blktrace: use existing disk debugfs directory
[linux-2.6-block.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
8946a086 20#include <linux/bio.h>
306b0c95
NG
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/buffer_head.h>
24#include <linux/device.h>
25#include <linux/genhd.h>
26#include <linux/highmem.h>
5a0e3ad6 27#include <linux/slab.h>
b09ab054 28#include <linux/backing-dev.h>
306b0c95 29#include <linux/string.h>
306b0c95 30#include <linux/vmalloc.h>
fcfa8d95 31#include <linux/err.h>
85508ec6 32#include <linux/idr.h>
6566d1a3 33#include <linux/sysfs.h>
1dd6c834 34#include <linux/cpuhotplug.h>
306b0c95 35
16a4bfb9 36#include "zram_drv.h"
306b0c95 37
85508ec6 38static DEFINE_IDR(zram_index_idr);
6566d1a3
SS
39/* idr index must be protected */
40static DEFINE_MUTEX(zram_index_mutex);
41
f1e3cfff 42static int zram_major;
b7ca232e 43static const char *default_compressor = "lzo";
306b0c95 44
306b0c95 45/* Module params (documentation at end) */
ca3d70bd 46static unsigned int num_devices = 1;
33863c21 47
8f7d282c
SS
48static inline void deprecated_attr_warn(const char *name)
49{
50 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
51 task_pid_nr(current),
52 current->comm,
53 name,
54 "See zram documentation.");
55}
56
a68eb3b6 57#define ZRAM_ATTR_RO(name) \
3bca3ef7 58static ssize_t name##_show(struct device *d, \
a68eb3b6
SS
59 struct device_attribute *attr, char *b) \
60{ \
61 struct zram *zram = dev_to_zram(d); \
8f7d282c
SS
62 \
63 deprecated_attr_warn(__stringify(name)); \
56b4e8cb 64 return scnprintf(b, PAGE_SIZE, "%llu\n", \
a68eb3b6
SS
65 (u64)atomic64_read(&zram->stats.name)); \
66} \
083914ea 67static DEVICE_ATTR_RO(name);
a68eb3b6 68
08eee69f 69static inline bool init_done(struct zram *zram)
be2d1d56 70{
08eee69f 71 return zram->disksize;
be2d1d56
SS
72}
73
9b3bb7ab
SS
74static inline struct zram *dev_to_zram(struct device *dev)
75{
76 return (struct zram *)dev_to_disk(dev)->private_data;
77}
78
b31177f2 79/* flag operations require table entry bit_spin_lock() being held */
522698d7
SS
80static int zram_test_flag(struct zram_meta *meta, u32 index,
81 enum zram_pageflags flag)
99ebbd30 82{
522698d7
SS
83 return meta->table[index].value & BIT(flag);
84}
99ebbd30 85
522698d7
SS
86static void zram_set_flag(struct zram_meta *meta, u32 index,
87 enum zram_pageflags flag)
88{
89 meta->table[index].value |= BIT(flag);
90}
99ebbd30 91
522698d7
SS
92static void zram_clear_flag(struct zram_meta *meta, u32 index,
93 enum zram_pageflags flag)
94{
95 meta->table[index].value &= ~BIT(flag);
96}
99ebbd30 97
522698d7
SS
98static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
99{
100 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99ebbd30
AM
101}
102
522698d7
SS
103static void zram_set_obj_size(struct zram_meta *meta,
104 u32 index, size_t size)
9b3bb7ab 105{
522698d7 106 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
9b3bb7ab 107
522698d7
SS
108 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
109}
110
1c53e0d2 111static inline bool is_partial_io(struct bio_vec *bvec)
522698d7
SS
112{
113 return bvec->bv_len != PAGE_SIZE;
114}
115
b09ab054
MK
116static void zram_revalidate_disk(struct zram *zram)
117{
118 revalidate_disk(zram->disk);
119 /* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
120 zram->disk->queue->backing_dev_info.capabilities |=
121 BDI_CAP_STABLE_WRITES;
122}
123
522698d7
SS
124/*
125 * Check if request is within bounds and aligned on zram logical blocks.
126 */
1c53e0d2 127static inline bool valid_io_request(struct zram *zram,
522698d7
SS
128 sector_t start, unsigned int size)
129{
130 u64 end, bound;
131
132 /* unaligned request */
133 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
1c53e0d2 134 return false;
522698d7 135 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
1c53e0d2 136 return false;
522698d7
SS
137
138 end = start + (size >> SECTOR_SHIFT);
139 bound = zram->disksize >> SECTOR_SHIFT;
140 /* out of range range */
141 if (unlikely(start >= bound || end > bound || start > end))
1c53e0d2 142 return false;
522698d7
SS
143
144 /* I/O request is valid */
1c53e0d2 145 return true;
522698d7
SS
146}
147
148static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
149{
150 if (*offset + bvec->bv_len >= PAGE_SIZE)
151 (*index)++;
152 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
153}
154
155static inline void update_used_max(struct zram *zram,
156 const unsigned long pages)
157{
158 unsigned long old_max, cur_max;
159
160 old_max = atomic_long_read(&zram->stats.max_used_pages);
161
162 do {
163 cur_max = old_max;
164 if (pages > cur_max)
165 old_max = atomic_long_cmpxchg(
166 &zram->stats.max_used_pages, cur_max, pages);
167 } while (old_max != cur_max);
168}
169
1c53e0d2 170static bool page_zero_filled(void *ptr)
522698d7
SS
171{
172 unsigned int pos;
173 unsigned long *page;
174
175 page = (unsigned long *)ptr;
176
177 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
178 if (page[pos])
1c53e0d2 179 return false;
522698d7
SS
180 }
181
1c53e0d2 182 return true;
522698d7
SS
183}
184
185static void handle_zero_page(struct bio_vec *bvec)
186{
187 struct page *page = bvec->bv_page;
188 void *user_mem;
189
190 user_mem = kmap_atomic(page);
191 if (is_partial_io(bvec))
192 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
193 else
194 clear_page(user_mem);
195 kunmap_atomic(user_mem);
196
197 flush_dcache_page(page);
9b3bb7ab
