[PATCH] kfree cleanup: drivers/char
[linux-2.6-block.git] / drivers / char / ip2 / i2ellis.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2*
3* (c) 1998 by Computone Corporation
4*
5********************************************************************************
6*
7*
8* PACKAGE: Linux tty Device Driver for IntelliPort family of multiport
9* serial I/O controllers.
10*
11* DESCRIPTION: Low-level interface code for the device driver
12* (This is included source code, not a separate compilation
13* module.)
14*
15*******************************************************************************/
16//---------------------------------------------
17// Function declarations private to this module
18//---------------------------------------------
19// Functions called only indirectly through i2eBordStr entries.
20
21static int iiWriteBuf16(i2eBordStrPtr, unsigned char *, int);
22static int iiWriteBuf8(i2eBordStrPtr, unsigned char *, int);
23static int iiReadBuf16(i2eBordStrPtr, unsigned char *, int);
24static int iiReadBuf8(i2eBordStrPtr, unsigned char *, int);
25
26static unsigned short iiReadWord16(i2eBordStrPtr);
27static unsigned short iiReadWord8(i2eBordStrPtr);
28static void iiWriteWord16(i2eBordStrPtr, unsigned short);
29static void iiWriteWord8(i2eBordStrPtr, unsigned short);
30
31static int iiWaitForTxEmptyII(i2eBordStrPtr, int);
32static int iiWaitForTxEmptyIIEX(i2eBordStrPtr, int);
33static int iiTxMailEmptyII(i2eBordStrPtr);
34static int iiTxMailEmptyIIEX(i2eBordStrPtr);
35static int iiTrySendMailII(i2eBordStrPtr, unsigned char);
36static int iiTrySendMailIIEX(i2eBordStrPtr, unsigned char);
37
38static unsigned short iiGetMailII(i2eBordStrPtr);
39static unsigned short iiGetMailIIEX(i2eBordStrPtr);
40
41static void iiEnableMailIrqII(i2eBordStrPtr);
42static void iiEnableMailIrqIIEX(i2eBordStrPtr);
43static void iiWriteMaskII(i2eBordStrPtr, unsigned char);
44static void iiWriteMaskIIEX(i2eBordStrPtr, unsigned char);
45
46static void ii2DelayTimer(unsigned int);
47static void ii2DelayWakeup(unsigned long id);
48static void ii2Nop(void);
49
50//***************
51//* Static Data *
52//***************
53
54static int ii2Safe; // Safe I/O address for delay routine
55
56static int iiDelayed; // Set when the iiResetDelay function is
57 // called. Cleared when ANY board is reset.
58static struct timer_list * pDelayTimer; // Used by iiDelayTimer
59static wait_queue_head_t pDelayWait; // Used by iiDelayTimer
60static rwlock_t Dl_spinlock;
61
62//********
63//* Code *
64//********
65
66//=======================================================
67// Initialization Routines
68//
69// iiSetAddress
70// iiReset
71// iiResetDelay
72// iiInitialize
73//=======================================================
74
75//******************************************************************************
76// Function: iiEllisInit()
77// Parameters: None
78//
79// Returns: Nothing
80//
81// Description:
82//
83// This routine performs any required initialization of the iiEllis subsystem.
84//
85//******************************************************************************
86static void
87iiEllisInit(void)
88{
89 pDelayTimer = kmalloc ( sizeof (struct timer_list), GFP_KERNEL );
90 init_timer(pDelayTimer);
91 init_waitqueue_head(&pDelayWait);
92 LOCK_INIT(&Dl_spinlock);
93}
94
95//******************************************************************************
96// Function: iiEllisCleanup()
97// Parameters: None
98//
99// Returns: Nothing
100//
101// Description:
102//
103// This routine performs any required cleanup of the iiEllis subsystem.
104//
105//******************************************************************************
106static void
107iiEllisCleanup(void)
108{
735d5661 109 kfree(pDelayTimer);
1da177e4
LT
110}
111
112//******************************************************************************
113// Function: iiSetAddress(pB, address, delay)
114// Parameters: pB - pointer to the board structure
115// address - the purported I/O address of the board
116// delay - pointer to the 1-ms delay function to use
117// in this and any future operations to this board
118//
119// Returns: True if everything appears copacetic.
120// False if there is any error: the pB->i2eError field has the error
121//
122// Description:
123//
124// This routine (roughly) checks for address validity, sets the i2eValid OK and
125// sets the state to II_STATE_COLD which means that we haven't even sent a reset
126// yet.
127//
128//******************************************************************************
129static int
130iiSetAddress( i2eBordStrPtr pB, int address, delayFunc_t delay )
131{
132 // Should any failure occur before init is finished...
133 pB->i2eValid = I2E_INCOMPLETE;
134
135 // Cannot check upper limit except extremely: Might be microchannel
136 // Address must be on an 8-byte boundary
137
138 if ((unsigned int)address <= 0x100
139 || (unsigned int)address >= 0xfff8
140 || (address & 0x7)
141 )
142 {
143 COMPLETE(pB,I2EE_BADADDR);
144 }
145
146 // Initialize accelerators
147 pB->i2eBase = address;
148 pB->i2eData = address + FIFO_DATA;
149 pB->i2eStatus = address + FIFO_STATUS;
150 pB->i2ePointer = address + FIFO_PTR;
151 pB->i2eXMail = address + FIFO_MAIL;
152 pB->i2eXMask = address + FIFO_MASK;
153
154 // Initialize i/o address for ii2DelayIO
155 ii2Safe = address + FIFO_NOP;
156
157 // Initialize the delay routine
158 pB->i2eDelay = ((delay != (delayFunc_t)NULL) ? delay : (delayFunc_t)ii2Nop);
159
160 pB->i2eValid = I2E_MAGIC;
161 pB->i2eState = II_STATE_COLD;
162
163 COMPLETE(pB, I2EE_GOOD);
164}
165
166//******************************************************************************
167// Function: iiReset(pB)
168// Parameters: pB - pointer to the board structure
169//
170// Returns: True if everything appears copacetic.
171// False if there is any error: the pB->i2eError field has the error
172//
173// Description:
174//
175// Attempts to reset the board (see also i2hw.h). Normally, we would use this to
176// reset a board immediately after iiSetAddress(), but it is valid to reset a
177// board from any state, say, in order to change or re-load loadware. (Under
178// such circumstances, no reason to re-run iiSetAddress(), which is why it is a
179// separate routine and not included in this routine.
