
972
973/*
974 * A busy-waiting loop for speeding up IPMI operation.
975 *
976 * Lousy hardware makes this hard. This is only enabled for systems
977 * that are not BT and do not have interrupts. It starts spinning
978 * when an operation is complete or until max_busy tells it to stop
979 * (if that is enabled). See the paragraph on kimid_max_busy_us in
980 * Documentation/IPMI.txt for details.
981 */
a9a2c44f
CM
982static int ipmi_thread(void *data)
983{
984 struct smi_info *smi_info = data;
e9a705a0 985 unsigned long flags;
a9a2c44f 986 enum si_sm_result smi_result;
ae74e823 987 struct timespec busy_until;
a9a2c44f 988
ae74e823 989 ipmi_si_set_not_busy(&busy_until);
a9a2c44f 990 set_user_nice(current, 19);
e9a705a0 991 while (!kthread_should_stop()) {
ae74e823
MW
992 int busy_wait;
993
a9a2c44f 994 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 995 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 996 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
997 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
998 &busy_until);
c305e3d3
CM
999 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1000 ; /* do nothing */
ae74e823 1001 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1002 schedule();
3326f4f2
MG
1003 else if (smi_result == SI_SM_IDLE)
1004 schedule_timeout_interruptible(100);
e9a705a0 1005 else
8d1f66dc 1006 schedule_timeout_interruptible(1);
a9a2c44f 1007 }
a9a2c44f
CM
1008 return 0;
1009}
1010
1011
1da177e4
LT
1012static void poll(void *send_info)
1013{
1014 struct smi_info *smi_info = send_info;
f60adf42
CM
1015 unsigned long flags = 0;
1016 int run_to_completion = smi_info->run_to_completion;
1da177e4 1017
15c62e10
CM
1018 /*
1019 * Make sure there is some delay in the poll loop so we can
1020 * drive time forward and timeout things.
1021 */
1022 udelay(10);
f60adf42
CM
1023 if (!run_to_completion)
1024 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1025 smi_event_handler(smi_info, 10);
f60adf42
CM
1026 if (!run_to_completion)
1027 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1028}
1029
1030static void request_events(void *send_info)
1031{
1032 struct smi_info *smi_info = send_info;
1033
40112ae7
CM
1034 if (atomic_read(&smi_info->stop_operation) ||
1035 !smi_info->has_event_buffer)
b361e27b
CM
1036 return;
1037
1da177e4
LT
1038 atomic_set(&smi_info->req_events, 1);
1039}
1040
0c8204b3 1041static int initialized;
1da177e4 1042
1da177e4
LT
1043static void smi_timeout(unsigned long data)
1044{
1045 struct smi_info *smi_info = (struct smi_info *) data;
1046 enum si_sm_result smi_result;
1047 unsigned long flags;
1048 unsigned long jiffies_now;
c4edff1c 1049 long time_diff;
3326f4f2 1050 long timeout;
1da177e4
LT
1051#ifdef DEBUG_TIMING
1052 struct timeval t;
1053#endif
1054
1da177e4
LT
1055 spin_lock_irqsave(&(smi_info->si_lock), flags);
1056#ifdef DEBUG_TIMING
1057 do_gettimeofday(&t);
c305e3d3 1058 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1059#endif
1060 jiffies_now = jiffies;
c4edff1c 1061 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1062 * SI_USEC_PER_JIFFY);
1063 smi_result = smi_event_handler(smi_info, time_diff);
1064
1065 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066
1067 smi_info->last_timeout_jiffies = jiffies_now;
1068
b0defcdb 1069 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1070 /* Running with interrupts, only do long timeouts. */
3326f4f2 1071 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1072 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1073 goto do_mod_timer;
1da177e4
LT
1074 }
1075
c305e3d3
CM
1076 /*
1077 * If the state machine asks for a short delay, then shorten
1078 * the timer timeout.
1079 */
1da177e4 1080 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1081 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1082 timeout = jiffies + 1;
1da177e4 1083 } else {
64959e2d 1084 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1085 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1086 }
1087
3326f4f2
MG
1088 do_mod_timer:
1089 if (smi_result != SI_SM_IDLE)
1090 mod_timer(&(smi_info->si_timer), timeout);
1da177e4
LT
1091}
1092
7d12e780 1093static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1094{
1095 struct smi_info *smi_info = data;
1096 unsigned long flags;
1097#ifdef DEBUG_TIMING
1098 struct timeval t;
1099#endif
1100
1101 spin_lock_irqsave(&(smi_info->si_lock), flags);
1102
64959e2d 1103 smi_inc_stat(smi_info, interrupts);
1da177e4 1104
1da177e4
LT
1105#ifdef DEBUG_TIMING
1106 do_gettimeofday(&t);
c305e3d3 1107 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1108#endif
1109 smi_event_handler(smi_info, 0);
1da177e4
LT
1110 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1111 return IRQ_HANDLED;
1112}
1113
7d12e780 1114static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1115{
1116 struct smi_info *smi_info = data;
1117 /* We need to clear the IRQ flag for the BT interface. */
1118 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1119 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1120 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1121 return si_irq_handler(irq, data);
9dbf68f9
CM
1122}
1123
453823ba
CM
1124static int smi_start_processing(void *send_info,
1125 ipmi_smi_t intf)
1126{
1127 struct smi_info *new_smi = send_info;
a51f4a81 1128 int enable = 0;
453823ba
CM
1129
1130 new_smi->intf = intf;
1131
c45adc39
CM
1132 /* Try to claim any interrupts. */
1133 if (new_smi->irq_setup)
1134 new_smi->irq_setup(new_smi);
1135
453823ba
CM
1136 /* Set up the timer that drives the interface. */
1137 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1138 new_smi->last_timeout_jiffies = jiffies;
1139 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1140
a51f4a81
CM
1141 /*
1142 * Check if the user forcefully enabled the daemon.
1143 */
1144 if (new_smi->intf_num < num_force_kipmid)
1145 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1146 /*
1147 * The BT interface is efficient enough to not need a thread,
1148 * and there is no need for a thread if we have interrupts.
1149 */
c305e3d3 1150 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1151 enable = 1;
1152
1153 if (enable) {
453823ba
CM
1154 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1155 "kipmi%d", new_smi->intf_num);
1156 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1157 dev_notice(new_smi->dev, "Could not start"
1158 " kernel thread due to error %ld, only using"
1159 " timers to drive the interface\n",
1160 PTR_ERR(new_smi->thread));
453823ba
CM
1161 new_smi->thread = NULL;
1162 }
1163 }
1164
1165 return 0;
1166}
9dbf68f9 1167
16f4232c
ZY
1168static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1169{
1170 struct smi_info *smi = send_info;
1171
1172 data->addr_src = smi->addr_source;
1173 data->dev = smi->dev;
1174 data->addr_info = smi->addr_info;
1175 get_device(smi->dev);
1176
1177 return 0;
1178}
1179
b9675136
CM
1180static void set_maintenance_mode(void *send_info, int enable)
1181{
1182 struct smi_info *smi_info = send_info;
1183
1184 if (!enable)
1185 atomic_set(&smi_info->req_events, 0);
1186}
1187
c305e3d3 1188static struct ipmi_smi_handlers handlers = {
1da177e4 1189 .owner = THIS_MODULE,
453823ba 1190 .start_processing = smi_start_processing,
16f4232c 1191 .get_smi_info = get_smi_info,
1da177e4
LT
1192 .sender = sender,
1193 .request_events = request_events,
b9675136 1194 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1195 .set_run_to_completion = set_run_to_completion,
1196 .poll = poll,
1197};
1198
c305e3d3
CM
1199/*
1200 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1202 */
1da177e4 1203
b0defcdb 1204static LIST_HEAD(smi_infos);
d6dfd131 1205static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1206static int smi_num; /* Used to sequence the SMIs */
1da177e4 1207
1da177e4 1208#define DEFAULT_REGSPACING 1
dba9b4f6 1209#define DEFAULT_REGSIZE 1
1da177e4 1210
90ab5ee9 1211static bool si_trydefaults = 1;
1da177e4
LT
1212static char *si_type[SI_MAX_PARMS];
1213#define MAX_SI_TYPE_STR 30
1214static char si_type_str[MAX_SI_TYPE_STR];
1215static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1216static unsigned int num_addrs;
1da177e4 1217static unsigned int ports[SI_MAX_PARMS];
64a6f950 1218static unsigned int num_ports;
1da177e4 1219static int irqs[SI_MAX_PARMS];
64a6f950 1220static unsigned int num_irqs;
1da177e4 1221static int regspacings[SI_MAX_PARMS];
64a6f950 1222static unsigned int num_regspacings;
1da177e4 1223static int regsizes[SI_MAX_PARMS];
64a6f950 1224static unsigned int num_regsizes;
1da177e4 1225static int regshifts[SI_MAX_PARMS];
64a6f950 1226static unsigned int num_regshifts;
2f95d513 1227static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1228static unsigned int num_slave_addrs;
1da177e4 1229
b361e27b
CM
1230#define IPMI_IO_ADDR_SPACE 0
1231#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1232static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1233
1234static int hotmod_handler(const char *val, struct kernel_param *kp);
1235
1236module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1237MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1238 " Documentation/IPMI.txt in the kernel sources for the"
1239 " gory details.");
1da177e4
LT
1240
1241module_param_named(trydefaults, si_trydefaults, bool, 0);
1242MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1243 " default scan of the KCS and SMIC interface at the standard"
1244 " address");
1245module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1246MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1247 " interface separated by commas. The types are 'kcs',"
1248 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1249 " the first interface to kcs and the second to bt");
64a6f950 1250module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1251MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1252 " addresses separated by commas. Only use if an interface"
1253 " is in memory. Otherwise, set it to zero or leave"
1254 " it blank.");
