mm: fix RODATA_TEST failure "rodata_test: test data was not read only"
[linux-2.6-block.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
8946a086 20#include <linux/bio.h>
306b0c95
NG
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/buffer_head.h>
24#include <linux/device.h>
25#include <linux/genhd.h>
26#include <linux/highmem.h>
5a0e3ad6 27#include <linux/slab.h>
b09ab054 28#include <linux/backing-dev.h>
306b0c95 29#include <linux/string.h>
306b0c95 30#include <linux/vmalloc.h>
fcfa8d95 31#include <linux/err.h>
85508ec6 32#include <linux/idr.h>
6566d1a3 33#include <linux/sysfs.h>
1dd6c834 34#include <linux/cpuhotplug.h>
306b0c95 35
16a4bfb9 36#include "zram_drv.h"
306b0c95 37
85508ec6 38static DEFINE_IDR(zram_index_idr);
6566d1a3
SS
39/* idr index must be protected */
40static DEFINE_MUTEX(zram_index_mutex);
41
f1e3cfff 42static int zram_major;
b7ca232e 43static const char *default_compressor = "lzo";
306b0c95 44
306b0c95 45/* Module params (documentation at end) */
ca3d70bd 46static unsigned int num_devices = 1;
33863c21 47
1f7319c7
MK
48static void zram_free_page(struct zram *zram, size_t index);
49
08eee69f 50static inline bool init_done(struct zram *zram)
be2d1d56 51{
08eee69f 52 return zram->disksize;
be2d1d56
SS
53}
54
9b3bb7ab
SS
55static inline struct zram *dev_to_zram(struct device *dev)
56{
57 return (struct zram *)dev_to_disk(dev)->private_data;
58}
59
643ae61d
MK
60static unsigned long zram_get_handle(struct zram *zram, u32 index)
61{
62 return zram->table[index].handle;
63}
64
65static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
66{
67 zram->table[index].handle = handle;
68}
69
b31177f2 70/* flag operations require table entry bit_spin_lock() being held */
beb6602c 71static int zram_test_flag(struct zram *zram, u32 index,
522698d7 72 enum zram_pageflags flag)
99ebbd30 73{
beb6602c 74 return zram->table[index].value & BIT(flag);
522698d7 75}
99ebbd30 76
beb6602c 77static void zram_set_flag(struct zram *zram, u32 index,
522698d7
SS
78 enum zram_pageflags flag)
79{
beb6602c 80 zram->table[index].value |= BIT(flag);
522698d7 81}
99ebbd30 82
beb6602c 83static void zram_clear_flag(struct zram *zram, u32 index,
522698d7
SS
84 enum zram_pageflags flag)
85{
beb6602c 86 zram->table[index].value &= ~BIT(flag);
522698d7 87}
99ebbd30 88
beb6602c 89static inline void zram_set_element(struct zram *zram, u32 index,
8e19d540 90 unsigned long element)
91{
beb6602c 92 zram->table[index].element = element;
8e19d540 93}
94
643ae61d 95static unsigned long zram_get_element(struct zram *zram, u32 index)
8e19d540 96{
643ae61d 97 return zram->table[index].element;
8e19d540 98}
99
beb6602c 100static size_t zram_get_obj_size(struct zram *zram, u32 index)
522698d7 101{
beb6602c 102 return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99ebbd30
AM
103}
104
beb6602c 105static void zram_set_obj_size(struct zram *zram,
522698d7 106 u32 index, size_t size)
9b3bb7ab 107{
beb6602c 108 unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
9b3bb7ab 109
beb6602c 110 zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
522698d7
SS
111}
112
1f7319c7 113#if PAGE_SIZE != 4096
1c53e0d2 114static inline bool is_partial_io(struct bio_vec *bvec)
522698d7
SS
115{
116 return bvec->bv_len != PAGE_SIZE;
117}
1f7319c7
MK
118#else
119static inline bool is_partial_io(struct bio_vec *bvec)
120{
121 return false;
122}
123#endif
522698d7 124
b09ab054
MK
125static void zram_revalidate_disk(struct zram *zram)
126{
127 revalidate_disk(zram->disk);
128 /* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
e1735496 129 zram->disk->queue->backing_dev_info->capabilities |=
b09ab054
MK
130 BDI_CAP_STABLE_WRITES;
131}
132
522698d7
SS
133/*
134 * Check if request is within bounds and aligned on zram logical blocks.
135 */
1c53e0d2 136static inline bool valid_io_request(struct zram *zram,
522698d7
SS
137 sector_t start, unsigned int size)
138{
139 u64 end, bound;
140
141 /* unaligned request */
142 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
1c53e0d2 143 return false;
522698d7 144 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
1c53e0d2 145 return false;
522698d7
SS
146
147 end = start + (size >> SECTOR_SHIFT);
148 bound = zram->disksize >> SECTOR_SHIFT;
149 /* out of range range */
150 if (unlikely(start >= bound || end > bound || start > end))
1c53e0d2 151 return false;
522698d7
SS
152
153 /* I/O request is valid */
1c53e0d2 154 return true;
522698d7
SS
155}
156
157static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
158{
e86942c7 159 *index += (*offset + bvec->bv_len) / PAGE_SIZE;
522698d7
SS
160 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
161}
162
163static inline void update_used_max(struct zram *zram,
164 const unsigned long pages)
165{
166 unsigned long old_max, cur_max;
167
168 old_max = atomic_long_read(&zram->stats.max_used_pages);
169
170 do {
171 cur_max = old_max;
172 if (pages > cur_max)
173 old_max = atomic_long_cmpxchg(
174 &zram->stats.max_used_pages, cur_max, pages);
175 } while (old_max != cur_max);
176}
177
48ad1abe 178static inline void zram_fill_page(void *ptr, unsigned long len,
8e19d540 179 unsigned long value)
180{
8e19d540 181 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
48ad1abe 182 memset_l(ptr, value, len / sizeof(unsigned long));
8e19d540 183}
184
185static bool page_same_filled(void *ptr, unsigned long *element)
522698d7
SS
186{
187 unsigned int pos;
188 unsigned long *page;
f0fe9984 189 unsigned long val;
522698d7
SS
190
191 page = (unsigned long *)ptr;
f0fe9984 192 val = page[0];
522698d7 193
f0fe9984
SP
194 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
195 if (val != page[pos])
1c53e0d2 196 return false;
522698d7
SS
197 }
198
f0fe9984 199 *element = val;
8e19d540 200
1c53e0d2 201 return true;
522698d7
SS
202}
203
9b3bb7ab
SS
204static ssize_t initstate_show(struct device *dev,
205 struct device_attribute *attr, char *buf)
206{
a68eb3b6 207 u32 val;
9b3bb7ab
SS
208 struct zram *zram = dev_to_zram(dev);
209
a68eb3b6
SS
210 down_read(&zram->init_lock);
211 val = init_done(zram);
212 up_read(&zram->init_lock);
9b3bb7ab 213
56b4e8cb 214 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
215}
216
522698d7
SS
217static ssize_t disksize_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219{
220 struct zram *zram = dev_to_zram(dev);
221
222 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
223}
224
9ada9da9
MK
225static ssize_t mem_limit_store(struct device *dev,
226 struct device_attribute *attr, const char *buf, size_t len)
227{
228 u64 limit;
229 char *tmp;
230 struct zram *zram = dev_to_zram(dev);
231
232 limit = memparse(buf, &tmp);
233 if (buf == tmp) /* no chars parsed, invalid input */
234 return -EINVAL;