SS
198}
199
200static ssize_t initstate_show(struct device *dev,
201 struct device_attribute *attr, char *buf)
202{
a68eb3b6 203 u32 val;
9b3bb7ab
SS
204 struct zram *zram = dev_to_zram(dev);
205
a68eb3b6
SS
206 down_read(&zram->init_lock);
207 val = init_done(zram);
208 up_read(&zram->init_lock);
9b3bb7ab 209
56b4e8cb 210 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
211}
212
522698d7
SS
213static ssize_t disksize_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
216 struct zram *zram = dev_to_zram(dev);
217
218 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
219}
220
9b3bb7ab
SS
221static ssize_t orig_data_size_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223{
224 struct zram *zram = dev_to_zram(dev);
225
8f7d282c 226 deprecated_attr_warn("orig_data_size");
56b4e8cb 227 return scnprintf(buf, PAGE_SIZE, "%llu\n",
90a7806e 228 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
9b3bb7ab
SS
229}
230
9b3bb7ab
SS
231static ssize_t mem_used_total_show(struct device *dev,
232 struct device_attribute *attr, char *buf)
233{
234 u64 val = 0;
235 struct zram *zram = dev_to_zram(dev);
9b3bb7ab 236
8f7d282c 237 deprecated_attr_warn("mem_used_total");
9b3bb7ab 238 down_read(&zram->init_lock);
5a99e95b
WY
239 if (init_done(zram)) {
240 struct zram_meta *meta = zram->meta;
722cdc17 241 val = zs_get_total_pages(meta->mem_pool);
5a99e95b 242 }
9b3bb7ab
SS
243 up_read(&zram->init_lock);
244
722cdc17 245 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
9b3bb7ab
SS
246}
247
9ada9da9
MK
248static ssize_t mem_limit_show(struct device *dev,
249 struct device_attribute *attr, char *buf)
250{
251 u64 val;
252 struct zram *zram = dev_to_zram(dev);
253
8f7d282c 254 deprecated_attr_warn("mem_limit");
9ada9da9
MK
255 down_read(&zram->init_lock);
256 val = zram->limit_pages;
257 up_read(&zram->init_lock);
258
259 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
260}
261
262static ssize_t mem_limit_store(struct device *dev,
263 struct device_attribute *attr, const char *buf, size_t len)
264{
265 u64 limit;
266 char *tmp;
267 struct zram *zram = dev_to_zram(dev);
268
269 limit = memparse(buf, &tmp);
270 if (buf == tmp) /* no chars parsed, invalid input */
271 return -EINVAL;
272
273 down_write(&zram->init_lock);
274 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
275 up_write(&zram->init_lock);
276
277 return len;
278}
279
461a8eee
MK
280static ssize_t mem_used_max_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 u64 val = 0;
284 struct zram *zram = dev_to_zram(dev);
285
8f7d282c 286 deprecated_attr_warn("mem_used_max");
461a8eee
MK
287 down_read(&zram->init_lock);
288 if (init_done(zram))
289 val = atomic_long_read(&zram->stats.max_used_pages);
290 up_read(&zram->init_lock);
291
292 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
293}
294
295static ssize_t mem_used_max_store(struct device *dev,
296 struct device_attribute *attr, const char *buf, size_t len)
297{
298 int err;
299 unsigned long val;
300 struct zram *zram = dev_to_zram(dev);
461a8eee
MK
301
302 err = kstrtoul(buf, 10, &val);
303 if (err || val != 0)
304 return -EINVAL;
305
306 down_read(&zram->init_lock);
5a99e95b
WY
307 if (init_done(zram)) {
308 struct zram_meta *meta = zram->meta;
461a8eee
MK
309 atomic_long_set(&zram->stats.max_used_pages,
310 zs_get_total_pages(meta->mem_pool));
5a99e95b 311 }
461a8eee
MK
312 up_read(&zram->init_lock);
313
314 return len;
315}
316
43209ea2
SS
317/*
318 * We switched to per-cpu streams and this attr is not needed anymore.
319 * However, we will keep it around for some time, because:
320 * a) we may revert per-cpu streams in the future
321 * b) it's visible to user space and we need to follow our 2 years
322 * retirement rule; but we already have a number of 'soon to be
323 * altered' attrs, so max_comp_streams need to wait for the next
324 * layoff cycle.
325 */
522698d7
SS
326static ssize_t max_comp_streams_show(struct device *dev,
327 struct device_attribute *attr, char *buf)
328{
43209ea2 329 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
522698d7
SS
330}
331
beca3ec7
SS
332static ssize_t max_comp_streams_store(struct device *dev,
333 struct device_attribute *attr, const char *buf, size_t len)
334{
43209ea2 335 return len;
beca3ec7
SS
336}
337
e46b8a03
SS
338static ssize_t comp_algorithm_show(struct device *dev,
339 struct device_attribute *attr, char *buf)
340{
341 size_t sz;
342 struct zram *zram = dev_to_zram(dev);
343
344 down_read(&zram->init_lock);
345 sz = zcomp_available_show(zram->compressor, buf);
346 up_read(&zram->init_lock);
347
348 return sz;
349}
350
351static ssize_t comp_algorithm_store(struct device *dev,
352 struct device_attribute *attr, const char *buf, size_t len)
353{
354 struct zram *zram = dev_to_zram(dev);
415403be 355 char compressor[CRYPTO_MAX_ALG_NAME];
4bbacd51
SS
356 size_t sz;
357
415403be
SS
358 strlcpy(compressor, buf, sizeof(compressor));
359 /* ignore trailing newline */
360 sz = strlen(compressor);
361 if (sz > 0 && compressor[sz - 1] == '\n')
362 compressor[sz - 1] = 0x00;
363
364 if (!zcomp_available_algorithm(compressor))
1d5b43bf
LH
365 return -EINVAL;
366
e46b8a03
SS
367 down_write(&zram->init_lock);
368 if (init_done(zram)) {
369 up_write(&zram->init_lock);
370 pr_info("Can't change algorithm for initialized device\n");
371 return -EBUSY;
372 }
4bbacd51 373
415403be 374 strlcpy(zram->compressor, compressor, sizeof(compressor));