64a6f950 1255module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1256MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1257 " addresses separated by commas. Only use if an interface"
1258 " is a port. Otherwise, set it to zero or leave"
1259 " it blank.");
1260module_param_array(irqs, int, &num_irqs, 0);
1261MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1262 " addresses separated by commas. Only use if an interface"
1263 " has an interrupt. Otherwise, set it to zero or leave"
1264 " it blank.");
1265module_param_array(regspacings, int, &num_regspacings, 0);
1266MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1267 " and each successive register used by the interface. For"
1268 " instance, if the start address is 0xca2 and the spacing"
1269 " is 2, then the second address is at 0xca4. Defaults"
1270 " to 1.");
1271module_param_array(regsizes, int, &num_regsizes, 0);
1272MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1273 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1274 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1275 " the 8-bit IPMI register has to be read from a larger"
1276 " register.");
1277module_param_array(regshifts, int, &num_regshifts, 0);
1278MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1279 " IPMI register, in bits. For instance, if the data"
1280 " is read from a 32-bit word and the IPMI data is in"
1281 " bit 8-15, then the shift would be 8");
1282module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1283MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1284 " the controller. Normally this is 0x20, but can be"
1285 " overridden by this parm. This is an array indexed"
1286 " by interface number.");
a51f4a81
CM
1287module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1288MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1289 " disabled(0). Normally the IPMI driver auto-detects"
1290 " this, but the value may be overridden by this parm.");
b361e27b
CM
1291module_param(unload_when_empty, int, 0);
1292MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1293 " specified or found, default is 1. Setting to 0"
1294 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1295module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1296MODULE_PARM_DESC(kipmid_max_busy_us,
1297 "Max time (in microseconds) to busy-wait for IPMI data before"
1298 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1299 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1300
1301
b0defcdb 1302static void std_irq_cleanup(struct smi_info *info)
1da177e4 1303{
b0defcdb
CM
1304 if (info->si_type == SI_BT)
1305 /* Disable the interrupt in the BT interface. */
1306 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1307 free_irq(info->irq, info);
1da177e4 1308}
1da177e4
LT
1309
1310static int std_irq_setup(struct smi_info *info)
1311{
1312 int rv;
1313
b0defcdb 1314 if (!info->irq)
1da177e4
LT
1315 return 0;
1316
9dbf68f9
CM
1317 if (info->si_type == SI_BT) {
1318 rv = request_irq(info->irq,
1319 si_bt_irq_handler,
ee6cd5f8 1320 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1321 DEVICE_NAME,
1322 info);
b0defcdb 1323 if (!rv)
9dbf68f9
CM
1324 /* Enable the interrupt in the BT interface. */
1325 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1326 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1327 } else
1328 rv = request_irq(info->irq,
1329 si_irq_handler,
ee6cd5f8 1330 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1331 DEVICE_NAME,
1332 info);
1da177e4 1333 if (rv) {
279fbd0c
MS
1334 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1335 " running polled\n",
1336 DEVICE_NAME, info->irq);
1da177e4
LT
1337 info->irq = 0;
1338 } else {
b0defcdb 1339 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1340 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1341 }
1342
1343 return rv;
1344}
1345
1da177e4
LT
1346static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1347{
b0defcdb 1348 unsigned int addr = io->addr_data;
1da177e4 1349
b0defcdb 1350 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1351}
1352
1353static void port_outb(struct si_sm_io *io, unsigned int offset,
1354 unsigned char b)
1355{
b0defcdb 1356 unsigned int addr = io->addr_data;
1da177e4 1357
b0defcdb 1358 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1359}
1360
1361static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1362{
b0defcdb 1363 unsigned int addr = io->addr_data;
1da177e4 1364
b0defcdb 1365 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1366}
1367
1368static void port_outw(struct si_sm_io *io, unsigned int offset,
1369 unsigned char b)
1370{
b0defcdb 1371 unsigned int addr = io->addr_data;
1da177e4 1372
b0defcdb 1373 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1374}
1375
1376static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1377{
b0defcdb 1378 unsigned int addr = io->addr_data;
1da177e4 1379
b0defcdb 1380 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1381}
1382
1383static void port_outl(struct si_sm_io *io, unsigned int offset,
1384 unsigned char b)
1385{
b0defcdb 1386 unsigned int addr = io->addr_data;
1da177e4 1387
b0defcdb 1388 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1389}
1390
1391static void port_cleanup(struct smi_info *info)
1392{
b0defcdb 1393 unsigned int addr = info->io.addr_data;
d61a3ead 1394 int idx;
1da177e4 1395
b0defcdb 1396 if (addr) {
c305e3d3 1397 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1398 release_region(addr + idx * info->io.regspacing,
1399 info->io.regsize);
1da177e4 1400 }
1da177e4
LT
1401}
1402
1403static int port_setup(struct smi_info *info)
1404{
b0defcdb 1405 unsigned int addr = info->io.addr_data;
d61a3ead 1406 int idx;
1da177e4 1407
b0defcdb 1408 if (!addr)
1da177e4
LT
1409 return -ENODEV;
1410
1411 info->io_cleanup = port_cleanup;
1412
c305e3d3
CM
1413 /*
1414 * Figure out the actual inb/inw/inl/etc routine to use based
1415 * upon the register size.
1416 */
1da177e4
LT
1417 switch (info->io.regsize) {
1418 case 1:
1419 info->io.inputb = port_inb;
1420 info->io.outputb = port_outb;
1421 break;
1422 case 2:
1423 info->io.inputb = port_inw;
1424 info->io.outputb = port_outw;
1425 break;
1426 case 4:
1427 info->io.inputb = port_inl;
1428 info->io.outputb = port_outl;
1429 break;
1430 default:
279fbd0c
MS
1431 dev_warn(info->dev, "Invalid register size: %d\n",
1432 info->io.regsize);
1da177e4
LT
1433 return -EINVAL;
1434 }
1435
c305e3d3
CM
1436 /*
1437 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1438 * tables. This causes problems when trying to register the
1439 * entire I/O region. Therefore we must register each I/O
1440 * port separately.
1441 */
c305e3d3 1442 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1443 if (request_region(addr + idx * info->io.regspacing,
1444 info->io.regsize, DEVICE_NAME) == NULL) {
1445 /* Undo allocations */
1446 while (idx--) {
1447 release_region(addr + idx * info->io.regspacing,
1448 info->io.regsize);
1449 }
1450 return -EIO;
1451 }
1452 }
1da177e4
LT
1453 return 0;
1454}
1455
546cfdf4 1456static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1457{
1458 return readb((io->addr)+(offset * io->regspacing));
1459}
1460
546cfdf4 1461static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1462 unsigned char b)
1463{
1464 writeb(b, (io->addr)+(offset * io->regspacing));
1465}
1466
546cfdf4 1467static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1468{
1469 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1470 & 0xff;
1da177e4
LT
1471}
1472
546cfdf4 1473static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1474 unsigned char b)
1475{
1476 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1477}
1478
546cfdf4 1479static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1480{
1481 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1482 & 0xff;
1da177e4
LT
1483}
1484
546cfdf4 1485static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1486 unsigned char b)
1487{
1488 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1489}
1490
1491#ifdef readq
1492static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1493{
1494 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1495 & 0xff;
1da177e4
LT
1496}
1497
1498static void mem_outq(struct si_sm_io *io, unsigned int offset,
1499 unsigned char b)
1500{
1501 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1502}
1503#endif
1504
1505static void mem_cleanup(struct smi_info *info)
1506{
b0defcdb 1507 unsigned long addr = info->io.addr_data;
1da177e4
LT
1508 int mapsize;
1509
1510 if (info->io.addr) {
1511 iounmap(info->io.addr);
1512
1513 mapsize = ((info->io_size * info->io.regspacing)
1514 - (info->io.regspacing - info->io.regsize));
1515
b0defcdb 1516 release_mem_region(addr, mapsize);
1da177e4 1517 }
1da177e4
LT
1518}
1519
1520static int mem_setup(struct smi_info *info)
1521{
b0defcdb 1522 unsigned long addr = info->io.addr_data;
1da177e4
LT
1523 int mapsize;
1524
b0defcdb 1525 if (!addr)
1da177e4
LT
1526 return -ENODEV;
1527
1528 info->io_cleanup = mem_cleanup;
1529
c305e3d3
CM
1530 /*
1531 * Figure out the actual readb/readw/readl/etc routine to use based
1532 * upon the register size.
1533 */
1da177e4
LT
1534 switch (info->io.regsize) {
1535 case 1:
546cfdf4
AD
1536 info->io.inputb = intf_mem_inb;
1537 info->io.outputb = intf_mem_outb;
1da177e4
LT
1538 break;
1539 case 2:
546cfdf4
AD
1540 info->io.inputb = intf_mem_inw;
1541 info->io.outputb = intf_mem_outw;
1da177e4
LT
1542 break;
1543 case 4:
546cfdf4
AD
1544 info->io.inputb = intf_mem_inl;
1545 info->io.outputb = intf_mem_outl;
1da177e4
LT
1546 break;
1547#ifdef readq
1548 case 8:
1549 info->io.inputb = mem_inq;
1550 info->io.outputb = mem_outq;
1551 break;
1552#endif
1553 default:
279fbd0c
MS
1554 dev_warn(info->dev, "Invalid register size: %d\n",
1555 info->io.regsize);
1da177e4
LT
1556 return -EINVAL;
1557 }
1558
c305e3d3
CM
1559 /*
1560 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1561 * unusual looking calculation, but it avoids claiming any
1562 * more memory than it has to. It will claim everything
1563 * between the first address to the end of the last full
c305e3d3
CM
1564 * register.