235
236 down_write(&zram->init_lock);
237 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
238 up_write(&zram->init_lock);
239
240 return len;
241}
242
461a8eee
MK
243static ssize_t mem_used_max_store(struct device *dev,
244 struct device_attribute *attr, const char *buf, size_t len)
245{
246 int err;
247 unsigned long val;
248 struct zram *zram = dev_to_zram(dev);
461a8eee
MK
249
250 err = kstrtoul(buf, 10, &val);
251 if (err || val != 0)
252 return -EINVAL;
253
254 down_read(&zram->init_lock);
5a99e95b 255 if (init_done(zram)) {
461a8eee 256 atomic_long_set(&zram->stats.max_used_pages,
beb6602c 257 zs_get_total_pages(zram->mem_pool));
5a99e95b 258 }
461a8eee
MK
259 up_read(&zram->init_lock);
260
261 return len;
262}
263
013bf95a
MK
264#ifdef CONFIG_ZRAM_WRITEBACK
265static bool zram_wb_enabled(struct zram *zram)
266{
267 return zram->backing_dev;
268}
269
270static void reset_bdev(struct zram *zram)
271{
272 struct block_device *bdev;
273
274 if (!zram_wb_enabled(zram))
275 return;
276
277 bdev = zram->bdev;
278 if (zram->old_block_size)
279 set_blocksize(bdev, zram->old_block_size);
280 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
281 /* hope filp_close flush all of IO */
282 filp_close(zram->backing_dev, NULL);
283 zram->backing_dev = NULL;
284 zram->old_block_size = 0;
285 zram->bdev = NULL;
1363d466
MK
286
287 kvfree(zram->bitmap);
288 zram->bitmap = NULL;
013bf95a
MK
289}
290
291static ssize_t backing_dev_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293{
294 struct zram *zram = dev_to_zram(dev);
295 struct file *file = zram->backing_dev;
296 char *p;
297 ssize_t ret;
298
299 down_read(&zram->init_lock);
300 if (!zram_wb_enabled(zram)) {
301 memcpy(buf, "none\n", 5);
302 up_read(&zram->init_lock);
303 return 5;
304 }
305
306 p = file_path(file, buf, PAGE_SIZE - 1);
307 if (IS_ERR(p)) {
308 ret = PTR_ERR(p);
309 goto out;
310 }
311
312 ret = strlen(p);
313 memmove(buf, p, ret);
314 buf[ret++] = '\n';
315out:
316 up_read(&zram->init_lock);
317 return ret;
318}
319
320static ssize_t backing_dev_store(struct device *dev,
321 struct device_attribute *attr, const char *buf, size_t len)
322{
323 char *file_name;
324 struct file *backing_dev = NULL;
325 struct inode *inode;
326 struct address_space *mapping;
1363d466
MK
327 unsigned int bitmap_sz, old_block_size = 0;
328 unsigned long nr_pages, *bitmap = NULL;
013bf95a
MK
329 struct block_device *bdev = NULL;
330 int err;
331 struct zram *zram = dev_to_zram(dev);
332
333 file_name = kmalloc(PATH_MAX, GFP_KERNEL);
334 if (!file_name)
335 return -ENOMEM;
336
337 down_write(&zram->init_lock);
338 if (init_done(zram)) {
339 pr_info("Can't setup backing device for initialized device\n");
340 err = -EBUSY;
341 goto out;
342 }
343
344 strlcpy(file_name, buf, len);
345
346 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
347 if (IS_ERR(backing_dev)) {
348 err = PTR_ERR(backing_dev);
349 backing_dev = NULL;
350 goto out;
351 }
352
353 mapping = backing_dev->f_mapping;
354 inode = mapping->host;
355
356 /* Support only block device in this moment */
357 if (!S_ISBLK(inode->i_mode)) {
358 err = -ENOTBLK;
359 goto out;
360 }
361
362 bdev = bdgrab(I_BDEV(inode));
363 err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
364 if (err < 0)
365 goto out;
366
1363d466
MK
367 nr_pages = i_size_read(inode) >> PAGE_SHIFT;
368 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
369 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
370 if (!bitmap) {
371 err = -ENOMEM;
372 goto out;
373 }
374
013bf95a
MK
375 old_block_size = block_size(bdev);
376 err = set_blocksize(bdev, PAGE_SIZE);
377 if (err)
378 goto out;
379
380 reset_bdev(zram);
1363d466 381 spin_lock_init(&zram->bitmap_lock);
013bf95a
MK
382
383 zram->old_block_size = old_block_size;
384 zram->bdev = bdev;
385 zram->backing_dev = backing_dev;
1363d466
MK
386 zram->bitmap = bitmap;
387 zram->nr_pages = nr_pages;
013bf95a
MK
388 up_write(&zram->init_lock);
389
390 pr_info("setup backing device %s\n", file_name);
391 kfree(file_name);
392
393 return len;
394out:
1363d466
MK
395 if (bitmap)
396 kvfree(bitmap);
397
013bf95a
MK
398 if (bdev)
399 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
400
401 if (backing_dev)
402 filp_close(backing_dev, NULL);
403
404 up_write(&zram->init_lock);
405
406 kfree(file_name);
407
408 return err;
409}
410
1363d466
MK
411static unsigned long get_entry_bdev(struct zram *zram)
412{
413 unsigned long entry;
414
415 spin_lock(&zram->bitmap_lock);
416 /* skip 0 bit to confuse zram.handle = 0 */
417 entry = find_next_zero_bit(zram->bitmap, zram->nr_pages, 1);
418 if (entry == zram->nr_pages) {
419 spin_unlock(&zram->bitmap_lock);
420 return 0;
421 }
422
423 set_bit(entry, zram->bitmap);
424 spin_unlock(&zram->bitmap_lock);
425
426 return entry;
427}
428
429static void put_entry_bdev(struct zram *zram, unsigned long entry)
430{
431 int was_set;
432
433 spin_lock(&zram->bitmap_lock);
434 was_set = test_and_clear_bit(entry, zram->bitmap);
435 spin_unlock(&zram->bitmap_lock);
436 WARN_ON_ONCE(!was_set);
437}
438
db8ffbd4
MK
439void zram_page_end_io(struct bio *bio)
440{
441 struct page *page = bio->bi_io_vec[0].bv_page;
442
443 page_endio(page, op_is_write(bio_op(bio)),
444 blk_status_to_errno(bio->bi_status));
445 bio_put(bio);
446}
447
8e654f8f
MK
448/*
449 * Returns 1 if the submission is successful.
450 */
451static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
452 unsigned long entry, struct bio *parent)
453{
454 struct bio *bio;
455
456 bio = bio_alloc(GFP_ATOMIC, 1);
457 if (!bio)
458 return -ENOMEM;
459
460 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
a0725ab0 461 bio_set_dev(bio, zram->bdev);
8e654f8f
MK
462 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
463 bio_put(bio);
464 return -EIO;
465 }
466
467 if (!parent) {
468 bio->bi_opf = REQ_OP_READ;
469 bio->bi_end_io = zram_page_end_io;
470 } else {
471 bio->bi_opf = parent->bi_opf;
472 bio_chain(bio, parent);
473 }
474
475 submit_bio(bio);
476 return 1;
477}
478
479struct zram_work {
480 struct work_struct work;
481 struct zram *zram;
482 unsigned long entry;
483 struct bio *bio;
484};
485
486#if PAGE_SIZE != 4096
487static void zram_sync_read(struct work_struct *work)
488{
489 struct bio_vec bvec;
490 struct zram_work *zw = container_of(work, struct zram_work, work);
491 struct zram *zram = zw->zram;
492 unsigned long entry = zw->entry;
493 struct bio *bio = zw->bio;
494
495 read_from_bdev_async(zram, &bvec, entry, bio);
496}
497
498/*
499 * Block layer want one ->make_request_fn to be active at a time
500 * so if we use chained IO with parent IO in same context,
501 * it's a deadlock. To avoid, it, it uses worker thread context.