e46b8a03
SS
375 up_write(&zram->init_lock);
376 return len;
377}
378
522698d7
SS
379static ssize_t compact_store(struct device *dev,
380 struct device_attribute *attr, const char *buf, size_t len)
306b0c95 381{
522698d7
SS
382 struct zram *zram = dev_to_zram(dev);
383 struct zram_meta *meta;
306b0c95 384
522698d7
SS
385 down_read(&zram->init_lock);
386 if (!init_done(zram)) {
387 up_read(&zram->init_lock);
388 return -EINVAL;
389 }
306b0c95 390
522698d7 391 meta = zram->meta;
7d3f3938 392 zs_compact(meta->mem_pool);
522698d7 393 up_read(&zram->init_lock);
d2d5e762 394
522698d7 395 return len;
d2d5e762
WY
396}
397
522698d7
SS
398static ssize_t io_stat_show(struct device *dev,
399 struct device_attribute *attr, char *buf)
d2d5e762 400{
522698d7
SS
401 struct zram *zram = dev_to_zram(dev);
402 ssize_t ret;
d2d5e762 403
522698d7
SS
404 down_read(&zram->init_lock);
405 ret = scnprintf(buf, PAGE_SIZE,
406 "%8llu %8llu %8llu %8llu\n",
407 (u64)atomic64_read(&zram->stats.failed_reads),
408 (u64)atomic64_read(&zram->stats.failed_writes),
409 (u64)atomic64_read(&zram->stats.invalid_io),
410 (u64)atomic64_read(&zram->stats.notify_free));
411 up_read(&zram->init_lock);
306b0c95 412
522698d7 413 return ret;
9b3bb7ab
SS
414}
415
522698d7
SS
416static ssize_t mm_stat_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
9b3bb7ab 418{
522698d7 419 struct zram *zram = dev_to_zram(dev);
7d3f3938 420 struct zs_pool_stats pool_stats;
522698d7
SS
421 u64 orig_size, mem_used = 0;
422 long max_used;
423 ssize_t ret;
a539c72a 424
7d3f3938
SS
425 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
426
522698d7 427 down_read(&zram->init_lock);
7d3f3938 428 if (init_done(zram)) {
522698d7 429 mem_used = zs_get_total_pages(zram->meta->mem_pool);
7d3f3938
SS
430 zs_pool_stats(zram->meta->mem_pool, &pool_stats);
431 }
9b3bb7ab 432
522698d7
SS
433 orig_size = atomic64_read(&zram->stats.pages_stored);
434 max_used = atomic_long_read(&zram->stats.max_used_pages);
9b3bb7ab 435
522698d7 436 ret = scnprintf(buf, PAGE_SIZE,
7d3f3938 437 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
522698d7
SS
438 orig_size << PAGE_SHIFT,
439 (u64)atomic64_read(&zram->stats.compr_data_size),
440 mem_used << PAGE_SHIFT,
441 zram->limit_pages << PAGE_SHIFT,
442 max_used << PAGE_SHIFT,
443 (u64)atomic64_read(&zram->stats.zero_pages),
860c707d 444 pool_stats.pages_compacted);
522698d7 445 up_read(&zram->init_lock);
9b3bb7ab 446
522698d7
SS
447 return ret;
448}
449
623e47fc
SS
450static ssize_t debug_stat_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
452{
453 int version = 1;
454 struct zram *zram = dev_to_zram(dev);
455 ssize_t ret;
456
457 down_read(&zram->init_lock);
458 ret = scnprintf(buf, PAGE_SIZE,
459 "version: %d\n%8llu\n",
460 version,
461 (u64)atomic64_read(&zram->stats.writestall));
462 up_read(&zram->init_lock);
463
464 return ret;
465}
466
522698d7
SS
467static DEVICE_ATTR_RO(io_stat);
468static DEVICE_ATTR_RO(mm_stat);
623e47fc 469static DEVICE_ATTR_RO(debug_stat);
522698d7
SS
470ZRAM_ATTR_RO(num_reads);
471ZRAM_ATTR_RO(num_writes);
472ZRAM_ATTR_RO(failed_reads);
473ZRAM_ATTR_RO(failed_writes);
474ZRAM_ATTR_RO(invalid_io);
475ZRAM_ATTR_RO(notify_free);
476ZRAM_ATTR_RO(zero_pages);
477ZRAM_ATTR_RO(compr_data_size);
478
479static inline bool zram_meta_get(struct zram *zram)
480{
481 if (atomic_inc_not_zero(&zram->refcount))
482 return true;
483 return false;
484}
485
486static inline void zram_meta_put(struct zram *zram)
487{
488 atomic_dec(&zram->refcount);
489}
490
491static void zram_meta_free(struct zram_meta *meta, u64 disksize)
492{
493 size_t num_pages = disksize >> PAGE_SHIFT;
494 size_t index;
1fec1172
GM
495
496 /* Free all pages that are still in this zram device */
497 for (index = 0; index < num_pages; index++) {
498 unsigned long handle = meta->table[index].handle;
499
500 if (!handle)
501 continue;
502
503 zs_free(meta->mem_pool, handle);
504 }
505
9b3bb7ab 506 zs_destroy_pool(meta->mem_pool);
9b3bb7ab
SS
507 vfree(meta->table);
508 kfree(meta);
509}
510
4ce321f5 511static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
9b3bb7ab
SS
512{
513 size_t num_pages;
514 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
b8179958 515
9b3bb7ab 516 if (!meta)
b8179958 517 return NULL;
9b3bb7ab 518
9b3bb7ab
SS
519 num_pages = disksize >> PAGE_SHIFT;
520 meta->table = vzalloc(num_pages * sizeof(*meta->table));
521 if (!meta->table) {
522 pr_err("Error allocating zram address table\n");
b8179958 523 goto out_error;
9b3bb7ab
SS
524 }
525
d0d8da2d 526 meta->mem_pool = zs_create_pool(pool_name);
9b3bb7ab
SS
527 if (!meta->mem_pool) {
528 pr_err("Error creating memory pool\n");
b8179958 529 goto out_error;
9b3bb7ab
SS
530 }
531
532 return meta;
533
b8179958 534out_error:
9b3bb7ab 535 vfree(meta->table);
9b3bb7ab 536 kfree(meta);
b8179958 537 return NULL;
9b3bb7ab
SS
538}
539
d2d5e762
WY
540/*
541 * To protect concurrent access to the same index entry,
542 * caller should hold this table index entry's bit_spinlock to
543 * indicate this index entry is accessing.
544 */
f1e3cfff 545static void zram_free_page(struct zram *zram, size_t index)
306b0c95 546{
8b3cc3ed
MK
547 struct zram_meta *meta = zram->meta;
548 unsigned long handle = meta->table[index].handle;
306b0c95 549
fd1a30de 550 if (unlikely(!handle)) {
2e882281
NG
551 /*
552 * No memory is allocated for zero filled pages.
553 * Simply clear zero page flag.