1565 */
1da177e4
LT
1566 mapsize = ((info->io_size * info->io.regspacing)
1567 - (info->io.regspacing - info->io.regsize));
1568
b0defcdb 1569 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1570 return -EIO;
1571
b0defcdb 1572 info->io.addr = ioremap(addr, mapsize);
1da177e4 1573 if (info->io.addr == NULL) {
b0defcdb 1574 release_mem_region(addr, mapsize);
1da177e4
LT
1575 return -EIO;
1576 }
1577 return 0;
1578}
1579
b361e27b
CM
1580/*
1581 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1582 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1583 * Options are:
1584 * rsp=<regspacing>
1585 * rsi=<regsize>
1586 * rsh=<regshift>
1587 * irq=<irq>
1588 * ipmb=<ipmb addr>
1589 */
1590enum hotmod_op { HM_ADD, HM_REMOVE };
1591struct hotmod_vals {
1592 char *name;
1593 int val;
1594};
1595static struct hotmod_vals hotmod_ops[] = {
1596 { "add", HM_ADD },
1597 { "remove", HM_REMOVE },
1598 { NULL }
1599};
1600static struct hotmod_vals hotmod_si[] = {
1601 { "kcs", SI_KCS },
1602 { "smic", SI_SMIC },
1603 { "bt", SI_BT },
1604 { NULL }
1605};
1606static struct hotmod_vals hotmod_as[] = {
1607 { "mem", IPMI_MEM_ADDR_SPACE },
1608 { "i/o", IPMI_IO_ADDR_SPACE },
1609 { NULL }
1610};
1d5636cc 1611
b361e27b
CM
1612static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1613{
1614 char *s;
1615 int i;
1616
1617 s = strchr(*curr, ',');
1618 if (!s) {
1619 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1620 return -EINVAL;
1621 }
1622 *s = '\0';
1623 s++;
1624 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1625 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1626 *val = v[i].val;
1627 *curr = s;
1628 return 0;
1629 }
1630 }
1631
1632 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1633 return -EINVAL;
1634}
1635
1d5636cc
CM
1636static int check_hotmod_int_op(const char *curr, const char *option,
1637 const char *name, int *val)
1638{
1639 char *n;
1640
1641 if (strcmp(curr, name) == 0) {
1642 if (!option) {
1643 printk(KERN_WARNING PFX
1644 "No option given for '%s'\n",
1645 curr);
1646 return -EINVAL;
1647 }
1648 *val = simple_strtoul(option, &n, 0);
1649 if ((*n != '\0') || (*option == '\0')) {
1650 printk(KERN_WARNING PFX
1651 "Bad option given for '%s'\n",
1652 curr);
1653 return -EINVAL;
1654 }
1655 return 1;
1656 }
1657 return 0;
1658}
1659
de5e2ddf
ED
1660static struct smi_info *smi_info_alloc(void)
1661{
1662 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1663
f60adf42 1664 if (info)
de5e2ddf 1665 spin_lock_init(&info->si_lock);
de5e2ddf
ED
1666 return info;
1667}
1668
b361e27b
CM
1669static int hotmod_handler(const char *val, struct kernel_param *kp)
1670{
1671 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1672 int rv;
b361e27b
CM
1673 char *next, *curr, *s, *n, *o;
1674 enum hotmod_op op;
1675 enum si_type si_type;
1676 int addr_space;
1677 unsigned long addr;
1678 int regspacing;
1679 int regsize;
1680 int regshift;
1681 int irq;
1682 int ipmb;
1683 int ival;
1d5636cc 1684 int len;
b361e27b
CM
1685 struct smi_info *info;
1686
1687 if (!str)
1688 return -ENOMEM;
1689
1690 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1691 len = strlen(str);
1692 ival = len - 1;
b361e27b
CM
1693 while ((ival >= 0) && isspace(str[ival])) {
1694 str[ival] = '\0';
1695 ival--;
1696 }
1697
1698 for (curr = str; curr; curr = next) {
1699 regspacing = 1;
1700 regsize = 1;
1701 regshift = 0;
1702 irq = 0;
2f95d513 1703 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1704
1705 next = strchr(curr, ':');
1706 if (next) {
1707 *next = '\0';
1708 next++;
1709 }
1710
1711 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1712 if (rv)
1713 break;
1714 op = ival;
1715
1716 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1717 if (rv)
1718 break;
1719 si_type = ival;
1720
1721 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1722 if (rv)
1723 break;
1724
1725 s = strchr(curr, ',');
1726 if (s) {
1727 *s = '\0';
1728 s++;
1729 }
1730 addr = simple_strtoul(curr, &n, 0);
1731 if ((*n != '\0') || (*curr == '\0')) {
1732 printk(KERN_WARNING PFX "Invalid hotmod address"
1733 " '%s'\n", curr);
1734 break;
1735 }
1736
1737 while (s) {
1738 curr = s;
1739 s = strchr(curr, ',');
1740 if (s) {
1741 *s = '\0';
1742 s++;
1743 }
1744 o = strchr(curr, '=');
1745 if (o) {
1746 *o = '\0';
1747 o++;
1748 }
1d5636cc
CM
1749 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1750 if (rv < 0)
b361e27b 1751 goto out;
1d5636cc
CM
1752 else if (rv)
1753 continue;
1754 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1755 if (rv < 0)
1756 goto out;
1757 else if (rv)
1758 continue;
1759 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1760 if (rv < 0)
1761 goto out;
1762 else if (rv)
1763 continue;
1764 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1765 if (rv < 0)
1766 goto out;
1767 else if (rv)
1768 continue;
1769 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1770 if (rv < 0)
1771 goto out;
1772 else if (rv)
1773 continue;
1774
1775 rv = -EINVAL;
1776 printk(KERN_WARNING PFX
1777 "Invalid hotmod option '%s'\n",
1778 curr);
1779 goto out;
b361e27b
CM
1780 }
1781
1782 if (op == HM_ADD) {
de5e2ddf 1783 info = smi_info_alloc();
b361e27b
CM
1784 if (!info) {
1785 rv = -ENOMEM;
1786 goto out;
1787 }
1788
5fedc4a2 1789 info->addr_source = SI_HOTMOD;
b361e27b
CM
1790 info->si_type = si_type;
1791 info->io.addr_data = addr;
1792 info->io.addr_type = addr_space;
1793 if (addr_space == IPMI_MEM_ADDR_SPACE)
1794 info->io_setup = mem_setup;
1795 else
1796 info->io_setup = port_setup;
1797
1798 info->io.addr = NULL;
1799 info->io.regspacing = regspacing;
1800 if (!info->io.regspacing)
1801 info->io.regspacing = DEFAULT_REGSPACING;
1802 info->io.regsize = regsize;
1803 if (!info->io.regsize)
1804 info->io.regsize = DEFAULT_REGSPACING;
1805 info->io.regshift = regshift;
1806 info->irq = irq;
1807 if (info->irq)
1808 info->irq_setup = std_irq_setup;
1809 info->slave_addr = ipmb;
1810
7faefea6 1811 if (!add_smi(info)) {
2407d77a
MG
1812 if (try_smi_init(info))
1813 cleanup_one_si(info);
7faefea6
YL
1814 } else {
1815 kfree(info);
1816 }
b361e27b
CM
1817 } else {
1818 /* remove */
1819 struct smi_info *e, *tmp_e;
1820
1821 mutex_lock(&smi_infos_lock);
1822 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1823 if (e->io.addr_type != addr_space)
1824 continue;
1825 if (e->si_type != si_type)
1826 continue;
1827 if (e->io.addr_data == addr)
1828 cleanup_one_si(e);
1829 }
1830 mutex_unlock(&smi_infos_lock);
1831 }
1832 }
1d5636cc 1833 rv = len;
b361e27b
CM
1834 out:
1835 kfree(str);
1836 return rv;
1837}
b0defcdb 1838
a1e9c9dd 1839static int __devinit hardcode_find_bmc(void)
1da177e4 1840{
a1e9c9dd 1841 int ret = -ENODEV;
b0defcdb 1842 int i;
1da177e4
LT
1843 struct smi_info *info;
1844
b0defcdb
CM
1845 for (i = 0; i < SI_MAX_PARMS; i++) {
1846 if (!ports[i] && !addrs[i])
1847 continue;
1da177e4 1848
de5e2ddf 1849 info = smi_info_alloc();
b0defcdb 1850 if (!info)
a1e9c9dd 1851 return -ENOMEM;
1da177e4 1852
5fedc4a2 1853 info->addr_source = SI_HARDCODED;
279fbd0c 1854 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1855
1d5636cc 1856 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1857 info->si_type = SI_KCS;
1d5636cc 1858 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1859 info->si_type = SI_SMIC;
1d5636cc 1860 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1861 info->si_type = SI_BT;
1862 } else {
279fbd0c 1863 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
1864 "for interface %d, was invalid: %s\n",
1865 i, si_type[i]);
1866 kfree(info);
1867 continue;
1868 }
1da177e4 1869
b0defcdb
CM
1870 if (ports[i]) {
1871 /* An I/O port */
1872 info->io_setup = port_setup;
1873 info->io.addr_data = ports[i];
1874 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1875 } else if (addrs[i]) {
1876 /* A memory port */
1877 info->io_setup = mem_setup;
1878 info->io.addr_data = addrs[i];
1879 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1880 } else {
279fbd0c
MS
1881 printk(KERN_WARNING PFX "Interface type specified "
1882 "for interface %d, but port and address were "
1883 "not set or set to zero.\n", i);
b0defcdb
CM
1884 kfree(info);
1885 continue;
1886 }
1da177e4 1887
b0defcdb
CM
1888 info->io.addr = NULL;
1889 info->io.regspacing = regspacings[i];
1890 if (!info->io.regspacing)
1891 info->io.regspacing = DEFAULT_REGSPACING;
1892 info->io.regsize = regsizes[i];
1893 if (!info->io.regsize)
1894 info->io.regsize = DEFAULT_REGSPACING;
1895 info->io.regshift = regshifts[i];
1896 info->irq = irqs[i];
1897 if (info->irq)
1898 info->irq_setup = std_irq_setup;
2f95d513 1899 info->slave_addr = slave_addrs[i];
1da177e4 1900
7faefea6 1901 if (!add_smi(info)) {
2407d77a
MG
1902 if (try_smi_init(info))
1903 cleanup_one_si(info);
a1e9c9dd 1904 ret = 0;
7faefea6
YL
1905 } else {
1906 kfree(info);
1907 }
b0defcdb 1908 }
a1e9c9dd 1909 return ret;
b0defcdb 1910}
1da177e4 1911
8466361a 1912#ifdef CONFIG_ACPI
1da177e4
LT
1913
1914#include <linux/acpi.h>
1915
c305e3d3
CM
1916/*
1917 * Once we get an ACPI failure, we don't try any more, because we go
1918 * through the tables sequentially. Once we don't find a table, there
1919 * are no more.
1920 */
0c8204b3 1921static int acpi_failure;
1da177e4
LT
1922
1923/* For GPE-type interrupts. */
8b6cd8ad
LM
1924static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1925 u32 gpe_number, void *context)
1da177e4
LT
1926{
1927 struct smi_info *smi_info = context;
1928 unsigned long flags;
1929#ifdef DEBUG_TIMING
1930 struct timeval t;
1931#endif
1932
1933 spin_lock_irqsave(&(smi_info->si_lock), flags);
1934
64959e2d 1935 smi_inc_stat(smi_info, interrupts);
1da177e4 1936
1da177e4
LT
1937#ifdef DEBUG_TIMING
1938 do_gettimeofday(&t);
1939 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1940#endif
1941 smi_event_handler(smi_info, 0);
1da177e4
LT
1942 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1943
1944 return ACPI_INTERRUPT_HANDLED;
1945}
1946
b0defcdb
CM
1947static void acpi_gpe_irq_cleanup(struct smi_info *info)
1948{
1949 if (!info->irq)
1950 return;
1951
1952 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1953}
1954
1da177e4
LT
1955static int acpi_gpe_irq_setup(struct smi_info *info)
1956{
1957 acpi_status status;
1958
b0defcdb 1959 if (!info->irq)
1da177e4
LT
1960 return 0;
1961
1962 /* FIXME - is level triggered right? */
1963 status = acpi_install_gpe_handler(NULL,
1964 info->irq,
1965 ACPI_GPE_LEVEL_TRIGGERED,
1966 &ipmi_acpi_gpe,
1967 info);
1968 if (status != AE_OK) {
279fbd0c
MS
1969 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1970 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
1971 info->irq = 0;
1972 return -EINVAL;
1973 } else {
b0defcdb 1974 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 1975 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
1976 return 0;
1977 }
1978}
1979
1da177e4
LT
1980/*
1981 * Defined at
631dd1a8 1982 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1da177e4
LT
1983 */
1984struct SPMITable {
1985 s8 Signature[4];
1986 u32 Length;
1987 u8 Revision;
1988 u8 Checksum;
1989 s8 OEMID[6];
1990 s8 OEMTableID[8];
1991 s8 OEMRevision[4];
1992 s8 CreatorID[4];
1993 s8 CreatorRevision[4];
1994 u8 InterfaceType;
1995 u8 IPMIlegacy;
1996 s16 SpecificationRevision;
1997
1998 /*
1999 * Bit 0 - SCI interrupt supported
2000 * Bit 1 - I/O APIC/SAPIC
2001 */
2002 u8 InterruptType;
2003
c305e3d3
CM
2004 /*
2005 * If bit 0 of InterruptType is set, then this is the SCI
2006 * interrupt in the GPEx_STS register.