502 */
503static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
504 unsigned long entry, struct bio *bio)
505{
506 struct zram_work work;
507
508 work.zram = zram;
509 work.entry = entry;
510 work.bio = bio;
511
512 INIT_WORK_ONSTACK(&work.work, zram_sync_read);
513 queue_work(system_unbound_wq, &work.work);
514 flush_work(&work.work);
515 destroy_work_on_stack(&work.work);
516
517 return 1;
518}
519#else
520static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
521 unsigned long entry, struct bio *bio)
522{
523 WARN_ON(1);
524 return -EIO;
525}
526#endif
527
528static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
529 unsigned long entry, struct bio *parent, bool sync)
530{
531 if (sync)
532 return read_from_bdev_sync(zram, bvec, entry, parent);
533 else
534 return read_from_bdev_async(zram, bvec, entry, parent);
535}
536
db8ffbd4
MK
537static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
538 u32 index, struct bio *parent,
539 unsigned long *pentry)
540{
541 struct bio *bio;
542 unsigned long entry;
543
544 bio = bio_alloc(GFP_ATOMIC, 1);
545 if (!bio)
546 return -ENOMEM;
547
548 entry = get_entry_bdev(zram);
549 if (!entry) {
550 bio_put(bio);
551 return -ENOSPC;
552 }
553
554 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
a0725ab0 555 bio_set_dev(bio, zram->bdev);
db8ffbd4
MK
556 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len,
557 bvec->bv_offset)) {
558 bio_put(bio);
559 put_entry_bdev(zram, entry);
560 return -EIO;
561 }
562
563 if (!parent) {
564 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
565 bio->bi_end_io = zram_page_end_io;
566 } else {
567 bio->bi_opf = parent->bi_opf;
568 bio_chain(bio, parent);
569 }
570
571 submit_bio(bio);
572 *pentry = entry;
573
574 return 0;
575}
576
577static void zram_wb_clear(struct zram *zram, u32 index)
578{
579 unsigned long entry;
580
581 zram_clear_flag(zram, index, ZRAM_WB);
582 entry = zram_get_element(zram, index);
583 zram_set_element(zram, index, 0);
584 put_entry_bdev(zram, entry);
585}
586
013bf95a
MK
587#else
588static bool zram_wb_enabled(struct zram *zram) { return false; }
589static inline void reset_bdev(struct zram *zram) {};
db8ffbd4
MK
590static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
591 u32 index, struct bio *parent,
592 unsigned long *pentry)
593
594{
595 return -EIO;
596}
8e654f8f
MK
597
598static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
599 unsigned long entry, struct bio *parent, bool sync)
600{
601 return -EIO;
602}
db8ffbd4 603static void zram_wb_clear(struct zram *zram, u32 index) {}
013bf95a
MK
604#endif
605
606
43209ea2
SS
607/*
608 * We switched to per-cpu streams and this attr is not needed anymore.
609 * However, we will keep it around for some time, because:
610 * a) we may revert per-cpu streams in the future
611 * b) it's visible to user space and we need to follow our 2 years
612 * retirement rule; but we already have a number of 'soon to be
613 * altered' attrs, so max_comp_streams need to wait for the next
614 * layoff cycle.
615 */
522698d7
SS
616static ssize_t max_comp_streams_show(struct device *dev,
617 struct device_attribute *attr, char *buf)
618{
43209ea2 619 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
522698d7
SS
620}
621
beca3ec7
SS
622static ssize_t max_comp_streams_store(struct device *dev,
623 struct device_attribute *attr, const char *buf, size_t len)
624{
43209ea2 625 return len;
beca3ec7
SS
626}
627
e46b8a03
SS
628static ssize_t comp_algorithm_show(struct device *dev,
629 struct device_attribute *attr, char *buf)
630{
631 size_t sz;
632 struct zram *zram = dev_to_zram(dev);
633
634 down_read(&zram->init_lock);
635 sz = zcomp_available_show(zram->compressor, buf);
636 up_read(&zram->init_lock);
637
638 return sz;
639}
640
641static ssize_t comp_algorithm_store(struct device *dev,
642 struct device_attribute *attr, const char *buf, size_t len)
643{
644 struct zram *zram = dev_to_zram(dev);
f357e345 645 char compressor[ARRAY_SIZE(zram->compressor)];
4bbacd51
SS
646 size_t sz;
647
415403be
SS
648 strlcpy(compressor, buf, sizeof(compressor));
649 /* ignore trailing newline */
650 sz = strlen(compressor);
651 if (sz > 0 && compressor[sz - 1] == '\n')
652 compressor[sz - 1] = 0x00;
653
654 if (!zcomp_available_algorithm(compressor))
1d5b43bf
LH
655 return -EINVAL;
656
e46b8a03
SS
657 down_write(&zram->init_lock);
658 if (init_done(zram)) {
659 up_write(&zram->init_lock);
660 pr_info("Can't change algorithm for initialized device\n");
661 return -EBUSY;
662 }
4bbacd51 663
f357e345 664 strcpy(zram->compressor, compressor);
e46b8a03
SS
665 up_write(&zram->init_lock);
666 return len;
667}
668
522698d7
SS
669static ssize_t compact_store(struct device *dev,
670 struct device_attribute *attr, const char *buf, size_t len)
306b0c95 671{
522698d7 672 struct zram *zram = dev_to_zram(dev);
306b0c95 673
522698d7
SS
674 down_read(&zram->init_lock);
675 if (!init_done(zram)) {
676 up_read(&zram->init_lock);
677 return -EINVAL;
678 }
306b0c95 679
beb6602c 680 zs_compact(zram->mem_pool);
522698d7 681 up_read(&zram->init_lock);
d2d5e762 682
522698d7 683 return len;
d2d5e762
WY
684}
685
522698d7
SS
686static ssize_t io_stat_show(struct device *dev,
687 struct device_attribute *attr, char *buf)
d2d5e762 688{
522698d7
SS
689 struct zram *zram = dev_to_zram(dev);
690 ssize_t ret;
d2d5e762 691
522698d7
SS
692 down_read(&zram->init_lock);
693 ret = scnprintf(buf, PAGE_SIZE,
694 "%8llu %8llu %8llu %8llu\n",
695 (u64)atomic64_read(&zram->stats.failed_reads),
696 (u64)atomic64_read(&zram->stats.failed_writes),
697 (u64)atomic64_read(&zram->stats.invalid_io),
698 (u64)atomic64_read(&zram->stats.notify_free));
699 up_read(&zram->init_lock);
306b0c95 700
522698d7 701 return ret;
9b3bb7ab
SS
702}
703
522698d7
SS
704static ssize_t mm_stat_show(struct device *dev,
705 struct device_attribute *attr, char *buf)
9b3bb7ab 706{
522698d7 707 struct zram *zram = dev_to_zram(dev);
7d3f3938 708 struct zs_pool_stats pool_stats;
522698d7
SS
709 u64 orig_size, mem_used = 0;
710 long max_used;
711 ssize_t ret;
a539c72a 712
7d3f3938
SS
713 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
714
522698d7 715 down_read(&zram->init_lock);
7d3f3938 716 if (init_done(zram)) {
beb6602c
MK
717 mem_used = zs_get_total_pages(zram->mem_pool);
718 zs_pool_stats(zram->mem_pool, &pool_stats);
7d3f3938 719 }
9b3bb7ab 720
522698d7
SS
721 orig_size = atomic64_read(&zram->stats.pages_stored);
722 max_used = atomic_long_read(&zram->stats.max_used_pages);
9b3bb7ab 723
522698d7 724 ret = scnprintf(buf, PAGE_SIZE,
7d3f3938 725 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
522698d7
SS
726 orig_size << PAGE_SHIFT,
727 (u64)atomic64_read(&zram->stats.compr_data_size),
728 mem_used << PAGE_SHIFT,
729 zram->limit_pages << PAGE_SHIFT,
730 max_used << PAGE_SHIFT,
8e19d540 731 (u64)atomic64_read(&zram->stats.same_pages),
860c707d 732 pool_stats.pages_compacted);
522698d7 733 up_read(&zram->init_lock);
9b3bb7ab 734
522698d7
SS
735 return ret;
736}
737
623e47fc
SS
738static ssize_t debug_stat_show(struct device *dev,
739 struct device_attribute *attr, char *buf)
740{
741 int version = 1;
742 struct zram *zram = dev_to_zram(dev);
743 ssize_t ret;
744
745 down_read(&zram->init_lock);
746 ret = scnprintf(buf, PAGE_SIZE,
747 "version: %d\n%8llu\n",
748 version,
749 (u64)atomic64_read(&zram->stats.writestall));
750 up_read(&zram->init_lock);
751
752 return ret;
753}
754
522698d7
SS
755static DEVICE_ATTR_RO(io_stat);
756static DEVICE_ATTR_RO(mm_stat);
623e47fc 757static DEVICE_ATTR_RO(debug_stat);
522698d7 758
86c49814
MK
759static void zram_slot_lock(struct zram *zram, u32 index)
760{
beb6602c 761 bit_spin_lock(ZRAM_ACCESS, &zram->table[index].value);
86c49814
MK
762}
763
764static void zram_slot_unlock(struct zram *zram, u32 index)
765{