554 */
8b3cc3ed
MK
555 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
556 zram_clear_flag(meta, index, ZRAM_ZERO);
90a7806e 557 atomic64_dec(&zram->stats.zero_pages);
306b0c95
NG
558 }
559 return;
560 }
561
8b3cc3ed 562 zs_free(meta->mem_pool, handle);
306b0c95 563
d2d5e762
WY
564 atomic64_sub(zram_get_obj_size(meta, index),
565 &zram->stats.compr_data_size);
90a7806e 566 atomic64_dec(&zram->stats.pages_stored);
306b0c95 567
8b3cc3ed 568 meta->table[index].handle = 0;
d2d5e762 569 zram_set_obj_size(meta, index, 0);
306b0c95
NG
570}
571
37b51fdd 572static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
306b0c95 573{
b7ca232e 574 int ret = 0;
37b51fdd 575 unsigned char *cmem;
8b3cc3ed 576 struct zram_meta *meta = zram->meta;
92967471 577 unsigned long handle;
ebaf9ab5 578 unsigned int size;
92967471 579
d2d5e762 580 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
92967471 581 handle = meta->table[index].handle;
d2d5e762 582 size = zram_get_obj_size(meta, index);
306b0c95 583
8b3cc3ed 584 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 585 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
42e99bd9 586 clear_page(mem);
8c921b2b
JM
587 return 0;
588 }
306b0c95 589
8b3cc3ed 590 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
ebaf9ab5 591 if (size == PAGE_SIZE) {
42e99bd9 592 copy_page(mem, cmem);
ebaf9ab5
SS
593 } else {
594 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
595
596 ret = zcomp_decompress(zstrm, cmem, size, mem);
597 zcomp_stream_put(zram->comp);
598 }
8b3cc3ed 599 zs_unmap_object(meta->mem_pool, handle);
d2d5e762 600 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
a1dd52af 601
8c921b2b 602 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 603 if (unlikely(ret)) {
8c921b2b 604 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
8c921b2b 605 return ret;
a1dd52af 606 }
306b0c95 607
8c921b2b 608 return 0;
306b0c95
NG
609}
610
37b51fdd 611static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
b627cff3 612 u32 index, int offset)
924bd88d
JM
613{
614 int ret;
37b51fdd
SS
615 struct page *page;
616 unsigned char *user_mem, *uncmem = NULL;
8b3cc3ed 617 struct zram_meta *meta = zram->meta;
37b51fdd
SS
618 page = bvec->bv_page;
619
d2d5e762 620 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
8b3cc3ed
MK
621 if (unlikely(!meta->table[index].handle) ||
622 zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 623 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
37b51fdd 624 handle_zero_page(bvec);
924bd88d
JM
625 return 0;
626 }
d2d5e762 627 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
924bd88d 628
37b51fdd
SS
629 if (is_partial_io(bvec))
630 /* Use a temporary buffer to decompress the page */
7e5a5104
MK
631 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
632
633 user_mem = kmap_atomic(page);
634 if (!is_partial_io(bvec))
37b51fdd
SS
635 uncmem = user_mem;
636
637 if (!uncmem) {
70864969 638 pr_err("Unable to allocate temp memory\n");
37b51fdd
SS
639 ret = -ENOMEM;
640 goto out_cleanup;
641 }
924bd88d 642
37b51fdd 643 ret = zram_decompress_page(zram, uncmem, index);
924bd88d 644 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 645 if (unlikely(ret))
37b51fdd 646 goto out_cleanup;
924bd88d 647
37b51fdd
SS
648 if (is_partial_io(bvec))
649 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
650 bvec->bv_len);
651
652 flush_dcache_page(page);
653 ret = 0;
654out_cleanup:
655 kunmap_atomic(user_mem);
656 if (is_partial_io(bvec))
657 kfree(uncmem);
658 return ret;
924bd88d
JM
659}
660
661static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
662 int offset)
306b0c95 663{
397c6066 664 int ret = 0;
ebaf9ab5 665 unsigned int clen;
da9556a2 666 unsigned long handle = 0;
130f315a 667 struct page *page;
924bd88d 668 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
8b3cc3ed 669 struct zram_meta *meta = zram->meta;
17162f41 670 struct zcomp_strm *zstrm = NULL;
461a8eee 671 unsigned long alloced_pages;
306b0c95 672
8c921b2b 673 page = bvec->bv_page;
924bd88d
JM
674 if (is_partial_io(bvec)) {
675 /*
676 * This is a partial IO. We need to read the full page
677 * before to write the changes.
678 */
7e5a5104 679 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
924bd88d 680 if (!uncmem) {
924bd88d
JM
681 ret = -ENOMEM;
682 goto out;
683 }
37b51fdd 684 ret = zram_decompress_page(zram, uncmem, index);
397c6066 685 if (ret)
924bd88d 686 goto out;
924bd88d
JM
687 }
688
da9556a2 689compress_again:
ba82fe2e 690 user_mem = kmap_atomic(page);
397c6066 691 if (is_partial_io(bvec)) {
924bd88d
JM
692 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
693 bvec->bv_len);
397c6066
NG
694 kunmap_atomic(user_mem);
695 user_mem = NULL;
696 } else {
924bd88d 697 uncmem = user_mem;
397c6066 698 }
924bd88d
JM
699
700 if (page_zero_filled(uncmem)) {
c4065152
WY
701 if (user_mem)
702 kunmap_atomic(user_mem);
f40ac2ae 703 /* Free memory associated with this sector now. */
d2d5e762 704 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 705 zram_free_page(zram, index);
92967471 706 zram_set_flag(meta, index, ZRAM_ZERO);
d2d5e762 707 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 708
90a7806e 709 atomic64_inc(&zram->stats.zero_pages);
924bd88d
JM
710 ret = 0;
711 goto out;
8c921b2b 712 }
306b0c95 713
2aea8493 714 zstrm = zcomp_stream_get(zram->comp);
ebaf9ab5 715 ret = zcomp_compress(zstrm, uncmem, &clen);
397c6066
NG
716 if (!is_partial_io(bvec)) {
717 kunmap_atomic(user_mem);
718 user_mem = NULL;
719 uncmem = NULL;
720 }
306b0c95 721
b7ca232e 722 if (unlikely(ret)) {
8c921b2b 723 pr_err("Compression failed! err=%d\n", ret);
924bd88d 724 goto out;
8c921b2b 725 }
da9556a2 726
b7ca232e 727 src = zstrm->buffer;
c8f2f0db 728 if (unlikely(clen > max_zpage_size)) {
c8f2f0db 729 clen = PAGE_SIZE;
397c6066
NG
730 if (is_partial_io(bvec))
731 src = uncmem;
c8f2f0db 732 }
a1dd52af 733
da9556a2
SS
734 /*
735 * handle allocation has 2 paths:
736 * a) fast path is executed with preemption disabled (for
737 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
738 * since we can't sleep;
739 * b) slow path enables preemption and attempts to allocate
740 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
741 * put per-cpu compression stream and, thus, to re-do
742 * the compression once handle is allocated.
743 *
744 * if we have a 'non-null' handle here then we are coming
745 * from the slow path and handle has already been allocated.
746 */
747 if (!handle)
748 handle = zs_malloc(meta->mem_pool, clen,
749 __GFP_KSWAPD_RECLAIM |
750 __GFP_NOWARN |
9bc482d3
MK
751 __GFP_HIGHMEM |
752 __GFP_MOVABLE);
fd1a30de 753 if (!handle) {
2aea8493 754 zcomp_stream_put(zram->comp);
da9556a2
SS
755 zstrm = NULL;
756
623e47fc
SS
757 atomic64_inc(&zram->stats.writestall);
758
da9556a2 759 handle = zs_malloc(meta->mem_pool, clen,
9bc482d3
MK
760 GFP_NOIO | __GFP_HIGHMEM |
761 __GFP_MOVABLE);
da9556a2
SS
762 if (handle)
763 goto compress_again;
764
ebaf9ab5 765 pr_err("Error allocating memory for compressed page: %u, size=%u\n",
596b3dd4 766 index, clen);
924bd88d
JM
767 ret = -ENOMEM;
768 goto out;
8c921b2b 769 }
9ada9da9 770
461a8eee 771 alloced_pages = zs_get_total_pages(meta->mem_pool);
12372755
SS
772 update_used_max(zram, alloced_pages);
773
461a8eee 774 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
9ada9da9
MK
775 zs_free(meta->mem_pool, handle);
776 ret = -ENOMEM;
777 goto out;
778 }
779
8b3cc3ed 780 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
306b0c95 781
42e99bd9 782 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
397c6066 783 src = kmap_atomic(page);
42e99bd9 784 copy_page(cmem, src);
397c6066 785 kunmap_atomic(src);
42e99bd9
JL
786 } else {
787 memcpy(cmem, src, clen);
788 }
306b0c95 789
2aea8493 790 zcomp_stream_put(zram->comp);
17162f41 791 zstrm = NULL;
8b3cc3ed 792 zs_unmap_object(meta->mem_pool, handle);
fd1a30de 793
f40ac2ae
SS
794 /*
795 * Free memory associated with this sector
796 * before overwriting unused sectors.