2007 */
1da177e4
LT
2008 u8 GPE;
2009
2010 s16 Reserved;
2011
c305e3d3
CM
2012 /*
2013 * If bit 1 of InterruptType is set, then this is the I/O
2014 * APIC/SAPIC interrupt.
2015 */
1da177e4
LT
2016 u32 GlobalSystemInterrupt;
2017
2018 /* The actual register address. */
2019 struct acpi_generic_address addr;
2020
2021 u8 UID[4];
2022
2023 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2024};
2025
60ee6d5f 2026static int __devinit try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2027{
2028 struct smi_info *info;
1da177e4 2029
1da177e4 2030 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2031 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2032 return -ENODEV;
1da177e4
LT
2033 }
2034
de5e2ddf 2035 info = smi_info_alloc();
b0defcdb 2036 if (!info) {
279fbd0c 2037 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2038 return -ENOMEM;
2039 }
2040
5fedc4a2 2041 info->addr_source = SI_SPMI;
279fbd0c 2042 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2043
1da177e4 2044 /* Figure out the interface type. */
c305e3d3 2045 switch (spmi->InterfaceType) {
1da177e4 2046 case 1: /* KCS */
b0defcdb 2047 info->si_type = SI_KCS;
1da177e4 2048 break;
1da177e4 2049 case 2: /* SMIC */
b0defcdb 2050 info->si_type = SI_SMIC;
1da177e4 2051 break;
1da177e4 2052 case 3: /* BT */
b0defcdb 2053 info->si_type = SI_BT;
1da177e4 2054 break;
1da177e4 2055 default:
279fbd0c
MS
2056 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2057 spmi->InterfaceType);
b0defcdb 2058 kfree(info);
1da177e4
LT
2059 return -EIO;
2060 }
2061
1da177e4
LT
2062 if (spmi->InterruptType & 1) {
2063 /* We've got a GPE interrupt. */
2064 info->irq = spmi->GPE;
2065 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2066 } else if (spmi->InterruptType & 2) {
2067 /* We've got an APIC/SAPIC interrupt. */
2068 info->irq = spmi->GlobalSystemInterrupt;
2069 info->irq_setup = std_irq_setup;
1da177e4
LT
2070 } else {
2071 /* Use the default interrupt setting. */
2072 info->irq = 0;
2073 info->irq_setup = NULL;
2074 }
2075
15a58ed1 2076 if (spmi->addr.bit_width) {
35bc37a0 2077 /* A (hopefully) properly formed register bit width. */
15a58ed1 2078 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2079 } else {
35bc37a0
CM
2080 info->io.regspacing = DEFAULT_REGSPACING;
2081 }
b0defcdb 2082 info->io.regsize = info->io.regspacing;
15a58ed1 2083 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2084
15a58ed1 2085 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2086 info->io_setup = mem_setup;
8fe1425a 2087 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2088 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2089 info->io_setup = port_setup;
8fe1425a 2090 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2091 } else {
2092 kfree(info);
279fbd0c 2093 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2094 return -EIO;
2095 }
b0defcdb 2096 info->io.addr_data = spmi->addr.address;
1da177e4 2097
7bb671e3
YL
2098 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2099 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2100 info->io.addr_data, info->io.regsize, info->io.regspacing,
2101 info->irq);
2102
7faefea6
YL
2103 if (add_smi(info))
2104 kfree(info);
1da177e4 2105
1da177e4
LT
2106 return 0;
2107}
b0defcdb 2108
60ee6d5f 2109static void __devinit spmi_find_bmc(void)
b0defcdb
CM
2110{
2111 acpi_status status;
2112 struct SPMITable *spmi;
2113 int i;
2114
2115 if (acpi_disabled)
2116 return;
2117
2118 if (acpi_failure)
2119 return;
2120
2121 for (i = 0; ; i++) {
15a58ed1
AS
2122 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2123 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2124 if (status != AE_OK)
2125 return;
2126
18a3e0bf 2127 try_init_spmi(spmi);
b0defcdb
CM
2128 }
2129}
9e368fa0
BH
2130
2131static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2132 const struct pnp_device_id *dev_id)
2133{
2134 struct acpi_device *acpi_dev;
2135 struct smi_info *info;
a9e31765 2136 struct resource *res, *res_second;
9e368fa0
BH
2137 acpi_handle handle;
2138 acpi_status status;
2139 unsigned long long tmp;
2140
2141 acpi_dev = pnp_acpi_device(dev);
2142 if (!acpi_dev)
2143 return -ENODEV;
2144
de5e2ddf 2145 info = smi_info_alloc();
9e368fa0
BH
2146 if (!info)
2147 return -ENOMEM;
2148
5fedc4a2 2149 info->addr_source = SI_ACPI;
279fbd0c 2150 printk(KERN_INFO PFX "probing via ACPI\n");
9e368fa0
BH
2151
2152 handle = acpi_dev->handle;
16f4232c 2153 info->addr_info.acpi_info.acpi_handle = handle;
9e368fa0
BH
2154
2155 /* _IFT tells us the interface type: KCS, BT, etc */
2156 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2157 if (ACPI_FAILURE(status))
2158 goto err_free;
2159
2160 switch (tmp) {
2161 case 1:
2162 info->si_type = SI_KCS;
2163 break;
2164 case 2:
2165 info->si_type = SI_SMIC;
2166 break;
2167 case 3:
2168 info->si_type = SI_BT;
2169 break;
2170 default:
279fbd0c 2171 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
9e368fa0
BH
2172 goto err_free;
2173 }
2174
279fbd0c
MS
2175 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2176 if (res) {
9e368fa0
BH
2177 info->io_setup = port_setup;
2178 info->io.addr_type = IPMI_IO_ADDR_SPACE;
9e368fa0 2179 } else {
279fbd0c
MS
2180 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2181 if (res) {
2182 info->io_setup = mem_setup;
2183 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2184 }
2185 }
2186 if (!res) {
9e368fa0
BH
2187 dev_err(&dev->dev, "no I/O or memory address\n");
2188 goto err_free;
2189 }
279fbd0c 2190 info->io.addr_data = res->start;
9e368fa0
BH
2191
2192 info->io.regspacing = DEFAULT_REGSPACING;
a9e31765 2193 res_second = pnp_get_resource(dev,
d9e1b6c4
YL
2194 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2195 IORESOURCE_IO : IORESOURCE_MEM,
2196 1);
a9e31765
YL
2197 if (res_second) {
2198 if (res_second->start > info->io.addr_data)
2199 info->io.regspacing = res_second->start - info->io.addr_data;
d9e1b6c4 2200 }
9e368fa0
BH
2201 info->io.regsize = DEFAULT_REGSPACING;
2202 info->io.regshift = 0;
2203
2204 /* If _GPE exists, use it; otherwise use standard interrupts */
2205 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2206 if (ACPI_SUCCESS(status)) {
2207 info->irq = tmp;
2208 info->irq_setup = acpi_gpe_irq_setup;
2209 } else if (pnp_irq_valid(dev, 0)) {
2210 info->irq = pnp_irq(dev, 0);
2211 info->irq_setup = std_irq_setup;
2212 }
2213
8c8eae27 2214 info->dev = &dev->dev;
9e368fa0
BH
2215 pnp_set_drvdata(dev, info);
2216
279fbd0c
MS
2217 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2218 res, info->io.regsize, info->io.regspacing,
2219 info->irq);
2220
7faefea6
YL
2221 if (add_smi(info))
2222 goto err_free;
2223
2224 return 0;
9e368fa0
BH
2225
2226err_free:
2227 kfree(info);
2228 return -EINVAL;
2229}
2230
2231static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2232{
2233 struct smi_info *info = pnp_get_drvdata(dev);
2234
2235 cleanup_one_si(info);
2236}
2237
2238static const struct pnp_device_id pnp_dev_table[] = {
2239 {"IPI0001", 0},
2240 {"", 0},
2241};
2242
2243static struct pnp_driver ipmi_pnp_driver = {
2244 .name = DEVICE_NAME,
2245 .probe = ipmi_pnp_probe,
2246 .remove = __devexit_p(ipmi_pnp_remove),
2247 .id_table = pnp_dev_table,
2248};
1da177e4
LT
2249#endif
2250
a9fad4cc 2251#ifdef CONFIG_DMI
c305e3d3 2252struct dmi_ipmi_data {
1da177e4
LT
2253 u8 type;
2254 u8 addr_space;
2255 unsigned long base_addr;
2256 u8 irq;
2257 u8 offset;
2258 u8 slave_addr;
b0defcdb 2259};
1da177e4 2260
1855256c 2261static int __devinit decode_dmi(const struct dmi_header *dm,
b0defcdb 2262 struct dmi_ipmi_data *dmi)
1da177e4 2263{
1855256c 2264 const u8 *data = (const u8 *)dm;
1da177e4
LT
2265 unsigned long base_addr;
2266 u8 reg_spacing;
b224cd3a 2267 u8 len = dm->length;
1da177e4 2268
b0defcdb 2269 dmi->type = data[4];
1da177e4
LT
2270
2271 memcpy(&base_addr, data+8, sizeof(unsigned long));
2272 if (len >= 0x11) {
2273 if (base_addr & 1) {
2274 /* I/O */
2275 base_addr &= 0xFFFE;
b0defcdb 2276 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2277 } else
1da177e4 2278 /* Memory */
b0defcdb 2279 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2280
1da177e4
LT
2281 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2282 is odd. */
b0defcdb 2283 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2284
b0defcdb 2285 dmi->irq = data[0x11];
1da177e4
LT
2286
2287 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2288 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2289 switch (reg_spacing) {
1da177e4 2290 case 0x00: /* Byte boundaries */
b0defcdb 2291 dmi->offset = 1;
1da177e4
LT
2292 break;
2293 case 0x01: /* 32-bit boundaries */
b0defcdb 2294 dmi->offset = 4;
1da177e4
LT
2295 break;
2296 case 0x02: /* 16-byte boundaries */
b0defcdb 2297 dmi->offset = 16;
1da177e4
LT
2298 break;
2299 default:
2300 /* Some other interface, just ignore it. */
2301 return -EIO;
2302 }
2303 } else {
2304 /* Old DMI spec. */
c305e3d3
CM
2305 /*
2306 * Note that technically, the lower bit of the base
92068801
CM
2307 * address should be 1 if the address is I/O and 0 if
2308 * the address is in memory. So many systems get that
2309 * wrong (and all that I have seen are I/O) so we just
2310 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2311 * memory should use the newer spec, anyway.