beb6602c 766 bit_spin_unlock(ZRAM_ACCESS, &zram->table[index].value);
86c49814
MK
767}
768
1f7319c7
MK
769static bool zram_same_page_read(struct zram *zram, u32 index,
770 struct page *page,
771 unsigned int offset, unsigned int len)
772{
86c49814 773 zram_slot_lock(zram, index);
643ae61d
MK
774 if (unlikely(!zram_get_handle(zram, index) ||
775 zram_test_flag(zram, index, ZRAM_SAME))) {
1f7319c7
MK
776 void *mem;
777
86c49814 778 zram_slot_unlock(zram, index);
1f7319c7 779 mem = kmap_atomic(page);
643ae61d
MK
780 zram_fill_page(mem + offset, len,
781 zram_get_element(zram, index));
1f7319c7
MK
782 kunmap_atomic(mem);
783 return true;
784 }
86c49814 785 zram_slot_unlock(zram, index);
1f7319c7
MK
786
787 return false;
788}
789
beb6602c 790static void zram_meta_free(struct zram *zram, u64 disksize)
522698d7
SS
791{
792 size_t num_pages = disksize >> PAGE_SHIFT;
793 size_t index;
1fec1172
GM
794
795 /* Free all pages that are still in this zram device */
302128dc
MK
796 for (index = 0; index < num_pages; index++)
797 zram_free_page(zram, index);
1fec1172 798
beb6602c
MK
799 zs_destroy_pool(zram->mem_pool);
800 vfree(zram->table);
9b3bb7ab
SS
801}
802
beb6602c 803static bool zram_meta_alloc(struct zram *zram, u64 disksize)
9b3bb7ab
SS
804{
805 size_t num_pages;
9b3bb7ab 806
9b3bb7ab 807 num_pages = disksize >> PAGE_SHIFT;
beb6602c
MK
808 zram->table = vzalloc(num_pages * sizeof(*zram->table));
809 if (!zram->table)
810 return false;
9b3bb7ab 811
beb6602c
MK
812 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
813 if (!zram->mem_pool) {
814 vfree(zram->table);
815 return false;
9b3bb7ab
SS
816 }
817
beb6602c 818 return true;
9b3bb7ab
SS
819}
820
d2d5e762
WY
821/*
822 * To protect concurrent access to the same index entry,
823 * caller should hold this table index entry's bit_spinlock to
824 * indicate this index entry is accessing.
825 */
f1e3cfff 826static void zram_free_page(struct zram *zram, size_t index)
306b0c95 827{
db8ffbd4
MK
828 unsigned long handle;
829
830 if (zram_wb_enabled(zram) && zram_test_flag(zram, index, ZRAM_WB)) {
831 zram_wb_clear(zram, index);
832 atomic64_dec(&zram->stats.pages_stored);
833 return;
834 }
306b0c95 835
8e19d540 836 /*
837 * No memory is allocated for same element filled pages.
838 * Simply clear same page flag.
839 */
beb6602c
MK
840 if (zram_test_flag(zram, index, ZRAM_SAME)) {
841 zram_clear_flag(zram, index, ZRAM_SAME);
643ae61d 842 zram_set_element(zram, index, 0);
8e19d540 843 atomic64_dec(&zram->stats.same_pages);
51f9f82c 844 atomic64_dec(&zram->stats.pages_stored);
306b0c95
NG
845 return;
846 }
847
db8ffbd4 848 handle = zram_get_handle(zram, index);
8e19d540 849 if (!handle)
850 return;
851
beb6602c 852 zs_free(zram->mem_pool, handle);
306b0c95 853
beb6602c 854 atomic64_sub(zram_get_obj_size(zram, index),
d2d5e762 855 &zram->stats.compr_data_size);
90a7806e 856 atomic64_dec(&zram->stats.pages_stored);
306b0c95 857
643ae61d 858 zram_set_handle(zram, index, 0);
beb6602c 859 zram_set_obj_size(zram, index, 0);
306b0c95
NG
860}
861
8e654f8f
MK
862static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
863 struct bio *bio, bool partial_io)
306b0c95 864{
1f7319c7 865 int ret;
92967471 866 unsigned long handle;
ebaf9ab5 867 unsigned int size;
1f7319c7 868 void *src, *dst;
1f7319c7 869
8e654f8f
MK
870 if (zram_wb_enabled(zram)) {
871 zram_slot_lock(zram, index);
872 if (zram_test_flag(zram, index, ZRAM_WB)) {
873 struct bio_vec bvec;
874
875 zram_slot_unlock(zram, index);
876
877 bvec.bv_page = page;
878 bvec.bv_len = PAGE_SIZE;
879 bvec.bv_offset = 0;
880 return read_from_bdev(zram, &bvec,
881 zram_get_element(zram, index),
882 bio, partial_io);
883 }
884 zram_slot_unlock(zram, index);
885 }
886
1f7319c7
MK
887 if (zram_same_page_read(zram, index, page, 0, PAGE_SIZE))
888 return 0;
92967471 889
86c49814 890 zram_slot_lock(zram, index);
643ae61d 891 handle = zram_get_handle(zram, index);
beb6602c 892 size = zram_get_obj_size(zram, index);
306b0c95 893
beb6602c 894 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
ebaf9ab5 895 if (size == PAGE_SIZE) {
1f7319c7
MK
896 dst = kmap_atomic(page);
897 memcpy(dst, src, PAGE_SIZE);
898 kunmap_atomic(dst);
899 ret = 0;
ebaf9ab5
SS
900 } else {
901 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
902
1f7319c7
MK
903 dst = kmap_atomic(page);
904 ret = zcomp_decompress(zstrm, src, size, dst);
905 kunmap_atomic(dst);
ebaf9ab5
SS
906 zcomp_stream_put(zram->comp);
907 }
beb6602c 908 zs_unmap_object(zram->mem_pool, handle);
86c49814 909 zram_slot_unlock(zram, index);
a1dd52af 910
8c921b2b 911 /* Should NEVER happen. Return bio error if it does. */
1f7319c7 912 if (unlikely(ret))
8c921b2b 913 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
306b0c95 914
1f7319c7 915 return ret;
306b0c95
NG
916}
917
37b51fdd 918static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
8e654f8f 919 u32 index, int offset, struct bio *bio)
924bd88d
JM
920{
921 int ret;
37b51fdd 922 struct page *page;
37b51fdd 923
1f7319c7
MK
924 page = bvec->bv_page;
925 if (is_partial_io(bvec)) {
926 /* Use a temporary buffer to decompress the page */
927 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
928 if (!page)
929 return -ENOMEM;
924bd88d
JM
930 }
931
8e654f8f 932 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1f7319c7
MK
933 if (unlikely(ret))
934 goto out;
7e5a5104 935
1f7319c7
MK
936 if (is_partial_io(bvec)) {
937 void *dst = kmap_atomic(bvec->bv_page);
938 void *src = kmap_atomic(page);
37b51fdd 939
1f7319c7
MK
940 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
941 kunmap_atomic(src);
942 kunmap_atomic(dst);
37b51fdd 943 }
1f7319c7 944out:
37b51fdd 945 if (is_partial_io(bvec))
1f7319c7 946 __free_page(page);
37b51fdd 947
37b51fdd 948 return ret;
924bd88d
JM
949}
950
db8ffbd4
MK
951static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
952 u32 index, struct bio *bio)
306b0c95 953{
ae85a807 954 int ret = 0;
1f7319c7 955 unsigned long alloced_pages;
da9556a2 956 unsigned long handle = 0;
97ec7c8b
MK
957 unsigned int comp_len = 0;
958 void *src, *dst, *mem;
959 struct zcomp_strm *zstrm;
960 struct page *page = bvec->bv_page;
961 unsigned long element = 0;
962 enum zram_pageflags flags = 0;
db8ffbd4 963 bool allow_wb = true;
97ec7c8b
MK
964
965 mem = kmap_atomic(page);
966 if (page_same_filled(mem, &element)) {
967 kunmap_atomic(mem);
968 /* Free memory associated with this sector now. */
969 flags = ZRAM_SAME;
970 atomic64_inc(&zram->stats.same_pages);
971 goto out;
972 }
973 kunmap_atomic(mem);
924bd88d 974
da9556a2 975compress_again:
97ec7c8b 976 zstrm = zcomp_stream_get(zram->comp);
1f7319c7 977 src = kmap_atomic(page);
97ec7c8b 978 ret = zcomp_compress(zstrm, src, &comp_len);
1f7319c7 979 kunmap_atomic(src);
306b0c95 980
b7ca232e 981 if (unlikely(ret)) {
97ec7c8b 982 zcomp_stream_put(zram->comp);
8c921b2b 983 pr_err("Compression failed! err=%d\n", ret);
97ec7c8b 984 zs_free(zram->mem_pool, handle);
1f7319c7 985 return ret;
8c921b2b 986 }
da9556a2 987
db8ffbd4
MK
988 if (unlikely(comp_len > max_zpage_size)) {
989 if (zram_wb_enabled(zram) && allow_wb) {
990 zcomp_stream_put(zram->comp);
991 ret = write_to_bdev(zram, bvec, index, bio, &element);
992 if (!ret) {
993 flags = ZRAM_WB;
994 ret = 1;
995 goto out;
996 }
997 allow_wb = false;
998 goto compress_again;
999 }
1f7319c7 1000 comp_len = PAGE_SIZE;
db8ffbd4 1001 }
a1dd52af 1002
da9556a2
SS
1003 /*
1004 * handle allocation has 2 paths:
1005 * a) fast path is executed with preemption disabled (for
1006 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1007 * since we can't sleep;
1008 * b) slow path enables preemption and attempts to allocate
1009 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
1010 * put per-cpu compression stream and, thus, to re-do
1011 * the compression once handle is allocated.