797 */
d2d5e762 798 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae
SS
799 zram_free_page(zram, index);
800
8b3cc3ed 801 meta->table[index].handle = handle;
d2d5e762
WY
802 zram_set_obj_size(meta, index, clen);
803 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
306b0c95 804
8c921b2b 805 /* Update stats */
90a7806e
SS
806 atomic64_add(clen, &zram->stats.compr_data_size);
807 atomic64_inc(&zram->stats.pages_stored);
924bd88d 808out:
17162f41 809 if (zstrm)
2aea8493 810 zcomp_stream_put(zram->comp);
397c6066
NG
811 if (is_partial_io(bvec))
812 kfree(uncmem);
924bd88d 813 return ret;
8c921b2b
JM
814}
815
f4659d8e
JK
816/*
817 * zram_bio_discard - handler on discard request
818 * @index: physical block index in PAGE_SIZE units
819 * @offset: byte offset within physical block
820 */
821static void zram_bio_discard(struct zram *zram, u32 index,
822 int offset, struct bio *bio)
823{
824 size_t n = bio->bi_iter.bi_size;
d2d5e762 825 struct zram_meta *meta = zram->meta;
f4659d8e
JK
826
827 /*
828 * zram manages data in physical block size units. Because logical block
829 * size isn't identical with physical block size on some arch, we
830 * could get a discard request pointing to a specific offset within a
831 * certain physical block. Although we can handle this request by
832 * reading that physiclal block and decompressing and partially zeroing
833 * and re-compressing and then re-storing it, this isn't reasonable
834 * because our intent with a discard request is to save memory. So
835 * skipping this logical block is appropriate here.
836 */
837 if (offset) {
38515c73 838 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
839 return;
840
38515c73 841 n -= (PAGE_SIZE - offset);
f4659d8e
JK
842 index++;
843 }
844
845 while (n >= PAGE_SIZE) {
d2d5e762 846 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f4659d8e 847 zram_free_page(zram, index);
d2d5e762 848 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
015254da 849 atomic64_inc(&zram->stats.notify_free);
f4659d8e
JK
850 index++;
851 n -= PAGE_SIZE;
852 }
853}
854
522698d7 855static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
c11f0c0b 856 int offset, bool is_write)
9b3bb7ab 857{
522698d7 858 unsigned long start_time = jiffies;
c11f0c0b 859 int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
9b3bb7ab 860 int ret;
9b3bb7ab 861
c11f0c0b 862 generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
522698d7 863 &zram->disk->part0);
46a51c80 864
c11f0c0b 865 if (!is_write) {
522698d7
SS
866 atomic64_inc(&zram->stats.num_reads);
867 ret = zram_bvec_read(zram, bvec, index, offset);
868 } else {
869 atomic64_inc(&zram->stats.num_writes);
870 ret = zram_bvec_write(zram, bvec, index, offset);
1b672224 871 }
9b3bb7ab 872
c11f0c0b 873 generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
9b3bb7ab 874
522698d7 875 if (unlikely(ret)) {
c11f0c0b 876 if (!is_write)
522698d7
SS
877 atomic64_inc(&zram->stats.failed_reads);
878 else
879 atomic64_inc(&zram->stats.failed_writes);
1b672224 880 }
9b3bb7ab 881
1b672224 882 return ret;
8c921b2b
JM
883}
884
be257c61 885static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 886{
abf54548 887 int offset;
8c921b2b 888 u32 index;
7988613b
KO
889 struct bio_vec bvec;
890 struct bvec_iter iter;
8c921b2b 891
4f024f37
KO
892 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
893 offset = (bio->bi_iter.bi_sector &
894 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 895
95fe6c1a 896 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
f4659d8e 897 zram_bio_discard(zram, index, offset, bio);
4246a0b6 898 bio_endio(bio);
f4659d8e
JK
899 return;
900 }
901
7988613b 902 bio_for_each_segment(bvec, bio, iter) {
924bd88d
JM
903 int max_transfer_size = PAGE_SIZE - offset;
904
7988613b 905 if (bvec.bv_len > max_transfer_size) {
924bd88d
JM
906 /*
907 * zram_bvec_rw() can only make operation on a single
908 * zram page. Split the bio vector.
909 */
910 struct bio_vec bv;
911
7988613b 912 bv.bv_page = bvec.bv_page;
924bd88d 913 bv.bv_len = max_transfer_size;
7988613b 914 bv.bv_offset = bvec.bv_offset;
924bd88d 915
abf54548 916 if (zram_bvec_rw(zram, &bv, index, offset,
c11f0c0b 917 op_is_write(bio_op(bio))) < 0)
924bd88d
JM
918 goto out;
919
7988613b 920 bv.bv_len = bvec.bv_len - max_transfer_size;
924bd88d 921 bv.bv_offset += max_transfer_size;
abf54548 922 if (zram_bvec_rw(zram, &bv, index + 1, 0,
c11f0c0b 923 op_is_write(bio_op(bio))) < 0)
924bd88d
JM
924 goto out;
925 } else
abf54548 926 if (zram_bvec_rw(zram, &bvec, index, offset,
c11f0c0b 927 op_is_write(bio_op(bio))) < 0)
924bd88d
JM
928 goto out;
929
7988613b 930 update_position(&index, &offset, &bvec);
a1dd52af 931 }
306b0c95 932
4246a0b6 933 bio_endio(bio);
7d7854b4 934 return;
306b0c95
NG
935
936out:
306b0c95 937 bio_io_error(bio);
306b0c95
NG
938}
939
306b0c95 940/*
f1e3cfff 941 * Handler function for all zram I/O requests.