180//
181//******************************************************************************
182static int
183iiReset(i2eBordStrPtr pB)
184{
185 // Magic number should be set, else even the address is suspect
186 if (pB->i2eValid != I2E_MAGIC)
187 {
188 COMPLETE(pB, I2EE_BADMAGIC);
189 }
190
191 OUTB(pB->i2eBase + FIFO_RESET, 0); // Any data will do
192 iiDelay(pB, 50); // Pause between resets
193 OUTB(pB->i2eBase + FIFO_RESET, 0); // Second reset
194
195 // We must wait before even attempting to read anything from the FIFO: the
196 // board's P.O.S.T may actually attempt to read and write its end of the
197 // FIFO in order to check flags, loop back (where supported), etc. On
198 // completion of this testing it would reset the FIFO, and on completion
199 // of all // P.O.S.T., write the message. We must not mistake data which
200 // might have been sent for testing as part of the reset message. To
201 // better utilize time, say, when resetting several boards, we allow the
202 // delay to be performed externally; in this way the caller can reset
203 // several boards, delay a single time, then call the initialization
204 // routine for all.
205
206 pB->i2eState = II_STATE_RESET;
207
208 iiDelayed = 0; // i.e., the delay routine hasn't been called since the most
209 // recent reset.
210
211 // Ensure anything which would have been of use to standard loadware is
212 // blanked out, since board has now forgotten everything!.
213
214 pB->i2eUsingIrq = IRQ_UNDEFINED; // Not set up to use an interrupt yet
215 pB->i2eWaitingForEmptyFifo = 0;
216 pB->i2eOutMailWaiting = 0;
217 pB->i2eChannelPtr = NULL;
218 pB->i2eChannelCnt = 0;
219
220 pB->i2eLeadoffWord[0] = 0;
221 pB->i2eFifoInInts = 0;
222 pB->i2eFifoOutInts = 0;
223 pB->i2eFatalTrap = NULL;
224 pB->i2eFatal = 0;
225
226 COMPLETE(pB, I2EE_GOOD);
227}
228
229//******************************************************************************
230// Function: iiResetDelay(pB)
231// Parameters: pB - pointer to the board structure
232//
233// Returns: True if everything appears copacetic.
234// False if there is any error: the pB->i2eError field has the error
235//
236// Description:
237//
238// Using the delay defined in board structure, waits two seconds (for board to
239// reset).
240//
241//******************************************************************************
242static int
243iiResetDelay(i2eBordStrPtr pB)
244{
245 if (pB->i2eValid != I2E_MAGIC) {
246 COMPLETE(pB, I2EE_BADMAGIC);
247 }
248 if (pB->i2eState != II_STATE_RESET) {
249 COMPLETE(pB, I2EE_BADSTATE);
250 }
251 iiDelay(pB,2000); /* Now we wait for two seconds. */
252 iiDelayed = 1; /* Delay has been called: ok to initialize */
253 COMPLETE(pB, I2EE_GOOD);
254}
255
256//******************************************************************************
257// Function: iiInitialize(pB)
258// Parameters: pB - pointer to the board structure
259//
260// Returns: True if everything appears copacetic.
261// False if there is any error: the pB->i2eError field has the error
262//
263// Description:
264//
265// Attempts to read the Power-on reset message. Initializes any remaining fields
266// in the pB structure.
267//
268// This should be called as the third step of a process beginning with
269// iiReset(), then iiResetDelay(). This routine checks to see that the structure
270// is "valid" and in the reset state, also confirms that the delay routine has
271// been called since the latest reset (to any board! overly strong!).
272//
273//******************************************************************************
274static int
275iiInitialize(i2eBordStrPtr pB)
276{
277 int itemp;
278 unsigned char c;
279 unsigned short utemp;
280 unsigned int ilimit;
281
282 if (pB->i2eValid != I2E_MAGIC)
283 {
284 COMPLETE(pB, I2EE_BADMAGIC);
285 }
286
287 if (pB->i2eState != II_STATE_RESET || !iiDelayed)
288 {
289 COMPLETE(pB, I2EE_BADSTATE);
290 }
291
292 // In case there is a failure short of our completely reading the power-up
293 // message.
294 pB->i2eValid = I2E_INCOMPLETE;
295
296
297 // Now attempt to read the message.
298
299 for (itemp = 0; itemp < sizeof(porStr); itemp++)
300 {
301 // We expect the entire message is ready.
302 if (HAS_NO_INPUT(pB))
303 {
304 pB->i2ePomSize = itemp;
305 COMPLETE(pB, I2EE_PORM_SHORT);
306 }
307
308 pB->i2ePom.c[itemp] = c = BYTE_FROM(pB);
309
310 // We check the magic numbers as soon as they are supposed to be read
311 // (rather than after) to minimize effect of reading something we
312 // already suspect can't be "us".
313 if ( (itemp == POR_1_INDEX && c != POR_MAGIC_1) ||
314 (itemp == POR_2_INDEX && c != POR_MAGIC_2))
315 {
316 pB->i2ePomSize = itemp+1;
317 COMPLETE(pB, I2EE_BADMAGIC);
318 }
319 }
320
321 pB->i2ePomSize = itemp;
322
323 // Ensure that this was all the data...
324 if (HAS_INPUT(pB))
325 COMPLETE(pB, I2EE_PORM_LONG);
326
327 // For now, we'll fail to initialize if P.O.S.T reports bad chip mapper:
328 // Implying we will not be able to download any code either: That's ok: the
329 // condition is pretty explicit.
330 if (pB->i2ePom.e.porDiag1 & POR_BAD_MAPPER)
331 {
332 COMPLETE(pB, I2EE_POSTERR);
333 }
334
335 // Determine anything which must be done differently depending on the family
336 // of boards!
337 switch (pB->i2ePom.e.porID & POR_ID_FAMILY)
338 {
339 case POR_ID_FII: // IntelliPort-II
340
341 pB->i2eFifoStyle = FIFO_II;
342 pB->i2eFifoSize = 512; // 512 bytes, always
343 pB->i2eDataWidth16 = NO;
344
345 pB->i2eMaxIrq = 15; // Because board cannot tell us it is in an 8-bit
346 // slot, we do allow it to be done (documentation!)
347
348 pB->i2eGoodMap[1] =
349 pB->i2eGoodMap[2] =
350 pB->i2eGoodMap[3] =
351 pB->i2eChannelMap[1] =
352 pB->i2eChannelMap[2] =
353 pB->i2eChannelMap[3] = 0;
354
355 switch (pB->i2ePom.e.porID & POR_ID_SIZE)
356 {
357 case POR_ID_II_4:
358 pB->i2eGoodMap[0] =
359 pB->i2eChannelMap[0] = 0x0f; // four-port
360
361 // Since porPorts1 is based on the Hardware ID register, the numbers
362 // should always be consistent for IntelliPort-II. Ditto below...