1012 *
1013 * if we have a 'non-null' handle here then we are coming
1014 * from the slow path and handle has already been allocated.
1015 */
1016 if (!handle)
beb6602c 1017 handle = zs_malloc(zram->mem_pool, comp_len,
da9556a2
SS
1018 __GFP_KSWAPD_RECLAIM |
1019 __GFP_NOWARN |
9bc482d3
MK
1020 __GFP_HIGHMEM |
1021 __GFP_MOVABLE);
fd1a30de 1022 if (!handle) {
2aea8493 1023 zcomp_stream_put(zram->comp);
623e47fc 1024 atomic64_inc(&zram->stats.writestall);
beb6602c 1025 handle = zs_malloc(zram->mem_pool, comp_len,
9bc482d3
MK
1026 GFP_NOIO | __GFP_HIGHMEM |
1027 __GFP_MOVABLE);
da9556a2
SS
1028 if (handle)
1029 goto compress_again;
1f7319c7 1030 return -ENOMEM;
8c921b2b 1031 }
9ada9da9 1032
beb6602c 1033 alloced_pages = zs_get_total_pages(zram->mem_pool);
12372755
SS
1034 update_used_max(zram, alloced_pages);
1035
461a8eee 1036 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
97ec7c8b 1037 zcomp_stream_put(zram->comp);
beb6602c 1038 zs_free(zram->mem_pool, handle);
1f7319c7
MK
1039 return -ENOMEM;
1040 }
1041
beb6602c 1042 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1f7319c7
MK
1043
1044 src = zstrm->buffer;
1045 if (comp_len == PAGE_SIZE)
397c6066 1046 src = kmap_atomic(page);
1f7319c7
MK
1047 memcpy(dst, src, comp_len);
1048 if (comp_len == PAGE_SIZE)
397c6066 1049 kunmap_atomic(src);
306b0c95 1050
2aea8493 1051 zcomp_stream_put(zram->comp);
beb6602c 1052 zs_unmap_object(zram->mem_pool, handle);
4ebbe7f7
MK
1053 atomic64_add(comp_len, &zram->stats.compr_data_size);
1054out:
f40ac2ae
SS
1055 /*
1056 * Free memory associated with this sector
1057 * before overwriting unused sectors.
1058 */
86c49814 1059 zram_slot_lock(zram, index);
f40ac2ae 1060 zram_free_page(zram, index);
db8ffbd4
MK
1061
1062 if (flags) {
1063 zram_set_flag(zram, index, flags);
4ebbe7f7 1064 zram_set_element(zram, index, element);
db8ffbd4 1065 } else {
4ebbe7f7
MK
1066 zram_set_handle(zram, index, handle);
1067 zram_set_obj_size(zram, index, comp_len);
1068 }
86c49814 1069 zram_slot_unlock(zram, index);
306b0c95 1070
8c921b2b 1071 /* Update stats */
90a7806e 1072 atomic64_inc(&zram->stats.pages_stored);
ae85a807 1073 return ret;
1f7319c7
MK
1074}
1075
1076static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
db8ffbd4 1077 u32 index, int offset, struct bio *bio)
1f7319c7
MK
1078{
1079 int ret;
1080 struct page *page = NULL;
1081 void *src;
1082 struct bio_vec vec;
1083
1084 vec = *bvec;
1085 if (is_partial_io(bvec)) {
1086 void *dst;
1087 /*
1088 * This is a partial IO. We need to read the full page
1089 * before to write the changes.
1090 */
1091 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1092 if (!page)
1093 return -ENOMEM;
1094
8e654f8f 1095 ret = __zram_bvec_read(zram, page, index, bio, true);
1f7319c7
MK
1096 if (ret)
1097 goto out;
1098
1099 src = kmap_atomic(bvec->bv_page);
1100 dst = kmap_atomic(page);
1101 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1102 kunmap_atomic(dst);
1103 kunmap_atomic(src);
1104
1105 vec.bv_page = page;
1106 vec.bv_len = PAGE_SIZE;
1107 vec.bv_offset = 0;
1108 }
1109
db8ffbd4 1110 ret = __zram_bvec_write(zram, &vec, index, bio);
924bd88d 1111out:
397c6066 1112 if (is_partial_io(bvec))
1f7319c7 1113 __free_page(page);
924bd88d 1114 return ret;
8c921b2b
JM
1115}
1116
f4659d8e
JK
1117/*
1118 * zram_bio_discard - handler on discard request
1119 * @index: physical block index in PAGE_SIZE units
1120 * @offset: byte offset within physical block
1121 */
1122static void zram_bio_discard(struct zram *zram, u32 index,
1123 int offset, struct bio *bio)
1124{
1125 size_t n = bio->bi_iter.bi_size;
1126
1127 /*
1128 * zram manages data in physical block size units. Because logical block
1129 * size isn't identical with physical block size on some arch, we
1130 * could get a discard request pointing to a specific offset within a
1131 * certain physical block. Although we can handle this request by
1132 * reading that physiclal block and decompressing and partially zeroing
1133 * and re-compressing and then re-storing it, this isn't reasonable
1134 * because our intent with a discard request is to save memory. So
1135 * skipping this logical block is appropriate here.
1136 */
1137 if (offset) {
38515c73 1138 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
1139 return;
1140
38515c73 1141 n -= (PAGE_SIZE - offset);
f4659d8e
JK
1142 index++;
1143 }
1144
1145 while (n >= PAGE_SIZE) {
86c49814 1146 zram_slot_lock(zram, index);
f4659d8e 1147 zram_free_page(zram, index);
86c49814 1148 zram_slot_unlock(zram, index);
015254da 1149 atomic64_inc(&zram->stats.notify_free);
f4659d8e
JK
1150 index++;
1151 n -= PAGE_SIZE;
1152 }
1153}
1154
ae85a807
MK
1155/*
1156 * Returns errno if it has some problem. Otherwise return 0 or 1.
1157 * Returns 0 if IO request was done synchronously
1158 * Returns 1 if IO request was successfully submitted.