2312 */
b0defcdb
CM
2313 dmi->base_addr = base_addr & 0xfffe;
2314 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2315 dmi->offset = 1;
1da177e4
LT
2316 }
2317
b0defcdb 2318 dmi->slave_addr = data[6];
1da177e4 2319
b0defcdb 2320 return 0;
1da177e4
LT
2321}
2322
60ee6d5f 2323static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2324{
b0defcdb 2325 struct smi_info *info;
1da177e4 2326
de5e2ddf 2327 info = smi_info_alloc();
b0defcdb 2328 if (!info) {
279fbd0c 2329 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2330 return;
1da177e4 2331 }
1da177e4 2332
5fedc4a2 2333 info->addr_source = SI_SMBIOS;
279fbd0c 2334 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2335
e8b33617 2336 switch (ipmi_data->type) {
b0defcdb
CM
2337 case 0x01: /* KCS */
2338 info->si_type = SI_KCS;
2339 break;
2340 case 0x02: /* SMIC */
2341 info->si_type = SI_SMIC;
2342 break;
2343 case 0x03: /* BT */
2344 info->si_type = SI_BT;
2345 break;
2346 default:
80cd6920 2347 kfree(info);
b0defcdb 2348 return;
1da177e4 2349 }
1da177e4 2350
b0defcdb
CM
2351 switch (ipmi_data->addr_space) {
2352 case IPMI_MEM_ADDR_SPACE:
1da177e4 2353 info->io_setup = mem_setup;
b0defcdb
CM
2354 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2355 break;
2356
2357 case IPMI_IO_ADDR_SPACE:
1da177e4 2358 info->io_setup = port_setup;
b0defcdb
CM
2359 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2360 break;
2361
2362 default:
1da177e4 2363 kfree(info);
279fbd0c 2364 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2365 ipmi_data->addr_space);
2366 return;
1da177e4 2367 }
b0defcdb 2368 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2369
b0defcdb
CM
2370 info->io.regspacing = ipmi_data->offset;
2371 if (!info->io.regspacing)
1da177e4
LT
2372 info->io.regspacing = DEFAULT_REGSPACING;
2373 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2374 info->io.regshift = 0;
1da177e4
LT
2375
2376 info->slave_addr = ipmi_data->slave_addr;
2377
b0defcdb
CM
2378 info->irq = ipmi_data->irq;
2379 if (info->irq)
2380 info->irq_setup = std_irq_setup;
1da177e4 2381
7bb671e3
YL
2382 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2383 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2384 info->io.addr_data, info->io.regsize, info->io.regspacing,
2385 info->irq);
2386
7faefea6
YL
2387 if (add_smi(info))
2388 kfree(info);
b0defcdb 2389}
1da177e4 2390
b0defcdb
CM
2391static void __devinit dmi_find_bmc(void)
2392{
1855256c 2393 const struct dmi_device *dev = NULL;
b0defcdb
CM
2394 struct dmi_ipmi_data data;
2395 int rv;
2396
2397 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2398 memset(&data, 0, sizeof(data));
1855256c
JG
2399 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2400 &data);
b0defcdb
CM
2401 if (!rv)
2402 try_init_dmi(&data);
2403 }
1da177e4 2404}
a9fad4cc 2405#endif /* CONFIG_DMI */
1da177e4
LT
2406
2407#ifdef CONFIG_PCI
2408
b0defcdb
CM
2409#define PCI_ERMC_CLASSCODE 0x0C0700
2410#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2411#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2412#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2413#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2414#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2415
1da177e4
LT
2416#define PCI_HP_VENDOR_ID 0x103C
2417#define PCI_MMC_DEVICE_ID 0x121A
2418#define PCI_MMC_ADDR_CW 0x10
2419
b0defcdb
CM
2420static void ipmi_pci_cleanup(struct smi_info *info)
2421{
2422 struct pci_dev *pdev = info->addr_source_data;
2423
2424 pci_disable_device(pdev);
2425}
1da177e4 2426
a6c16c28
CM
2427static int __devinit ipmi_pci_probe_regspacing(struct smi_info *info)
2428{
2429 if (info->si_type == SI_KCS) {
2430 unsigned char status;
2431 int regspacing;
2432
2433 info->io.regsize = DEFAULT_REGSIZE;
2434 info->io.regshift = 0;
2435 info->io_size = 2;
2436 info->handlers = &kcs_smi_handlers;
2437
2438 /* detect 1, 4, 16byte spacing */
2439 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2440 info->io.regspacing = regspacing;
2441 if (info->io_setup(info)) {
2442 dev_err(info->dev,
2443 "Could not setup I/O space\n");
2444 return DEFAULT_REGSPACING;
2445 }
2446 /* write invalid cmd */
2447 info->io.outputb(&info->io, 1, 0x10);
2448 /* read status back */
2449 status = info->io.inputb(&info->io, 1);
2450 info->io_cleanup(info);
2451 if (status)
2452 return regspacing;
2453 regspacing *= 4;
2454 }
2455 }
2456 return DEFAULT_REGSPACING;
2457}
2458
b0defcdb
CM
2459static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2460 const struct pci_device_id *ent)
1da177e4 2461{
b0defcdb
CM
2462 int rv;
2463 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2464 struct smi_info *info;
1da177e4 2465
de5e2ddf 2466 info = smi_info_alloc();
b0defcdb 2467 if (!info)
1cd441f9 2468 return -ENOMEM;
1da177e4 2469
5fedc4a2 2470 info->addr_source = SI_PCI;
279fbd0c 2471 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2472
b0defcdb
CM
2473 switch (class_type) {
2474 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2475 info->si_type = SI_SMIC;
2476 break;
1da177e4 2477
b0defcdb
CM
2478 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2479 info->si_type = SI_KCS;
2480 break;
2481
2482 case PCI_ERMC_CLASSCODE_TYPE_BT:
2483 info->si_type = SI_BT;
2484 break;
2485
2486 default:
2487 kfree(info);
279fbd0c 2488 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2489 return -ENOMEM;
1da177e4
LT
2490 }
2491
b0defcdb
CM
2492 rv = pci_enable_device(pdev);
2493 if (rv) {
279fbd0c 2494 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2495 kfree(info);
2496 return rv;
1da177e4
LT
2497 }
2498
b0defcdb
CM
2499 info->addr_source_cleanup = ipmi_pci_cleanup;
2500 info->addr_source_data = pdev;
1da177e4 2501
b0defcdb
CM
2502 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2503 info->io_setup = port_setup;
2504 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2505 } else {
2506 info->io_setup = mem_setup;
2507 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2508 }
b0defcdb 2509 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2510
a6c16c28
CM
2511 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2512 info->io.regsize = DEFAULT_REGSIZE;
b0defcdb 2513 info->io.regshift = 0;
1da177e4 2514
b0defcdb
CM
2515 info->irq = pdev->irq;
2516 if (info->irq)
2517 info->irq_setup = std_irq_setup;
1da177e4 2518
50c812b2 2519 info->dev = &pdev->dev;
fca3b747 2520 pci_set_drvdata(pdev, info);
50c812b2 2521
279fbd0c
MS
2522 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2523 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2524 info->irq);
2525
7faefea6
YL
2526 if (add_smi(info))
2527 kfree(info);
2528
2529 return 0;
b0defcdb 2530}
1da177e4 2531
b0defcdb
CM
2532static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2533{
fca3b747
CM
2534 struct smi_info *info = pci_get_drvdata(pdev);
2535 cleanup_one_si(info);
b0defcdb 2536}
1da177e4 2537
b0defcdb
CM
2538static struct pci_device_id ipmi_pci_devices[] = {
2539 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2540 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2541 { 0, }
b0defcdb
CM
2542};
2543MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2544
2545static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2546 .name = DEVICE_NAME,
2547 .id_table = ipmi_pci_devices,
2548 .probe = ipmi_pci_probe,
2549 .remove = __devexit_p(ipmi_pci_remove),
b0defcdb
CM
2550};
2551#endif /* CONFIG_PCI */
1da177e4 2552
b1608d69 2553static struct of_device_id ipmi_match[];
a1e9c9dd 2554static int __devinit ipmi_probe(struct platform_device *dev)
dba9b4f6 2555{
a1e9c9dd 2556#ifdef CONFIG_OF
b1608d69 2557 const struct of_device_id *match;
dba9b4f6
CM
2558 struct smi_info *info;
2559 struct resource resource;
da81c3b9 2560 const __be32 *regsize, *regspacing, *regshift;
61c7a080 2561 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2562 int ret;
2563 int proplen;
2564
279fbd0c 2565 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6 2566
b1608d69
GL
2567 match = of_match_device(ipmi_match, &dev->dev);
2568 if (!match)
a1e9c9dd
RH
2569 return -EINVAL;
2570
dba9b4f6
CM
2571 ret = of_address_to_resource(np, 0, &resource);
2572 if (ret) {
2573 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2574 return ret;
2575 }
2576
9c25099d 2577 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2578 if (regsize && proplen != 4) {
2579 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2580 return -EINVAL;
2581 }
2582
9c25099d 2583 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2584 if (regspacing && proplen != 4) {
2585 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2586 return -EINVAL;
2587 }
2588
9c25099d 2589 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2590 if (regshift && proplen != 4) {
2591 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2592 return -EINVAL;
2593 }
2594
de5e2ddf 2595 info = smi_info_alloc();
dba9b4f6
CM
2596
2597 if (!info) {
2598 dev_err(&dev->dev,
279fbd0c 2599 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2600 return -ENOMEM;
2601 }
2602
b1608d69 2603 info->si_type = (enum si_type) match->data;
5fedc4a2 2604 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2605 info->irq_setup = std_irq_setup;
2606
3b7ec117
NC
2607 if (resource.flags & IORESOURCE_IO) {
2608 info->io_setup = port_setup;
2609 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2610 } else {
2611 info->io_setup = mem_setup;
2612 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2613 }
2614
dba9b4f6
CM
2615 info->io.addr_data = resource.start;
2616
da81c3b9
RH
2617 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2618 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2619 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
dba9b4f6 2620
61c7a080 2621 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2622 info->dev = &dev->dev;
2623
279fbd0c 2624 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2625 info->io.addr_data, info->io.regsize, info->io.regspacing,
2626 info->irq);
2627
9de33df4 2628 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2629
7faefea6
YL
2630 if (add_smi(info)) {
2631 kfree(info);
2632 return -EBUSY;
2633 }
a1e9c9dd 2634#endif
7faefea6 2635 return 0;
dba9b4f6
CM
2636}
2637
a1e9c9dd 2638static int __devexit ipmi_remove(struct platform_device *dev)
dba9b4f6 2639{
a1e9c9dd 2640#ifdef CONFIG_OF
9de33df4 2641 cleanup_one_si(dev_get_drvdata(&dev->dev));
a1e9c9dd 2642#endif
dba9b4f6
CM
2643 return 0;
2644}
2645
2646static struct of_device_id ipmi_match[] =
2647{
c305e3d3
CM
2648 { .type = "ipmi", .compatible = "ipmi-kcs",
2649 .data = (void *)(unsigned long) SI_KCS },
2650 { .type = "ipmi", .compatible = "ipmi-smic",
2651 .data = (void *)(unsigned long) SI_SMIC },
2652 { .type = "ipmi", .compatible = "ipmi-bt",
2653 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2654 {},
2655};
2656
a1e9c9dd 2657static struct platform_driver ipmi_driver = {
4018294b 2658 .driver = {
a1e9c9dd 2659 .name = DEVICE_NAME,
4018294b
GL
2660 .owner = THIS_MODULE,
2661 .of_match_table = ipmi_match,
2662 },
a1e9c9dd
RH
2663 .probe = ipmi_probe,
2664 .remove = __devexit_p(ipmi_remove),
dba9b4f6 2665};
dba9b4f6 2666
40112ae7 2667static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2668{
50c812b2 2669 enum si_sm_result smi_result;
1da177e4
LT
2670
2671 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2672 for (;;) {
c3e7e791
CM
2673 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2674 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2675 schedule_timeout_uninterruptible(1);
1da177e4
LT
2676 smi_result = smi_info->handlers->event(
2677 smi_info->si_sm, 100);
c305e3d3 2678 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2679 smi_result = smi_info->handlers->event(
2680 smi_info->si_sm, 0);
c305e3d3 2681 } else
1da177e4
LT
2682 break;
2683 }
40112ae7 2684 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2685 /*
2686 * We couldn't get the state machine to run, so whatever's at
2687 * the port is probably not an IPMI SMI interface.