363 if (pB->i2ePom.e.porPorts1 != 4)
364 {
365 COMPLETE(pB, I2EE_INCONSIST);
366 }
367 break;
368
369 case POR_ID_II_8:
370 case POR_ID_II_8R:
371 pB->i2eGoodMap[0] =
372 pB->i2eChannelMap[0] = 0xff; // Eight port
373 if (pB->i2ePom.e.porPorts1 != 8)
374 {
375 COMPLETE(pB, I2EE_INCONSIST);
376 }
377 break;
378
379 case POR_ID_II_6:
380 pB->i2eGoodMap[0] =
381 pB->i2eChannelMap[0] = 0x3f; // Six Port
382 if (pB->i2ePom.e.porPorts1 != 6)
383 {
384 COMPLETE(pB, I2EE_INCONSIST);
385 }
386 break;
387 }
388
389 // Fix up the "good channel list based on any errors reported.
390 if (pB->i2ePom.e.porDiag1 & POR_BAD_UART1)
391 {
392 pB->i2eGoodMap[0] &= ~0x0f;
393 }
394
395 if (pB->i2ePom.e.porDiag1 & POR_BAD_UART2)
396 {
397 pB->i2eGoodMap[0] &= ~0xf0;
398 }
399
400 break; // POR_ID_FII case
401
402 case POR_ID_FIIEX: // IntelliPort-IIEX
403
404 pB->i2eFifoStyle = FIFO_IIEX;
405
406 itemp = pB->i2ePom.e.porFifoSize;
407
408 // Implicit assumption that fifo would not grow beyond 32k,
409 // nor would ever be less than 256.
410
411 if (itemp < 8 || itemp > 15)
412 {
413 COMPLETE(pB, I2EE_INCONSIST);
414 }
415 pB->i2eFifoSize = (1 << itemp);
416
417 // These are based on what P.O.S.T thinks should be there, based on
418 // box ID registers
419 ilimit = pB->i2ePom.e.porNumBoxes;
420 if (ilimit > ABS_MAX_BOXES)
421 {
422 ilimit = ABS_MAX_BOXES;
423 }
424
425 // For as many boxes as EXIST, gives the type of box.
426 // Added 8/6/93: check for the ISA-4 (asic) which looks like an
427 // expandable but for whom "8 or 16?" is not the right question.
428
429 utemp = pB->i2ePom.e.porFlags;
430 if (utemp & POR_CEX4)
431 {
432 pB->i2eChannelMap[0] = 0x000f;
433 } else {
434 utemp &= POR_BOXES;
435 for (itemp = 0; itemp < ilimit; itemp++)
436 {
437 pB->i2eChannelMap[itemp] =
438 ((utemp & POR_BOX_16) ? 0xffff : 0x00ff);
439 utemp >>= 1;
440 }
441 }
442
443 // These are based on what P.O.S.T actually found.
444
445 utemp = (pB->i2ePom.e.porPorts2 << 8) + pB->i2ePom.e.porPorts1;
446
447 for (itemp = 0; itemp < ilimit; itemp++)
448 {
449 pB->i2eGoodMap[itemp] = 0;
450 if (utemp & 1) pB->i2eGoodMap[itemp] |= 0x000f;
451 if (utemp & 2) pB->i2eGoodMap[itemp] |= 0x00f0;
452 if (utemp & 4) pB->i2eGoodMap[itemp] |= 0x0f00;
453 if (utemp & 8) pB->i2eGoodMap[itemp] |= 0xf000;
454 utemp >>= 4;
455 }
456
457 // Now determine whether we should transfer in 8 or 16-bit mode.
458 switch (pB->i2ePom.e.porBus & (POR_BUS_SLOT16 | POR_BUS_DIP16) )
459 {
460 case POR_BUS_SLOT16 | POR_BUS_DIP16:
461 pB->i2eDataWidth16 = YES;
462 pB->i2eMaxIrq = 15;
463 break;
464
465 case POR_BUS_SLOT16:
466 pB->i2eDataWidth16 = NO;
467 pB->i2eMaxIrq = 15;
468 break;
469
470 case 0:
471 case POR_BUS_DIP16: // In an 8-bit slot, DIP switch don't care.
472 default:
473 pB->i2eDataWidth16 = NO;
474 pB->i2eMaxIrq = 7;
475 break;
476 }
477 break; // POR_ID_FIIEX case
478
479 default: // Unknown type of board
480 COMPLETE(pB, I2EE_BAD_FAMILY);
481 break;
482 } // End the switch based on family
483
484 // Temporarily, claim there is no room in the outbound fifo.
485 // We will maintain this whenever we check for an empty outbound FIFO.
486 pB->i2eFifoRemains = 0;
487
488 // Now, based on the bus type, should we expect to be able to re-configure
489 // interrupts (say, for testing purposes).
490 switch (pB->i2ePom.e.porBus & POR_BUS_TYPE)
491 {
492 case POR_BUS_T_ISA:
493 case POR_BUS_T_UNK: // If the type of bus is undeclared, assume ok.
494 pB->i2eChangeIrq = YES;
495 break;
496 case POR_BUS_T_MCA:
497 case POR_BUS_T_EISA:
498 pB->i2eChangeIrq = NO;
499 break;
500 default:
501 COMPLETE(pB, I2EE_BADBUS);
502 }
503
504 if (pB->i2eDataWidth16 == YES)
505 {
506 pB->i2eWriteBuf = iiWriteBuf16;
507 pB->i2eReadBuf = iiReadBuf16;
508 pB->i2eWriteWord = iiWriteWord16;
509 pB->i2eReadWord = iiReadWord16;
510 } else {
511 pB->i2eWriteBuf = iiWriteBuf8;
512 pB->i2eReadBuf = iiReadBuf8;
513 pB->i2eWriteWord = iiWriteWord8;
514 pB->i2eReadWord = iiReadWord8;
515 }
516
517 switch(pB->i2eFifoStyle)
518 {
519 case FIFO_II:
520 pB->i2eWaitForTxEmpty = iiWaitForTxEmptyII;
521 pB->i2eTxMailEmpty = iiTxMailEmptyII;
522 pB->i2eTrySendMail = iiTrySendMailII;
523 pB->i2eGetMail = iiGetMailII;
524 pB->i2eEnableMailIrq = iiEnableMailIrqII;
525 pB->i2eWriteMask = iiWriteMaskII;
526
527 break;
528
529 case FIFO_IIEX:
530 pB->i2eWaitForTxEmpty = iiWaitForTxEmptyIIEX;
531 pB->i2eTxMailEmpty = iiTxMailEmptyIIEX;
532 pB->i2eTrySendMail = iiTrySendMailIIEX;
533 pB->i2eGetMail = iiGetMailIIEX;
534 pB->i2eEnableMailIrq = iiEnableMailIrqIIEX;
535 pB->i2eWriteMask = iiWriteMaskIIEX;
536
537 break;
538
539 default:
540 COMPLETE(pB, I2EE_INCONSIST);
541 }
542
543 // Initialize state information.