1159 */
522698d7 1160static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
db8ffbd4 1161 int offset, bool is_write, struct bio *bio)
9b3bb7ab 1162{
522698d7 1163 unsigned long start_time = jiffies;
c11f0c0b 1164 int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
d62e26b3 1165 struct request_queue *q = zram->disk->queue;
9b3bb7ab 1166 int ret;
9b3bb7ab 1167
d62e26b3 1168 generic_start_io_acct(q, rw_acct, bvec->bv_len >> SECTOR_SHIFT,
522698d7 1169 &zram->disk->part0);
46a51c80 1170
c11f0c0b 1171 if (!is_write) {
522698d7 1172 atomic64_inc(&zram->stats.num_reads);
8e654f8f 1173 ret = zram_bvec_read(zram, bvec, index, offset, bio);
1f7319c7 1174 flush_dcache_page(bvec->bv_page);
522698d7
SS
1175 } else {
1176 atomic64_inc(&zram->stats.num_writes);
db8ffbd4 1177 ret = zram_bvec_write(zram, bvec, index, offset, bio);
1b672224 1178 }
9b3bb7ab 1179
d62e26b3 1180 generic_end_io_acct(q, rw_acct, &zram->disk->part0, start_time);
9b3bb7ab 1181
ae85a807 1182 if (unlikely(ret < 0)) {
c11f0c0b 1183 if (!is_write)
522698d7
SS
1184 atomic64_inc(&zram->stats.failed_reads);
1185 else
1186 atomic64_inc(&zram->stats.failed_writes);
1b672224 1187 }
9b3bb7ab 1188
1b672224 1189 return ret;
8c921b2b
JM
1190}
1191
be257c61 1192static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 1193{
abf54548 1194 int offset;
8c921b2b 1195 u32 index;
7988613b
KO
1196 struct bio_vec bvec;
1197 struct bvec_iter iter;
8c921b2b 1198
4f024f37
KO
1199 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1200 offset = (bio->bi_iter.bi_sector &
1201 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 1202
31edeacd
CH
1203 switch (bio_op(bio)) {
1204 case REQ_OP_DISCARD:
1205 case REQ_OP_WRITE_ZEROES:
f4659d8e 1206 zram_bio_discard(zram, index, offset, bio);
4246a0b6 1207 bio_endio(bio);
f4659d8e 1208 return;
31edeacd
CH
1209 default:
1210 break;
f4659d8e
JK
1211 }
1212
7988613b 1213 bio_for_each_segment(bvec, bio, iter) {
e86942c7
MK
1214 struct bio_vec bv = bvec;
1215 unsigned int unwritten = bvec.bv_len;
924bd88d 1216
e86942c7
MK
1217 do {
1218 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1219 unwritten);
abf54548 1220 if (zram_bvec_rw(zram, &bv, index, offset,
db8ffbd4 1221 op_is_write(bio_op(bio)), bio) < 0)
924bd88d
JM
1222 goto out;
1223
e86942c7
MK
1224 bv.bv_offset += bv.bv_len;
1225 unwritten -= bv.bv_len;
924bd88d 1226
e86942c7
MK
1227 update_position(&index, &offset, &bv);
1228 } while (unwritten);
a1dd52af 1229 }
306b0c95 1230
4246a0b6 1231 bio_endio(bio);
7d7854b4 1232 return;
306b0c95
NG
1233
1234out:
306b0c95 1235 bio_io_error(bio);
306b0c95
NG
1236}
1237
306b0c95 1238/*
f1e3cfff 1239 * Handler function for all zram I/O requests.
306b0c95 1240 */
dece1635 1241static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 1242{
f1e3cfff 1243 struct zram *zram = queue->queuedata;
306b0c95 1244
54850e73 1245 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1246 bio->bi_iter.bi_size)) {
da5cc7d3 1247 atomic64_inc(&zram->stats.invalid_io);
a09759ac 1248 goto error;
6642a67c
JM
1249 }
1250
be257c61 1251 __zram_make_request(zram, bio);
dece1635 1252 return BLK_QC_T_NONE;
a09759ac 1253
0900beae
JM
1254error:
1255 bio_io_error(bio);
dece1635 1256 return BLK_QC_T_NONE;
306b0c95
NG
1257}
1258
2ccbec05
NG
1259static void zram_slot_free_notify(struct block_device *bdev,
1260 unsigned long index)
107c161b 1261{
f1e3cfff 1262 struct zram *zram;
107c161b 1263
f1e3cfff 1264 zram = bdev->bd_disk->private_data;
a0c516cb 1265
86c49814 1266 zram_slot_lock(zram, index);
f614a9f4 1267 zram_free_page(zram, index);
86c49814 1268 zram_slot_unlock(zram, index);
f614a9f4 1269 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
1270}
1271
8c7f0102 1272static int zram_rw_page(struct block_device *bdev, sector_t sector,
c11f0c0b 1273 struct page *page, bool is_write)
8c7f0102 1274{
ae85a807 1275 int offset, ret;
8c7f0102 1276 u32 index;
1277 struct zram *zram;
1278 struct bio_vec bv;
1279
98cc093c
HY
1280 if (PageTransHuge(page))
1281 return -ENOTSUPP;
8c7f0102 1282 zram = bdev->bd_disk->private_data;
08eee69f 1283
8c7f0102 1284 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1285 atomic64_inc(&zram->stats.invalid_io);
ae85a807 1286 ret = -EINVAL;
a09759ac 1287 goto out;
8c7f0102 1288 }
1289
1290 index = sector >> SECTORS_PER_PAGE_SHIFT;
4ca82dab 1291 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c7f0102 1292
1293 bv.bv_page = page;
1294 bv.bv_len = PAGE_SIZE;
1295 bv.bv_offset = 0;
1296
db8ffbd4 1297 ret = zram_bvec_rw(zram, &bv, index, offset, is_write, NULL);
08eee69f 1298out:
8c7f0102 1299 /*
1300 * If I/O fails, just return error(ie, non-zero) without
1301 * calling page_endio.
1302 * It causes resubmit the I/O with bio request by upper functions
1303 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1304 * bio->bi_end_io does things to handle the error
1305 * (e.g., SetPageError, set_page_dirty and extra works).