2688 */
40112ae7
CM
2689 return -ENODEV;
2690
2691 return 0;
2692}
2693
2694static int try_get_dev_id(struct smi_info *smi_info)
2695{
2696 unsigned char msg[2];
2697 unsigned char *resp;
2698 unsigned long resp_len;
2699 int rv = 0;
2700
2701 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2702 if (!resp)
2703 return -ENOMEM;
2704
2705 /*
2706 * Do a Get Device ID command, since it comes back with some
2707 * useful info.
2708 */
2709 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2710 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2711 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2712
2713 rv = wait_for_msg_done(smi_info);
2714 if (rv)
1da177e4 2715 goto out;
1da177e4 2716
1da177e4
LT
2717 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2718 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2719
d8c98618
CM
2720 /* Check and record info from the get device id, in case we need it. */
2721 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2722
2723 out:
2724 kfree(resp);
2725 return rv;
2726}
2727
40112ae7
CM
2728static int try_enable_event_buffer(struct smi_info *smi_info)
2729{
2730 unsigned char msg[3];
2731 unsigned char *resp;
2732 unsigned long resp_len;
2733 int rv = 0;
2734
2735 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2736 if (!resp)
2737 return -ENOMEM;
2738
2739 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2740 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2741 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2742
2743 rv = wait_for_msg_done(smi_info);
2744 if (rv) {
279fbd0c
MS
2745 printk(KERN_WARNING PFX "Error getting response from get"
2746 " global enables command, the event buffer is not"
40112ae7
CM
2747 " enabled.\n");
2748 goto out;
2749 }
2750
2751 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2752 resp, IPMI_MAX_MSG_LENGTH);
2753
2754 if (resp_len < 4 ||
2755 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2756 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2757 resp[2] != 0) {
279fbd0c
MS
2758 printk(KERN_WARNING PFX "Invalid return from get global"
2759 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
2760 rv = -EINVAL;
2761 goto out;
2762 }
2763
2764 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2765 /* buffer is already enabled, nothing to do. */
2766 goto out;
2767
2768 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2769 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2770 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2771 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2772
2773 rv = wait_for_msg_done(smi_info);
2774 if (rv) {
279fbd0c
MS
2775 printk(KERN_WARNING PFX "Error getting response from set"
2776 " global, enables command, the event buffer is not"
40112ae7
CM
2777 " enabled.\n");
2778 goto out;
2779 }
2780
2781 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2782 resp, IPMI_MAX_MSG_LENGTH);
2783
2784 if (resp_len < 3 ||
2785 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2786 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
2787 printk(KERN_WARNING PFX "Invalid return from get global,"
2788 "enables command, not enable the event buffer.\n");
40112ae7
CM
2789 rv = -EINVAL;
2790 goto out;
2791 }
2792
2793 if (resp[2] != 0)
2794 /*
2795 * An error when setting the event buffer bit means
2796 * that the event buffer is not supported.
2797 */
2798 rv = -ENOENT;
2799 out:
2800 kfree(resp);
2801 return rv;
2802}
2803
07412736 2804static int smi_type_proc_show(struct seq_file *m, void *v)
1da177e4 2805{
07412736 2806 struct smi_info *smi = m->private;
1da177e4 2807
07412736 2808 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2809}
2810
07412736 2811static int smi_type_proc_open(struct inode *inode, struct file *file)
1da177e4 2812{
07412736
AD
2813 return single_open(file, smi_type_proc_show, PDE(inode)->data);
2814}
2815
2816static const struct file_operations smi_type_proc_ops = {
2817 .open = smi_type_proc_open,
2818 .read = seq_read,
2819 .llseek = seq_lseek,
2820 .release = single_release,
2821};
2822
2823static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2824{
2825 struct smi_info *smi = m->private;
1da177e4 2826
07412736 2827 seq_printf(m, "interrupts_enabled: %d\n",
b0defcdb 2828 smi->irq && !smi->interrupt_disabled);
07412736 2829 seq_printf(m, "short_timeouts: %u\n",
64959e2d 2830 smi_get_stat(smi, short_timeouts));
07412736 2831 seq_printf(m, "long_timeouts: %u\n",
64959e2d 2832 smi_get_stat(smi, long_timeouts));
07412736 2833 seq_printf(m, "idles: %u\n",
64959e2d 2834 smi_get_stat(smi, idles));
07412736 2835 seq_printf(m, "interrupts: %u\n",
64959e2d 2836 smi_get_stat(smi, interrupts));
07412736 2837 seq_printf(m, "attentions: %u\n",
64959e2d 2838 smi_get_stat(smi, attentions));
07412736 2839 seq_printf(m, "flag_fetches: %u\n",
64959e2d 2840 smi_get_stat(smi, flag_fetches));
07412736 2841 seq_printf(m, "hosed_count: %u\n",
64959e2d 2842 smi_get_stat(smi, hosed_count));
07412736 2843 seq_printf(m, "complete_transactions: %u\n",
64959e2d 2844 smi_get_stat(smi, complete_transactions));
07412736 2845 seq_printf(m, "events: %u\n",
64959e2d 2846 smi_get_stat(smi, events));
07412736 2847 seq_printf(m, "watchdog_pretimeouts: %u\n",
64959e2d 2848 smi_get_stat(smi, watchdog_pretimeouts));
07412736 2849 seq_printf(m, "incoming_messages: %u\n",
64959e2d 2850 smi_get_stat(smi, incoming_messages));
07412736
AD
2851 return 0;
2852}
1da177e4 2853
07412736
AD
2854static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2855{
2856 return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
b361e27b
CM
2857}
2858
07412736
AD
2859static const struct file_operations smi_si_stats_proc_ops = {
2860 .open = smi_si_stats_proc_open,
2861 .read = seq_read,
2862 .llseek = seq_lseek,
2863 .release = single_release,
2864};
2865
2866static int smi_params_proc_show(struct seq_file *m, void *v)
b361e27b 2867{
07412736 2868 struct smi_info *smi = m->private;
b361e27b 2869
07412736 2870 return seq_printf(m,
b361e27b
CM
2871 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2872 si_to_str[smi->si_type],
2873 addr_space_to_str[smi->io.addr_type],
2874 smi->io.addr_data,
2875 smi->io.regspacing,
2876 smi->io.regsize,
2877 smi->io.regshift,
2878 smi->irq,
2879 smi->slave_addr);
1da177e4
LT
2880}
2881
07412736
AD
2882static int smi_params_proc_open(struct inode *inode, struct file *file)
2883{
2884 return single_open(file, smi_params_proc_show, PDE(inode)->data);
2885}
2886
2887static const struct file_operations smi_params_proc_ops = {
2888 .open = smi_params_proc_open,
2889 .read = seq_read,
2890 .llseek = seq_lseek,
2891 .release = single_release,
2892};
2893
3ae0e0f9
CM
2894/*
2895 * oem_data_avail_to_receive_msg_avail
2896 * @info - smi_info structure with msg_flags set
2897 *
2898 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2899 * Returns 1 indicating need to re-run handle_flags().
2900 */
2901static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2902{
e8b33617 2903 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 2904 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2905 return 1;
2906}
2907
2908/*
2909 * setup_dell_poweredge_oem_data_handler
2910 * @info - smi_info.device_id must be populated
2911 *
2912 * Systems that match, but have firmware version < 1.40 may assert
2913 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2914 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2915 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2916 * as RECEIVE_MSG_AVAIL instead.
2917 *
2918 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2919 * assert the OEM[012] bits, and if it did, the driver would have to
2920 * change to handle that properly, we don't actually check for the
2921 * firmware version.
2922 * Device ID = 0x20 BMC on PowerEdge 8G servers
2923 * Device Revision = 0x80
2924 * Firmware Revision1 = 0x01 BMC version 1.40
2925 * Firmware Revision2 = 0x40 BCD encoded
2926 * IPMI Version = 0x51 IPMI 1.5
2927 * Manufacturer ID = A2 02 00 Dell IANA
2928 *
d5a2b89a
CM
2929 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2930 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2931 *
3ae0e0f9
CM
2932 */
2933#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2934#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2935#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2936#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2937static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2938{
2939 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2940 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2941 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2942 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2943 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2944 smi_info->oem_data_avail_handler =
2945 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
2946 } else if (ipmi_version_major(id) < 1 ||
2947 (ipmi_version_major(id) == 1 &&
2948 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
2949 smi_info->oem_data_avail_handler =
2950 oem_data_avail_to_receive_msg_avail;
2951 }
3ae0e0f9
CM
2952 }
2953}
2954
ea94027b
CM
2955#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2956static void return_hosed_msg_badsize(struct smi_info *smi_info)
2957{
2958 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2959
25985edc 2960 /* Make it a response */
ea94027b
CM
2961 msg->rsp[0] = msg->data[0] | 4;
2962 msg->rsp[1] = msg->data[1];
2963 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2964 msg->rsp_size = 3;
2965 smi_info->curr_msg = NULL;
2966 deliver_recv_msg(smi_info, msg);
2967}
2968
2969/*
2970 * dell_poweredge_bt_xaction_handler
2971 * @info - smi_info.device_id must be populated
2972 *
2973 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2974 * not respond to a Get SDR command if the length of the data
2975 * requested is exactly 0x3A, which leads to command timeouts and no
2976 * data returned. This intercepts such commands, and causes userspace
2977 * callers to try again with a different-sized buffer, which succeeds.