544 pB->i2eState = II_STATE_READY; // Ready to load loadware.
545
546 // Some Final cleanup:
547 // For some boards, the bootstrap firmware may perform some sort of test
548 // resulting in a stray character pending in the incoming mailbox. If one is
549 // there, it should be read and discarded, especially since for the standard
550 // firmware, it's the mailbox that interrupts the host.
551
552 pB->i2eStartMail = iiGetMail(pB);
553
554 // Throw it away and clear the mailbox structure element
555 pB->i2eStartMail = NO_MAIL_HERE;
556
557 // Everything is ok now, return with good status/
558
559 pB->i2eValid = I2E_MAGIC;
560 COMPLETE(pB, I2EE_GOOD);
561}
562
563//=======================================================
564// Delay Routines
565//
566// iiDelayIO
567// iiNop
568//=======================================================
569
570static void
571ii2DelayWakeup(unsigned long id)
572{
573 wake_up_interruptible ( &pDelayWait );
574}
575
576//******************************************************************************
577// Function: ii2DelayTimer(mseconds)
578// Parameters: mseconds - number of milliseconds to delay
579//
580// Returns: Nothing
581//
582// Description:
583//
584// This routine delays for approximately mseconds milliseconds and is intended
585// to be called indirectly through i2Delay field in i2eBordStr. It uses the
586// Linux timer_list mechanism.
587//
588// The Linux timers use a unit called "jiffies" which are 10mS in the Intel
589// architecture. This function rounds the delay period up to the next "jiffy".
590// In the Alpha architecture the "jiffy" is 1mS, but this driver is not intended
591// for Alpha platforms at this time.
592//
593//******************************************************************************
594static void
595ii2DelayTimer(unsigned int mseconds)
596{
597 wait_queue_t wait;
598
599 init_waitqueue_entry(&wait, current);
600
601 init_timer ( pDelayTimer );
602
603 add_wait_queue(&pDelayWait, &wait);
604
605 set_current_state( TASK_INTERRUPTIBLE );
606
607 pDelayTimer->expires = jiffies + ( mseconds + 9 ) / 10;
608 pDelayTimer->function = ii2DelayWakeup;
609 pDelayTimer->data = 0;
610
611 add_timer ( pDelayTimer );
612
613 schedule();
614
615 set_current_state( TASK_RUNNING );
616 remove_wait_queue(&pDelayWait, &wait);
617
618 del_timer ( pDelayTimer );
619}
620
621#if 0
622//static void ii2DelayIO(unsigned int);
623//******************************************************************************
624// !!! Not Used, this is DOS crap, some of you young folks may be interested in
625// in how things were done in the stone age of caculating machines !!!
626// Function: ii2DelayIO(mseconds)
627// Parameters: mseconds - number of milliseconds to delay
628//
629// Returns: Nothing
630//
631// Description:
632//
633// This routine delays for approximately mseconds milliseconds and is intended
634// to be called indirectly through i2Delay field in i2eBordStr. It is intended
635// for use where a clock-based function is impossible: for example, DOS drivers.
636//
637// This function uses the IN instruction to place bounds on the timing and
638// assumes that ii2Safe has been set. This is because I/O instructions are not
639// subject to caching and will therefore take a certain minimum time. To ensure
640// the delay is at least long enough on fast machines, it is based on some
641// fastest-case calculations. On slower machines this may cause VERY long
642// delays. (3 x fastest case). In the fastest case, everything is cached except
643// the I/O instruction itself.
644//
645// Timing calculations:
646// The fastest bus speed for I/O operations is likely to be 10 MHz. The I/O
647// operation in question is a byte operation to an odd address. For 8-bit
648// operations, the architecture generally enforces two wait states. At 10 MHz, a
649// single cycle time is 100nS. A read operation at two wait states takes 6
650// cycles for a total time of 600nS. Therefore approximately 1666 iterations
651// would be required to generate a single millisecond delay. The worst
652// (reasonable) case would be an 8MHz system with no cacheing. In this case, the
653// I/O instruction would take 125nS x 6 cyles = 750 nS. More importantly, code
654// fetch of other instructions in the loop would take time (zero wait states,
655// however) and would be hard to estimate. This is minimized by using in-line
656// assembler for the in inner loop of IN instructions. This consists of just a
657// few bytes. So we'll guess about four code fetches per loop. Each code fetch
658// should take four cycles, so we have 125nS * 8 = 1000nS. Worst case then is
659// that what should have taken 1 mS takes instead 1666 * (1750) = 2.9 mS.
660//
661// So much for theoretical timings: results using 1666 value on some actual
662// machines:
663// IBM 286 6MHz 3.15 mS
664// Zenith 386 33MHz 2.45 mS
665// (brandX) 386 33MHz 1.90 mS (has cache)
666// (brandY) 486 33MHz 2.35 mS
667// NCR 486 ?? 1.65 mS (microchannel)
668//
669// For most machines, it is probably safe to scale this number back (remember,
670// for robust operation use an actual timed delay if possible), so we are using
671// a value of 1190. This yields 1.17 mS for the fastest machine in our sample,
672// 1.75 mS for typical 386 machines, and 2.25 mS the absolute slowest machine.
673//
674// 1/29/93:
675// The above timings are too slow. Actual cycle times might be faster. ISA cycle
676// times could approach 500 nS, and ...
677// The IBM model 77 being microchannel has no wait states for 8-bit reads and
678// seems to be accessing the I/O at 440 nS per access (from start of one to
679// start of next). This would imply we need 1000/.440 = 2272 iterations to
680// guarantee we are fast enough. In actual testing, we see that 2 * 1190 are in
681// fact enough. For diagnostics, we keep the level at 1190, but developers note
682// this needs tuning.
683//
684// Safe assumption: 2270 i/o reads = 1 millisecond
685//
686//******************************************************************************
687
688
689static int ii2DelValue = 1190; // See timing calculations below
690 // 1666 for fastest theoretical machine
691 // 1190 safe for most fast 386 machines
692 // 1000 for fastest machine tested here
693 // 540 (sic) for AT286/6Mhz
694static void
695ii2DelayIO(unsigned int mseconds)
696{
697 if (!ii2Safe)
698 return; /* Do nothing if this variable uninitialized */
699
700 while(mseconds--) {
701 int i = ii2DelValue;
702 while ( i-- ) {
703 INB ( ii2Safe );
704 }
705 }
706}
707#endif
708
709//******************************************************************************
710// Function: ii2Nop()
711// Parameters: None
712//
713// Returns: Nothing
714//
715// Description:
716//
717// iiInitialize will set i2eDelay to this if the delay parameter is NULL. This
718// saves checking for a NULL pointer at every call.