1306 */
ae85a807
MK
1307 if (unlikely(ret < 0))
1308 return ret;
1309
1310 switch (ret) {
1311 case 0:
c11f0c0b 1312 page_endio(page, is_write, 0);
ae85a807
MK
1313 break;
1314 case 1:
1315 ret = 0;
1316 break;
1317 default:
1318 WARN_ON(1);
1319 }
1320 return ret;
8c7f0102 1321}
1322
522698d7
SS
1323static void zram_reset_device(struct zram *zram)
1324{
522698d7
SS
1325 struct zcomp *comp;
1326 u64 disksize;
306b0c95 1327
522698d7 1328 down_write(&zram->init_lock);
9b3bb7ab 1329
522698d7
SS
1330 zram->limit_pages = 0;
1331
1332 if (!init_done(zram)) {
1333 up_write(&zram->init_lock);
1334 return;
1335 }
1336
522698d7
SS
1337 comp = zram->comp;
1338 disksize = zram->disksize;
522698d7 1339 zram->disksize = 0;
522698d7
SS
1340
1341 set_capacity(zram->disk, 0);
1342 part_stat_set_all(&zram->disk->part0, 0);
1343
1344 up_write(&zram->init_lock);
1345 /* I/O operation under all of CPU are done so let's free */
beb6602c 1346 zram_meta_free(zram, disksize);
302128dc 1347 memset(&zram->stats, 0, sizeof(zram->stats));
522698d7 1348 zcomp_destroy(comp);
013bf95a 1349 reset_bdev(zram);
522698d7
SS
1350}
1351
1352static ssize_t disksize_store(struct device *dev,
1353 struct device_attribute *attr, const char *buf, size_t len)
2f6a3bed 1354{
522698d7
SS
1355 u64 disksize;
1356 struct zcomp *comp;
2f6a3bed 1357 struct zram *zram = dev_to_zram(dev);
522698d7 1358 int err;
2f6a3bed 1359
522698d7
SS
1360 disksize = memparse(buf, NULL);
1361 if (!disksize)
1362 return -EINVAL;
2f6a3bed 1363
beb6602c
MK
1364 down_write(&zram->init_lock);
1365 if (init_done(zram)) {
1366 pr_info("Cannot change disksize for initialized device\n");
1367 err = -EBUSY;
1368 goto out_unlock;
1369 }
1370
522698d7 1371 disksize = PAGE_ALIGN(disksize);
beb6602c
MK
1372 if (!zram_meta_alloc(zram, disksize)) {
1373 err = -ENOMEM;
1374 goto out_unlock;
1375 }
522698d7 1376
da9556a2 1377 comp = zcomp_create(zram->compressor);
522698d7 1378 if (IS_ERR(comp)) {
70864969 1379 pr_err("Cannot initialise %s compressing backend\n",
522698d7
SS
1380 zram->compressor);
1381 err = PTR_ERR(comp);
1382 goto out_free_meta;
1383 }
1384
522698d7
SS
1385 zram->comp = comp;
1386 zram->disksize = disksize;
1387 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
b09ab054 1388 zram_revalidate_disk(zram);
e7ccfc4c 1389 up_write(&zram->init_lock);
522698d7
SS
1390
1391 return len;
1392
522698d7 1393out_free_meta:
beb6602c
MK
1394 zram_meta_free(zram, disksize);
1395out_unlock:
1396 up_write(&zram->init_lock);
522698d7 1397 return err;
2f6a3bed
SS
1398}
1399
522698d7
SS
1400static ssize_t reset_store(struct device *dev,
1401 struct device_attribute *attr, const char *buf, size_t len)
4f2109f6 1402{
522698d7
SS
1403 int ret;
1404 unsigned short do_reset;
1405 struct zram *zram;
1406 struct block_device *bdev;
4f2109f6 1407
f405c445
SS
1408 ret = kstrtou16(buf, 10, &do_reset);
1409 if (ret)
1410 return ret;
1411
1412 if (!do_reset)
1413 return -EINVAL;
1414
522698d7
SS
1415 zram = dev_to_zram(dev);
1416 bdev = bdget_disk(zram->disk, 0);
522698d7
SS
1417 if (!bdev)
1418 return -ENOMEM;
4f2109f6 1419
522698d7 1420 mutex_lock(&bdev->bd_mutex);
f405c445
SS
1421 /* Do not reset an active device or claimed device */
1422 if (bdev->bd_openers || zram->claim) {
1423 mutex_unlock(&bdev->bd_mutex);
1424 bdput(bdev);
1425 return -EBUSY;
522698d7
SS
1426 }
1427
f405c445
SS
1428 /* From now on, anyone can't open /dev/zram[0-9] */
1429 zram->claim = true;
1430 mutex_unlock(&bdev->bd_mutex);
522698d7 1431
f405c445 1432 /* Make sure all the pending I/O are finished */
522698d7
SS
1433 fsync_bdev(bdev);
1434 zram_reset_device(zram);
b09ab054 1435 zram_revalidate_disk(zram);
522698d7
SS
1436 bdput(bdev);
1437
f405c445
SS
1438 mutex_lock(&bdev->bd_mutex);
1439 zram->claim = false;
1440 mutex_unlock(&bdev->bd_mutex);
1441
522698d7 1442 return len;
f405c445
SS
1443}
1444
1445static int zram_open(struct block_device *bdev, fmode_t mode)
1446{
1447 int ret = 0;
1448 struct zram *zram;
1449
1450 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1451
1452 zram = bdev->bd_disk->private_data;
1453 /* zram was claimed to reset so open request fails */
1454 if (zram->claim)
1455 ret = -EBUSY;
4f2109f6
SS
1456
1457 return ret;
1458}
1459
522698d7 1460static const struct block_device_operations zram_devops = {
f405c445 1461 .open = zram_open,
522698d7
SS
1462 .swap_slot_free_notify = zram_slot_free_notify,
1463 .rw_page = zram_rw_page,
1464 .owner = THIS_MODULE
1465};
1466
1467static DEVICE_ATTR_WO(compact);
1468static DEVICE_ATTR_RW(disksize);
1469static DEVICE_ATTR_RO(initstate);
1470static DEVICE_ATTR_WO(reset);
c87d1655
SS
1471static DEVICE_ATTR_WO(mem_limit);
1472static DEVICE_ATTR_WO(mem_used_max);
522698d7
SS
1473static DEVICE_ATTR_RW(max_comp_streams);
1474static DEVICE_ATTR_RW(comp_algorithm);
013bf95a
MK
1475#ifdef CONFIG_ZRAM_WRITEBACK
1476static DEVICE_ATTR_RW(backing_dev);
1477#endif
a68eb3b6 1478
9b3bb7ab
SS
1479static struct attribute *zram_disk_attrs[] = {
1480 &dev_attr_disksize.attr,
1481 &dev_attr_initstate.attr,
1482 &dev_attr_reset.attr,
99ebbd30 1483 &dev_attr_compact.attr,
9ada9da9 1484 &dev_attr_mem_limit.attr,
461a8eee 1485 &dev_attr_mem_used_max.attr,
beca3ec7 1486 &dev_attr_max_comp_streams.attr,
e46b8a03 1487 &dev_attr_comp_algorithm.attr,
013bf95a
MK
1488#ifdef CONFIG_ZRAM_WRITEBACK
1489 &dev_attr_backing_dev.attr,
1490#endif
2f6a3bed 1491 &dev_attr_io_stat.attr,
4f2109f6 1492 &dev_attr_mm_stat.attr,
623e47fc 1493 &dev_attr_debug_stat.attr,
9b3bb7ab
SS
1494 NULL,
1495};
1496
bc1bb362 1497static const struct attribute_group zram_disk_attr_group = {
9b3bb7ab
SS
1498 .attrs = zram_disk_attrs,
1499};
1500
92ff1528
SS
1501/*
1502 * Allocate and initialize new zram device. the function returns
1503 * '>= 0' device_id upon success, and negative value otherwise.
1504 */
1505static int zram_add(void)
306b0c95 1506{
85508ec6 1507 struct zram *zram;
ee980160 1508 struct request_queue *queue;
92ff1528 1509 int ret, device_id;
85508ec6
SS
1510
1511 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1512 if (!zram)
1513 return -ENOMEM;
1514
92ff1528 1515 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
85508ec6
SS
1516 if (ret < 0)
1517 goto out_free_dev;
92ff1528 1518 device_id = ret;
de1a21a0 1519
0900beae 1520 init_rwsem(&zram->init_lock);
306b0c95 1521
ee980160
SS
1522 queue = blk_alloc_queue(GFP_KERNEL);
1523 if (!queue) {
306b0c95
NG
1524 pr_err("Error allocating disk queue for device %d\n",
1525 device_id);
85508ec6
SS
1526 ret = -ENOMEM;
1527 goto out_free_idr;
306b0c95
NG
1528 }
1529
ee980160 1530 blk_queue_make_request(queue, zram_make_request);
306b0c95 1531
85508ec6 1532 /* gendisk structure */
f1e3cfff
NG
1533 zram->disk = alloc_disk(1);
1534 if (!zram->disk) {
70864969 1535 pr_err("Error allocating disk structure for device %d\n",
306b0c95 1536 device_id);
201c7b72 1537 ret = -ENOMEM;
39a9b8ac 1538 goto out_free_queue;
306b0c95
NG
1539 }
1540
f1e3cfff
NG
1541 zram->disk->major = zram_major;
1542 zram->disk->first_minor = device_id;
1543 zram->disk->fops = &zram_devops;
ee980160
SS
1544 zram->disk->queue = queue;
1545 zram->disk->queue->queuedata = zram;
f1e3cfff
NG
1546 zram->disk->private_data = zram;
1547 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 1548
33863c21 1549 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 1550 set_capacity(zram->disk, 0);
b67d1ec1
SS
1551 /* zram devices sort of resembles non-rotational disks */
1552 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
b277da0a 1553 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
a1dd52af
NG
1554 /*
1555 * To ensure that we always get PAGE_SIZE aligned
1556 * and n*PAGE_SIZED sized I/O requests.