306b0c95 942 */
dece1635 943static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 944{
f1e3cfff 945 struct zram *zram = queue->queuedata;
306b0c95 946
08eee69f 947 if (unlikely(!zram_meta_get(zram)))
3de738cd 948 goto error;
0900beae 949
54efd50b
KO
950 blk_queue_split(queue, &bio, queue->bio_split);
951
54850e73 952 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
953 bio->bi_iter.bi_size)) {
da5cc7d3 954 atomic64_inc(&zram->stats.invalid_io);
08eee69f 955 goto put_zram;
6642a67c
JM
956 }
957
be257c61 958 __zram_make_request(zram, bio);
08eee69f 959 zram_meta_put(zram);
dece1635 960 return BLK_QC_T_NONE;
08eee69f
MK
961put_zram:
962 zram_meta_put(zram);
0900beae
JM
963error:
964 bio_io_error(bio);
dece1635 965 return BLK_QC_T_NONE;
306b0c95
NG
966}
967
2ccbec05
NG
968static void zram_slot_free_notify(struct block_device *bdev,
969 unsigned long index)
107c161b 970{
f1e3cfff 971 struct zram *zram;
f614a9f4 972 struct zram_meta *meta;
107c161b 973
f1e3cfff 974 zram = bdev->bd_disk->private_data;
f614a9f4 975 meta = zram->meta;
a0c516cb 976
d2d5e762 977 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 978 zram_free_page(zram, index);
d2d5e762 979 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 980 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
981}
982
8c7f0102 983static int zram_rw_page(struct block_device *bdev, sector_t sector,
c11f0c0b 984 struct page *page, bool is_write)
8c7f0102 985{
08eee69f 986 int offset, err = -EIO;
8c7f0102 987 u32 index;
988 struct zram *zram;
989 struct bio_vec bv;
990
991 zram = bdev->bd_disk->private_data;
08eee69f
MK
992 if (unlikely(!zram_meta_get(zram)))
993 goto out;
994
8c7f0102 995 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
996 atomic64_inc(&zram->stats.invalid_io);
08eee69f
MK
997 err = -EINVAL;
998 goto put_zram;
8c7f0102 999 }
1000
1001 index = sector >> SECTORS_PER_PAGE_SHIFT;
1002 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
1003
1004 bv.bv_page = page;
1005 bv.bv_len = PAGE_SIZE;
1006 bv.bv_offset = 0;
1007
c11f0c0b 1008 err = zram_bvec_rw(zram, &bv, index, offset, is_write);
08eee69f
MK
1009put_zram:
1010 zram_meta_put(zram);
1011out:
8c7f0102 1012 /*
1013 * If I/O fails, just return error(ie, non-zero) without
1014 * calling page_endio.
1015 * It causes resubmit the I/O with bio request by upper functions
1016 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1017 * bio->bi_end_io does things to handle the error
1018 * (e.g., SetPageError, set_page_dirty and extra works).
1019 */
1020 if (err == 0)
c11f0c0b 1021 page_endio(page, is_write, 0);
8c7f0102 1022 return err;
1023}
1024
522698d7
SS
1025static void zram_reset_device(struct zram *zram)
1026{
1027 struct zram_meta *meta;
1028 struct zcomp *comp;
1029 u64 disksize;
306b0c95 1030
522698d7 1031 down_write(&zram->init_lock);
9b3bb7ab 1032
522698d7
SS
1033 zram->limit_pages = 0;
1034
1035 if (!init_done(zram)) {
1036 up_write(&zram->init_lock);
1037 return;
1038 }
1039
1040 meta = zram->meta;
1041 comp = zram->comp;
1042 disksize = zram->disksize;
1043 /*
1044 * Refcount will go down to 0 eventually and r/w handler
1045 * cannot handle further I/O so it will bail out by
1046 * check zram_meta_get.
1047 */
1048 zram_meta_put(zram);
1049 /*
1050 * We want to free zram_meta in process context to avoid
1051 * deadlock between reclaim path and any other locks.
1052 */
1053 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1054
1055 /* Reset stats */
1056 memset(&zram->stats, 0, sizeof(zram->stats));
1057 zram->disksize = 0;
522698d7
SS
1058
1059 set_capacity(zram->disk, 0);
1060 part_stat_set_all(&zram->disk->part0, 0);
1061
1062 up_write(&zram->init_lock);
1063 /* I/O operation under all of CPU are done so let's free */
1064 zram_meta_free(meta, disksize);
1065 zcomp_destroy(comp);
1066}
1067
1068static ssize_t disksize_store(struct device *dev,
1069 struct device_attribute *attr, const char *buf, size_t len)
2f6a3bed 1070{
522698d7
SS
1071 u64 disksize;
1072 struct zcomp *comp;
1073 struct zram_meta *meta;
2f6a3bed 1074 struct zram *zram = dev_to_zram(dev);
522698d7 1075 int err;
2f6a3bed 1076
522698d7
SS
1077 disksize = memparse(buf, NULL);
1078 if (!disksize)
1079 return -EINVAL;
2f6a3bed 1080
522698d7 1081 disksize = PAGE_ALIGN(disksize);
4ce321f5 1082 meta = zram_meta_alloc(zram->disk->disk_name, disksize);
522698d7
SS
1083 if (!meta)
1084 return -ENOMEM;
1085
da9556a2 1086 comp = zcomp_create(zram->compressor);
522698d7 1087 if (IS_ERR(comp)) {
70864969 1088 pr_err("Cannot initialise %s compressing backend\n",
522698d7
SS
1089 zram->compressor);
1090 err = PTR_ERR(comp);
1091 goto out_free_meta;
1092 }
1093
1094 down_write(&zram->init_lock);
1095 if (init_done(zram)) {
1096 pr_info("Cannot change disksize for initialized device\n");
1097 err = -EBUSY;
1098 goto out_destroy_comp;
1099 }
1100
1101 init_waitqueue_head(&zram->io_done);
1102 atomic_set(&zram->refcount, 1);
1103 zram->meta = meta;
1104 zram->comp = comp;
1105 zram->disksize = disksize;
1106 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
b09ab054 1107 zram_revalidate_disk(zram);
e7ccfc4c 1108 up_write(&zram->init_lock);
522698d7
SS
1109
1110 return len;
1111
1112out_destroy_comp:
1113 up_write(&zram->init_lock);
1114 zcomp_destroy(comp);
1115out_free_meta:
1116 zram_meta_free(meta, disksize);
1117 return err;
2f6a3bed
SS
1118}
1119
522698d7
SS
1120static ssize_t reset_store(struct device *dev,
1121 struct device_attribute *attr, const char *buf, size_t len)
4f2109f6 1122{
522698d7
SS
1123 int ret;
1124 unsigned short do_reset;
1125 struct zram *zram;
1126 struct block_device *bdev;
4f2109f6 1127
f405c445
SS
1128 ret = kstrtou16(buf, 10, &do_reset);
1129 if (ret)
1130 return ret;
1131
1132 if (!do_reset)
1133 return -EINVAL;
1134
522698d7