719//******************************************************************************
720static void
721ii2Nop(void)
722{
723 return; // no mystery here
724}
725
726//=======================================================
727// Routines which are available in 8/16-bit versions, or
728// in different fifo styles. These are ALL called
729// indirectly through the board structure.
730//=======================================================
731
732//******************************************************************************
733// Function: iiWriteBuf16(pB, address, count)
734// Parameters: pB - pointer to board structure
735// address - address of data to write
736// count - number of data bytes to write
737//
738// Returns: True if everything appears copacetic.
739// False if there is any error: the pB->i2eError field has the error
740//
741// Description:
742//
743// Writes 'count' bytes from 'address' to the data fifo specified by the board
744// structure pointer pB. Should count happen to be odd, an extra pad byte is
745// sent (identity unknown...). Uses 16-bit (word) operations. Is called
746// indirectly through pB->i2eWriteBuf.
747//
748//******************************************************************************
749static int
750iiWriteBuf16(i2eBordStrPtr pB, unsigned char *address, int count)
751{
752 // Rudimentary sanity checking here.
753 if (pB->i2eValid != I2E_MAGIC)
754 COMPLETE(pB, I2EE_INVALID);
755
756 OUTSW ( pB->i2eData, address, count);
757
758 COMPLETE(pB, I2EE_GOOD);
759}
760
761//******************************************************************************
762// Function: iiWriteBuf8(pB, address, count)
763// Parameters: pB - pointer to board structure
764// address - address of data to write
765// count - number of data bytes to write
766//
767// Returns: True if everything appears copacetic.
768// False if there is any error: the pB->i2eError field has the error
769//
770// Description:
771//
772// Writes 'count' bytes from 'address' to the data fifo specified by the board
773// structure pointer pB. Should count happen to be odd, an extra pad byte is
774// sent (identity unknown...). This is to be consistent with the 16-bit version.
775// Uses 8-bit (byte) operations. Is called indirectly through pB->i2eWriteBuf.
776//
777//******************************************************************************
778static int
779iiWriteBuf8(i2eBordStrPtr pB, unsigned char *address, int count)
780{
781 /* Rudimentary sanity checking here */
782 if (pB->i2eValid != I2E_MAGIC)
783 COMPLETE(pB, I2EE_INVALID);
784
785 OUTSB ( pB->i2eData, address, count );
786
787 COMPLETE(pB, I2EE_GOOD);
788}
789
790//******************************************************************************
791// Function: iiReadBuf16(pB, address, count)
792// Parameters: pB - pointer to board structure
793// address - address to put data read
794// count - number of data bytes to read
795//
796// Returns: True if everything appears copacetic.
797// False if there is any error: the pB->i2eError field has the error
798//
799// Description:
800//
801// Reads 'count' bytes into 'address' from the data fifo specified by the board
802// structure pointer pB. Should count happen to be odd, an extra pad byte is
803// received (identity unknown...). Uses 16-bit (word) operations. Is called
804// indirectly through pB->i2eReadBuf.
805//
806//******************************************************************************
807static int
808iiReadBuf16(i2eBordStrPtr pB, unsigned char *address, int count)
809{
810 // Rudimentary sanity checking here.
811 if (pB->i2eValid != I2E_MAGIC)
812 COMPLETE(pB, I2EE_INVALID);
813
814 INSW ( pB->i2eData, address, count);
815
816 COMPLETE(pB, I2EE_GOOD);
817}
818
819//******************************************************************************
820// Function: iiReadBuf8(pB, address, count)
821// Parameters: pB - pointer to board structure
822// address - address to put data read
823// count - number of data bytes to read
824//
825// Returns: True if everything appears copacetic.
826// False if there is any error: the pB->i2eError field has the error
827//
828// Description:
829//
830// Reads 'count' bytes into 'address' from the data fifo specified by the board
831// structure pointer pB. Should count happen to be odd, an extra pad byte is
832// received (identity unknown...). This to match the 16-bit behaviour. Uses
833// 8-bit (byte) operations. Is called indirectly through pB->i2eReadBuf.
834//
835//******************************************************************************
836static int
837iiReadBuf8(i2eBordStrPtr pB, unsigned char *address, int count)
838{
839 // Rudimentary sanity checking here.
840 if (pB->i2eValid != I2E_MAGIC)
841 COMPLETE(pB, I2EE_INVALID);
842
843 INSB ( pB->i2eData, address, count);
844
845 COMPLETE(pB, I2EE_GOOD);
846}
847
848//******************************************************************************
849// Function: iiReadWord16(pB)
850// Parameters: pB - pointer to board structure
851//
852// Returns: True if everything appears copacetic.
853// False if there is any error: the pB->i2eError field has the error
854//
855// Description:
856//
857// Returns the word read from the data fifo specified by the board-structure
858// pointer pB. Uses a 16-bit operation. Is called indirectly through
859// pB->i2eReadWord.
860//
861//******************************************************************************
862static unsigned short
863iiReadWord16(i2eBordStrPtr pB)
864{
865 return (unsigned short)( INW(pB->i2eData) );
866}
867
868//******************************************************************************
869// Function: iiReadWord8(pB)
870// Parameters: pB - pointer to board structure
871//
872// Returns: True if everything appears copacetic.
873// False if there is any error: the pB->i2eError field has the error
874//
875// Description:
876//
877// Returns the word read from the data fifo specified by the board-structure
878// pointer pB. Uses two 8-bit operations. Bytes are assumed to be LSB first. Is
879// called indirectly through pB->i2eReadWord.
880//
881//******************************************************************************
882static unsigned short
883iiReadWord8(i2eBordStrPtr pB)
884{
885 unsigned short urs;
886
887 urs = INB ( pB->i2eData );
888
889 return ( ( INB ( pB->i2eData ) << 8 ) | urs );
890}
891
892//******************************************************************************
893// Function: iiWriteWord16(pB, value)
894// Parameters: pB - pointer to board structure
895// value - data to write
896//
897// Returns: True if everything appears copacetic.
898// False if there is any error: the pB->i2eError field has the error
899//
900// Description:
901//
902// Writes the word 'value' to the data fifo specified by the board-structure
903// pointer pB. Uses 16-bit operation. Is called indirectly through
904// pB->i2eWriteWord.