1557 */
f1e3cfff 1558 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
1559 blk_queue_logical_block_size(zram->disk->queue,
1560 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
1561 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1562 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e 1563 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
2bb4cd5c 1564 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
31edeacd
CH
1565 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1566
f4659d8e
JK
1567 /*
1568 * zram_bio_discard() will clear all logical blocks if logical block
1569 * size is identical with physical block size(PAGE_SIZE). But if it is
1570 * different, we will skip discarding some parts of logical blocks in
1571 * the part of the request range which isn't aligned to physical block
1572 * size. So we can't ensure that all discarded logical blocks are
1573 * zeroed.
1574 */
1575 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
31edeacd 1576 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
5d83d5a0 1577
f1e3cfff 1578 add_disk(zram->disk);
306b0c95 1579
33863c21
NG
1580 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1581 &zram_disk_attr_group);
1582 if (ret < 0) {
70864969
SS
1583 pr_err("Error creating sysfs group for device %d\n",
1584 device_id);
39a9b8ac 1585 goto out_free_disk;
33863c21 1586 }
e46b8a03 1587 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
d12b63c9
SS
1588
1589 pr_info("Added device: %s\n", zram->disk->disk_name);
92ff1528 1590 return device_id;
de1a21a0 1591
39a9b8ac
JL
1592out_free_disk:
1593 del_gendisk(zram->disk);
1594 put_disk(zram->disk);
1595out_free_queue:
ee980160 1596 blk_cleanup_queue(queue);
85508ec6
SS
1597out_free_idr:
1598 idr_remove(&zram_index_idr, device_id);
1599out_free_dev:
1600 kfree(zram);
de1a21a0 1601 return ret;
306b0c95
NG
1602}
1603
6566d1a3 1604static int zram_remove(struct zram *zram)
306b0c95 1605{
6566d1a3
SS
1606 struct block_device *bdev;
1607
1608 bdev = bdget_disk(zram->disk, 0);
1609 if (!bdev)
1610 return -ENOMEM;
1611
1612 mutex_lock(&bdev->bd_mutex);
1613 if (bdev->bd_openers || zram->claim) {
1614 mutex_unlock(&bdev->bd_mutex);
1615 bdput(bdev);
1616 return -EBUSY;
1617 }
1618
1619 zram->claim = true;
1620 mutex_unlock(&bdev->bd_mutex);
1621
85508ec6
SS
1622 /*
1623 * Remove sysfs first, so no one will perform a disksize
6566d1a3
SS
1624 * store while we destroy the devices. This also helps during
1625 * hot_remove -- zram_reset_device() is the last holder of
1626 * ->init_lock, no later/concurrent disksize_store() or any
1627 * other sysfs handlers are possible.
85508ec6
SS
1628 */
1629 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1630 &zram_disk_attr_group);
306b0c95 1631
6566d1a3
SS
1632 /* Make sure all the pending I/O are finished */
1633 fsync_bdev(bdev);
85508ec6 1634 zram_reset_device(zram);
6566d1a3
SS
1635 bdput(bdev);
1636
1637 pr_info("Removed device: %s\n", zram->disk->disk_name);
1638
85508ec6
SS
1639 blk_cleanup_queue(zram->disk->queue);
1640 del_gendisk(zram->disk);
1641 put_disk(zram->disk);
1642 kfree(zram);
6566d1a3
SS
1643 return 0;
1644}
1645
1646/* zram-control sysfs attributes */
27104a53
GKH
1647
1648/*
1649 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1650 * sense that reading from this file does alter the state of your system -- it
1651 * creates a new un-initialized zram device and returns back this device's
1652 * device_id (or an error code if it fails to create a new device).
1653 */
6566d1a3
SS
1654static ssize_t hot_add_show(struct class *class,
1655 struct class_attribute *attr,
1656 char *buf)
1657{
1658 int ret;
1659
1660 mutex_lock(&zram_index_mutex);
1661 ret = zram_add();
1662 mutex_unlock(&zram_index_mutex);
1663
1664 if (ret < 0)
1665 return ret;
1666 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1667}
f40609d1 1668static CLASS_ATTR_RO(hot_add);
6566d1a3
SS
1669
1670static ssize_t hot_remove_store(struct class *class,
1671 struct class_attribute *attr,
1672 const char *buf,
1673 size_t count)
1674{
1675 struct zram *zram;
1676 int ret, dev_id;
1677
1678 /* dev_id is gendisk->first_minor, which is `int' */
1679 ret = kstrtoint(buf, 10, &dev_id);
1680 if (ret)
1681 return ret;
1682 if (dev_id < 0)
1683 return -EINVAL;
1684
1685 mutex_lock(&zram_index_mutex);
1686
1687 zram = idr_find(&zram_index_idr, dev_id);
17ec4cd9 1688 if (zram) {
6566d1a3 1689 ret = zram_remove(zram);
529e71e1
TI
1690 if (!ret)
1691 idr_remove(&zram_index_idr, dev_id);
17ec4cd9 1692 } else {
6566d1a3 1693 ret = -ENODEV;
17ec4cd9 1694 }
6566d1a3
SS
1695
1696 mutex_unlock(&zram_index_mutex);
1697 return ret ? ret : count;
85508ec6 1698}
27104a53 1699static CLASS_ATTR_WO(hot_remove);
a096cafc 1700
27104a53
GKH
1701static struct attribute *zram_control_class_attrs[] = {
1702 &class_attr_hot_add.attr,
1703 &class_attr_hot_remove.attr,
1704 NULL,
6566d1a3 1705};
27104a53 1706ATTRIBUTE_GROUPS(zram_control_class);
6566d1a3
SS
1707
1708static struct class zram_control_class = {
1709 .name = "zram-control",
1710 .owner = THIS_MODULE,
27104a53 1711 .class_groups = zram_control_class_groups,
6566d1a3
SS
1712};
1713
85508ec6
SS
1714static int zram_remove_cb(int id, void *ptr, void *data)
1715{
1716 zram_remove(ptr);
1717 return 0;
1718}
a096cafc 1719
85508ec6
SS
1720static void destroy_devices(void)
1721{
6566d1a3 1722 class_unregister(&zram_control_class);
85508ec6
SS
1723 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1724 idr_destroy(&zram_index_idr);
a096cafc 1725 unregister_blkdev(zram_major, "zram");
1dd6c834 1726 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
306b0c95
NG
1727}
1728
f1e3cfff 1729static int __init zram_init(void)
306b0c95 1730{
92ff1528 1731 int ret;
306b0c95 1732
1dd6c834
AMG
1733 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1734 zcomp_cpu_up_prepare, zcomp_cpu_dead);
1735 if (ret < 0)
1736 return ret;
1737
6566d1a3
SS
1738 ret = class_register(&zram_control_class);
1739 if (ret) {
70864969 1740 pr_err("Unable to register zram-control class\n");
1dd6c834 1741 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
6566d1a3
SS
1742 return ret;
1743 }
1744
f1e3cfff
NG
1745 zram_major = register_blkdev(0, "zram");
1746 if (zram_major <= 0) {
70864969 1747 pr_err("Unable to get major number\n");
6566d1a3 1748 class_unregister(&zram_control_class);
1dd6c834 1749 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
a096cafc 1750 return -EBUSY;
306b0c95
NG
1751 }
1752
92ff1528 1753 while (num_devices != 0) {
6566d1a3 1754 mutex_lock(&zram_index_mutex);
92ff1528 1755 ret = zram_add();
6566d1a3 1756 mutex_unlock(&zram_index_mutex);
92ff1528 1757 if (ret < 0)
a096cafc 1758 goto out_error;
92ff1528 1759 num_devices--;
de1a21a0
NG
1760 }
1761
306b0c95 1762 return 0;
de1a21a0 1763
a096cafc 1764out_error:
85508ec6 1765 destroy_devices();
306b0c95
NG
1766 return ret;
1767}
1768
f1e3cfff 1769static void __exit zram_exit(void)
306b0c95 1770{
85508ec6 1771 destroy_devices();
306b0c95
NG
1772}
1773
f1e3cfff
NG
1774module_init(zram_init);
1775module_exit(zram_exit);
306b0c95 1776
9b3bb7ab 1777module_param(num_devices, uint, 0);
c3cdb40e 1778MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
9b3bb7ab 1779
306b0c95
NG
1780MODULE_LICENSE("Dual BSD/GPL");
1781MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1782MODULE_DESCRIPTION("Compressed RAM Block Device");