SS
1135 zram = dev_to_zram(dev);
1136 bdev = bdget_disk(zram->disk, 0);
522698d7
SS
1137 if (!bdev)
1138 return -ENOMEM;
4f2109f6 1139
522698d7 1140 mutex_lock(&bdev->bd_mutex);
f405c445
SS
1141 /* Do not reset an active device or claimed device */
1142 if (bdev->bd_openers || zram->claim) {
1143 mutex_unlock(&bdev->bd_mutex);
1144 bdput(bdev);
1145 return -EBUSY;
522698d7
SS
1146 }
1147
f405c445
SS
1148 /* From now on, anyone can't open /dev/zram[0-9] */
1149 zram->claim = true;
1150 mutex_unlock(&bdev->bd_mutex);
522698d7 1151
f405c445 1152 /* Make sure all the pending I/O are finished */
522698d7
SS
1153 fsync_bdev(bdev);
1154 zram_reset_device(zram);
b09ab054 1155 zram_revalidate_disk(zram);
522698d7
SS
1156 bdput(bdev);
1157
f405c445
SS
1158 mutex_lock(&bdev->bd_mutex);
1159 zram->claim = false;
1160 mutex_unlock(&bdev->bd_mutex);
1161
522698d7 1162 return len;
f405c445
SS
1163}
1164
1165static int zram_open(struct block_device *bdev, fmode_t mode)
1166{
1167 int ret = 0;
1168 struct zram *zram;
1169
1170 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1171
1172 zram = bdev->bd_disk->private_data;
1173 /* zram was claimed to reset so open request fails */
1174 if (zram->claim)
1175 ret = -EBUSY;
4f2109f6
SS
1176
1177 return ret;
1178}
1179
522698d7 1180static const struct block_device_operations zram_devops = {
f405c445 1181 .open = zram_open,
522698d7
SS
1182 .swap_slot_free_notify = zram_slot_free_notify,
1183 .rw_page = zram_rw_page,
1184 .owner = THIS_MODULE
1185};
1186
1187static DEVICE_ATTR_WO(compact);
1188static DEVICE_ATTR_RW(disksize);
1189static DEVICE_ATTR_RO(initstate);
1190static DEVICE_ATTR_WO(reset);
1191static DEVICE_ATTR_RO(orig_data_size);
1192static DEVICE_ATTR_RO(mem_used_total);
1193static DEVICE_ATTR_RW(mem_limit);
1194static DEVICE_ATTR_RW(mem_used_max);
1195static DEVICE_ATTR_RW(max_comp_streams);
1196static DEVICE_ATTR_RW(comp_algorithm);
a68eb3b6 1197
9b3bb7ab
SS
1198static struct attribute *zram_disk_attrs[] = {
1199 &dev_attr_disksize.attr,
1200 &dev_attr_initstate.attr,
1201 &dev_attr_reset.attr,
1202 &dev_attr_num_reads.attr,
1203 &dev_attr_num_writes.attr,
64447249
SS
1204 &dev_attr_failed_reads.attr,
1205 &dev_attr_failed_writes.attr,
99ebbd30 1206 &dev_attr_compact.attr,
9b3bb7ab
SS
1207 &dev_attr_invalid_io.attr,
1208 &dev_attr_notify_free.attr,
1209 &dev_attr_zero_pages.attr,
1210 &dev_attr_orig_data_size.attr,
1211 &dev_attr_compr_data_size.attr,
1212 &dev_attr_mem_used_total.attr,
9ada9da9 1213 &dev_attr_mem_limit.attr,
461a8eee 1214 &dev_attr_mem_used_max.attr,
beca3ec7 1215 &dev_attr_max_comp_streams.attr,
e46b8a03 1216 &dev_attr_comp_algorithm.attr,
2f6a3bed 1217 &dev_attr_io_stat.attr,
4f2109f6 1218 &dev_attr_mm_stat.attr,
623e47fc 1219 &dev_attr_debug_stat.attr,
9b3bb7ab
SS
1220 NULL,
1221};
1222
1223static struct attribute_group zram_disk_attr_group = {
1224 .attrs = zram_disk_attrs,
1225};
1226
92ff1528
SS
1227/*
1228 * Allocate and initialize new zram device. the function returns
1229 * '>= 0' device_id upon success, and negative value otherwise.
1230 */
1231static int zram_add(void)
306b0c95 1232{
85508ec6 1233 struct zram *zram;
ee980160 1234 struct request_queue *queue;
92ff1528 1235 int ret, device_id;
85508ec6
SS
1236
1237 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1238 if (!zram)
1239 return -ENOMEM;
1240
92ff1528 1241 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
85508ec6
SS
1242 if (ret < 0)
1243 goto out_free_dev;
92ff1528 1244 device_id = ret;
de1a21a0 1245
0900beae 1246 init_rwsem(&zram->init_lock);
306b0c95 1247
ee980160
SS
1248 queue = blk_alloc_queue(GFP_KERNEL);
1249 if (!queue) {
306b0c95
NG
1250 pr_err("Error allocating disk queue for device %d\n",
1251 device_id);
85508ec6
SS
1252 ret = -ENOMEM;
1253 goto out_free_idr;
306b0c95
NG
1254 }
1255
ee980160 1256 blk_queue_make_request(queue, zram_make_request);
306b0c95 1257
85508ec6 1258 /* gendisk structure */
f1e3cfff
NG
1259 zram->disk = alloc_disk(1);
1260 if (!zram->disk) {
70864969 1261 pr_err("Error allocating disk structure for device %d\n",
306b0c95 1262 device_id);
201c7b72 1263 ret = -ENOMEM;
39a9b8ac 1264 goto out_free_queue;
306b0c95
NG
1265 }
1266
f1e3cfff
NG
1267 zram->disk->major = zram_major;
1268 zram->disk->first_minor = device_id;
1269 zram->disk->fops = &zram_devops;
ee980160
SS
1270 zram->disk->queue = queue;
1271 zram->disk->queue->queuedata = zram;
f1e3cfff
NG
1272 zram->disk->private_data = zram;
1273 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 1274
33863c21 1275 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 1276 set_capacity(zram->disk, 0);
b67d1ec1
SS
1277 /* zram devices sort of resembles non-rotational disks */
1278 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
b277da0a 1279 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
a1dd52af
NG
1280 /*
1281 * To ensure that we always get PAGE_SIZE aligned
1282 * and n*PAGE_SIZED sized I/O requests.
1283 */
f1e3cfff 1284 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
1285 blk_queue_logical_block_size(zram->disk->queue,
1286 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
1287 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1288 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e 1289 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
2bb4cd5c 1290 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
f4659d8e
JK
1291 /*
1292 * zram_bio_discard() will clear all logical blocks if logical block
1293 * size is identical with physical block size(PAGE_SIZE). But if it is
1294 * different, we will skip discarding some parts of logical blocks in
1295 * the part of the request range which isn't aligned to physical block
1296 * size. So we can't ensure that all discarded logical blocks are
1297 * zeroed.