2978 */
2979
2980#define STORAGE_NETFN 0x0A
2981#define STORAGE_CMD_GET_SDR 0x23
2982static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2983 unsigned long unused,
2984 void *in)
2985{
2986 struct smi_info *smi_info = in;
2987 unsigned char *data = smi_info->curr_msg->data;
2988 unsigned int size = smi_info->curr_msg->data_size;
2989 if (size >= 8 &&
2990 (data[0]>>2) == STORAGE_NETFN &&
2991 data[1] == STORAGE_CMD_GET_SDR &&
2992 data[7] == 0x3A) {
2993 return_hosed_msg_badsize(smi_info);
2994 return NOTIFY_STOP;
2995 }
2996 return NOTIFY_DONE;
2997}
2998
2999static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3000 .notifier_call = dell_poweredge_bt_xaction_handler,
3001};
3002
3003/*
3004 * setup_dell_poweredge_bt_xaction_handler
3005 * @info - smi_info.device_id must be filled in already
3006 *
3007 * Fills in smi_info.device_id.start_transaction_pre_hook
3008 * when we know what function to use there.
3009 */
3010static void
3011setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3012{
3013 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 3014 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
3015 smi_info->si_type == SI_BT)
3016 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3017}
3018
3ae0e0f9
CM
3019/*
3020 * setup_oem_data_handler
3021 * @info - smi_info.device_id must be filled in already
3022 *
3023 * Fills in smi_info.device_id.oem_data_available_handler
3024 * when we know what function to use there.
3025 */
3026
3027static void setup_oem_data_handler(struct smi_info *smi_info)
3028{
3029 setup_dell_poweredge_oem_data_handler(smi_info);
3030}
3031
ea94027b
CM
3032static void setup_xaction_handlers(struct smi_info *smi_info)
3033{
3034 setup_dell_poweredge_bt_xaction_handler(smi_info);
3035}
3036
a9a2c44f
CM
3037static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3038{
453823ba 3039 if (smi_info->intf) {
c305e3d3
CM
3040 /*
3041 * The timer and thread are only running if the
3042 * interface has been started up and registered.
3043 */
453823ba
CM
3044 if (smi_info->thread != NULL)
3045 kthread_stop(smi_info->thread);
3046 del_timer_sync(&smi_info->si_timer);
3047 }
a9a2c44f
CM
3048}
3049
7420884c 3050static __devinitdata struct ipmi_default_vals
b0defcdb
CM
3051{
3052 int type;
3053 int port;
7420884c 3054} ipmi_defaults[] =
b0defcdb
CM
3055{
3056 { .type = SI_KCS, .port = 0xca2 },
3057 { .type = SI_SMIC, .port = 0xca9 },
3058 { .type = SI_BT, .port = 0xe4 },
3059 { .port = 0 }
3060};
3061
60ee6d5f 3062static void __devinit default_find_bmc(void)
b0defcdb
CM
3063{
3064 struct smi_info *info;
3065 int i;
3066
3067 for (i = 0; ; i++) {
3068 if (!ipmi_defaults[i].port)
3069 break;
68e1ee62 3070#ifdef CONFIG_PPC
4ff31d77
CK
3071 if (check_legacy_ioport(ipmi_defaults[i].port))
3072 continue;
3073#endif
de5e2ddf 3074 info = smi_info_alloc();
a09f4855
AM
3075 if (!info)
3076 return;
4ff31d77 3077
5fedc4a2 3078 info->addr_source = SI_DEFAULT;
b0defcdb
CM
3079
3080 info->si_type = ipmi_defaults[i].type;
3081 info->io_setup = port_setup;
3082 info->io.addr_data = ipmi_defaults[i].port;
3083 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3084
3085 info->io.addr = NULL;
3086 info->io.regspacing = DEFAULT_REGSPACING;
3087 info->io.regsize = DEFAULT_REGSPACING;
3088 info->io.regshift = 0;
3089
2407d77a
MG
3090 if (add_smi(info) == 0) {
3091 if ((try_smi_init(info)) == 0) {
3092 /* Found one... */
279fbd0c 3093 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
3094 " state machine at %s address 0x%lx\n",
3095 si_to_str[info->si_type],
3096 addr_space_to_str[info->io.addr_type],
3097 info->io.addr_data);
3098 } else
3099 cleanup_one_si(info);
7faefea6
YL
3100 } else {
3101 kfree(info);
b0defcdb
CM
3102 }
3103 }
3104}
3105
3106static int is_new_interface(struct smi_info *info)
1da177e4 3107{
b0defcdb 3108 struct smi_info *e;
1da177e4 3109
b0defcdb
CM
3110 list_for_each_entry(e, &smi_infos, link) {
3111 if (e->io.addr_type != info->io.addr_type)
3112 continue;
3113 if (e->io.addr_data == info->io.addr_data)
3114 return 0;
3115 }
1da177e4 3116
b0defcdb
CM
3117 return 1;
3118}
1da177e4 3119
2407d77a 3120static int add_smi(struct smi_info *new_smi)
b0defcdb 3121{
2407d77a 3122 int rv = 0;
b0defcdb 3123
279fbd0c 3124 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
2407d77a
MG
3125 ipmi_addr_src_to_str[new_smi->addr_source],
3126 si_to_str[new_smi->si_type]);
d6dfd131 3127 mutex_lock(&smi_infos_lock);
b0defcdb 3128 if (!is_new_interface(new_smi)) {
7bb671e3 3129 printk(KERN_CONT " duplicate interface\n");
b0defcdb
CM
3130 rv = -EBUSY;
3131 goto out_err;
3132 }
1da177e4 3133
2407d77a
MG
3134 printk(KERN_CONT "\n");
3135
1da177e4
LT
3136 /* So we know not to free it unless we have allocated one. */
3137 new_smi->intf = NULL;
3138 new_smi->si_sm = NULL;
3139 new_smi->handlers = NULL;
3140
2407d77a
MG
3141 list_add_tail(&new_smi->link, &smi_infos);
3142
3143out_err:
3144 mutex_unlock(&smi_infos_lock);
3145 return rv;
3146}
3147
3148static int try_smi_init(struct smi_info *new_smi)
3149{
3150 int rv = 0;
3151 int i;
3152
279fbd0c 3153 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3154 " machine at %s address 0x%lx, slave address 0x%x,"
3155 " irq %d\n",
3156 ipmi_addr_src_to_str[new_smi->addr_source],
3157 si_to_str[new_smi->si_type],
3158 addr_space_to_str[new_smi->io.addr_type],
3159 new_smi->io.addr_data,
3160 new_smi->slave_addr, new_smi->irq);
3161
b0defcdb
CM
3162 switch (new_smi->si_type) {
3163 case SI_KCS:
1da177e4 3164 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3165 break;
3166
3167 case SI_SMIC:
1da177e4 3168 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3169 break;
3170
3171 case SI_BT:
1da177e4 3172 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3173 break;
3174
3175 default:
1da177e4
LT
3176 /* No support for anything else yet. */
3177 rv = -EIO;
3178 goto out_err;
3179 }
3180
3181 /* Allocate the state machine's data and initialize it. */
3182 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3183 if (!new_smi->si_sm) {
279fbd0c
MS
3184 printk(KERN_ERR PFX
3185 "Could not allocate state machine memory\n");
1da177e4
LT
3186 rv = -ENOMEM;
3187 goto out_err;
3188 }
3189 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3190 &new_smi->io);
3191
3192 /* Now that we know the I/O size, we can set up the I/O. */
3193 rv = new_smi->io_setup(new_smi);
3194 if (rv) {
279fbd0c 3195 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3196 goto out_err;
3197 }
3198
1da177e4
LT
3199 /* Do low-level detection first. */
3200 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3201 if (new_smi->addr_source)
279fbd0c 3202 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3203 rv = -ENODEV;
3204 goto out_err;
3205 }
3206
c305e3d3
CM
3207 /*
3208 * Attempt a get device id command. If it fails, we probably
3209 * don't have a BMC here.
3210 */
1da177e4 3211 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3212 if (rv) {
3213 if (new_smi->addr_source)
279fbd0c 3214 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3215 " at this location\n");
1da177e4 3216 goto out_err;
b0defcdb 3217 }
1da177e4 3218
3ae0e0f9 3219 setup_oem_data_handler(new_smi);
ea94027b 3220 setup_xaction_handlers(new_smi);
3ae0e0f9 3221
1da177e4
LT
3222 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3223 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3224 new_smi->curr_msg = NULL;
3225 atomic_set(&new_smi->req_events, 0);
3226 new_smi->run_to_completion = 0;
64959e2d
CM
3227 for (i = 0; i < SI_NUM_STATS; i++)
3228 atomic_set(&new_smi->stats[i], 0);
1da177e4 3229
ea4078ca 3230 new_smi->interrupt_disabled = 1;
a9a2c44f 3231 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
3232 new_smi->intf_num = smi_num;
3233 smi_num++;
1da177e4 3234
40112ae7
CM
3235 rv = try_enable_event_buffer(new_smi);
3236 if (rv == 0)
3237 new_smi->has_event_buffer = 1;
3238
c305e3d3
CM
3239 /*
3240 * Start clearing the flags before we enable interrupts or the
3241 * timer to avoid racing with the timer.
3242 */
1da177e4
LT
3243 start_clear_flags(new_smi);
3244 /* IRQ is defined to be set when non-zero. */
3245 if (new_smi->irq)
3246 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3247
50c812b2 3248 if (!new_smi->dev) {
c305e3d3
CM
3249 /*
3250 * If we don't already have a device from something
3251 * else (like PCI), then register a new one.