905//
906//******************************************************************************
907static void
908iiWriteWord16(i2eBordStrPtr pB, unsigned short value)
909{
910 WORD_TO(pB, (int)value);
911}
912
913//******************************************************************************
914// Function: iiWriteWord8(pB, value)
915// Parameters: pB - pointer to board structure
916// value - data to write
917//
918// Returns: True if everything appears copacetic.
919// False if there is any error: the pB->i2eError field has the error
920//
921// Description:
922//
923// Writes the word 'value' to the data fifo specified by the board-structure
924// pointer pB. Uses two 8-bit operations (writes LSB first). Is called
925// indirectly through pB->i2eWriteWord.
926//
927//******************************************************************************
928static void
929iiWriteWord8(i2eBordStrPtr pB, unsigned short value)
930{
931 BYTE_TO(pB, (char)value);
932 BYTE_TO(pB, (char)(value >> 8) );
933}
934
935//******************************************************************************
936// Function: iiWaitForTxEmptyII(pB, mSdelay)
937// Parameters: pB - pointer to board structure
938// mSdelay - period to wait before returning
939//
940// Returns: True if the FIFO is empty.
941// False if it not empty in the required time: the pB->i2eError
942// field has the error.
943//
944// Description:
945//
946// Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if
947// not empty by the required time, returns false and error in pB->i2eError,
948// otherwise returns true.
949//
950// mSdelay == 0 is taken to mean must be empty on the first test.
951//
952// This version operates on IntelliPort-II - style FIFO's
953//
954// Note this routine is organized so that if status is ok there is no delay at
955// all called either before or after the test. Is called indirectly through
956// pB->i2eWaitForTxEmpty.
957//
958//******************************************************************************
959static int
960iiWaitForTxEmptyII(i2eBordStrPtr pB, int mSdelay)
961{
962 unsigned long flags;
963 int itemp;
964
965 for (;;)
966 {
967 // This routine hinges on being able to see the "other" status register
968 // (as seen by the local processor). His incoming fifo is our outgoing
969 // FIFO.
970 //
971 // By the nature of this routine, you would be using this as part of a
972 // larger atomic context: i.e., you would use this routine to ensure the
973 // fifo empty, then act on this information. Between these two halves,
974 // you will generally not want to service interrupts or in any way
975 // disrupt the assumptions implicit in the larger context.
976 //
977 // Even worse, however, this routine "shifts" the status register to
978 // point to the local status register which is not the usual situation.
979 // Therefore for extra safety, we force the critical section to be
980 // completely atomic, and pick up after ourselves before allowing any
981 // interrupts of any kind.
982
983
984 WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags)
985 OUTB(pB->i2ePointer, SEL_COMMAND);
986 OUTB(pB->i2ePointer, SEL_CMD_SH);
987
988 itemp = INB(pB->i2eStatus);
989
990 OUTB(pB->i2ePointer, SEL_COMMAND);
991 OUTB(pB->i2ePointer, SEL_CMD_UNSH);
992
993 if (itemp & ST_IN_EMPTY)
994 {
995 UPDATE_FIFO_ROOM(pB);
996 WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
997 COMPLETE(pB, I2EE_GOOD);
998 }
999
1000 WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
1001
1002 if (mSdelay-- == 0)
1003 break;
1004
1005 iiDelay(pB, 1); /* 1 mS granularity on checking condition */
1006 }
1007 COMPLETE(pB, I2EE_TXE_TIME);
1008}
1009
1010//******************************************************************************
1011// Function: iiWaitForTxEmptyIIEX(pB, mSdelay)
1012// Parameters: pB - pointer to board structure
1013// mSdelay - period to wait before returning
1014//
1015// Returns: True if the FIFO is empty.
1016// False if it not empty in the required time: the pB->i2eError
1017// field has the error.
1018//
1019// Description:
1020//
1021// Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if
1022// not empty by the required time, returns false and error in pB->i2eError,
1023// otherwise returns true.
1024//
1025// mSdelay == 0 is taken to mean must be empty on the first test.
1026//
1027// This version operates on IntelliPort-IIEX - style FIFO's
1028//
1029// Note this routine is organized so that if status is ok there is no delay at
1030// all called either before or after the test. Is called indirectly through
1031// pB->i2eWaitForTxEmpty.
1032//
1033//******************************************************************************
1034static int
1035iiWaitForTxEmptyIIEX(i2eBordStrPtr pB, int mSdelay)
1036{
1037 unsigned long flags;
1038
1039 for (;;)
1040 {
1041 // By the nature of this routine, you would be using this as part of a
1042 // larger atomic context: i.e., you would use this routine to ensure the
1043 // fifo empty, then act on this information. Between these two halves,
1044 // you will generally not want to service interrupts or in any way
1045 // disrupt the assumptions implicit in the larger context.
1046
1047 WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags)
1048
1049 if (INB(pB->i2eStatus) & STE_OUT_MT) {
1050 UPDATE_FIFO_ROOM(pB);
1051 WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
1052 COMPLETE(pB, I2EE_GOOD);
1053 }
1054 WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
1055
1056 if (mSdelay-- == 0)
1057 break;
1058
1059 iiDelay(pB, 1); // 1 mS granularity on checking condition
1060 }
1061 COMPLETE(pB, I2EE_TXE_TIME);
1062}
1063
1064//******************************************************************************
1065// Function: iiTxMailEmptyII(pB)
1066// Parameters: pB - pointer to board structure
1067//
1068// Returns: True if the transmit mailbox is empty.
1069// False if it not empty.
1070//
1071// Description:
1072//
1073// Returns true or false according to whether the transmit mailbox is empty (and
1074// therefore able to accept more mail)
1075//
1076// This version operates on IntelliPort-II - style FIFO's
1077//
1078//******************************************************************************
1079static int
1080iiTxMailEmptyII(i2eBordStrPtr pB)
1081{
1082 int port = pB->i2ePointer;
1083 OUTB ( port, SEL_OUTMAIL );
1084 return ( INB(port) == 0 );
1085}
1086
1087//******************************************************************************
1088// Function: iiTxMailEmptyIIEX(pB)
1089// Parameters: pB - pointer to board structure
1090//
1091// Returns: True if the transmit mailbox is empty.
1092// False if it not empty.
1093//
1094// Description:
1095//
1096// Returns true or false according to whether the transmit mailbox is empty (and
1097// therefore able to accept more mail)
1098//
1099// This version operates on IntelliPort-IIEX - style FIFO's
1100//
1101//******************************************************************************
1102static int
1103iiTxMailEmptyIIEX(i2eBordStrPtr pB)
1104{
1105 return !(INB(pB->i2eStatus) & STE_OUT_MAIL);
1106}
1107
1108//******************************************************************************
1109// Function: iiTrySendMailII(pB,mail)
1110// Parameters: pB - pointer to board structure
1111// mail - value to write to mailbox
1112//
1113// Returns: True if the transmit mailbox is empty, and mail is sent.