1298 */
1299 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1300 zram->disk->queue->limits.discard_zeroes_data = 1;
1301 else
1302 zram->disk->queue->limits.discard_zeroes_data = 0;
1303 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
5d83d5a0 1304
f1e3cfff 1305 add_disk(zram->disk);
306b0c95 1306
33863c21
NG
1307 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1308 &zram_disk_attr_group);
1309 if (ret < 0) {
70864969
SS
1310 pr_err("Error creating sysfs group for device %d\n",
1311 device_id);
39a9b8ac 1312 goto out_free_disk;
33863c21 1313 }
e46b8a03 1314 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
be2d1d56 1315 zram->meta = NULL;
d12b63c9
SS
1316
1317 pr_info("Added device: %s\n", zram->disk->disk_name);
92ff1528 1318 return device_id;
de1a21a0 1319
39a9b8ac
JL
1320out_free_disk:
1321 del_gendisk(zram->disk);
1322 put_disk(zram->disk);
1323out_free_queue:
ee980160 1324 blk_cleanup_queue(queue);
85508ec6
SS
1325out_free_idr:
1326 idr_remove(&zram_index_idr, device_id);
1327out_free_dev:
1328 kfree(zram);
de1a21a0 1329 return ret;
306b0c95
NG
1330}
1331
6566d1a3 1332static int zram_remove(struct zram *zram)
306b0c95 1333{
6566d1a3
SS
1334 struct block_device *bdev;
1335
1336 bdev = bdget_disk(zram->disk, 0);
1337 if (!bdev)
1338 return -ENOMEM;
1339
1340 mutex_lock(&bdev->bd_mutex);
1341 if (bdev->bd_openers || zram->claim) {
1342 mutex_unlock(&bdev->bd_mutex);
1343 bdput(bdev);
1344 return -EBUSY;
1345 }
1346
1347 zram->claim = true;
1348 mutex_unlock(&bdev->bd_mutex);
1349
85508ec6
SS
1350 /*
1351 * Remove sysfs first, so no one will perform a disksize
6566d1a3
SS
1352 * store while we destroy the devices. This also helps during
1353 * hot_remove -- zram_reset_device() is the last holder of
1354 * ->init_lock, no later/concurrent disksize_store() or any
1355 * other sysfs handlers are possible.
85508ec6
SS
1356 */
1357 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1358 &zram_disk_attr_group);
306b0c95 1359
6566d1a3
SS
1360 /* Make sure all the pending I/O are finished */
1361 fsync_bdev(bdev);
85508ec6 1362 zram_reset_device(zram);
6566d1a3
SS
1363 bdput(bdev);
1364
1365 pr_info("Removed device: %s\n", zram->disk->disk_name);
1366
85508ec6
SS
1367 blk_cleanup_queue(zram->disk->queue);
1368 del_gendisk(zram->disk);
1369 put_disk(zram->disk);
1370 kfree(zram);
6566d1a3
SS
1371 return 0;
1372}
1373
1374/* zram-control sysfs attributes */
1375static ssize_t hot_add_show(struct class *class,
1376 struct class_attribute *attr,
1377 char *buf)
1378{
1379 int ret;
1380
1381 mutex_lock(&zram_index_mutex);
1382 ret = zram_add();
1383 mutex_unlock(&zram_index_mutex);
1384
1385 if (ret < 0)
1386 return ret;
1387 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1388}
1389
1390static ssize_t hot_remove_store(struct class *class,
1391 struct class_attribute *attr,
1392 const char *buf,
1393 size_t count)
1394{
1395 struct zram *zram;
1396 int ret, dev_id;
1397
1398 /* dev_id is gendisk->first_minor, which is `int' */
1399 ret = kstrtoint(buf, 10, &dev_id);
1400 if (ret)
1401 return ret;
1402 if (dev_id < 0)
1403 return -EINVAL;
1404
1405 mutex_lock(&zram_index_mutex);
1406
1407 zram = idr_find(&zram_index_idr, dev_id);
17ec4cd9 1408 if (zram) {
6566d1a3 1409 ret = zram_remove(zram);
529e71e1
TI
1410 if (!ret)
1411 idr_remove(&zram_index_idr, dev_id);
17ec4cd9 1412 } else {
6566d1a3 1413 ret = -ENODEV;
17ec4cd9 1414 }
6566d1a3
SS
1415
1416 mutex_unlock(&zram_index_mutex);
1417 return ret ? ret : count;
85508ec6 1418}
a096cafc 1419
5c7e9ccd
SS
1420/*
1421 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1422 * sense that reading from this file does alter the state of your system -- it
1423 * creates a new un-initialized zram device and returns back this device's
1424 * device_id (or an error code if it fails to create a new device).
1425 */
6566d1a3 1426static struct class_attribute zram_control_class_attrs[] = {
5c7e9ccd 1427 __ATTR(hot_add, 0400, hot_add_show, NULL),
6566d1a3
SS
1428 __ATTR_WO(hot_remove),
1429 __ATTR_NULL,
1430};
1431
1432static struct class zram_control_class = {
1433 .name = "zram-control",
1434 .owner = THIS_MODULE,
1435 .class_attrs = zram_control_class_attrs,
1436};
1437
85508ec6
SS
1438static int zram_remove_cb(int id, void *ptr, void *data)
1439{
1440 zram_remove(ptr);
1441 return 0;
1442}
a096cafc 1443
85508ec6
SS
1444static void destroy_devices(void)
1445{
6566d1a3 1446 class_unregister(&zram_control_class);
85508ec6
SS
1447 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1448 idr_destroy(&zram_index_idr);
a096cafc 1449 unregister_blkdev(zram_major, "zram");
1dd6c834 1450 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
306b0c95
NG
1451}
1452
f1e3cfff 1453static int __init zram_init(void)
306b0c95 1454{
92ff1528 1455 int ret;
306b0c95 1456
1dd6c834
AMG
1457 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1458 zcomp_cpu_up_prepare, zcomp_cpu_dead);
1459 if (ret < 0)
1460 return ret;
1461
6566d1a3
SS
1462 ret = class_register(&zram_control_class);
1463 if (ret) {
70864969 1464 pr_err("Unable to register zram-control class\n");
1dd6c834 1465 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
6566d1a3
SS
1466 return ret;
1467 }
1468
f1e3cfff
NG
1469 zram_major = register_blkdev(0, "zram");
1470 if (zram_major <= 0) {
70864969 1471 pr_err("Unable to get major number\n");
6566d1a3 1472 class_unregister(&zram_control_class);
1dd6c834 1473 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
a096cafc 1474 return -EBUSY;
306b0c95
NG
1475 }
1476
92ff1528 1477 while (num_devices != 0) {
6566d1a3 1478 mutex_lock(&zram_index_mutex);
92ff1528 1479 ret = zram_add();
6566d1a3 1480 mutex_unlock(&zram_index_mutex);
92ff1528 1481 if (ret < 0)
a096cafc 1482 goto out_error;
92ff1528 1483 num_devices--;
de1a21a0
NG
1484 }
1485
306b0c95 1486 return 0;
de1a21a0 1487
a096cafc 1488out_error:
85508ec6 1489 destroy_devices();
306b0c95
NG
1490 return ret;
1491}
1492
f1e3cfff 1493static void __exit zram_exit(void)
306b0c95 1494{
85508ec6 1495 destroy_devices();
306b0c95
NG
1496}
1497
f1e3cfff
NG
1498module_init(zram_init);
1499module_exit(zram_exit);
306b0c95 1500
9b3bb7ab 1501module_param(num_devices, uint, 0);
c3cdb40e 1502MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
9b3bb7ab 1503
306b0c95
NG
1504MODULE_LICENSE("Dual BSD/GPL");
1505MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1506MODULE_DESCRIPTION("Compressed RAM Block Device");