3252 */
50c812b2
CM
3253 new_smi->pdev = platform_device_alloc("ipmi_si",
3254 new_smi->intf_num);
8b32b5d0 3255 if (!new_smi->pdev) {
279fbd0c
MS
3256 printk(KERN_ERR PFX
3257 "Unable to allocate platform device\n");
453823ba 3258 goto out_err;
50c812b2
CM
3259 }
3260 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3261 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3262
b48f5457 3263 rv = platform_device_add(new_smi->pdev);
50c812b2 3264 if (rv) {
279fbd0c
MS
3265 printk(KERN_ERR PFX
3266 "Unable to register system interface device:"
50c812b2
CM
3267 " %d\n",
3268 rv);
453823ba 3269 goto out_err;
50c812b2
CM
3270 }
3271 new_smi->dev_registered = 1;
3272 }
3273
1da177e4
LT
3274 rv = ipmi_register_smi(&handlers,
3275 new_smi,
50c812b2
CM
3276 &new_smi->device_id,
3277 new_smi->dev,
759643b8 3278 "bmc",
453823ba 3279 new_smi->slave_addr);
1da177e4 3280 if (rv) {
279fbd0c
MS
3281 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3282 rv);
1da177e4
LT
3283 goto out_err_stop_timer;
3284 }
3285
3286 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
07412736 3287 &smi_type_proc_ops,
99b76233 3288 new_smi);
1da177e4 3289 if (rv) {
279fbd0c 3290 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3291 goto out_err_stop_timer;
3292 }
3293
3294 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
07412736 3295 &smi_si_stats_proc_ops,
99b76233 3296 new_smi);
1da177e4 3297 if (rv) {
279fbd0c 3298 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3299 goto out_err_stop_timer;
3300 }
3301
b361e27b 3302 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
07412736 3303 &smi_params_proc_ops,
99b76233 3304 new_smi);
b361e27b 3305 if (rv) {
279fbd0c 3306 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3307 goto out_err_stop_timer;
3308 }
3309
279fbd0c
MS
3310 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3311 si_to_str[new_smi->si_type]);
1da177e4
LT
3312
3313 return 0;
3314
3315 out_err_stop_timer:
a9a2c44f
CM
3316 atomic_inc(&new_smi->stop_operation);
3317 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3318
3319 out_err:
2407d77a
MG
3320 new_smi->interrupt_disabled = 1;
3321
3322 if (new_smi->intf) {
1da177e4 3323 ipmi_unregister_smi(new_smi->intf);
2407d77a
MG
3324 new_smi->intf = NULL;
3325 }
1da177e4 3326
2407d77a 3327 if (new_smi->irq_cleanup) {
b0defcdb 3328 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3329 new_smi->irq_cleanup = NULL;
3330 }
1da177e4 3331
c305e3d3
CM
3332 /*
3333 * Wait until we know that we are out of any interrupt
3334 * handlers might have been running before we freed the
3335 * interrupt.
3336 */
fbd568a3 3337 synchronize_sched();
1da177e4
LT
3338
3339 if (new_smi->si_sm) {
3340 if (new_smi->handlers)
3341 new_smi->handlers->cleanup(new_smi->si_sm);
3342 kfree(new_smi->si_sm);
2407d77a 3343 new_smi->si_sm = NULL;
1da177e4 3344 }
2407d77a 3345 if (new_smi->addr_source_cleanup) {
b0defcdb 3346 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3347 new_smi->addr_source_cleanup = NULL;
3348 }
3349 if (new_smi->io_cleanup) {
7767e126 3350 new_smi->io_cleanup(new_smi);
2407d77a
MG
3351 new_smi->io_cleanup = NULL;
3352 }
1da177e4 3353
2407d77a 3354 if (new_smi->dev_registered) {
50c812b2 3355 platform_device_unregister(new_smi->pdev);
2407d77a
MG
3356 new_smi->dev_registered = 0;
3357 }
b0defcdb 3358
1da177e4
LT
3359 return rv;
3360}
3361
60ee6d5f 3362static int __devinit init_ipmi_si(void)
1da177e4 3363{
1da177e4
LT
3364 int i;
3365 char *str;
50c812b2 3366 int rv;
2407d77a 3367 struct smi_info *e;
06ee4594 3368 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3369
3370 if (initialized)
3371 return 0;
3372 initialized = 1;
3373
a1e9c9dd 3374 rv = platform_driver_register(&ipmi_driver);
50c812b2 3375 if (rv) {
279fbd0c 3376 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
50c812b2
CM
3377 return rv;
3378 }
3379
3380
1da177e4
LT
3381 /* Parse out the si_type string into its components. */
3382 str = si_type_str;
3383 if (*str != '\0') {
e8b33617 3384 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3385 si_type[i] = str;
3386 str = strchr(str, ',');
3387 if (str) {
3388 *str = '\0';
3389 str++;
3390 } else {
3391 break;
3392 }
3393 }
3394 }
3395
1fdd75bd 3396 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3397
d8cc5267 3398 /* If the user gave us a device, they presumably want us to use it */
a1e9c9dd 3399 if (!hardcode_find_bmc())
d8cc5267 3400 return 0;
d8cc5267 3401
b0defcdb 3402#ifdef CONFIG_PCI
168b35a7 3403 rv = pci_register_driver(&ipmi_pci_driver);
c305e3d3 3404 if (rv)
279fbd0c 3405 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
56480287
MG
3406 else
3407 pci_registered = 1;
b0defcdb
CM
3408#endif
3409
754d4531
MG
3410#ifdef CONFIG_ACPI
3411 pnp_register_driver(&ipmi_pnp_driver);
561f8182 3412 pnp_registered = 1;
754d4531
MG
3413#endif
3414
3415#ifdef CONFIG_DMI
3416 dmi_find_bmc();
3417#endif
3418
3419#ifdef CONFIG_ACPI
3420 spmi_find_bmc();
3421#endif
3422
06ee4594
MG
3423 /* We prefer devices with interrupts, but in the case of a machine
3424 with multiple BMCs we assume that there will be several instances
3425 of a given type so if we succeed in registering a type then also
3426 try to register everything else of the same type */
d8cc5267 3427
2407d77a
MG
3428 mutex_lock(&smi_infos_lock);
3429 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3430 /* Try to register a device if it has an IRQ and we either
3431 haven't successfully registered a device yet or this
3432 device has the same type as one we successfully registered */
3433 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3434 if (!try_smi_init(e)) {
06ee4594 3435 type = e->addr_source;
d8cc5267
MG
3436 }
3437 }
3438 }
3439
06ee4594
MG
3440 /* type will only have been set if we successfully registered an si */
3441 if (type) {
3442 mutex_unlock(&smi_infos_lock);
3443 return 0;
3444 }
3445
d8cc5267
MG
3446 /* Fall back to the preferred device */
3447
3448 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3449 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3450 if (!try_smi_init(e)) {
06ee4594 3451 type = e->addr_source;
d8cc5267
MG
3452 }
3453 }
2407d77a
MG
3454 }
3455 mutex_unlock(&smi_infos_lock);
3456
06ee4594
MG
3457 if (type)
3458 return 0;
3459
b0defcdb 3460 if (si_trydefaults) {
d6dfd131 3461 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3462 if (list_empty(&smi_infos)) {
3463 /* No BMC was found, try defaults. */
d6dfd131 3464 mutex_unlock(&smi_infos_lock);
b0defcdb 3465 default_find_bmc();
2407d77a 3466 } else
d6dfd131 3467 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3468 }
3469
d6dfd131 3470 mutex_lock(&smi_infos_lock);
b361e27b 3471 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3472 mutex_unlock(&smi_infos_lock);
d2478521 3473 cleanup_ipmi_si();
279fbd0c
MS
3474 printk(KERN_WARNING PFX
3475 "Unable to find any System Interface(s)\n");
1da177e4 3476 return -ENODEV;
b0defcdb 3477 } else {
d6dfd131 3478 mutex_unlock(&smi_infos_lock);
b0defcdb 3479 return 0;
1da177e4 3480 }
1da177e4
LT
3481}
3482module_init(init_ipmi_si);
3483
b361e27b 3484static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3485{
2407d77a 3486 int rv = 0;
1da177e4
LT
3487 unsigned long flags;
3488
b0defcdb 3489 if (!to_clean)
1da177e4
LT
3490 return;
3491
b0defcdb
CM
3492 list_del(&to_clean->link);
3493
ee6cd5f8 3494 /* Tell the driver that we are shutting down. */
a9a2c44f 3495 atomic_inc(&to_clean->stop_operation);
b0defcdb 3496
c305e3d3
CM
3497 /*
3498 * Make sure the timer and thread are stopped and will not run
3499 * again.
3500 */
a9a2c44f 3501 wait_for_timer_and_thread(to_clean);
1da177e4 3502
c305e3d3
CM
3503 /*
3504 * Timeouts are stopped, now make sure the interrupts are off
3505 * for the device. A little tricky with locks to make sure
3506 * there are no races.
3507 */
ee6cd5f8
CM
3508 spin_lock_irqsave(&to_clean->si_lock, flags);
3509 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3510 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3511 poll(to_clean);
3512 schedule_timeout_uninterruptible(1);
3513 spin_lock_irqsave(&to_clean->si_lock, flags);
3514 }
3515 disable_si_irq(to_clean);
3516 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3517 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3518 poll(to_clean);
3519 schedule_timeout_uninterruptible(1);
3520 }
3521
3522 /* Clean up interrupts and make sure that everything is done. */
3523 if (to_clean->irq_cleanup)
3524 to_clean->irq_cleanup(to_clean);
e8b33617 3525 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3526 poll(to_clean);
da4cd8df 3527 schedule_timeout_uninterruptible(1);
1da177e4
LT
3528 }
3529
2407d77a
MG
3530 if (to_clean->intf)
3531 rv = ipmi_unregister_smi(to_clean->intf);
3532
1da177e4 3533 if (rv) {
279fbd0c 3534 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
1da177e4
LT
3535 rv);
3536 }
3537
2407d77a
MG
3538 if (to_clean->handlers)
3539 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3540
3541 kfree(to_clean->si_sm);
3542
b0defcdb
CM
3543 if (to_clean->addr_source_cleanup)
3544 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3545 if (to_clean->io_cleanup)
3546 to_clean->io_cleanup(to_clean);
50c812b2
CM
3547
3548 if (to_clean->dev_registered)
3549 platform_device_unregister(to_clean->pdev);
3550
3551 kfree(to_clean);
1da177e4
LT
3552}
3553
0dcf334c 3554static void cleanup_ipmi_si(void)
1da177e4 3555{
b0defcdb 3556 struct smi_info *e, *tmp_e;
1da177e4 3557
b0defcdb 3558 if (!initialized)
1da177e4
LT
3559 return;
3560
b0defcdb 3561#ifdef CONFIG_PCI
56480287
MG
3562 if (pci_registered)
3563 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3564#endif
27d0567a 3565#ifdef CONFIG_ACPI
561f8182
YL
3566 if (pnp_registered)
3567 pnp_unregister_driver(&ipmi_pnp_driver);
9e368fa0 3568#endif
b0defcdb 3569
a1e9c9dd 3570 platform_driver_unregister(&ipmi_driver);
dba9b4f6 3571
d6dfd131 3572 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3573 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3574 cleanup_one_si(e);
d6dfd131 3575 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3576}
3577module_exit(cleanup_ipmi_si);
3578
3579MODULE_LICENSE("GPL");
1fdd75bd 3580MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3581MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3582 " system interfaces.");