1114// False if it not empty.
1115//
1116// Description:
1117//
1118// If outgoing mailbox is empty, sends mail and returns true. If outgoing
1119// mailbox is not empty, returns false.
1120//
1121// This version operates on IntelliPort-II - style FIFO's
1122//
1123//******************************************************************************
1124static int
1125iiTrySendMailII(i2eBordStrPtr pB, unsigned char mail)
1126{
1127 int port = pB->i2ePointer;
1128
1129 OUTB(port, SEL_OUTMAIL);
1130 if (INB(port) == 0) {
1131 OUTB(port, SEL_OUTMAIL);
1132 OUTB(port, mail);
1133 return 1;
1134 }
1135 return 0;
1136}
1137
1138//******************************************************************************
1139// Function: iiTrySendMailIIEX(pB,mail)
1140// Parameters: pB - pointer to board structure
1141// mail - value to write to mailbox
1142//
1143// Returns: True if the transmit mailbox is empty, and mail is sent.
1144// False if it not empty.
1145//
1146// Description:
1147//
1148// If outgoing mailbox is empty, sends mail and returns true. If outgoing
1149// mailbox is not empty, returns false.
1150//
1151// This version operates on IntelliPort-IIEX - style FIFO's
1152//
1153//******************************************************************************
1154static int
1155iiTrySendMailIIEX(i2eBordStrPtr pB, unsigned char mail)
1156{
1157 if(INB(pB->i2eStatus) & STE_OUT_MAIL) {
1158 return 0;
1159 }
1160 OUTB(pB->i2eXMail, mail);
1161 return 1;
1162}
1163
1164//******************************************************************************
1165// Function: iiGetMailII(pB,mail)
1166// Parameters: pB - pointer to board structure
1167//
1168// Returns: Mailbox data or NO_MAIL_HERE.
1169//
1170// Description:
1171//
1172// If no mail available, returns NO_MAIL_HERE otherwise returns the data from
1173// the mailbox, which is guaranteed != NO_MAIL_HERE.
1174//
1175// This version operates on IntelliPort-II - style FIFO's
1176//
1177//******************************************************************************
1178static unsigned short
1179iiGetMailII(i2eBordStrPtr pB)
1180{
1181 if (HAS_MAIL(pB)) {
1182 OUTB(pB->i2ePointer, SEL_INMAIL);
1183 return INB(pB->i2ePointer);
1184 } else {
1185 return NO_MAIL_HERE;
1186 }
1187}
1188
1189//******************************************************************************
1190// Function: iiGetMailIIEX(pB,mail)
1191// Parameters: pB - pointer to board structure
1192//
1193// Returns: Mailbox data or NO_MAIL_HERE.
1194//
1195// Description:
1196//
1197// If no mail available, returns NO_MAIL_HERE otherwise returns the data from
1198// the mailbox, which is guaranteed != NO_MAIL_HERE.
1199//
1200// This version operates on IntelliPort-IIEX - style FIFO's
1201//
1202//******************************************************************************
1203static unsigned short
1204iiGetMailIIEX(i2eBordStrPtr pB)
1205{
1206 if (HAS_MAIL(pB)) {
1207 return INB(pB->i2eXMail);
1208 } else {
1209 return NO_MAIL_HERE;
1210 }
1211}
1212
1213//******************************************************************************
1214// Function: iiEnableMailIrqII(pB)
1215// Parameters: pB - pointer to board structure
1216//
1217// Returns: Nothing
1218//
1219// Description:
1220//
1221// Enables board to interrupt host (only) by writing to host's in-bound mailbox.
1222//
1223// This version operates on IntelliPort-II - style FIFO's
1224//
1225//******************************************************************************
1226static void
1227iiEnableMailIrqII(i2eBordStrPtr pB)
1228{
1229 OUTB(pB->i2ePointer, SEL_MASK);
1230 OUTB(pB->i2ePointer, ST_IN_MAIL);
1231}
1232
1233//******************************************************************************
1234// Function: iiEnableMailIrqIIEX(pB)
1235// Parameters: pB - pointer to board structure
1236//
1237// Returns: Nothing
1238//
1239// Description:
1240//
1241// Enables board to interrupt host (only) by writing to host's in-bound mailbox.
1242//
1243// This version operates on IntelliPort-IIEX - style FIFO's
1244//
1245//******************************************************************************
1246static void
1247iiEnableMailIrqIIEX(i2eBordStrPtr pB)
1248{
1249 OUTB(pB->i2eXMask, MX_IN_MAIL);
1250}
1251
1252//******************************************************************************
1253// Function: iiWriteMaskII(pB)
1254// Parameters: pB - pointer to board structure
1255//
1256// Returns: Nothing
1257//
1258// Description:
1259//
1260// Writes arbitrary value to the mask register.
1261//
1262// This version operates on IntelliPort-II - style FIFO's
1263//
1264//******************************************************************************
1265static void
1266iiWriteMaskII(i2eBordStrPtr pB, unsigned char value)
1267{
1268 OUTB(pB->i2ePointer, SEL_MASK);
1269 OUTB(pB->i2ePointer, value);
1270}
1271
1272//******************************************************************************
1273// Function: iiWriteMaskIIEX(pB)
1274// Parameters: pB - pointer to board structure
1275//
1276// Returns: Nothing
1277//
1278// Description:
1279//
1280// Writes arbitrary value to the mask register.
1281//
1282// This version operates on IntelliPort-IIEX - style FIFO's
1283//
1284//******************************************************************************
1285static void
1286iiWriteMaskIIEX(i2eBordStrPtr pB, unsigned char value)
1287{
1288 OUTB(pB->i2eXMask, value);
1289}
1290
1291//******************************************************************************
1292// Function: iiDownloadBlock(pB, pSource, isStandard)
1293// Parameters: pB - pointer to board structure
1294// pSource - loadware block to download
1295// isStandard - True if "standard" loadware, else false.
1296//
1297// Returns: Success or Failure
1298//
1299// Description:
1300//
1301// Downloads a single block (at pSource)to the board referenced by pB. Caller
1302// sets isStandard to true/false according to whether the "standard" loadware is
1303// what's being loaded. The normal process, then, is to perform an iiInitialize
1304// to the board, then perform some number of iiDownloadBlocks using the returned
1305// state to determine when download is complete.
1306//
1307// Possible return values: (see I2ELLIS.H)
1308// II_DOWN_BADVALID
1309// II_DOWN_BADFILE
1310// II_DOWN_CONTINUING
1311// II_DOWN_GOOD
1312// II_DOWN_BAD
1313// II_DOWN_BADSTATE
1314// II_DOWN_TIMEOUT
1315//
1316// Uses the i2eState and i2eToLoad fields (initialized at iiInitialize) to
1317// determine whether this is the first block, whether to check for magic
1318// numbers, how many blocks there are to go...
1319//
1320//******************************************************************************
1321static int
1322iiDownloadBlock ( i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard)
1323{
1324 int itemp;
1325 int loadedFirst;
1326
1327 if (pB->i2eValid != I2E_MAGIC) return II_DOWN_BADVALID;
1328
1329 switch(pB->i2eState)
1330 {
1331 case II_STATE_READY:
1332
1333 // Loading the first block after reset. Must check the magic number of the
1334 // loadfile, store the number of blocks we expect to load.
1335 if (pSource->e.loadMagic != MAGIC_LOADFILE)
1336 {
1337 return II_DOWN_BADFILE;
1338 }
1339
1340 // Next we store the total number of blocks to load, including this one.
1341 pB->i2eToLoad = 1 + pSource->e.loadBlocksMore;
1342
1343 // Set the state, store the version numbers. ('Cause this may have come
1344 // from a file - we might want to report these versions and revisions in
1345 // case of an error!
1346 pB->i2eState = II_STATE_LOADING;
1347 pB->i2eLVersion = pSource->e.loadVersion;
1348 pB->i2eLRevision = pSource->e.loadRevision;
1349 pB->i2eLSub = pSource->e.loadSubRevision;
1350
1351 // The time and date of compilation is also available but don't bother
1352 // storing it for normal purposes.
1353 loadedFirst = 1;
1354 break;
1355
1356 case II_STATE_LOADING:
1357 loadedFirst = 0;
1358 break;
1359
1360 default:
1361 return II_DOWN_BADSTATE;
1362 }
1363
1364 // Now we must be in the II_STATE_LOADING state, and we assume i2eToLoad
1365 // must be positive still, because otherwise we would have cleaned up last
1366 // time and set the state to II_STATE_LOADED.
1367 if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) {
1368 return II_DOWN_TIMEOUT;
1369 }
1370
1371 if (!iiWriteBuf(pB, pSource->c, LOADWARE_BLOCK_SIZE)) {
1372 return II_DOWN_BADVALID;
1373 }
1374
1375 // If we just loaded the first block, wait for the fifo to empty an extra
1376 // long time to allow for any special startup code in the firmware, like
1377 // sending status messages to the LCD's.
1378
1379 if (loadedFirst) {
1380 if (!iiWaitForTxEmpty(pB, MAX_DLOAD_START_TIME)) {
1381 return II_DOWN_TIMEOUT;
1382 }
1383 }
1384
1385 // Determine whether this was our last block!
1386 if (--(pB->i2eToLoad)) {
1387 return II_DOWN_CONTINUING; // more to come...
1388 }
1389
1390 // It WAS our last block: Clean up operations...
1391 // ...Wait for last buffer to drain from the board...
1392 if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) {
1393 return II_DOWN_TIMEOUT;
1394 }
1395 // If there were only a single block written, this would come back
1396 // immediately and be harmless, though not strictly necessary.
1397 itemp = MAX_DLOAD_ACK_TIME/10;
1398 while (--itemp) {
1399 if (HAS_INPUT(pB)) {
1400 switch(BYTE_FROM(pB))
1401 {
1402 case LOADWARE_OK:
1403 pB->i2eState =
1404 isStandard ? II_STATE_STDLOADED :II_STATE_LOADED;
1405
1406 // Some revisions of the bootstrap firmware (e.g. ISA-8 1.0.2)
1407 // will, // if there is a debug port attached, require some
1408 // time to send information to the debug port now. It will do
1409 // this before // executing any of the code we just downloaded.
1410 // It may take up to 700 milliseconds.
1411 if (pB->i2ePom.e.porDiag2 & POR_DEBUG_PORT) {
1412 iiDelay(pB, 700);
1413 }
1414
1415 return II_DOWN_GOOD;
1416
1417 case LOADWARE_BAD:
1418 default:
1419 return II_DOWN_BAD;
1420 }
1421 }
1422
1423 iiDelay(pB, 10); // 10 mS granularity on checking condition
1424 }
1425
1426 // Drop-through --> timed out waiting for firmware confirmation
1427
1428 pB->i2eState = II_STATE_BADLOAD;
1429 return II_DOWN_TIMEOUT;
1430}
1431
1432//******************************************************************************
1433// Function: iiDownloadAll(pB, pSource, isStandard, size)
1434// Parameters: pB - pointer to board structure
1435// pSource - loadware block to download
1436// isStandard - True if "standard" loadware, else false.
1437// size - size of data to download (in bytes)
1438//
1439// Returns: Success or Failure
1440//
1441// Description:
1442//
1443// Given a pointer to a board structure, a pointer to the beginning of some
1444// loadware, whether it is considered the "standard loadware", and the size of
1445// the array in bytes loads the entire array to the board as loadware.
1446//
1447// Assumes the board has been freshly reset and the power-up reset message read.
1448// (i.e., in II_STATE_READY). Complains if state is bad, or if there seems to be
1449// too much or too little data to load, or if iiDownloadBlock complains.
1450//******************************************************************************
1451static int
1452iiDownloadAll(i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard, int size)
1453{
1454 int status;
1455
1456 // We know (from context) board should be ready for the first block of
1457 // download. Complain if not.
1458 if (pB->i2eState != II_STATE_READY) return II_DOWN_BADSTATE;
1459
1460 while (size > 0) {
1461 size -= LOADWARE_BLOCK_SIZE; // How much data should there be left to
1462 // load after the following operation ?
1463
1464 // Note we just bump pSource by "one", because its size is actually that
1465 // of an entire block, same as LOADWARE_BLOCK_SIZE.
1466 status = iiDownloadBlock(pB, pSource++, isStandard);
1467
1468 switch(status)
1469 {
1470 case II_DOWN_GOOD:
1471 return ( (size > 0) ? II_DOWN_OVER : II_DOWN_GOOD);
1472
1473 case II_DOWN_CONTINUING:
1474 break;
1475
1476 default:
1477 return status;
1478 }
1479 }
1480
1481 // We shouldn't drop out: it means "while" caught us with nothing left to
1482 // download, yet the previous DownloadBlock did not return complete. Ergo,
1483 // not enough data to match the size byte in the header.
1484 return II_DOWN_UNDER;
1485}